Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4VSceneHandler.cc,v 1.83 2008/01/04 22:03:46 allison Exp $ >> 28 // GEANT4 tag $Name: geant4-09-02-patch-04 $ 27 // 29 // 28 // 30 // 29 // John Allison 19th July 1996 31 // John Allison 19th July 1996 30 // Abstract interface class for graphics scene 32 // Abstract interface class for graphics scenes. 31 33 32 #include "G4VSceneHandler.hh" 34 #include "G4VSceneHandler.hh" 33 35 34 #include "G4ios.hh" 36 #include "G4ios.hh" 35 #include <sstream> 37 #include <sstream> 36 38 37 #include "G4VisManager.hh" 39 #include "G4VisManager.hh" 38 #include "G4VGraphicsSystem.hh" 40 #include "G4VGraphicsSystem.hh" 39 #include "G4VViewer.hh" 41 #include "G4VViewer.hh" 40 #include "G4VSolid.hh" 42 #include "G4VSolid.hh" 41 #include "G4RotationMatrix.hh" 43 #include "G4RotationMatrix.hh" 42 #include "G4ThreeVector.hh" 44 #include "G4ThreeVector.hh" 43 #include "G4VPhysicalVolume.hh" 45 #include "G4VPhysicalVolume.hh" 44 #include "G4Material.hh" 46 #include "G4Material.hh" 45 #include "G4Polyline.hh" 47 #include "G4Polyline.hh" >> 48 #include "G4Scale.hh" 46 #include "G4Text.hh" 49 #include "G4Text.hh" 47 #include "G4Circle.hh" 50 #include "G4Circle.hh" 48 #include "G4Square.hh" 51 #include "G4Square.hh" 49 #include "G4Polymarker.hh" 52 #include "G4Polymarker.hh" 50 #include "G4Polyhedron.hh" 53 #include "G4Polyhedron.hh" >> 54 #include "G4NURBS.hh" 51 #include "G4Visible.hh" 55 #include "G4Visible.hh" 52 #include "G4VisAttributes.hh" 56 #include "G4VisAttributes.hh" 53 #include "G4VModel.hh" 57 #include "G4VModel.hh" 54 #include "G4TrajectoriesModel.hh" 58 #include "G4TrajectoriesModel.hh" 55 #include "G4Box.hh" 59 #include "G4Box.hh" 56 #include "G4Cons.hh" 60 #include "G4Cons.hh" 57 #include "G4Orb.hh" << 61 #include "G4Tubs.hh" 58 #include "G4Para.hh" << 62 #include "G4Trd.hh" >> 63 #include "G4Trap.hh" 59 #include "G4Sphere.hh" 64 #include "G4Sphere.hh" >> 65 #include "G4Para.hh" 60 #include "G4Torus.hh" 66 #include "G4Torus.hh" 61 #include "G4Trap.hh" << 62 #include "G4Trd.hh" << 63 #include "G4Tubs.hh" << 64 #include "G4Ellipsoid.hh" << 65 #include "G4Polycone.hh" 67 #include "G4Polycone.hh" 66 #include "G4Polyhedra.hh" 68 #include "G4Polyhedra.hh" 67 #include "G4Tet.hh" << 68 #include "G4DisplacedSolid.hh" << 69 #include "G4UnionSolid.hh" << 70 #include "G4IntersectionSolid.hh" << 71 #include "G4SubtractionSolid.hh" << 72 #include "G4LogicalVolume.hh" 69 #include "G4LogicalVolume.hh" 73 #include "G4PhysicalVolumeModel.hh" 70 #include "G4PhysicalVolumeModel.hh" 74 #include "G4ModelingParameters.hh" 71 #include "G4ModelingParameters.hh" 75 #include "G4VTrajectory.hh" 72 #include "G4VTrajectory.hh" 76 #include "G4VTrajectoryPoint.hh" 73 #include "G4VTrajectoryPoint.hh" 77 #include "G4HitsModel.hh" 74 #include "G4HitsModel.hh" 78 #include "G4VHit.hh" 75 #include "G4VHit.hh" 79 #include "G4VDigi.hh" << 76 #include "Randomize.hh" 80 #include "G4ScoringManager.hh" << 81 #include "G4VScoringMesh.hh" << 82 #include "G4Mesh.hh" << 83 #include "G4DefaultLinearColorMap.hh" << 84 #include "G4QuickRand.hh" << 85 #include "G4StateManager.hh" 77 #include "G4StateManager.hh" 86 #include "G4RunManager.hh" 78 #include "G4RunManager.hh" 87 #include "G4RunManagerFactory.hh" << 88 #include "G4Run.hh" 79 #include "G4Run.hh" 89 #include "G4Transform3D.hh" 80 #include "G4Transform3D.hh" 90 #include "G4AttHolder.hh" 81 #include "G4AttHolder.hh" 91 #include "G4AttDef.hh" 82 #include "G4AttDef.hh" 92 #include "G4SceneTreeItem.hh" << 93 #include "G4VVisCommand.hh" << 94 #include "G4PhysicalConstants.hh" << 95 #include "G4SystemOfUnits.hh" << 96 << 97 #define G4warn G4cout << 98 83 99 G4VSceneHandler::G4VSceneHandler (G4VGraphicsS 84 G4VSceneHandler::G4VSceneHandler (G4VGraphicsSystem& system, G4int id, const G4String& name): 100 fSystem (system), 85 fSystem (system), 101 fSceneHandlerId (id), 86 fSceneHandlerId (id), 102 fViewCount (0), 87 fViewCount (0), 103 fpViewer (0), 88 fpViewer (0), 104 fpScene (0), 89 fpScene (0), 105 fMarkForClearingTransientStore (true), // R 90 fMarkForClearingTransientStore (true), // Ready for first 106 // ClearTransientStoreIfMarked(), 91 // ClearTransientStoreIfMarked(), 107 // e.g., at end of run (see 92 // e.g., at end of run (see 108 // G4VisManager.cc). 93 // G4VisManager.cc). 109 fReadyForTransients (true), // Only fals 94 fReadyForTransients (true), // Only false while processing scene. 110 fProcessingSolid (false), 95 fProcessingSolid (false), 111 fProcessing2D (false), << 96 fSecondPassRequested (false), >> 97 fSecondPass (false), 112 fpModel (0), 98 fpModel (0), >> 99 fpObjectTransformation (0), 113 fNestingDepth (0), 100 fNestingDepth (0), 114 fpVisAttribs (0) 101 fpVisAttribs (0) 115 { 102 { 116 G4VisManager* pVMan = G4VisManager::GetInsta 103 G4VisManager* pVMan = G4VisManager::GetInstance (); 117 fpScene = pVMan -> GetCurrentScene (); 104 fpScene = pVMan -> GetCurrentScene (); 118 if (name == "") { 105 if (name == "") { 119 std::ostringstream ost; 106 std::ostringstream ost; 120 ost << fSystem.GetName () << '-' << fScene 107 ost << fSystem.GetName () << '-' << fSceneHandlerId; 121 fName = ost.str(); 108 fName = ost.str(); 122 } 109 } 123 else { 110 else { 124 fName = name; 111 fName = name; 125 } 112 } 126 fTransientsDrawnThisEvent = pVMan->GetTransi 113 fTransientsDrawnThisEvent = pVMan->GetTransientsDrawnThisEvent(); 127 fTransientsDrawnThisRun = pVMan->GetTransien 114 fTransientsDrawnThisRun = pVMan->GetTransientsDrawnThisRun(); 128 } 115 } 129 116 130 G4VSceneHandler::~G4VSceneHandler () { 117 G4VSceneHandler::~G4VSceneHandler () { 131 G4VViewer* last; << 118 G4ViewerListIterator i; 132 while( ! fViewerList.empty() ) { << 119 for (i = fViewerList.begin(); i != fViewerList.end(); ++i) { 133 last = fViewerList.back(); << 120 delete *i; 134 fViewerList.pop_back(); << 135 delete last; << 136 } << 137 } << 138 << 139 const G4VisExtent& G4VSceneHandler::GetExtent( << 140 { << 141 if (fpScene) { << 142 return fpScene->GetExtent(); << 143 } else { << 144 static const G4VisExtent defaultExtent = G << 145 return defaultExtent; << 146 } 121 } 147 } 122 } 148 123 149 void G4VSceneHandler::PreAddSolid (const G4Tra 124 void G4VSceneHandler::PreAddSolid (const G4Transform3D& objectTransformation, 150 const G4VisAttributes& visAttribs) << 125 const G4VisAttributes& visAttribs) { 151 fObjectTransformation = objectTransformation << 126 fpObjectTransformation = &objectTransformation; 152 fpVisAttribs = &visAttribs; 127 fpVisAttribs = &visAttribs; 153 fProcessingSolid = true; 128 fProcessingSolid = true; 154 } 129 } 155 130 156 void G4VSceneHandler::PostAddSolid () { 131 void G4VSceneHandler::PostAddSolid () { >> 132 fpObjectTransformation = 0; 157 fpVisAttribs = 0; 133 fpVisAttribs = 0; 158 fProcessingSolid = false; 134 fProcessingSolid = false; 159 if (fReadyForTransients) { 135 if (fReadyForTransients) { 160 fTransientsDrawnThisEvent = true; 136 fTransientsDrawnThisEvent = true; 161 fTransientsDrawnThisRun = true; 137 fTransientsDrawnThisRun = true; 162 } 138 } 163 } 139 } 164 140 165 void G4VSceneHandler::BeginPrimitives 141 void G4VSceneHandler::BeginPrimitives 166 (const G4Transform3D& objectTransformation) { 142 (const G4Transform3D& objectTransformation) { 167 //static G4int count = 0; << 168 //G4cout << "G4VSceneHandler::BeginPrimitive << 169 fNestingDepth++; 143 fNestingDepth++; 170 if (fNestingDepth > 1) 144 if (fNestingDepth > 1) 171 G4Exception << 145 G4Exception("G4VSceneHandler::BeginPrimitives: Nesting detected." 172 ("G4VSceneHandler::BeginPrimitives", << 146 "\n It is illegal to nest Begin/EndPrimitives."); 173 "visman0101", FatalException, << 147 fpObjectTransformation = &objectTransformation; 174 "Nesting detected. It is illegal to nes << 175 fObjectTransformation = objectTransformation << 176 } 148 } 177 149 178 void G4VSceneHandler::EndPrimitives () { 150 void G4VSceneHandler::EndPrimitives () { 179 if (fNestingDepth <= 0) 151 if (fNestingDepth <= 0) 180 G4Exception("G4VSceneHandler::EndPrimitive << 152 G4Exception("G4VSceneHandler::EndPrimitives: Nesting error"); 181 "visman0102", FatalException, "Nesting err << 182 fNestingDepth--; 153 fNestingDepth--; >> 154 fpObjectTransformation = 0; 183 if (fReadyForTransients) { 155 if (fReadyForTransients) { 184 fTransientsDrawnThisEvent = true; 156 fTransientsDrawnThisEvent = true; 185 fTransientsDrawnThisRun = true; 157 fTransientsDrawnThisRun = true; 186 } 158 } 187 } 159 } 188 160 189 void G4VSceneHandler::BeginPrimitives2D 161 void G4VSceneHandler::BeginPrimitives2D 190 (const G4Transform3D& objectTransformation) { 162 (const G4Transform3D& objectTransformation) { 191 fNestingDepth++; 163 fNestingDepth++; 192 if (fNestingDepth > 1) 164 if (fNestingDepth > 1) 193 G4Exception << 165 G4Exception("G4VSceneHandler::BeginPrimitives2D: Nesting detected." 194 ("G4VSceneHandler::BeginPrimitives2D", << 166 "\n It is illegal to nest Begin/EndPrimitives."); 195 "visman0103", FatalException, << 167 fpObjectTransformation = &objectTransformation; 196 "Nesting detected. It is illegal to nes << 197 fObjectTransformation = objectTransformation << 198 fProcessing2D = true; << 199 } 168 } 200 169 201 void G4VSceneHandler::EndPrimitives2D () { 170 void G4VSceneHandler::EndPrimitives2D () { 202 if (fNestingDepth <= 0) 171 if (fNestingDepth <= 0) 203 G4Exception("G4VSceneHandler::EndPrimitive << 172 G4Exception("G4VSceneHandler::EndPrimitives2D: Nesting error"); 204 "visman0104", FatalException, "Nesting err << 205 fNestingDepth--; 173 fNestingDepth--; >> 174 fpObjectTransformation = 0; 206 if (fReadyForTransients) { 175 if (fReadyForTransients) { 207 fTransientsDrawnThisEvent = true; 176 fTransientsDrawnThisEvent = true; 208 fTransientsDrawnThisRun = true; 177 fTransientsDrawnThisRun = true; 209 } 178 } 210 fProcessing2D = false; << 211 } 179 } 212 180 213 void G4VSceneHandler::BeginModeling () { 181 void G4VSceneHandler::BeginModeling () { 214 } 182 } 215 183 216 void G4VSceneHandler::EndModeling () 184 void G4VSceneHandler::EndModeling () 217 { 185 { 218 fpModel = 0; 186 fpModel = 0; 219 } 187 } 220 188 221 void G4VSceneHandler::ClearStore () {} << 189 void G4VSceneHandler::ClearStore () { 222 << 190 // if (fpViewer) fpViewer -> NeedKernelVisit (true); 223 void G4VSceneHandler::ClearTransientStore () { << 191 // ?? Viewer is supposed to be smart enough to know when to visit 224 << 192 // kernel, but a problem in OpenGL Stored seems to require a forced 225 template <class T> void G4VSceneHandler::AddSo << 193 // kernel visit triggered by the above code. John Allison Aug 2001 226 (const T& solid) << 194 // Feb 2005 - commented out. Let's fix OpenGL if necessary. 227 { << 228 // Get and check applicable vis attributes. << 229 fpVisAttribs = fpViewer->GetApplicableVisAtt << 230 RequestPrimitives (solid); << 231 } 195 } 232 196 233 template <class T> void G4VSceneHandler::AddSo << 197 void G4VSceneHandler::ClearTransientStore () { 234 (const T& solid) << 235 { << 236 // Get and check applicable vis attributes. << 237 fpVisAttribs = fpViewer->GetApplicableVisAtt << 238 // Draw with auxiliary edges unless otherwis << 239 if (!fpVisAttribs->IsForceAuxEdgeVisible()) << 240 // Create a vis atts object for the modifi << 241 // It is static so that we may return a re << 242 static G4VisAttributes visAttsWithAuxEdges << 243 // Initialise it with the current vis atts << 244 visAttsWithAuxEdges = *fpVisAttribs; << 245 // Force auxiliary edges visible. << 246 visAttsWithAuxEdges.SetForceAuxEdgeVisible << 247 fpVisAttribs = &visAttsWithAuxEdges; << 248 } << 249 RequestPrimitives (solid); << 250 } 198 } 251 199 252 void G4VSceneHandler::AddSolid (const G4Box& b 200 void G4VSceneHandler::AddSolid (const G4Box& box) { 253 AddSolidT (box); << 201 RequestPrimitives (box); 254 // If your graphics system is sophisticated << 202 // If your graphics system is sophisticated enough to handle a 255 // particular solid shape as a primitive, i << 203 // particular solid shape as a primitive, in your derived class write a 256 // function to override this. << 204 // function to override this. (Note: some compilers warn that your 257 // Your function might look like this... << 205 // function "hides" this one. That's OK.) 258 // void G4MySceneHandler::AddSolid (const G4 << 206 // Your function might look like this... 259 // Get and check applicable vis attributes. << 207 // void G4MyScene::AddSolid (const G4Box& box) { 260 // fpVisAttribs = fpViewer->GetApplicableV << 208 // Get parameters of appropriate object, e.g.: 261 // Do not draw if not visible. << 209 // G4double dx = box.GetXHalfLength (); 262 // if (fpVisAttribs->IsVisible()) { << 210 // G4double dy = box.GetYHalfLength (); 263 // Get parameters of appropriate object, e << 211 // G4double dz = box.GetZHalfLength (); 264 // G4double dx = box.GetXHalfLength (); << 212 // and Draw or Store in your display List. 265 // G4double dy = box.GetYHalfLength (); << 266 // G4double dz = box.GetZHalfLength (); << 267 // ... << 268 // and Draw or Store in your display Lis << 269 } << 270 << 271 void G4VSceneHandler::AddSolid (const G4Cons& << 272 AddSolidT (cons); << 273 } << 274 << 275 void G4VSceneHandler::AddSolid (const G4Orb& o << 276 AddSolidWithAuxiliaryEdges (orb); << 277 } 213 } 278 214 279 void G4VSceneHandler::AddSolid (const G4Para& << 215 void G4VSceneHandler::AddSolid (const G4Tubs& tubs) { 280 AddSolidT (para); << 216 RequestPrimitives (tubs); 281 } 217 } 282 218 283 void G4VSceneHandler::AddSolid (const G4Sphere << 219 void G4VSceneHandler::AddSolid (const G4Cons& cons) { 284 AddSolidWithAuxiliaryEdges (sphere); << 220 RequestPrimitives (cons); 285 } 221 } 286 222 287 void G4VSceneHandler::AddSolid (const G4Torus& << 223 void G4VSceneHandler::AddSolid (const G4Trd& trd) { 288 AddSolidWithAuxiliaryEdges (torus); << 224 RequestPrimitives (trd); 289 } 225 } 290 226 291 void G4VSceneHandler::AddSolid (const G4Trap& 227 void G4VSceneHandler::AddSolid (const G4Trap& trap) { 292 AddSolidT (trap); << 228 RequestPrimitives (trap); 293 } 229 } 294 230 295 void G4VSceneHandler::AddSolid (const G4Trd& t << 231 void G4VSceneHandler::AddSolid (const G4Sphere& sphere) { 296 AddSolidT (trd); << 232 RequestPrimitives (sphere ); 297 } 233 } 298 234 299 void G4VSceneHandler::AddSolid (const G4Tubs& << 235 void G4VSceneHandler::AddSolid (const G4Para& para) { 300 AddSolidT (tubs); << 236 RequestPrimitives (para); 301 } 237 } 302 238 303 void G4VSceneHandler::AddSolid (const G4Ellips << 239 void G4VSceneHandler::AddSolid (const G4Torus& torus) { 304 AddSolidWithAuxiliaryEdges (ellipsoid); << 240 RequestPrimitives (torus); 305 } 241 } 306 242 307 void G4VSceneHandler::AddSolid (const G4Polyco 243 void G4VSceneHandler::AddSolid (const G4Polycone& polycone) { 308 AddSolidT (polycone); << 244 RequestPrimitives (polycone); 309 } 245 } 310 246 311 void G4VSceneHandler::AddSolid (const G4Polyhe 247 void G4VSceneHandler::AddSolid (const G4Polyhedra& polyhedra) { 312 AddSolidT (polyhedra); << 248 RequestPrimitives (polyhedra); 313 } << 314 << 315 void G4VSceneHandler::AddSolid (const G4Tessel << 316 AddSolidT (tess); << 317 } 249 } 318 250 319 void G4VSceneHandler::AddSolid (const G4VSolid 251 void G4VSceneHandler::AddSolid (const G4VSolid& solid) { 320 AddSolidT (solid); << 252 RequestPrimitives (solid); 321 } 253 } 322 254 323 void G4VSceneHandler::AddCompound (const G4VTr 255 void G4VSceneHandler::AddCompound (const G4VTrajectory& traj) { 324 G4TrajectoriesModel* trajectoriesModel = << 256 G4TrajectoriesModel* pTrModel = 325 dynamic_cast<G4TrajectoriesModel*>(fpModel 257 dynamic_cast<G4TrajectoriesModel*>(fpModel); 326 if (trajectoriesModel) << 258 if (!pTrModel) G4Exception 327 traj.DrawTrajectory(); << 259 ("G4VSceneHandler::AddCompound(const G4VTrajectory&): Not a G4TrajectoriesModel."); 328 else { << 260 traj.DrawTrajectory(pTrModel->GetDrawingMode()); 329 G4Exception << 330 ("G4VSceneHandler::AddCompound(const G4VTr << 331 "visman0105", FatalException, "Not a G4Tr << 332 } << 333 } 261 } 334 262 335 void G4VSceneHandler::AddCompound (const G4VHi 263 void G4VSceneHandler::AddCompound (const G4VHit& hit) { 336 // Cast away const because Draw is non-const << 264 ((G4VHit&)hit).Draw(); // Cast to non-const because Draw is non-const!!!! 337 const_cast<G4VHit&>(hit).Draw(); << 338 } 265 } 339 266 340 void G4VSceneHandler::AddCompound (const G4VDi << 267 void G4VSceneHandler::AddViewerToList (G4VViewer* pViewer) { 341 // Cast away const because Draw is non-const << 268 fViewerList.push_back (pViewer); 342 const_cast<G4VDigi&>(digi).Draw(); << 343 } << 344 << 345 void G4VSceneHandler::AddCompound (const G4THi << 346 using MeshScoreMap = G4VScoringMesh::MeshSco << 347 //G4cout << "AddCompound: hits: " << &hits < << 348 G4bool scoreMapHits = false; << 349 G4ScoringManager* scoringManager = G4Scoring << 350 if (scoringManager) { << 351 std::size_t nMeshes = scoringManager->GetN << 352 for (std::size_t iMesh = 0; iMesh < nMeshe << 353 G4VScoringMesh* mesh = scoringManager->G << 354 if (mesh && mesh->IsActive()) { << 355 MeshScoreMap scoreMap = mesh->GetScoreMap(); << 356 const G4String& mapNam = const_cast<G4 << 357 for(MeshScoreMap::const_iterator i = scoreMa << 358 i != scoreMap.cend(); ++i) { << 359 const G4String& scoreMapName = i->first; << 360 if (scoreMapName == mapNam) { << 361 G4DefaultLinearColorMap colorMap("G4VSce << 362 scoreMapHits = true; << 363 mesh->DrawMesh(scoreMapName, &colorMap); << 364 } << 365 } << 366 } << 367 } << 368 } << 369 if (scoreMapHits) { << 370 static G4bool first = true; << 371 if (first) { << 372 first = false; << 373 G4cout << << 374 "Scoring map drawn with default parameters." << 375 "\n To get gMocren file for gMocren browser << 376 "\n /vis/open gMocrenFile" << 377 "\n /vis/viewer/flush" << 378 "\n Many other options available with /scor << 379 "\n You might want to \"/vis/viewer/set/aut << 380 << G4endl; << 381 } << 382 } else { // Not score map hits. Just call << 383 // Cast away const because DrawAllHits is << 384 const_cast<G4THitsMap<G4double>&>(hits).Dr << 385 } << 386 } 269 } 387 270 388 void G4VSceneHandler::AddCompound (const G4THi << 271 void G4VSceneHandler::AddPrimitive (const G4Scale& scale) { 389 using MeshScoreMap = G4VScoringMesh::MeshSco << 272 390 //G4cout << "AddCompound: hits: " << &hits < << 273 const G4double margin(0.01); 391 G4bool scoreMapHits = false; << 274 // Fractional margin - ensures scale is comfortably inside viewing 392 G4ScoringManager* scoringManager = G4Scoring << 275 // volume. 393 if (scoringManager) { << 276 const G4double oneMinusMargin (1. - margin); 394 std::size_t nMeshes = scoringManager->GetN << 277 395 for (std::size_t iMesh = 0; iMesh < nMeshe << 278 const G4VisExtent& sceneExtent = fpScene->GetExtent(); 396 G4VScoringMesh* mesh = scoringManager->G << 279 397 if (mesh && mesh->IsActive()) { << 280 // Useful constants... 398 MeshScoreMap scoreMap = mesh->GetScoreMap(); << 281 const G4double length(scale.GetLength()); 399 for(MeshScoreMap::const_iterator i = scoreMa << 282 const G4double halfLength(length / 2.); 400 i != scoreMap.cend(); ++i) { << 283 const G4double tickLength(length / 20.); 401 const G4String& scoreMapName = i->first; << 284 const G4double piBy2(halfpi); 402 const G4THitsMap<G4StatDouble>* foundHits << 285 403 if (foundHits == &hits) { << 286 // Get size of scene... 404 G4DefaultLinearColorMap colorMap("G4VSce << 287 const G4double xmin = sceneExtent.GetXmin(); 405 scoreMapHits = true; << 288 const G4double xmax = sceneExtent.GetXmax(); 406 mesh->DrawMesh(scoreMapName, &colorMap); << 289 const G4double ymin = sceneExtent.GetYmin(); 407 } << 290 const G4double ymax = sceneExtent.GetYmax(); 408 } << 291 const G4double zmin = sceneExtent.GetZmin(); 409 } << 292 const G4double zmax = sceneExtent.GetZmax(); 410 } << 293 411 } << 294 // Create (empty) polylines having the same vis attributes... 412 if (scoreMapHits) { << 295 G4Polyline scaleLine, tick11, tick12, tick21, tick22; 413 static G4bool first = true; << 296 G4VisAttributes visAtts(*scale.GetVisAttributes()); // Long enough life. 414 if (first) { << 297 scaleLine.SetVisAttributes(&visAtts); 415 first = false; << 298 tick11.SetVisAttributes(&visAtts); 416 G4cout << << 299 tick12.SetVisAttributes(&visAtts); 417 "Scoring map drawn with default parameters." << 300 tick21.SetVisAttributes(&visAtts); 418 "\n To get gMocren file for gMocren browser << 301 tick22.SetVisAttributes(&visAtts); 419 "\n /vis/open gMocrenFile" << 302 420 "\n /vis/viewer/flush" << 303 // Add points to the polylines to represent an scale parallel to the 421 "\n Many other options available with /scor << 304 // x-axis centred on the origin... 422 "\n You might want to \"/vis/viewer/set/aut << 305 G4Point3D r1(G4Point3D(-halfLength, 0., 0.)); 423 << G4endl; << 306 G4Point3D r2(G4Point3D( halfLength, 0., 0.)); >> 307 scaleLine.push_back(r1); >> 308 scaleLine.push_back(r2); >> 309 G4Point3D ticky(0., tickLength, 0.); >> 310 G4Point3D tickz(0., 0., tickLength); >> 311 tick11.push_back(r1 + ticky); >> 312 tick11.push_back(r1 - ticky); >> 313 tick12.push_back(r1 + tickz); >> 314 tick12.push_back(r1 - tickz); >> 315 tick21.push_back(r2 + ticky); >> 316 tick21.push_back(r2 - ticky); >> 317 tick22.push_back(r2 + tickz); >> 318 tick22.push_back(r2 - tickz); >> 319 G4Point3D textPosition(0., tickLength, 0.); >> 320 >> 321 // Transform appropriately... >> 322 >> 323 G4Transform3D transformation; >> 324 if (scale.GetAutoPlacing()) { >> 325 G4Transform3D rotation; >> 326 switch (scale.GetDirection()) { >> 327 case G4Scale::x: >> 328 break; >> 329 case G4Scale::y: >> 330 rotation = G4RotateZ3D(piBy2); >> 331 break; >> 332 case G4Scale::z: >> 333 rotation = G4RotateY3D(piBy2); >> 334 break; >> 335 } >> 336 G4double sxmid(scale.GetXmid()); >> 337 G4double symid(scale.GetYmid()); >> 338 G4double szmid(scale.GetZmid()); >> 339 sxmid = xmin + oneMinusMargin * (xmax - xmin); >> 340 symid = ymin + margin * (ymax - ymin); >> 341 szmid = zmin + oneMinusMargin * (zmax - zmin); >> 342 switch (scale.GetDirection()) { >> 343 case G4Scale::x: >> 344 sxmid -= halfLength; >> 345 break; >> 346 case G4Scale::y: >> 347 symid += halfLength; >> 348 break; >> 349 case G4Scale::z: >> 350 szmid -= halfLength; >> 351 break; 424 } 352 } 425 } else { // Not score map hits. Just call << 353 G4Translate3D translation(sxmid, symid, szmid); 426 // Cast away const because DrawAllHits is << 354 transformation = translation * rotation; 427 const_cast<G4THitsMap<G4StatDouble>&>(hits << 355 } else { >> 356 if (fpModel) transformation = fpModel->GetTransformation(); 428 } 357 } 429 } << 430 358 431 void G4VSceneHandler::AddCompound(const G4Mesh << 359 // Draw... 432 { << 360 // We would like to call BeginPrimitives(transformation) here but 433 G4warn << << 361 // calling BeginPrimitives from within an AddPrimitive is not 434 "There has been an attempt to draw a mesh wi << 362 // allowed! So we have to do our own transformation... 435 << fpViewer->GetViewParameters().GetSpecialM << 363 AddPrimitive(scaleLine.transform(transformation)); 436 << "\":\n" << mesh << 364 AddPrimitive(tick11.transform(transformation)); 437 << "but it is not of a recognised type or is << 365 AddPrimitive(tick12.transform(transformation)); 438 "\nby the current graphics driver. Instead w << 366 AddPrimitive(tick21.transform(transformation)); 439 "\ncontainer \"" << mesh.GetContainerVolume( << 367 AddPrimitive(tick22.transform(transformation)); 440 << G4endl; << 368 G4Text text(scale.GetAnnotation(),textPosition.transform(transformation)); 441 const auto& pv = mesh.GetContainerVolume(); << 369 text.SetScreenSize(12.); 442 const auto& lv = pv->GetLogicalVolume(); << 370 AddPrimitive(text); 443 const auto& solid = lv->GetSolid(); << 444 const auto& transform = mesh.GetTransform(); << 445 // Make sure container is visible << 446 G4VisAttributes tmpVisAtts; // Visible, whi << 447 const auto& saveVisAtts = lv->GetVisAttribut << 448 if (saveVisAtts) { << 449 tmpVisAtts = *saveVisAtts; << 450 tmpVisAtts.SetVisibility(true); << 451 auto colour = saveVisAtts->GetColour(); << 452 colour.SetAlpha(1.); << 453 tmpVisAtts.SetColour(colour); << 454 } << 455 // Draw container << 456 PreAddSolid(transform,tmpVisAtts); << 457 solid->DescribeYourselfTo(*this); << 458 PostAddSolid(); << 459 // Restore vis attributes << 460 lv->SetVisAttributes(saveVisAtts); << 461 } << 462 << 463 void G4VSceneHandler::AddViewerToList (G4VView << 464 fViewerList.push_back (pViewer); << 465 } 371 } 466 372 467 void G4VSceneHandler::AddPrimitive (const G4Po 373 void G4VSceneHandler::AddPrimitive (const G4Polymarker& polymarker) { 468 switch (polymarker.GetMarkerType()) { 374 switch (polymarker.GetMarkerType()) { 469 default: << 375 default: 470 case G4Polymarker::dots: << 376 case G4Polymarker::dots: 471 { 377 { 472 G4Circle dot (polymarker); << 378 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 473 dot.SetWorldSize (0.); << 379 G4Circle dot (polymarker); 474 dot.SetScreenSize (0.1); // Very small << 475 for (std::size_t iPoint = 0; iPoint < po << 476 dot.SetPosition (polymarker[iPoint]); 380 dot.SetPosition (polymarker[iPoint]); 477 AddPrimitive (dot); << 381 dot.SetWorldSize (0.); >> 382 dot.SetScreenSize (0.1); // Very small circle. >> 383 AddPrimitive (dot); 478 } 384 } 479 } 385 } 480 break; << 386 break; 481 case G4Polymarker::circles: << 387 case G4Polymarker::circles: 482 { 388 { 483 G4Circle circle (polymarker); // Defaul << 389 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 484 for (std::size_t iPoint = 0; iPoint < po << 390 G4Circle circle (polymarker); 485 circle.SetPosition (polymarker[iPoint] << 391 circle.SetPosition (polymarker[iPoint]); 486 AddPrimitive (circle); << 392 AddPrimitive (circle); 487 } 393 } 488 } 394 } 489 break; << 395 break; 490 case G4Polymarker::squares: << 396 case G4Polymarker::squares: 491 { 397 { 492 G4Square square (polymarker); // Defaul << 398 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 493 for (std::size_t iPoint = 0; iPoint < po << 399 G4Square square (polymarker); 494 square.SetPosition (polymarker[iPoint] << 400 square.SetPosition (polymarker[iPoint]); 495 AddPrimitive (square); << 401 AddPrimitive (square); 496 } 402 } 497 } 403 } 498 break; << 404 break; 499 } 405 } 500 } 406 } 501 407 502 void G4VSceneHandler::RemoveViewerFromList (G4 408 void G4VSceneHandler::RemoveViewerFromList (G4VViewer* pViewer) { 503 fViewerList.remove(pViewer); // Does nothin << 409 fViewerList.remove(pViewer); 504 // And reset current viewer << 505 auto visManager = G4VisManager::GetInstance( << 506 visManager->SetCurrentViewer(nullptr); << 507 } << 508 << 509 << 510 void G4VSceneHandler::AddPrimitive (const G4Pl << 511 G4warn << "WARNING: Plotter not implemented << 512 G4warn << " Open a plotter-aware graphics s << 513 G4warn << " /vis/scene/removeModel Plotter" << 514 } 410 } 515 411 516 void G4VSceneHandler::SetScene (G4Scene* pScen 412 void G4VSceneHandler::SetScene (G4Scene* pScene) { 517 fpScene = pScene; 413 fpScene = pScene; 518 // Notify all viewers that a kernel visit is 414 // Notify all viewers that a kernel visit is required. 519 G4ViewerListIterator i; 415 G4ViewerListIterator i; 520 for (i = fViewerList.begin(); i != fViewerLi 416 for (i = fViewerList.begin(); i != fViewerList.end(); i++) { 521 (*i) -> SetNeedKernelVisit (true); 417 (*i) -> SetNeedKernelVisit (true); 522 } 418 } 523 } 419 } 524 420 525 void G4VSceneHandler::RequestPrimitives (const << 421 void G4VSceneHandler::RequestPrimitives (const G4VSolid& solid) { 526 { << 422 BeginPrimitives (*fpObjectTransformation); 527 // Sometimes solids that have no substance g << 423 G4NURBS* pNURBS = 0; 528 // be part of the geometry tree but have bee << 424 G4Polyhedron* pPolyhedron = 0; 529 // example by a Boolean subtraction in which << 425 switch (fpViewer -> GetViewParameters () . GetRepStyle ()) { 530 // is entirely inside the subtractor or an i << 426 case G4ViewParameters::nurbs: 531 // the original volume is entirely outside t << 427 pNURBS = solid.CreateNURBS (); 532 // The problem is that the Boolean Processor << 428 if (pNURBS) { 533 // polyhedron in these cases (IMHO it should << 429 pNURBS -> SetVisAttributes (fpVisAttribs); 534 // workaround is to return before the damage << 430 AddPrimitive (*pNURBS); 535 // Algorithm by Evgueni Tcherniaev << 431 delete pNURBS; 536 auto pSolid = &solid; << 432 break; 537 auto pBooleanSolid = dynamic_cast<const G4Bo << 433 } 538 if (pBooleanSolid) { << 434 else { 539 G4ThreeVector bmin, bmax; << 435 G4VisManager::Verbosity verbosity = 540 pBooleanSolid->BoundingLimits(bmin, bmax); << 436 G4VisManager::GetInstance()->GetVerbosity(); 541 G4bool isGood = false; << 437 if (verbosity >= G4VisManager::errors) { 542 if (dynamic_cast<const G4SubtractionSolid* << 438 G4cout << 543 auto ptrB = pBooleanSolid->GetConstituen << 439 "ERROR: G4VSceneHandler::RequestPrimitives" 544 for (G4int i=0; i<10; ++i) { << 440 "\n NURBS not available for " 545 G4double x = bmin.x() + (bmax.x() - bm << 441 << solid.GetName () << G4endl; 546 G4double y = bmin.y() + (bmax.y() - bm << 442 G4cout << "Trying polyhedron." << G4endl; 547 G4double z = bmin.z() + (bmax.z() - bm << 443 } 548 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 444 } 549 if (ptrB->Inside(G4ThreeVector(x,y,bma << 445 // Dropping through to polyhedron... 550 if (ptrB->Inside(G4ThreeVector(x,bmin. << 446 case G4ViewParameters::polyhedron: 551 if (ptrB->Inside(G4ThreeVector(x,bmax. << 447 default: 552 if (ptrB->Inside(G4ThreeVector(bmin.x( << 448 G4Polyhedron::SetNumberOfRotationSteps (GetNoOfSides (fpVisAttribs)); 553 if (ptrB->Inside(G4ThreeVector(bmax.x( << 449 pPolyhedron = solid.GetPolyhedron (); 554 } << 450 G4Polyhedron::ResetNumberOfRotationSteps (); 555 } else if (dynamic_cast<const G4Intersecti << 451 if (pPolyhedron) { 556 auto ptrB = pBooleanSolid->GetConstituen << 452 pPolyhedron -> SetVisAttributes (fpVisAttribs); 557 for (G4int i=0; i<10; ++i) { << 453 AddPrimitive (*pPolyhedron); 558 G4double x = bmin.x() + (bmax.x() - bm << 454 } 559 G4double y = bmin.y() + (bmax.y() - bm << 455 else { 560 G4double z = bmin.z() + (bmax.z() - bm << 456 G4VisManager::Verbosity verbosity = 561 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 457 G4VisManager::GetInstance()->GetVerbosity(); 562 if (ptrB->Inside(G4ThreeVector(x,y,bma << 458 if (verbosity >= G4VisManager::errors) { 563 if (ptrB->Inside(G4ThreeVector(x,bmin. << 459 G4cout << 564 if (ptrB->Inside(G4ThreeVector(x,bmax. << 460 "ERROR: G4VSceneHandler::RequestPrimitives" 565 if (ptrB->Inside(G4ThreeVector(bmin.x( << 461 "\n Polyhedron not available for " << solid.GetName () << 566 if (ptrB->Inside(G4ThreeVector(bmax.x( << 462 ".\n This means it cannot be visualized on most systems." 567 } << 463 "\n Contact the Visualization Coordinator." << G4endl; 568 } << 569 if (!isGood) << 570 { << 571 for (G4int i=0; i<10000; ++i) { << 572 G4double x = bmin.x() + (bmax.x() - bm << 573 G4double y = bmin.y() + (bmax.y() - bm << 574 G4double z = bmin.z() + (bmax.z() - bm << 575 if (pBooleanSolid->Inside(G4ThreeVecto << 576 } << 577 } << 578 if (!isGood) return; << 579 } << 580 << 581 const G4ViewParameters::DrawingStyle style = << 582 const G4ViewParameters& vp = fpViewer->GetVi << 583 << 584 switch (style) { << 585 default: << 586 case G4ViewParameters::wireframe: << 587 case G4ViewParameters::hlr: << 588 case G4ViewParameters::hsr: << 589 case G4ViewParameters::hlhsr: << 590 { << 591 // Use polyhedral representation << 592 G4Polyhedron::SetNumberOfRotationSteps ( << 593 G4Polyhedron* pPolyhedron = solid.GetPol << 594 G4Polyhedron::ResetNumberOfRotationSteps << 595 if (pPolyhedron) { << 596 pPolyhedron -> SetVisAttributes (fpVis << 597 BeginPrimitives (fObjectTransformation << 598 AddPrimitive (*pPolyhedron); << 599 EndPrimitives (); << 600 break; << 601 } else { // Print warnings and drop thr << 602 G4VisManager::Verbosity verbosity = G4 << 603 auto pPVModel = dynamic_cast<G4Physica << 604 if (pPVModel) { << 605 auto problematicVolume = pPVModel->G << 606 if (fProblematicVolumes.find(problem << 607 fProblematicVolumes[problematicVol << 608 if (verbosity >= G4VisManager::err << 609 G4warn << << 610 "ERROR: G4VSceneHandler::Request << 611 "\n Polyhedron not available fo << 612 G4warn << "\n Touchable path: " << 613 static G4bool explanation = fals << 614 if (!explanation) { << 615 explanation = true; << 616 G4warn << << 617 "\n This means it cannot be v << 618 "\n 1) The solid may not have << 619 "\n 2) For Boolean solids, th << 620 "\n the resultant polyhedr << 621 "\n Try RayTracer. It uses Ge << 622 } << 623 } << 624 G4warn << "\n Drawing solid with << 625 G4warn << G4endl; << 626 } << 627 } << 628 } << 629 } << 630 [[fallthrough]]; << 631 << 632 case G4ViewParameters::cloud: << 633 { << 634 // Form solid out of cloud of dots on su << 635 G4Polymarker dots; << 636 // Note: OpenGL has a fast implementatio << 637 // to build a polymarker rather than add << 638 // And anyway, in Qt, in the latter case << 639 // entry, something we would want to avo << 640 dots.SetVisAttributes(fpVisAttribs); << 641 dots.SetMarkerType(G4Polymarker::dots); << 642 dots.SetSize(G4VMarker::screen,1.); << 643 G4int numberOfCloudPoints = GetNumberOfC << 644 if (numberOfCloudPoints <= 0) numberOfCl << 645 for (G4int i = 0; i < numberOfCloudPoint << 646 G4ThreeVector p = solid.GetPointOnSurface(); << 647 dots.push_back(p); << 648 } 464 } 649 BeginPrimitives (fObjectTransformation); << 650 AddPrimitive(dots); << 651 EndPrimitives (); << 652 break; << 653 } 465 } >> 466 break; 654 } 467 } >> 468 EndPrimitives (); 655 } 469 } 656 470 657 //namespace { << 471 void G4VSceneHandler::ProcessScene (G4VViewer&) { 658 // void DrawExtent(const G4VModel* pModel) << 659 // { << 660 // // Show extent boxes - debug only, OGLSX << 661 // if (pModel->GetExtent() != G4VisExtent:: << 662 // const auto& extent = pModel->GetExtent << 663 // const auto& centre = extent.GetExtentC << 664 // const auto& position = G4Translate3D(c << 665 // const auto& dx = (extent.GetXmax()-ext << 666 // const auto& dy = (extent.GetYmax()-ext << 667 // const auto& dz = (extent.GetZmax()-ext << 668 // auto visAtts = G4VisAttributes(); << 669 // visAtts.SetForceWireframe(); << 670 // G4Box extentBox("Extent",dx,dy,dz); << 671 // G4VisManager::GetInstance()->Draw(exte << 672 // } << 673 // } << 674 //} << 675 472 676 void G4VSceneHandler::ProcessScene() << 473 if (!fpScene) return; 677 { << 678 // Assumes graphics database store has alrea << 679 // relevant for the particular scene handler << 680 << 681 if(!fpScene) << 682 return; << 683 << 684 if(fpScene->GetExtent() == G4VisExtent::GetN << 685 { << 686 G4Exception("G4VSceneHandler::ProcessScene << 687 "The scene has no extent."); << 688 } << 689 474 690 G4VisManager* visManager = G4VisManager::Get 475 G4VisManager* visManager = G4VisManager::GetInstance(); 691 476 692 if(!visManager->GetConcreteInstance()) << 477 if (!visManager->GetConcreteInstance()) return; 693 return; << 694 478 695 G4VisManager::Verbosity verbosity = visManag 479 G4VisManager::Verbosity verbosity = visManager->GetVerbosity(); 696 480 697 fReadyForTransients = false; 481 fReadyForTransients = false; 698 482 699 // Reset fMarkForClearingTransientStore. (Le << 483 // Clear stored scene, if any, i.e., display lists, scene graphs. >> 484 ClearStore (); >> 485 >> 486 // Reset fMarkForClearingTransientStore. No need to clear transient >> 487 // store since it has just been cleared above. (Leaving 700 // fMarkForClearingTransientStore true cause 488 // fMarkForClearingTransientStore true causes problems with 701 // recomputing transients below.) Restore i 489 // recomputing transients below.) Restore it again at end... 702 G4bool tmpMarkForClearingTransientStore = fM 490 G4bool tmpMarkForClearingTransientStore = fMarkForClearingTransientStore; 703 fMarkForClearingTransientStore = fa << 491 fMarkForClearingTransientStore = false; 704 492 705 // Traverse geometry tree and send drawing p 493 // Traverse geometry tree and send drawing primitives to window(s). 706 494 707 const std::vector<G4Scene::Model>& runDurati << 495 const std::vector<G4VModel*>& runDurationModelList = 708 fpScene->GetRunDurationModelList(); << 496 fpScene -> GetRunDurationModelList (); 709 497 710 if(runDurationModelList.size()) { << 498 if (runDurationModelList.size ()) { 711 if(verbosity >= G4VisManager::confirmation << 499 if (verbosity >= G4VisManager::confirmations) { 712 G4cout << "Traversing scene data..." << 500 G4cout << "Traversing scene data..." << G4endl; 713 static G4int first = true; << 714 if (first) { << 715 first = false; << 716 G4cout << << 717 "(This could happen more than once - i << 718 "\nper rebuild, for opaque, transparen << 719 << G4endl; << 720 } << 721 } 501 } 722 502 723 // Reset visibility of all objects to fals << 503 BeginModeling (); 724 fpViewer->AccessSceneTree().ResetVisibilit << 725 << 726 BeginModeling(); << 727 504 728 // Create modeling parameters from view pa 505 // Create modeling parameters from view parameters... 729 G4ModelingParameters* pMP = CreateModeling << 506 G4ModelingParameters* pMP = CreateModelingParameters (); 730 507 731 for(std::size_t i = 0; i < runDurationMode << 508 for (size_t i = 0; i < runDurationModelList.size (); i++) { 732 if(runDurationModelList[i].fActive) { << 509 G4VModel* pModel = runDurationModelList[i]; 733 fpModel = runDurationModelList[i].fpMo << 510 // Note: this is not the place to take action on 734 fpModel->SetModelingParameters(pMP); << 511 // pModel->GetTransformation(). The model must take care of 735 << 512 // this in pModel->DescribeYourselfTo(*this). See, for example, 736 // Describe to the current scene handl << 513 // G4PhysicalVolumeModel and /vis/scene/add/logo. 737 fpModel->DescribeYourselfTo(*this); << 514 pModel -> SetModelingParameters (pMP); 738 << 515 SetModel (pModel); // Store for use by derived class. 739 // To see the extents of each model re << 516 pModel -> DescribeYourselfTo (*this); 740 // uncomment the next line and DrawExt << 517 pModel -> SetModelingParameters (0); 741 // DrawExtent(fpModel); << 518 } 742 << 519 743 // Enter models in the scene tree. The << 520 // Repeat if required... 744 // the model to the scene tree, i.e., << 521 if (fSecondPassRequested) { 745 fpViewer->InsertModelInSceneTree(fpMod << 522 fSecondPass = true; 746 auto pPVModel = dynamic_cast<G4Physica << 523 for (size_t i = 0; i < runDurationModelList.size (); i++) { 747 if (pPVModel) { << 524 G4VModel* pModel = runDurationModelList[i]; 748 G4VViewer::SceneTreeScene sceneTreeS << 525 pModel -> SetModelingParameters (pMP); 749 fpModel->DescribeYourselfTo(sceneTre << 526 SetModel (pModel); // Store for use by derived class. 750 } << 527 pModel -> DescribeYourselfTo (*this); 751 << 528 pModel -> SetModelingParameters (0); 752 // Reset modeling parameters pointer << 753 fpModel->SetModelingParameters(0); << 754 } 529 } >> 530 fSecondPass = false; >> 531 fSecondPassRequested = false; 755 } 532 } 756 533 757 fpModel = 0; << 758 delete pMP; 534 delete pMP; >> 535 EndModeling (); 759 536 760 EndModeling(); << 761 } 537 } 762 538 763 // Some printing << 539 fpViewer->FinishView(); // Flush streams and/or swap buffers. 764 if(verbosity >= G4VisManager::confirmations) << 765 for (const auto& model: runDurationModelLi << 766 if (model.fActive) { << 767 auto pvModel = dynamic_cast<G4Physical << 768 if (pvModel) { << 769 G4int nTouchables = 0; << 770 G4cout << "Numbers of touchables by << 771 << pvModel->GetGlobalDescription() < << 772 for (const auto& dn : pvModel->GetNu << 773 G4cout << "\n Depth " << dn.first << 774 nTouchables += dn.second; << 775 } << 776 G4cout << "\n Total number of touch << 777 } << 778 } << 779 } << 780 << 781 if (fProblematicVolumes.size() > 0) { << 782 G4cout << "Problematic volumes:"; << 783 for (const auto& prob: fProblematicVolum << 784 G4cout << "\n " << prob.first->GetNam << 785 } << 786 G4cout << G4endl; << 787 } << 788 } << 789 540 790 fReadyForTransients = true; 541 fReadyForTransients = true; 791 542 792 // Refresh event from end-of-event model lis << 543 // Refresh event from end-of-event model list. Allow only in Idle state... 793 // Allow only in Idle or GeomClosed state... << 794 G4StateManager* stateManager = G4StateManage 544 G4StateManager* stateManager = G4StateManager::GetStateManager(); 795 G4ApplicationState state = stateManager- << 545 G4ApplicationState state = stateManager->GetCurrentState(); 796 if(state == G4State_Idle || state == G4State << 546 if (state == G4State_Idle) { 797 { << 547 798 visManager->SetEventRefreshing(true); 548 visManager->SetEventRefreshing(true); 799 549 800 if(visManager->GetRequestedEvent()) << 550 if (visManager->GetRequestedEvent()) { 801 { << 802 DrawEvent(visManager->GetRequestedEvent( 551 DrawEvent(visManager->GetRequestedEvent()); 803 } << 552 804 else << 553 } else { 805 { << 554 806 G4RunManager* runManager = G4RunManagerF << 555 G4RunManager* runManager = G4RunManager::GetRunManager(); 807 if(runManager) << 556 if (runManager) { 808 { << 557 const G4Run* run = runManager->GetCurrentRun(); 809 const G4Run* run = runManager->GetCurr << 558 const std::vector<const G4Event*>* events = 810 // Draw a null event in order to pick << 559 run? run->GetEventVector(): 0; 811 if (run == nullptr) DrawEvent(0); << 560 size_t nKeptEvents = 0; 812 const std::vector<const G4Event*>* eve << 561 if (events) nKeptEvents = events->size(); 813 run ? run->GetEventVector() : 0; << 562 if (nKeptEvents) { 814 std::size_t nKeptEvents = 0; << 563 815 if(events) << 564 if (fpScene->GetRefreshAtEndOfEvent()) { 816 nKeptEvents = events->size(); << 565 817 if(nKeptEvents) << 566 if (verbosity >= G4VisManager::confirmations) { 818 { << 567 G4cout << "Refreshing event..." << G4endl; 819 if(fpScene->GetRefreshAtEndOfEvent() << 568 } 820 { << 569 const G4Event* event = 0; 821 if(verbosity >= G4VisManager::conf << 570 if (events && events->size()) event = events->back(); 822 { << 571 if (event) DrawEvent(event); 823 G4cout << "Refreshing event..." << 572 824 } << 573 } else { // Accumulating events. 825 const G4Event* event = 0; << 574 826 if(events && events->size()) << 575 if (verbosity >= G4VisManager::confirmations) { 827 event = events->back(); << 576 G4cout << "Refreshing events in run..." << G4endl; 828 if(event) << 577 } 829 DrawEvent(event); << 578 for (size_t i = 0; i < nKeptEvents; ++i) { 830 } << 579 const G4Event* event = (*events)[i]; 831 else << 580 if (event) DrawEvent(event); 832 { // Accumulating events. << 581 } 833 << 582 834 if(verbosity >= G4VisManager::conf << 583 if (!fpScene->GetRefreshAtEndOfRun()) { 835 { << 584 if (verbosity >= G4VisManager::warnings) { 836 G4cout << "Refreshing events in << 585 G4cout << 837 } << 586 "WARNING: Cannot refresh events accumulated over more" 838 for(const auto& event : *events) << 587 "\n than one runs. Refreshed just the last run." 839 { << 588 << G4endl; 840 if(event) << 589 } 841 DrawEvent(event); << 590 } 842 } << 591 } 843 << 592 } 844 if(!fpScene->GetRefreshAtEndOfRun( << 845 { << 846 if(verbosity >= G4VisManager::wa << 847 { << 848 G4warn << "WARNING: Cannot ref << 849 "\n than one runs. << 850 << G4endl; << 851 } << 852 } << 853 } << 854 } << 855 } 593 } 856 } 594 } 857 visManager->SetEventRefreshing(false); 595 visManager->SetEventRefreshing(false); 858 } 596 } 859 597 860 // Refresh end-of-run model list. << 861 // Allow only in Idle or GeomClosed state... << 862 if(state == G4State_Idle || state == G4State << 863 { << 864 DrawEndOfRunModels(); << 865 } << 866 << 867 fMarkForClearingTransientStore = tmpMarkForC 598 fMarkForClearingTransientStore = tmpMarkForClearingTransientStore; 868 } 599 } 869 600 870 void G4VSceneHandler::DrawEvent(const G4Event* 601 void G4VSceneHandler::DrawEvent(const G4Event* event) 871 { 602 { 872 if(!fpViewer->ReadyToDraw()) return; << 603 const std::vector<G4VModel*>& EOEModelList = 873 const std::vector<G4Scene::Model>& EOEModelL << 874 fpScene -> GetEndOfEventModelList (); 604 fpScene -> GetEndOfEventModelList (); 875 std::size_t nModels = EOEModelList.size(); << 605 size_t nModels = EOEModelList.size(); 876 if (nModels) { 606 if (nModels) { 877 G4ModelingParameters* pMP = CreateModeling 607 G4ModelingParameters* pMP = CreateModelingParameters(); 878 pMP->SetEvent(event); 608 pMP->SetEvent(event); 879 for (std::size_t i = 0; i < nModels; ++i) << 609 for (size_t i = 0; i < nModels; i++) { 880 if (EOEModelList[i].fActive) { << 610 G4VModel* pModel = EOEModelList [i]; 881 fpModel = EOEModelList[i].fpModel; << 611 pModel -> SetModelingParameters(pMP); 882 fpModel -> SetModelingParameters(pMP); << 612 SetModel (pModel); 883 << 613 pModel -> DescribeYourselfTo (*this); 884 // Describe to the current scene handl << 614 pModel -> SetModelingParameters(0); 885 fpModel -> DescribeYourselfTo (*this); << 886 << 887 // Enter models in the scene tree << 888 fpViewer->InsertModelInSceneTree(fpMod << 889 << 890 // Reset modeling parameters pointer << 891 fpModel -> SetModelingParameters(0); << 892 } << 893 } << 894 fpModel = 0; << 895 delete pMP; << 896 } << 897 } << 898 << 899 void G4VSceneHandler::DrawEndOfRunModels() << 900 { << 901 if(!fpViewer->ReadyToDraw()) return; << 902 const std::vector<G4Scene::Model>& EORModelL << 903 fpScene -> GetEndOfRunModelList (); << 904 std::size_t nModels = EORModelList.size(); << 905 if (nModels) { << 906 G4ModelingParameters* pMP = CreateModeling << 907 pMP->SetEvent(0); << 908 for (std::size_t i = 0; i < nModels; ++i) << 909 if (EORModelList[i].fActive) { << 910 fpModel = EORModelList[i].fpModel; << 911 fpModel -> SetModelingParameters(pMP); << 912 << 913 // Describe to the current scene handl << 914 fpModel -> DescribeYourselfTo (*this); << 915 << 916 // Enter models in the scene tree << 917 fpViewer->InsertModelInSceneTree(fpMod << 918 << 919 // Reset modeling parameters pointer << 920 fpModel -> SetModelingParameters(0); << 921 } << 922 } 615 } 923 fpModel = 0; << 924 delete pMP; 616 delete pMP; >> 617 SetModel (0); 925 } 618 } 926 } 619 } 927 620 928 G4ModelingParameters* G4VSceneHandler::CreateM 621 G4ModelingParameters* G4VSceneHandler::CreateModelingParameters () 929 { 622 { 930 // Create modeling parameters from View Para 623 // Create modeling parameters from View Parameters... 931 if (!fpViewer) return NULL; << 932 << 933 const G4ViewParameters& vp = fpViewer -> Get 624 const G4ViewParameters& vp = fpViewer -> GetViewParameters (); 934 625 935 // Convert drawing styles... 626 // Convert drawing styles... 936 G4ModelingParameters::DrawingStyle modelDraw 627 G4ModelingParameters::DrawingStyle modelDrawingStyle = 937 G4ModelingParameters::wf; << 628 G4ModelingParameters::wf; 938 switch (vp.GetDrawingStyle ()) { 629 switch (vp.GetDrawingStyle ()) { 939 default: << 630 default: 940 case G4ViewParameters::wireframe: << 631 case G4ViewParameters::wireframe: 941 modelDrawingStyle = G4ModelingParameters << 632 modelDrawingStyle = G4ModelingParameters::wf; 942 break; << 633 break; 943 case G4ViewParameters::hlr: << 634 case G4ViewParameters::hlr: 944 modelDrawingStyle = G4ModelingParameters << 635 modelDrawingStyle = G4ModelingParameters::hlr; 945 break; << 636 break; 946 case G4ViewParameters::hsr: << 637 case G4ViewParameters::hsr: 947 modelDrawingStyle = G4ModelingParameters << 638 modelDrawingStyle = G4ModelingParameters::hsr; 948 break; << 639 break; 949 case G4ViewParameters::hlhsr: << 640 case G4ViewParameters::hlhsr: 950 modelDrawingStyle = G4ModelingParameters << 641 modelDrawingStyle = G4ModelingParameters::hlhsr; 951 break; << 642 break; 952 case G4ViewParameters::cloud: << 953 modelDrawingStyle = G4ModelingParameters << 954 break; << 955 } 643 } 956 644 957 // Decide if covered daughters are really to 645 // Decide if covered daughters are really to be culled... 958 G4bool reallyCullCovered = 646 G4bool reallyCullCovered = 959 vp.IsCullingCovered() // Culling daughte 647 vp.IsCullingCovered() // Culling daughters depends also on... 960 && !vp.IsSection () // Sections (DCUT) 648 && !vp.IsSection () // Sections (DCUT) not requested. 961 && !vp.IsCutaway () // Cutaways not re 649 && !vp.IsCutaway () // Cutaways not requested. 962 ; 650 ; 963 651 964 G4ModelingParameters* pModelingParams = new 652 G4ModelingParameters* pModelingParams = new G4ModelingParameters 965 (vp.GetDefaultVisAttributes (), 653 (vp.GetDefaultVisAttributes (), 966 modelDrawingStyle, 654 modelDrawingStyle, 967 vp.IsCulling (), 655 vp.IsCulling (), 968 vp.IsCullingInvisible (), 656 vp.IsCullingInvisible (), 969 vp.IsDensityCulling (), 657 vp.IsDensityCulling (), 970 vp.GetVisibleDensity (), 658 vp.GetVisibleDensity (), 971 reallyCullCovered, 659 reallyCullCovered, 972 vp.GetNoOfSides () 660 vp.GetNoOfSides () 973 ); 661 ); 974 662 975 pModelingParams->SetNumberOfCloudPoints(vp.G << 976 pModelingParams->SetWarning 663 pModelingParams->SetWarning 977 (G4VisManager::GetVerbosity() >= G4VisMana << 664 (G4VisManager::GetInstance()->GetVerbosity() >= G4VisManager::warnings); 978 << 979 pModelingParams->SetCBDAlgorithmNumber(vp.Ge << 980 pModelingParams->SetCBDParameters(vp.GetCBDP << 981 665 982 pModelingParams->SetExplodeFactor(vp.GetExpl 666 pModelingParams->SetExplodeFactor(vp.GetExplodeFactor()); 983 pModelingParams->SetExplodeCentre(vp.GetExpl 667 pModelingParams->SetExplodeCentre(vp.GetExplodeCentre()); 984 668 985 pModelingParams->SetSectionSolid(CreateSecti << 669 pModelingParams->SetSectionPolyhedron(CreateSectionPolyhedron()); 986 << 670 pModelingParams->SetCutawayPolyhedron(CreateCutawayPolyhedron()); 987 if (vp.GetCutawayMode() == G4ViewParameters: << 988 pModelingParams->SetCutawayMode(G4Modeling << 989 } else if (vp.GetCutawayMode() == G4ViewPara << 990 pModelingParams->SetCutawayMode(G4Modeling << 991 } << 992 << 993 pModelingParams->SetCutawaySolid(CreateCutaw << 994 // The polyhedron objects are deleted in the 671 // The polyhedron objects are deleted in the modeling parameters destructor. 995 << 996 pModelingParams->SetVisAttributesModifiers(v << 997 << 998 pModelingParams->SetSpecialMeshRendering(vp. << 999 pModelingParams->SetSpecialMeshVolumes(vp.Ge << 1000 672 1001 return pModelingParams; 673 return pModelingParams; 1002 } 674 } 1003 675 1004 G4DisplacedSolid* G4VSceneHandler::CreateSect << 676 const G4Polyhedron* G4VSceneHandler::CreateSectionPolyhedron() 1005 { 677 { 1006 G4DisplacedSolid* sectioner = 0; << 678 /* Disable for now. Boolean processor not up to it. 1007 << 1008 const G4ViewParameters& vp = fpViewer->GetV 679 const G4ViewParameters& vp = fpViewer->GetViewParameters(); 1009 if (vp.IsSection () ) { 680 if (vp.IsSection () ) { 1010 << 1011 G4double radius = fpScene->GetExtent().Ge 681 G4double radius = fpScene->GetExtent().GetExtentRadius(); 1012 G4double safe = radius + fpScene->GetExte 682 G4double safe = radius + fpScene->GetExtent().GetExtentCentre().mag(); 1013 G4VSolid* sectionBox = << 683 G4Box sectionBox("clipper", 1014 new G4Box("_sectioner", safe, safe, 1.e << 684 safe, safe, 1.e-5 * radius); // Thin in z-plane. 1015 << 685 G4Polyhedron* sectioner = sectionBox.CreatePolyhedron(); 1016 const G4Plane3D& sp = vp.GetSectionPlane << 686 const G4Plane3D& s = vp.GetSectionPlane (); 1017 G4ThreeVector normal = sp.normal(); << 687 G4double a = s.a(); 1018 G4Transform3D requiredTransform = G4Trans << 688 G4double b = s.b(); 1019 G4Rotate3D(G4ThreeVector(0,0,1), G4ThreeV << 689 G4double c = s.c(); 1020 << 690 G4double d = s.d(); 1021 sectioner = new G4DisplacedSolid << 691 G4Transform3D transform = G4TranslateZ3D(-d); 1022 ("_displaced_sectioning_box", sectionBox, << 692 const G4Normal3D normal(a,b,c); >> 693 if (normal != G4Normal3D(0,0,1)) { >> 694 const G4double angle = std::acos(normal.dot(G4Normal3D(0,0,1))); >> 695 const G4Vector3D axis = G4Normal3D(0,0,1).cross(normal); >> 696 transform = G4Rotate3D(angle, axis) * transform; >> 697 } >> 698 sectioner->Transform(transform); >> 699 return sectioner; >> 700 } else { >> 701 return 0; 1023 } 702 } 1024 << 703 */ 1025 return sectioner; << 704 return 0; 1026 } 705 } 1027 706 1028 G4DisplacedSolid* G4VSceneHandler::CreateCuta << 707 const G4Polyhedron* G4VSceneHandler::CreateCutawayPolyhedron() 1029 { 708 { 1030 const auto& vp = fpViewer->GetViewParameter << 709 return 0; 1031 const auto& nPlanes = vp.GetCutawayPlanes() << 1032 << 1033 if (nPlanes == 0) return nullptr; << 1034 << 1035 std::vector<G4DisplacedSolid*> cutaway_soli << 1036 << 1037 G4double radius = fpScene->GetExtent().GetE << 1038 G4double safe = radius + fpScene->GetExtent << 1039 auto cutawayBox = new G4Box("_cutaway_box", << 1040 << 1041 // if (vp.GetCutawayMode() == G4ViewParamet << 1042 // the intersection of displaced cutaway bo << 1043 // positive values a*x+b*y+c*z+d>0, so we h << 1044 // "back to front". The parameter "cutawayU << 1045 // that remain *after* cutaway", because we << 1046 // a "union" of what remains by superimposi << 1047 // and G4OpenGLImmediate/StoredViewer::Proc << 1048 // that is the intersection of inverted cut << 1049 << 1050 // Conversely, if (vp.GetCutawayMode() == G << 1051 // create an intersector that is the inters << 1052 << 1053 for (size_t plane_no = 0; plane_no < nPlane << 1054 { << 1055 const G4Plane3D& sp = vp.GetCutawayPlanes << 1056 G4Transform3D requiredTransform; << 1057 G4ThreeVector normal; << 1058 switch (vp.GetCutawayMode()) { << 1059 case G4ViewParameters::cutawayUnion: << 1060 normal = -sp.normal(); // Invert nor << 1061 requiredTransform = G4Translate3D(nor << 1062 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1063 break; << 1064 case G4ViewParameters::cutawayIntersect << 1065 normal = sp.normal(); << 1066 requiredTransform = G4Translate3D(nor << 1067 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1068 break; << 1069 } << 1070 cutaway_solids.push_back << 1071 (new G4DisplacedSolid("_displaced_cutaway << 1072 } << 1073 << 1074 if (nPlanes == 1) return (G4DisplacedSolid* << 1075 << 1076 G4IntersectionSolid *union2 = nullptr, *uni << 1077 G4IntersectionSolid *intersection2 = nullpt << 1078 switch (vp.GetCutawayMode()) { << 1079 << 1080 case G4ViewParameters::cutawayUnion: << 1081 // Here we make a subtractor of interse << 1082 union2 = new G4IntersectionSolid("_unio << 1083 if (nPlanes == 2) return (G4DisplacedSo << 1084 else if (nPlanes == 3) { << 1085 union3 = new G4IntersectionSolid("_un << 1086 return (G4DisplacedSolid*)union3; << 1087 } << 1088 break; << 1089 << 1090 case G4ViewParameters::cutawayIntersectio << 1091 // And here we make an intersector of i << 1092 intersection2 << 1093 = new G4IntersectionSolid("_intersectio << 1094 if (nPlanes == 2) return (G4DisplacedSo << 1095 else if (nPlanes == 3) { << 1096 intersection3 << 1097 = new G4IntersectionSolid("_intersect << 1098 return (G4DisplacedSolid*)intersectio << 1099 } << 1100 break; << 1101 } << 1102 << 1103 G4Exception("G4VSceneHandler::CreateCutaway << 1104 "Not programmed for more than 3 << 1105 return nullptr; << 1106 } 710 } 1107 711 1108 void G4VSceneHandler::LoadAtts(const G4Visibl 712 void G4VSceneHandler::LoadAtts(const G4Visible& visible, G4AttHolder* holder) 1109 { 713 { 1110 // Load G4Atts from G4VisAttributes, if any 714 // Load G4Atts from G4VisAttributes, if any... 1111 const G4VisAttributes* va = visible.GetVisA 715 const G4VisAttributes* va = visible.GetVisAttributes(); 1112 if (va) { 716 if (va) { 1113 const std::map<G4String,G4AttDef>* vaDefs 717 const std::map<G4String,G4AttDef>* vaDefs = 1114 va->GetAttDefs(); 718 va->GetAttDefs(); 1115 if (vaDefs) { 719 if (vaDefs) { 1116 holder->AddAtts(visible.GetVisAttribute 720 holder->AddAtts(visible.GetVisAttributes()->CreateAttValues(), vaDefs); 1117 } 721 } 1118 } 722 } 1119 723 1120 G4PhysicalVolumeModel* pPVModel = 724 G4PhysicalVolumeModel* pPVModel = 1121 dynamic_cast<G4PhysicalVolumeModel*>(fpMo 725 dynamic_cast<G4PhysicalVolumeModel*>(fpModel); 1122 if (pPVModel) { 726 if (pPVModel) { 1123 // Load G4Atts from G4PhysicalVolumeModel 727 // Load G4Atts from G4PhysicalVolumeModel... 1124 const std::map<G4String,G4AttDef>* pvDefs << 728 const std::map<G4String,G4AttDef>* defs = pPVModel->GetAttDefs(); 1125 if (pvDefs) { << 729 if (defs) { 1126 holder->AddAtts(pPVModel->CreateCurrent << 730 holder->AddAtts(pPVModel->CreateCurrentAttValues(), defs); 1127 } 731 } 1128 } 732 } 1129 733 1130 G4TrajectoriesModel* trajModel = dynamic_ca 734 G4TrajectoriesModel* trajModel = dynamic_cast<G4TrajectoriesModel*>(fpModel); 1131 if (trajModel) { 735 if (trajModel) { 1132 // Load G4Atts from trajectory model... << 1133 const std::map<G4String,G4AttDef>* trajMo << 1134 if (trajModelDefs) { << 1135 holder->AddAtts(trajModel->CreateCurren << 1136 } << 1137 // Load G4Atts from trajectory... 736 // Load G4Atts from trajectory... 1138 const G4VTrajectory* traj = trajModel->Ge 737 const G4VTrajectory* traj = trajModel->GetCurrentTrajectory(); 1139 if (traj) { << 738 const std::map<G4String,G4AttDef>* defs = traj->GetAttDefs(); 1140 const std::map<G4String,G4AttDef>* traj << 739 if (defs) { 1141 if (trajDefs) { << 740 holder->AddAtts(traj->CreateAttValues(), defs); 1142 holder->AddAtts(traj->CreateAttValues << 741 } 1143 } << 742 G4int nPoints = traj->GetPointEntries(); 1144 G4int nPoints = traj->GetPointEntries() << 743 for (G4int i = 0; i < nPoints; ++i) { 1145 for (G4int i = 0; i < nPoints; ++i) { << 744 G4VTrajectoryPoint* trajPoint = traj->GetPoint(i); 1146 G4VTrajectoryPoint* trajPoint = traj- << 745 const std::map<G4String,G4AttDef>* defs = trajPoint->GetAttDefs(); 1147 if (trajPoint) { << 746 if (defs) { 1148 const std::map<G4String,G4AttDef>* << 747 holder->AddAtts(trajPoint->CreateAttValues(), defs); 1149 if (pointDefs) { << 1150 holder->AddAtts(trajPoint->Create << 1151 } << 1152 } << 1153 } 748 } 1154 } 749 } 1155 } 750 } 1156 751 1157 G4HitsModel* hitsModel = dynamic_cast<G4Hit 752 G4HitsModel* hitsModel = dynamic_cast<G4HitsModel*>(fpModel); 1158 if (hitsModel) { 753 if (hitsModel) { 1159 // Load G4Atts from hit... 754 // Load G4Atts from hit... 1160 const G4VHit* hit = hitsModel->GetCurrent 755 const G4VHit* hit = hitsModel->GetCurrentHit(); 1161 const std::map<G4String,G4AttDef>* hitsDe << 756 const std::map<G4String,G4AttDef>* defs = hit->GetAttDefs(); 1162 if (hitsDefs) { << 757 if (defs) { 1163 holder->AddAtts(hit->CreateAttValues(), << 758 holder->AddAtts(hit->CreateAttValues(), defs); 1164 } 759 } 1165 } 760 } 1166 } 761 } 1167 762 1168 const G4Colour& G4VSceneHandler::GetColour () << 1169 fpVisAttribs = fpViewer->GetApplicableVisAt << 1170 const G4Colour& colour = fpVisAttribs -> Ge << 1171 return colour; << 1172 } << 1173 << 1174 const G4Colour& G4VSceneHandler::GetColour (c 763 const G4Colour& G4VSceneHandler::GetColour (const G4Visible& visible) { 1175 auto pVA = visible.GetVisAttributes(); << 764 // Colour is determined by the applicable vis attributes. 1176 if (!pVA) pVA = fpViewer->GetViewParameters << 765 const G4Colour& colour = fpViewer -> 1177 return pVA->GetColour(); << 766 GetApplicableVisAttributes (visible.GetVisAttributes ()) -> GetColour (); >> 767 return colour; 1178 } 768 } 1179 769 1180 const G4Colour& G4VSceneHandler::GetTextColou 770 const G4Colour& G4VSceneHandler::GetTextColour (const G4Text& text) { 1181 auto pVA = text.GetVisAttributes(); << 771 const G4VisAttributes* pVA = text.GetVisAttributes (); 1182 if (!pVA) pVA = fpViewer->GetViewParameters << 772 if (!pVA) { 1183 return pVA->GetColour(); << 773 pVA = fpViewer -> GetViewParameters (). GetDefaultTextVisAttributes (); >> 774 } >> 775 const G4Colour& colour = pVA -> GetColour (); >> 776 return colour; 1184 } 777 } 1185 778 1186 G4double G4VSceneHandler::GetLineWidth(const 779 G4double G4VSceneHandler::GetLineWidth(const G4VisAttributes* pVisAttribs) 1187 { 780 { 1188 G4double lineWidth = pVisAttribs->GetLineWi 781 G4double lineWidth = pVisAttribs->GetLineWidth(); 1189 if (lineWidth < 1.) lineWidth = 1.; 782 if (lineWidth < 1.) lineWidth = 1.; 1190 lineWidth *= fpViewer -> GetViewParameters( 783 lineWidth *= fpViewer -> GetViewParameters().GetGlobalLineWidthScale(); 1191 if (lineWidth < 1.) lineWidth = 1.; 784 if (lineWidth < 1.) lineWidth = 1.; 1192 return lineWidth; 785 return lineWidth; 1193 } 786 } 1194 787 1195 G4ViewParameters::DrawingStyle G4VSceneHandle 788 G4ViewParameters::DrawingStyle G4VSceneHandler::GetDrawingStyle 1196 (const G4VisAttributes* pVisAttribs) { 789 (const G4VisAttributes* pVisAttribs) { 1197 // Drawing style is normally determined by 790 // Drawing style is normally determined by the view parameters, but 1198 // it can be overriddden by the ForceDrawin 791 // it can be overriddden by the ForceDrawingStyle flag in the vis 1199 // attributes. 792 // attributes. 1200 const G4ViewParameters& vp = fpViewer->GetV << 793 G4ViewParameters::DrawingStyle style = 1201 const G4ViewParameters::DrawingStyle viewer << 794 fpViewer->GetViewParameters().GetDrawingStyle(); 1202 G4ViewParameters::DrawingStyle resultantSty << 1203 if (pVisAttribs -> IsForceDrawingStyle ()) 795 if (pVisAttribs -> IsForceDrawingStyle ()) { 1204 G4VisAttributes::ForcedDrawingStyle force 796 G4VisAttributes::ForcedDrawingStyle forcedStyle = 1205 pVisAttribs -> GetForcedDrawingStyle (); << 797 pVisAttribs -> GetForcedDrawingStyle (); 1206 // This is complicated because if hidden 798 // This is complicated because if hidden line and surface removal 1207 // has been requested we wish to preserve 799 // has been requested we wish to preserve this sometimes. 1208 switch (forcedStyle) { 800 switch (forcedStyle) { 1209 case (G4VisAttributes::solid): << 801 case (G4VisAttributes::solid): 1210 switch (viewerStyle) { << 802 switch (style) { 1211 case (G4ViewParameters::hlr): << 803 case (G4ViewParameters::hlr): 1212 resultantStyle = G4ViewParameters << 804 style = G4ViewParameters::hlhsr; 1213 break; << 805 break; 1214 case (G4ViewParameters::wireframe): << 806 case (G4ViewParameters::wireframe): 1215 resultantStyle = G4ViewParameters << 807 style = G4ViewParameters::hsr; 1216 break; << 808 break; 1217 case (G4ViewParameters::cloud): << 809 case (G4ViewParameters::hlhsr): 1218 resultantStyle = G4ViewParameters << 810 case (G4ViewParameters::hsr): 1219 break; << 1220 case (G4ViewParameters::hlhsr): << 1221 case (G4ViewParameters::hsr): << 1222 break; << 1223 } << 1224 break; << 1225 case (G4VisAttributes::cloud): << 1226 resultantStyle = G4ViewParameters::cl << 1227 break; << 1228 case (G4VisAttributes::wireframe): << 1229 default: 811 default: 1230 // But if forced style is wireframe, << 812 break; 1231 // main uses is in displaying the con << 813 } 1232 // solid and their surfaces overlap w << 814 break; 1233 // solid, making a mess if hlr is spe << 815 case (G4VisAttributes::wireframe): 1234 resultantStyle = G4ViewParameters::wi << 816 default: 1235 break; << 817 // But if forced style is wireframe, do it, because one of its 1236 } << 818 // main uses is in displaying the consituent solids of a Boolean 1237 } << 819 // solid and their surfaces overlap with the resulting Booean 1238 return resultantStyle; << 820 // solid, making a mess if hlr is specified. 1239 } << 821 style = G4ViewParameters::wireframe; 1240 << 822 break; 1241 G4int G4VSceneHandler::GetNumberOfCloudPoints << 823 } 1242 (const G4VisAttributes* pVisAttribs) const { << 1243 // Returns no of cloud points from current << 1244 // has forced through the vis attributes, t << 1245 // current view parameter. << 1246 G4int numberOfCloudPoints = fpViewer->GetVi << 1247 if (pVisAttribs -> IsForceDrawingStyle() && << 1248 pVisAttribs -> GetForcedDrawingStyle() << 1249 pVisAttribs -> GetForcedNumberOfCloudPo << 1250 numberOfCloudPoints = pVisAttribs -> GetF << 1251 } 824 } 1252 return numberOfCloudPoints; << 825 return style; 1253 } 826 } 1254 827 1255 G4bool G4VSceneHandler::GetAuxEdgeVisible (co 828 G4bool G4VSceneHandler::GetAuxEdgeVisible (const G4VisAttributes* pVisAttribs) { 1256 G4bool isAuxEdgeVisible = fpViewer->GetView 829 G4bool isAuxEdgeVisible = fpViewer->GetViewParameters().IsAuxEdgeVisible (); 1257 if (pVisAttribs -> IsForceAuxEdgeVisible()) << 830 if (pVisAttribs -> IsForceAuxEdgeVisible()) isAuxEdgeVisible = true; 1258 isAuxEdgeVisible = pVisAttribs->IsForcedA << 1259 } << 1260 return isAuxEdgeVisible; 831 return isAuxEdgeVisible; 1261 } 832 } 1262 833 1263 G4double G4VSceneHandler::GetMarkerSize 834 G4double G4VSceneHandler::GetMarkerSize 1264 (const G4VMarker& marker, 835 (const G4VMarker& marker, 1265 G4VSceneHandler::MarkerSizeType& markerSizeT 836 G4VSceneHandler::MarkerSizeType& markerSizeType) 1266 { 837 { 1267 G4bool userSpecified = marker.GetWorldSize( 838 G4bool userSpecified = marker.GetWorldSize() || marker.GetScreenSize(); 1268 const G4VMarker& defaultMarker = 839 const G4VMarker& defaultMarker = 1269 fpViewer -> GetViewParameters().GetDefaul 840 fpViewer -> GetViewParameters().GetDefaultMarker(); 1270 G4double size = userSpecified ? 841 G4double size = userSpecified ? 1271 marker.GetWorldSize() : defaultMarker.Get 842 marker.GetWorldSize() : defaultMarker.GetWorldSize(); 1272 if (size) { 843 if (size) { 1273 // Draw in world coordinates. 844 // Draw in world coordinates. 1274 markerSizeType = world; 845 markerSizeType = world; 1275 } 846 } 1276 else { 847 else { 1277 size = userSpecified ? 848 size = userSpecified ? 1278 marker.GetScreenSize() : defaultMarker. 849 marker.GetScreenSize() : defaultMarker.GetScreenSize(); 1279 // Draw in screen coordinates. 850 // Draw in screen coordinates. 1280 markerSizeType = screen; 851 markerSizeType = screen; 1281 } 852 } >> 853 if (size <= 1.) size = 1.; 1282 size *= fpViewer -> GetViewParameters().Get 854 size *= fpViewer -> GetViewParameters().GetGlobalMarkerScale(); 1283 if (markerSizeType == screen && size < 1.) << 855 if (size <= 1.) size = 1.; 1284 return size; 856 return size; 1285 } 857 } 1286 858 1287 G4int G4VSceneHandler::GetNoOfSides(const G4V 859 G4int G4VSceneHandler::GetNoOfSides(const G4VisAttributes* pVisAttribs) 1288 { 860 { 1289 // No. of sides (lines segments per circle) 861 // No. of sides (lines segments per circle) is normally determined 1290 // by the view parameters, but it can be ov 862 // by the view parameters, but it can be overriddden by the 1291 // ForceLineSegmentsPerCircle in the vis at 863 // ForceLineSegmentsPerCircle in the vis attributes. 1292 G4int lineSegmentsPerCircle = fpViewer->Get 864 G4int lineSegmentsPerCircle = fpViewer->GetViewParameters().GetNoOfSides(); 1293 if (pVisAttribs) { 865 if (pVisAttribs) { 1294 if (pVisAttribs->IsForceLineSegmentsPerCi 866 if (pVisAttribs->IsForceLineSegmentsPerCircle()) 1295 lineSegmentsPerCircle = pVisAttribs->Ge 867 lineSegmentsPerCircle = pVisAttribs->GetForcedLineSegmentsPerCircle(); 1296 if (lineSegmentsPerCircle < pVisAttribs-> << 868 const G4int nSegmentsMin = 12; 1297 lineSegmentsPerCircle = pVisAttribs->Ge << 869 if (lineSegmentsPerCircle < nSegmentsMin) { 1298 G4warn << << 870 lineSegmentsPerCircle = nSegmentsMin; >> 871 G4cout << 1299 "G4VSceneHandler::GetNoOfSides: attempt to 872 "G4VSceneHandler::GetNoOfSides: attempt to set the" 1300 "\nnumber of line segments per circle < " < << 873 "\nnumber of line segements per circle < " << nSegmentsMin 1301 << "; forced to " << pVisAttribs->GetM << 874 << "; forced to " << lineSegmentsPerCircle << G4endl; 1302 } 875 } 1303 } 876 } 1304 return lineSegmentsPerCircle; 877 return lineSegmentsPerCircle; 1305 } 878 } 1306 879 1307 std::ostream& operator << (std::ostream& os, << 880 std::ostream& operator << (std::ostream& os, const G4VSceneHandler& s) { 1308 881 1309 os << "Scene handler " << sh.fName << " has << 882 os << "Scene handler " << s.fName << " has " 1310 << sh.fViewerList.size () << " viewer(s) << 883 << s.fViewerList.size () << " viewer(s):"; 1311 for (std::size_t i = 0; i < sh.fViewerList. << 884 for (size_t i = 0; i < s.fViewerList.size (); i++) { 1312 os << "\n " << *(sh.fViewerList [i]); << 885 os << "\n " << *(s.fViewerList [i]); 1313 } 886 } 1314 887 1315 if (sh.fpScene) { << 888 if (s.fpScene) { 1316 os << "\n " << *sh.fpScene; << 889 os << "\n " << *s.fpScene; 1317 } 890 } 1318 else { 891 else { 1319 os << "\n This scene handler currently h 892 os << "\n This scene handler currently has no scene."; 1320 } 893 } 1321 894 1322 return os; 895 return os; 1323 } << 1324 << 1325 void G4VSceneHandler::PseudoSceneFor3DRectMes << 1326 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1327 const auto& material = fpPVModel->GetCurr << 1328 const auto& name = material? material->Ge << 1329 const auto& pVisAtts = fpPVModel->GetCurr << 1330 // Get position in world coordinates << 1331 // As a parameterisation the box is trans << 1332 // and its centre, originally by definiti << 1333 const G4ThreeVector& position = fpCurrent << 1334 fPositionByMaterial.insert(std::make_pair << 1335 if (fNameAndVisAttsByMaterial.find(materi << 1336 // Store name and vis attributes of fir << 1337 fNameAndVisAttsByMaterial[material] = N << 1338 } << 1339 } << 1340 << 1341 void G4VSceneHandler::PseudoSceneForTetVertic << 1342 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1343 // Need to know it's a tet !!!! or implem << 1344 try { << 1345 const auto& tet = dynamic_cast<const G4 << 1346 const auto& material = fpPVModel->GetCu << 1347 const auto& name = material? material-> << 1348 const auto& pVisAtts = fpPVModel->GetCu << 1349 // Transform into world coordinates if << 1350 if (fpCurrentObjectTransformation->xx() << 1351 fpCurrentObjectTransformation->yy() << 1352 fpCurrentObjectTransformation->zz() << 1353 const auto& vertices = tet.GetVertice << 1354 fVerticesByMaterial.insert(std::make_ << 1355 } else { << 1356 auto vertices = tet.GetVertices(); << 1357 for (auto&& vertex: vertices) { << 1358 vertex = G4Point3D(vertex).transfor << 1359 } << 1360 fVerticesByMaterial.insert(std::make_ << 1361 } << 1362 if (fNameAndVisAttsByMaterial.find(mate << 1363 // Store name and vis attributes of f << 1364 fNameAndVisAttsByMaterial[material] = << 1365 } << 1366 catch (const std::bad_cast&) { << 1367 G4ExceptionDescription ed; << 1368 ed << "Called for a mesh that is not a << 1369 G4Exception("PseudoSceneForTetVertices" << 1370 } << 1371 } << 1372 } << 1373 << 1374 void G4VSceneHandler::StandardSpecialMeshRend << 1375 // Standard way of special mesh rendering. << 1376 // MySceneHandler::AddCompound(const G4Mesh& << 1377 // appropriate or implement its own special m << 1378 { << 1379 G4bool implemented = false; << 1380 switch (mesh.GetMeshType()) { << 1381 case G4Mesh::rectangle: [[fallthrough]]; << 1382 case G4Mesh::nested3DRectangular: << 1383 switch (fpViewer->GetViewParameters().G << 1384 case G4ViewParameters::meshAsDefault: << 1385 [[fallthrough]]; << 1386 case G4ViewParameters::meshAsDots: << 1387 Draw3DRectMeshAsDots(mesh); // Rec << 1388 implemented = true; << 1389 break; << 1390 case G4ViewParameters::meshAsSurfaces << 1391 Draw3DRectMeshAsSurfaces(mesh); // << 1392 implemented = true; << 1393 break; << 1394 } << 1395 break; << 1396 case G4Mesh::tetrahedron: << 1397 switch (fpViewer->GetViewParameters().G << 1398 case G4ViewParameters::meshAsDefault: << 1399 [[fallthrough]]; << 1400 case G4ViewParameters::meshAsDots: << 1401 DrawTetMeshAsDots(mesh); // Tetrah << 1402 implemented = true; << 1403 break; << 1404 case G4ViewParameters::meshAsSurfaces << 1405 DrawTetMeshAsSurfaces(mesh); // Te << 1406 implemented = true; << 1407 break; << 1408 } << 1409 break; << 1410 case G4Mesh::cylinder: [[fallthrough]]; << 1411 case G4Mesh::sphere: [[fallthrough]]; << 1412 case G4Mesh::invalid: break; << 1413 } << 1414 if (implemented) { << 1415 // Draw container if not marked invisible << 1416 auto container = mesh.GetContainerVolume( << 1417 auto containerLogical = container->GetLog << 1418 auto containerVisAtts = containerLogical- << 1419 if (containerVisAtts == nullptr || contai << 1420 auto solid = containerLogical->GetSolid << 1421 auto polyhedron = solid->GetPolyhedron( << 1422 // Always draw as wireframe << 1423 G4VisAttributes tmpVisAtts; << 1424 if (containerVisAtts != nullptr) tmpVis << 1425 tmpVisAtts.SetForceWireframe(); << 1426 polyhedron->SetVisAttributes(tmpVisAtts << 1427 BeginPrimitives(mesh.GetTransform()); << 1428 AddPrimitive(*polyhedron); << 1429 EndPrimitives(); << 1430 } << 1431 } else { << 1432 // Invoke base class function << 1433 G4VSceneHandler::AddCompound(mesh); << 1434 } << 1435 return; << 1436 } << 1437 << 1438 void G4VSceneHandler::Draw3DRectMeshAsDots(co << 1439 // For a rectangular 3-D mesh, draw as colour << 1440 // one dot randomly placed in each visible me << 1441 { << 1442 // Check << 1443 if (mesh.GetMeshType() != G4Mesh::rectangle << 1444 mesh.GetMeshType() != G4Mesh::nested3DR << 1445 G4ExceptionDescription ed; << 1446 ed << "Called with a mesh that is not rec << 1447 G4Exception("G4VSceneHandler::Draw3DRectM << 1448 return; << 1449 } << 1450 << 1451 static G4bool firstPrint = true; << 1452 const auto& verbosity = G4VisManager::GetVe << 1453 G4bool print = firstPrint && verbosity >= G << 1454 if (print) { << 1455 G4cout << 1456 << "Special case drawing of 3D rectangula << 1457 << '\n' << mesh << 1458 << G4endl; << 1459 } << 1460 << 1461 const auto& container = mesh.GetContainerVo << 1462 << 1463 // This map is static so that once filled i << 1464 static std::map<G4String,std::map<const G4M << 1465 auto& dotsByMaterial = dotsByMaterialAndMes << 1466 << 1467 // Fill map if not already filled << 1468 if (dotsByMaterial.empty()) { << 1469 << 1470 // Get positions and material one cell at << 1471 // The pseudo scene allows a "private" de << 1472 // Instantiate a temporary G4PhysicalVolu << 1473 G4ModelingParameters tmpMP; << 1474 tmpMP.SetCulling(true); // This avoids d << 1475 tmpMP.SetCullingInvisible(true); // ... << 1476 const G4bool useFullExtent = true; // To << 1477 G4PhysicalVolumeModel tmpPVModel << 1478 (container, << 1479 G4PhysicalVolumeModel::UNLIMITED, << 1480 G4Transform3D(), // so that positions a << 1481 &tmpMP, << 1482 useFullExtent); << 1483 // Accumulate information in temporary ma << 1484 std::multimap<const G4Material*,const G4T << 1485 std::map<const G4Material*,G4VSceneHandle << 1486 // Instantiate the pseudo scene << 1487 PseudoSceneFor3DRectMeshPositions pseudoS << 1488 (&tmpPVModel,&mesh,positionByMaterial,nam << 1489 // Make private descent into the paramete << 1490 tmpPVModel.DescribeYourselfTo(pseudoScene << 1491 // Now we have a map of positions by mate << 1492 // Also a map of name and colour by mater << 1493 << 1494 const auto& prms = mesh.GetThreeDRectPara << 1495 const auto& halfX = prms.fHalfX; << 1496 const auto& halfY = prms.fHalfY; << 1497 const auto& halfZ = prms.fHalfZ; << 1498 << 1499 // Fill the permanent (static) map of dot << 1500 G4int nDotsTotal = 0; << 1501 for (const auto& entry: nameAndVisAttsByM << 1502 G4int nDots = 0; << 1503 const auto& material = entry.first; << 1504 const auto& nameAndVisAtts = nameAndVis << 1505 const auto& name = nameAndVisAtts.fName << 1506 const auto& visAtts = nameAndVisAtts.fV << 1507 G4Polymarker dots; << 1508 dots.SetInfo(name); << 1509 dots.SetVisAttributes(visAtts); << 1510 dots.SetMarkerType(G4Polymarker::dots); << 1511 dots.SetSize(G4VMarker::screen,1.); << 1512 // Enter empty polymarker into the map << 1513 dotsByMaterial[material] = dots; << 1514 // Now fill it in situ << 1515 auto& dotsInMap = dotsByMaterial[materi << 1516 const auto& range = positionByMaterial. << 1517 for (auto posByMat = range.first; posBy << 1518 dotsInMap.push_back(GetPointInBox(pos << 1519 ++nDots; << 1520 } << 1521 << 1522 if (print) { << 1523 G4cout << 1524 << std::setw(30) << std::left << name << 1525 << ": " << std::setw(7) << nDots << " << 1526 << ": colour " << std::fixed << std:: << 1527 << visAtts.GetColour() << std::defaul << 1528 << G4endl; << 1529 } << 1530 << 1531 nDotsTotal += nDots; << 1532 } << 1533 << 1534 if (print) { << 1535 G4cout << "Total number of dots: " << n << 1536 } << 1537 } << 1538 << 1539 // Some subsequent expressions apply only t << 1540 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1541 << 1542 G4String parameterisationName; << 1543 if (pPVModel) { << 1544 parameterisationName = pPVModel->GetFullP << 1545 } << 1546 << 1547 // Draw the dots by material << 1548 // Ensure they are "hidden", i.e., use the << 1549 auto keepVP = fpViewer->GetViewParameters() << 1550 auto vp = fpViewer->GetViewParameters(); << 1551 vp.SetMarkerHidden(); << 1552 fpViewer->SetViewParameters(vp); << 1553 // Now we transform to world coordinates << 1554 BeginPrimitives (mesh.GetTransform()); << 1555 for (const auto& entry: dotsByMaterial) { << 1556 const auto& dots = entry.second; << 1557 // The current "leaf" node in the PVPath << 1558 // been converted into polymarkers by mat << 1559 // its name to that of the material (whos << 1560 // so that its appearance in the scene tr << 1561 // an appropriate name and its visibility << 1562 if (pPVModel) { << 1563 const auto& fullPVPath = pPVModel->GetF << 1564 auto leafPV = fullPVPath.back().GetPhys << 1565 leafPV->SetName(dots.GetInfo()); << 1566 } << 1567 // Add dots to the scene << 1568 AddPrimitive(dots); << 1569 } << 1570 EndPrimitives (); << 1571 // Restore view parameters << 1572 fpViewer->SetViewParameters(keepVP); << 1573 // Restore parameterisation name << 1574 if (pPVModel) { << 1575 pPVModel->GetFullPVPath().back().GetPhysi << 1576 } << 1577 << 1578 firstPrint = false; << 1579 return; << 1580 } << 1581 << 1582 void G4VSceneHandler::Draw3DRectMeshAsSurface << 1583 // For a rectangular 3-D mesh, draw as surfac << 1584 // with inner shared faces removed. << 1585 { << 1586 // Check << 1587 if (mesh.GetMeshType() != G4Mesh::rectangle << 1588 mesh.GetMeshType() != G4Mesh::nested3DR << 1589 G4ExceptionDescription ed; << 1590 ed << "Called with a mesh that is not rec << 1591 G4Exception("G4VSceneHandler::Draw3DRectM << 1592 return; << 1593 } << 1594 << 1595 static G4bool firstPrint = true; << 1596 const auto& verbosity = G4VisManager::GetVe << 1597 G4bool print = firstPrint && verbosity >= G << 1598 if (print) { << 1599 G4cout << 1600 << "Special case drawing of 3D rectangula << 1601 << '\n' << mesh << 1602 << G4endl; << 1603 } << 1604 << 1605 const auto& container = mesh.GetContainerVo << 1606 << 1607 // This map is static so that once filled i << 1608 static std::map<G4String,std::map<const G4M << 1609 auto& boxesByMaterial = boxesByMaterialAndM << 1610 << 1611 // Fill map if not already filled << 1612 if (boxesByMaterial.empty()) { << 1613 << 1614 // Get positions and material one cell at << 1615 // The pseudo scene allows a "private" de << 1616 // Instantiate a temporary G4PhysicalVolu << 1617 G4ModelingParameters tmpMP; << 1618 tmpMP.SetCulling(true); // This avoids d << 1619 tmpMP.SetCullingInvisible(true); // ... << 1620 const G4bool useFullExtent = true; // To << 1621 G4PhysicalVolumeModel tmpPVModel << 1622 (container, << 1623 G4PhysicalVolumeModel::UNLIMITED, << 1624 G4Transform3D(), // so that positions a << 1625 &tmpMP, << 1626 useFullExtent); << 1627 // Accumulate information in temporary ma << 1628 std::multimap<const G4Material*,const G4T << 1629 std::map<const G4Material*,G4VSceneHandle << 1630 // Instantiate the pseudo scene << 1631 PseudoSceneFor3DRectMeshPositions pseudoS << 1632 (&tmpPVModel,&mesh,positionByMaterial,nam << 1633 // Make private descent into the paramete << 1634 tmpPVModel.DescribeYourselfTo(pseudoScene << 1635 // Now we have a map of positions by mate << 1636 // Also a map of name and colour by mater << 1637 << 1638 const auto& prms = mesh.GetThreeDRectPara << 1639 const auto& sizeX = 2.*prms.fHalfX; << 1640 const auto& sizeY = 2.*prms.fHalfY; << 1641 const auto& sizeZ = 2.*prms.fHalfZ; << 1642 << 1643 // Fill the permanent (static) map of box << 1644 G4int nBoxesTotal = 0, nFacetsTotal = 0; << 1645 for (const auto& entry: nameAndVisAttsByM << 1646 G4int nBoxes = 0; << 1647 const auto& material = entry.first; << 1648 const auto& nameAndVisAtts = nameAndVis << 1649 const auto& name = nameAndVisAtts.fName << 1650 const auto& visAtts = nameAndVisAtts.fV << 1651 // Transfer positions into a vector rea << 1652 std::vector<G4ThreeVector> positionsFor << 1653 const auto& range = positionByMaterial. << 1654 for (auto posByMat = range.first; posBy << 1655 const auto& position = posByMat->seco << 1656 positionsForPolyhedron.push_back(posi << 1657 ++nBoxes; << 1658 } << 1659 // The polyhedron will be in local coor << 1660 // Add an empty place-holder to the map << 1661 auto& polyhedron = boxesByMaterial[mate << 1662 // Replace with the desired polyhedron << 1663 polyhedron = G4PolyhedronBoxMesh(sizeX, << 1664 polyhedron.SetVisAttributes(visAtts); << 1665 polyhedron.SetInfo(name); << 1666 << 1667 if (print) { << 1668 G4cout << 1669 << std::setw(30) << std::left << name << 1670 << ": " << std::setw(7) << nBoxes << << 1671 << " (" << std::setw(7) << 6*nBoxes < << 1672 << ": reduced to " << std::setw(7) << << 1673 << std::setw(2) << std::fixed << std: << 1674 << "%): colour " << std::fixed << std << 1675 << visAtts.GetColour() << std::defaul << 1676 << G4endl; << 1677 } << 1678 << 1679 nBoxesTotal += nBoxes; << 1680 nFacetsTotal += polyhedron.GetNoFacets( << 1681 } << 1682 << 1683 if (print) { << 1684 G4cout << "Total number of boxes: " << << 1685 << ": reduced to " << nFacetsTotal << " << 1686 << std::setw(2) << std::fixed << std::s << 1687 << G4endl; << 1688 } << 1689 } << 1690 << 1691 // Some subsequent expressions apply only t << 1692 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1693 << 1694 G4String parameterisationName; << 1695 if (pPVModel) { << 1696 parameterisationName = pPVModel->GetFullP << 1697 } << 1698 << 1699 // Draw the boxes by material << 1700 // Now we transform to world coordinates << 1701 BeginPrimitives (mesh.GetTransform()); << 1702 for (const auto& entry: boxesByMaterial) { << 1703 const auto& poly = entry.second; << 1704 // The current "leaf" node in the PVPath << 1705 // been converted into polyhedra by mater << 1706 // its name to that of the material (whos << 1707 // so that its appearance in the scene tr << 1708 // an appropriate name and its visibility << 1709 if (pPVModel) { << 1710 const auto& fullPVPath = pPVModel->GetF << 1711 auto leafPV = fullPVPath.back().GetPhys << 1712 leafPV->SetName(poly.GetInfo()); << 1713 } << 1714 AddPrimitive(poly); << 1715 } << 1716 EndPrimitives (); << 1717 // Restore parameterisation name << 1718 if (pPVModel) { << 1719 pPVModel->GetFullPVPath().back().GetPhysi << 1720 } << 1721 << 1722 firstPrint = false; << 1723 return; << 1724 } << 1725 << 1726 void G4VSceneHandler::DrawTetMeshAsDots(const << 1727 // For a tetrahedron mesh, draw as coloured d << 1728 // one dot randomly placed in each visible me << 1729 { << 1730 // Check << 1731 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1732 G4ExceptionDescription ed; << 1733 ed << "Called with mesh that is not a tet << 1734 G4Exception("G4VSceneHandler::DrawTetMesh << 1735 return; << 1736 } << 1737 << 1738 static G4bool firstPrint = true; << 1739 const auto& verbosity = G4VisManager::GetVe << 1740 G4bool print = firstPrint && verbosity >= G << 1741 << 1742 if (print) { << 1743 G4cout << 1744 << "Special case drawing of tetrahedron m << 1745 << '\n' << mesh << 1746 << G4endl; << 1747 } << 1748 << 1749 const auto& container = mesh.GetContainerVo << 1750 << 1751 // This map is static so that once filled i << 1752 static std::map<G4String,std::map<const G4M << 1753 auto& dotsByMaterial = dotsByMaterialAndMes << 1754 << 1755 // Fill map if not already filled << 1756 if (dotsByMaterial.empty()) { << 1757 << 1758 // Get vertices and colour one cell at a << 1759 // The pseudo scene allows a "private" de << 1760 // Instantiate a temporary G4PhysicalVolu << 1761 G4ModelingParameters tmpMP; << 1762 tmpMP.SetCulling(true); // This avoids d << 1763 tmpMP.SetCullingInvisible(true); // ... << 1764 const G4bool useFullExtent = true; // To << 1765 G4PhysicalVolumeModel tmpPVModel << 1766 (container, << 1767 G4PhysicalVolumeModel::UNLIMITED, << 1768 G4Transform3D(), // so that positions a << 1769 &tmpMP, << 1770 useFullExtent); << 1771 // Accumulate information in temporary ma << 1772 std::multimap<const G4Material*,std::vect << 1773 std::map<const G4Material*,G4VSceneHandle << 1774 // Instantiate a pseudo scene << 1775 PseudoSceneForTetVertices pseudoScene << 1776 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1777 // Make private descent into the paramete << 1778 tmpPVModel.DescribeYourselfTo(pseudoScene << 1779 // Now we have a map of vertices by mater << 1780 // Also a map of name and colour by mater << 1781 << 1782 // Fill the permanent (static) map of dot << 1783 G4int nDotsTotal = 0; << 1784 for (const auto& entry: nameAndVisAttsByM << 1785 G4int nDots = 0; << 1786 const auto& material = entry.first; << 1787 const auto& nameAndVisAtts = nameAndVis << 1788 const auto& name = nameAndVisAtts.fName << 1789 const auto& visAtts = nameAndVisAtts.fV << 1790 G4Polymarker dots; << 1791 dots.SetVisAttributes(visAtts); << 1792 dots.SetMarkerType(G4Polymarker::dots); << 1793 dots.SetSize(G4VMarker::screen,1.); << 1794 dots.SetInfo(name); << 1795 // Enter empty polymarker into the map << 1796 dotsByMaterial[material] = dots; << 1797 // Now fill it in situ << 1798 auto& dotsInMap = dotsByMaterial[materi << 1799 const auto& range = verticesByMaterial. << 1800 for (auto vByMat = range.first; vByMat << 1801 dotsInMap.push_back(GetPointInTet(vBy << 1802 ++nDots; << 1803 } << 1804 << 1805 if (print) { << 1806 G4cout << 1807 << std::setw(30) << std::left << name << 1808 << ": " << std::setw(7) << nDots << " << 1809 << ": colour " << std::fixed << std:: << 1810 << visAtts.GetColour() << std::defaul << 1811 << G4endl; << 1812 } << 1813 << 1814 nDotsTotal += nDots; << 1815 } << 1816 << 1817 if (print) { << 1818 G4cout << "Total number of dots: " << n << 1819 } << 1820 } << 1821 << 1822 // Some subsequent expressions apply only t << 1823 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1824 << 1825 G4String parameterisationName; << 1826 if (pPVModel) { << 1827 parameterisationName = pPVModel->GetFullP << 1828 } << 1829 << 1830 // Draw the dots by material << 1831 // Ensure they are "hidden", i.e., use the << 1832 auto keepVP = fpViewer->GetViewParameters() << 1833 auto vp = fpViewer->GetViewParameters(); << 1834 vp.SetMarkerHidden(); << 1835 fpViewer->SetViewParameters(vp); << 1836 << 1837 // Now we transform to world coordinates << 1838 BeginPrimitives (mesh.GetTransform()); << 1839 for (const auto& entry: dotsByMaterial) { << 1840 const auto& dots = entry.second; << 1841 // The current "leaf" node in the PVPath << 1842 // been converted into polymarkers by mat << 1843 // its name to that of the material (whos << 1844 // so that its appearance in the scene tr << 1845 // an appropriate name and its visibility << 1846 if (pPVModel) { << 1847 const auto& fullPVPath = pPVModel->GetF << 1848 auto leafPV = fullPVPath.back().GetPhys << 1849 leafPV->SetName(dots.GetInfo()); << 1850 } << 1851 AddPrimitive(dots); << 1852 } << 1853 EndPrimitives (); << 1854 << 1855 // Restore view parameters << 1856 fpViewer->SetViewParameters(keepVP); << 1857 // Restore parameterisation name << 1858 if (pPVModel) { << 1859 pPVModel->GetFullPVPath().back().GetPhysi << 1860 } << 1861 << 1862 firstPrint = false; << 1863 return; << 1864 } << 1865 << 1866 void G4VSceneHandler::DrawTetMeshAsSurfaces(c << 1867 // For a tetrahedron mesh, draw as surfaces b << 1868 // with inner shared faces removed. << 1869 { << 1870 // Check << 1871 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1872 G4ExceptionDescription ed; << 1873 ed << "Called with mesh that is not a tet << 1874 G4Exception("G4VSceneHandler::DrawTetMesh << 1875 return; << 1876 } << 1877 << 1878 static G4bool firstPrint = true; << 1879 const auto& verbosity = G4VisManager::GetVe << 1880 G4bool print = firstPrint && verbosity >= G << 1881 << 1882 if (print) { << 1883 G4cout << 1884 << "Special case drawing of tetrahedron m << 1885 << '\n' << mesh << 1886 << G4endl; << 1887 } << 1888 << 1889 // This map is static so that once filled i << 1890 static std::map<G4String,std::map<const G4M << 1891 auto& surfacesByMaterial = surfacesByMateri << 1892 << 1893 // Fill map if not already filled << 1894 if (surfacesByMaterial.empty()) { << 1895 << 1896 // Get vertices and colour one cell at a << 1897 // The pseudo scene allows a "private" de << 1898 // Instantiate a temporary G4PhysicalVolu << 1899 G4ModelingParameters tmpMP; << 1900 tmpMP.SetCulling(true); // This avoids d << 1901 tmpMP.SetCullingInvisible(true); // ... << 1902 const G4bool useFullExtent = true; // To << 1903 G4PhysicalVolumeModel tmpPVModel << 1904 (mesh.GetContainerVolume(), << 1905 G4PhysicalVolumeModel::UNLIMITED, << 1906 G4Transform3D(), // so that positions a << 1907 &tmpMP, << 1908 useFullExtent); << 1909 // Accumulate information in temporary ma << 1910 std::multimap<const G4Material*,std::vect << 1911 std::map<const G4Material*,G4VSceneHandle << 1912 // Instantiate a pseudo scene << 1913 PseudoSceneForTetVertices pseudoScene << 1914 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1915 // Make private descent into the paramete << 1916 tmpPVModel.DescribeYourselfTo(pseudoScene << 1917 // Now we have a map of vertices by mater << 1918 // Also a map of name and colour by mater << 1919 << 1920 // Fill the permanent (static) map of sur << 1921 G4int nTetsTotal = 0, nFacetsTotal = 0; << 1922 for (const auto& entry: nameAndVisAttsByM << 1923 G4int nTets = 0; << 1924 const auto& material = entry.first; << 1925 const auto& nameAndVisAtts = nameAndVis << 1926 const auto& name = nameAndVisAtts.fName << 1927 const auto& visAtts = nameAndVisAtts.fV << 1928 // Transfer vertices into a vector read << 1929 std::vector<G4ThreeVector> verticesForP << 1930 const auto& range = verticesByMaterial. << 1931 for (auto vByMat = range.first; vByMat << 1932 const std::vector<G4ThreeVector>& ver << 1933 for (const auto& vertex: vertices) << 1934 verticesForPolyhedron.push_back(ver << 1935 ++nTets; << 1936 } << 1937 // The polyhedron will be in local coor << 1938 // Add an empty place-holder to the map << 1939 auto& polyhedron = surfacesByMaterial[m << 1940 // Replace with the desired polyhedron << 1941 polyhedron = G4PolyhedronTetMesh(vertic << 1942 polyhedron.SetVisAttributes(visAtts); << 1943 polyhedron.SetInfo(name); << 1944 << 1945 if (print) { << 1946 G4cout << 1947 << std::setw(30) << std::left << name << 1948 << ": " << std::setw(7) << nTets << " << 1949 << " (" << std::setw(7) << 4*nTets << << 1950 << ": reduced to " << std::setw(7) << << 1951 << std::setw(2) << std::fixed << std: << 1952 << "%): colour " << std::fixed << std << 1953 << visAtts.GetColour() << std::defaul << 1954 << G4endl; << 1955 } << 1956 << 1957 nTetsTotal += nTets; << 1958 nFacetsTotal += polyhedron.GetNoFacets( << 1959 } << 1960 << 1961 if (print) { << 1962 G4cout << "Total number of tetrahedra: << 1963 << ": reduced to " << nFacetsTotal << " << 1964 << std::setw(2) << std::fixed << std::s << 1965 << G4endl; << 1966 } << 1967 } << 1968 << 1969 // Some subsequent expressions apply only t << 1970 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1971 << 1972 G4String parameterisationName; << 1973 if (pPVModel) { << 1974 parameterisationName = pPVModel->GetFullP << 1975 } << 1976 << 1977 // Draw the surfaces by material << 1978 // Now we transform to world coordinates << 1979 BeginPrimitives (mesh.GetTransform()); << 1980 for (const auto& entry: surfacesByMaterial) << 1981 const auto& poly = entry.second; << 1982 // The current "leaf" node in the PVPath << 1983 // been converted into polyhedra by mater << 1984 // its name to that of the material (whos << 1985 // so that its appearance in the scene tr << 1986 // an appropriate name and its visibility << 1987 if (pPVModel) { << 1988 const auto& fullPVPath = pPVModel->GetF << 1989 auto leafPV = fullPVPath.back().GetPhys << 1990 leafPV->SetName(poly.GetInfo()); << 1991 } << 1992 AddPrimitive(poly); << 1993 } << 1994 EndPrimitives (); << 1995 << 1996 // Restore parameterisation name << 1997 if (pPVModel) { << 1998 pPVModel->GetFullPVPath().back().GetPhysi << 1999 } << 2000 << 2001 firstPrint = false; << 2002 return; << 2003 } << 2004 << 2005 G4ThreeVector << 2006 G4VSceneHandler::GetPointInBox(const G4ThreeV << 2007 G4double halfX << 2008 G4double halfY << 2009 G4double halfZ << 2010 { << 2011 G4double x = pos.getX() + (2.*G4QuickRand() << 2012 G4double y = pos.getY() + (2.*G4QuickRand() << 2013 G4double z = pos.getZ() + (2.*G4QuickRand() << 2014 return G4ThreeVector(x, y, z); << 2015 } << 2016 << 2017 G4ThreeVector << 2018 G4VSceneHandler::GetPointInTet(const std::vec << 2019 { << 2020 G4double p = G4QuickRand(); << 2021 G4double q = G4QuickRand(); << 2022 G4double r = G4QuickRand(); << 2023 if (p + q > 1.) << 2024 { << 2025 p = 1. - p; << 2026 q = 1. - q; << 2027 } << 2028 if (q + r > 1.) << 2029 { << 2030 G4double tmp = r; << 2031 r = 1. - p - q; << 2032 q = 1. - tmp; << 2033 } << 2034 else if (p + q + r > 1.) << 2035 { << 2036 G4double tmp = r; << 2037 r = p + q + r - 1.; << 2038 p = 1. - q - tmp; << 2039 } << 2040 G4double a = 1. - p - q - r; << 2041 return vertices[0]*a + vertices[1]*p + vert << 2042 } 896 } 2043 897