Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4VSceneHandler.cc,v 1.66 2006/06/29 21:29:24 gunter Exp $ >> 28 // GEANT4 tag $Name: geant4-08-01 $ 27 // 29 // 28 // 30 // 29 // John Allison 19th July 1996 31 // John Allison 19th July 1996 30 // Abstract interface class for graphics scene 32 // Abstract interface class for graphics scenes. 31 33 32 #include "G4VSceneHandler.hh" 34 #include "G4VSceneHandler.hh" 33 35 34 #include "G4ios.hh" 36 #include "G4ios.hh" 35 #include <sstream> 37 #include <sstream> 36 38 37 #include "G4VisManager.hh" 39 #include "G4VisManager.hh" 38 #include "G4VGraphicsSystem.hh" 40 #include "G4VGraphicsSystem.hh" 39 #include "G4VViewer.hh" 41 #include "G4VViewer.hh" 40 #include "G4VSolid.hh" 42 #include "G4VSolid.hh" 41 #include "G4RotationMatrix.hh" 43 #include "G4RotationMatrix.hh" 42 #include "G4ThreeVector.hh" 44 #include "G4ThreeVector.hh" 43 #include "G4VPhysicalVolume.hh" 45 #include "G4VPhysicalVolume.hh" 44 #include "G4Material.hh" 46 #include "G4Material.hh" 45 #include "G4Polyline.hh" 47 #include "G4Polyline.hh" >> 48 #include "G4Scale.hh" 46 #include "G4Text.hh" 49 #include "G4Text.hh" 47 #include "G4Circle.hh" 50 #include "G4Circle.hh" 48 #include "G4Square.hh" 51 #include "G4Square.hh" 49 #include "G4Polymarker.hh" 52 #include "G4Polymarker.hh" 50 #include "G4Polyhedron.hh" 53 #include "G4Polyhedron.hh" >> 54 #include "G4NURBS.hh" 51 #include "G4Visible.hh" 55 #include "G4Visible.hh" 52 #include "G4VisAttributes.hh" 56 #include "G4VisAttributes.hh" 53 #include "G4VModel.hh" 57 #include "G4VModel.hh" 54 #include "G4TrajectoriesModel.hh" 58 #include "G4TrajectoriesModel.hh" 55 #include "G4Box.hh" 59 #include "G4Box.hh" 56 #include "G4Cons.hh" 60 #include "G4Cons.hh" 57 #include "G4Orb.hh" << 61 #include "G4Tubs.hh" 58 #include "G4Para.hh" << 62 #include "G4Trd.hh" >> 63 #include "G4Trap.hh" 59 #include "G4Sphere.hh" 64 #include "G4Sphere.hh" >> 65 #include "G4Para.hh" 60 #include "G4Torus.hh" 66 #include "G4Torus.hh" 61 #include "G4Trap.hh" << 62 #include "G4Trd.hh" << 63 #include "G4Tubs.hh" << 64 #include "G4Ellipsoid.hh" << 65 #include "G4Polycone.hh" 67 #include "G4Polycone.hh" 66 #include "G4Polyhedra.hh" 68 #include "G4Polyhedra.hh" 67 #include "G4Tet.hh" << 68 #include "G4DisplacedSolid.hh" << 69 #include "G4UnionSolid.hh" << 70 #include "G4IntersectionSolid.hh" << 71 #include "G4SubtractionSolid.hh" << 72 #include "G4LogicalVolume.hh" 69 #include "G4LogicalVolume.hh" 73 #include "G4PhysicalVolumeModel.hh" 70 #include "G4PhysicalVolumeModel.hh" 74 #include "G4ModelingParameters.hh" 71 #include "G4ModelingParameters.hh" 75 #include "G4VTrajectory.hh" 72 #include "G4VTrajectory.hh" 76 #include "G4VTrajectoryPoint.hh" << 77 #include "G4HitsModel.hh" << 78 #include "G4VHit.hh" 73 #include "G4VHit.hh" 79 #include "G4VDigi.hh" << 74 #include "Randomize.hh" 80 #include "G4ScoringManager.hh" << 81 #include "G4VScoringMesh.hh" << 82 #include "G4Mesh.hh" << 83 #include "G4DefaultLinearColorMap.hh" << 84 #include "G4QuickRand.hh" << 85 #include "G4StateManager.hh" 75 #include "G4StateManager.hh" 86 #include "G4RunManager.hh" 76 #include "G4RunManager.hh" 87 #include "G4RunManagerFactory.hh" << 88 #include "G4Run.hh" << 89 #include "G4Transform3D.hh" << 90 #include "G4AttHolder.hh" << 91 #include "G4AttDef.hh" << 92 #include "G4SceneTreeItem.hh" << 93 #include "G4VVisCommand.hh" << 94 #include "G4PhysicalConstants.hh" << 95 #include "G4SystemOfUnits.hh" << 96 << 97 #define G4warn G4cout << 98 77 99 G4VSceneHandler::G4VSceneHandler (G4VGraphicsS 78 G4VSceneHandler::G4VSceneHandler (G4VGraphicsSystem& system, G4int id, const G4String& name): 100 fSystem (system), 79 fSystem (system), 101 fSceneHandlerId (id), 80 fSceneHandlerId (id), 102 fViewCount (0), 81 fViewCount (0), 103 fpViewer (0), 82 fpViewer (0), 104 fpScene (0), 83 fpScene (0), 105 fMarkForClearingTransientStore (true), // R 84 fMarkForClearingTransientStore (true), // Ready for first 106 // ClearTransientStoreIfMarked(), 85 // ClearTransientStoreIfMarked(), 107 // e.g., at end of run (see 86 // e.g., at end of run (see 108 // G4VisManager.cc). 87 // G4VisManager.cc). 109 fReadyForTransients (true), // Only fals 88 fReadyForTransients (true), // Only false while processing scene. 110 fProcessingSolid (false), 89 fProcessingSolid (false), 111 fProcessing2D (false), << 90 fSecondPassRequested (false), >> 91 fSecondPass (false), 112 fpModel (0), 92 fpModel (0), >> 93 fpObjectTransformation (0), 113 fNestingDepth (0), 94 fNestingDepth (0), 114 fpVisAttribs (0) << 95 fpVisAttribs (0), >> 96 fCurrentDepth (0), >> 97 fpCurrentPV (0), >> 98 fpCurrentLV (0) 115 { 99 { 116 G4VisManager* pVMan = G4VisManager::GetInsta 100 G4VisManager* pVMan = G4VisManager::GetInstance (); 117 fpScene = pVMan -> GetCurrentScene (); 101 fpScene = pVMan -> GetCurrentScene (); 118 if (name == "") { 102 if (name == "") { 119 std::ostringstream ost; 103 std::ostringstream ost; 120 ost << fSystem.GetName () << '-' << fScene 104 ost << fSystem.GetName () << '-' << fSceneHandlerId; 121 fName = ost.str(); 105 fName = ost.str(); 122 } 106 } 123 else { 107 else { 124 fName = name; 108 fName = name; 125 } 109 } 126 fTransientsDrawnThisEvent = pVMan->GetTransi 110 fTransientsDrawnThisEvent = pVMan->GetTransientsDrawnThisEvent(); 127 fTransientsDrawnThisRun = pVMan->GetTransien 111 fTransientsDrawnThisRun = pVMan->GetTransientsDrawnThisRun(); 128 } 112 } 129 113 130 G4VSceneHandler::~G4VSceneHandler () { 114 G4VSceneHandler::~G4VSceneHandler () { 131 G4VViewer* last; << 115 G4ViewerListIterator i; 132 while( ! fViewerList.empty() ) { << 116 for (i = fViewerList.begin(); i != fViewerList.end(); ++i) { 133 last = fViewerList.back(); << 117 delete *i; 134 fViewerList.pop_back(); << 135 delete last; << 136 } << 137 } << 138 << 139 const G4VisExtent& G4VSceneHandler::GetExtent( << 140 { << 141 if (fpScene) { << 142 return fpScene->GetExtent(); << 143 } else { << 144 static const G4VisExtent defaultExtent = G << 145 return defaultExtent; << 146 } 118 } 147 } 119 } 148 120 149 void G4VSceneHandler::PreAddSolid (const G4Tra 121 void G4VSceneHandler::PreAddSolid (const G4Transform3D& objectTransformation, 150 const G4VisAttributes& visAttribs) << 122 const G4VisAttributes& visAttribs) { 151 fObjectTransformation = objectTransformation << 123 fpObjectTransformation = &objectTransformation; 152 fpVisAttribs = &visAttribs; 124 fpVisAttribs = &visAttribs; 153 fProcessingSolid = true; 125 fProcessingSolid = true; 154 } 126 } 155 127 156 void G4VSceneHandler::PostAddSolid () { 128 void G4VSceneHandler::PostAddSolid () { >> 129 fpObjectTransformation = 0; 157 fpVisAttribs = 0; 130 fpVisAttribs = 0; 158 fProcessingSolid = false; 131 fProcessingSolid = false; 159 if (fReadyForTransients) { 132 if (fReadyForTransients) { 160 fTransientsDrawnThisEvent = true; 133 fTransientsDrawnThisEvent = true; 161 fTransientsDrawnThisRun = true; 134 fTransientsDrawnThisRun = true; 162 } 135 } 163 } 136 } 164 137 165 void G4VSceneHandler::BeginPrimitives 138 void G4VSceneHandler::BeginPrimitives 166 (const G4Transform3D& objectTransformation) { 139 (const G4Transform3D& objectTransformation) { 167 //static G4int count = 0; << 168 //G4cout << "G4VSceneHandler::BeginPrimitive << 169 fNestingDepth++; 140 fNestingDepth++; 170 if (fNestingDepth > 1) 141 if (fNestingDepth > 1) 171 G4Exception << 142 G4Exception("G4VSceneHandler::BeginPrimitives: Nesting detected." 172 ("G4VSceneHandler::BeginPrimitives", << 143 "\n It is illegal to nest Begin/EndPrimitives."); 173 "visman0101", FatalException, << 144 fpObjectTransformation = &objectTransformation; 174 "Nesting detected. It is illegal to nes << 175 fObjectTransformation = objectTransformation << 176 } 145 } 177 146 178 void G4VSceneHandler::EndPrimitives () { 147 void G4VSceneHandler::EndPrimitives () { 179 if (fNestingDepth <= 0) 148 if (fNestingDepth <= 0) 180 G4Exception("G4VSceneHandler::EndPrimitive << 149 G4Exception("G4VSceneHandler::EndPrimitives: Nesting error"); 181 "visman0102", FatalException, "Nesting err << 182 fNestingDepth--; 150 fNestingDepth--; >> 151 fpObjectTransformation = 0; 183 if (fReadyForTransients) { 152 if (fReadyForTransients) { 184 fTransientsDrawnThisEvent = true; 153 fTransientsDrawnThisEvent = true; 185 fTransientsDrawnThisRun = true; 154 fTransientsDrawnThisRun = true; 186 } 155 } 187 } 156 } 188 157 189 void G4VSceneHandler::BeginPrimitives2D << 158 void G4VSceneHandler::BeginPrimitives2D () { 190 (const G4Transform3D& objectTransformation) { << 191 fNestingDepth++; 159 fNestingDepth++; 192 if (fNestingDepth > 1) 160 if (fNestingDepth > 1) 193 G4Exception << 161 G4Exception("G4VSceneHandler::BeginPrimitives2D: Nesting detected." 194 ("G4VSceneHandler::BeginPrimitives2D", << 162 "\n It is illegal to nest Begin/EndPrimitives."); 195 "visman0103", FatalException, << 163 // Not actually required for 2D operations but some drivers do an 196 "Nesting detected. It is illegal to nes << 164 // initial transformation... 197 fObjectTransformation = objectTransformation << 165 fpObjectTransformation = &fIdentityTransformation; 198 fProcessing2D = true; << 199 } 166 } 200 167 201 void G4VSceneHandler::EndPrimitives2D () { 168 void G4VSceneHandler::EndPrimitives2D () { 202 if (fNestingDepth <= 0) 169 if (fNestingDepth <= 0) 203 G4Exception("G4VSceneHandler::EndPrimitive << 170 G4Exception("G4VSceneHandler::EndPrimitives2D: Nesting error"); 204 "visman0104", FatalException, "Nesting err << 205 fNestingDepth--; 171 fNestingDepth--; >> 172 fpObjectTransformation = 0; 206 if (fReadyForTransients) { 173 if (fReadyForTransients) { 207 fTransientsDrawnThisEvent = true; 174 fTransientsDrawnThisEvent = true; 208 fTransientsDrawnThisRun = true; 175 fTransientsDrawnThisRun = true; 209 } 176 } 210 fProcessing2D = false; << 211 } 177 } 212 178 213 void G4VSceneHandler::BeginModeling () { 179 void G4VSceneHandler::BeginModeling () { 214 } 180 } 215 181 216 void G4VSceneHandler::EndModeling () 182 void G4VSceneHandler::EndModeling () 217 { 183 { 218 fpModel = 0; 184 fpModel = 0; 219 } 185 } 220 186 221 void G4VSceneHandler::ClearStore () {} << 187 void G4VSceneHandler::ClearStore () { 222 << 188 // if (fpViewer) fpViewer -> NeedKernelVisit (true); 223 void G4VSceneHandler::ClearTransientStore () { << 189 // ?? Viewer is supposed to be smart enough to know when to visit 224 << 190 // kernel, but a problem in OpenGL Stored seems to require a forced 225 template <class T> void G4VSceneHandler::AddSo << 191 // kernel visit triggered by the above code. John Allison Aug 2001 226 (const T& solid) << 192 // Feb 2005 - commented out. Let's fix OpenGL if necessary. 227 { << 228 // Get and check applicable vis attributes. << 229 fpVisAttribs = fpViewer->GetApplicableVisAtt << 230 RequestPrimitives (solid); << 231 } 193 } 232 194 233 template <class T> void G4VSceneHandler::AddSo << 195 void G4VSceneHandler::ClearTransientStore () { 234 (const T& solid) << 235 { << 236 // Get and check applicable vis attributes. << 237 fpVisAttribs = fpViewer->GetApplicableVisAtt << 238 // Draw with auxiliary edges unless otherwis << 239 if (!fpVisAttribs->IsForceAuxEdgeVisible()) << 240 // Create a vis atts object for the modifi << 241 // It is static so that we may return a re << 242 static G4VisAttributes visAttsWithAuxEdges << 243 // Initialise it with the current vis atts << 244 visAttsWithAuxEdges = *fpVisAttribs; << 245 // Force auxiliary edges visible. << 246 visAttsWithAuxEdges.SetForceAuxEdgeVisible << 247 fpVisAttribs = &visAttsWithAuxEdges; << 248 } << 249 RequestPrimitives (solid); << 250 } 196 } 251 197 252 void G4VSceneHandler::AddSolid (const G4Box& b 198 void G4VSceneHandler::AddSolid (const G4Box& box) { 253 AddSolidT (box); << 199 RequestPrimitives (box); 254 // If your graphics system is sophisticated << 200 // If your graphics system is sophisticated enough to handle a 255 // particular solid shape as a primitive, i << 201 // particular solid shape as a primitive, in your derived class write a 256 // function to override this. << 202 // function to override this. (Note: some compilers warn that your 257 // Your function might look like this... << 203 // function "hides" this one. That's OK.) 258 // void G4MySceneHandler::AddSolid (const G4 << 204 // Your function might look like this... 259 // Get and check applicable vis attributes. << 205 // void G4MyScene::AddSolid (const G4Box& box) { 260 // fpVisAttribs = fpViewer->GetApplicableV << 206 // Get parameters of appropriate object, e.g.: 261 // Do not draw if not visible. << 207 // G4double dx = box.GetXHalfLength (); 262 // if (fpVisAttribs->IsVisible()) { << 208 // G4double dy = box.GetYHalfLength (); 263 // Get parameters of appropriate object, e << 209 // G4double dz = box.GetZHalfLength (); 264 // G4double dx = box.GetXHalfLength (); << 210 // and Draw or Store in your display List. 265 // G4double dy = box.GetYHalfLength (); << 266 // G4double dz = box.GetZHalfLength (); << 267 // ... << 268 // and Draw or Store in your display Lis << 269 } << 270 << 271 void G4VSceneHandler::AddSolid (const G4Cons& << 272 AddSolidT (cons); << 273 } 211 } 274 212 275 void G4VSceneHandler::AddSolid (const G4Orb& o << 213 void G4VSceneHandler::AddSolid (const G4Tubs& tubs) { 276 AddSolidWithAuxiliaryEdges (orb); << 214 RequestPrimitives (tubs); 277 } << 278 << 279 void G4VSceneHandler::AddSolid (const G4Para& << 280 AddSolidT (para); << 281 } 215 } 282 216 283 void G4VSceneHandler::AddSolid (const G4Sphere << 217 void G4VSceneHandler::AddSolid (const G4Cons& cons) { 284 AddSolidWithAuxiliaryEdges (sphere); << 218 RequestPrimitives (cons); 285 } 219 } 286 220 287 void G4VSceneHandler::AddSolid (const G4Torus& << 221 void G4VSceneHandler::AddSolid (const G4Trd& trd) { 288 AddSolidWithAuxiliaryEdges (torus); << 222 RequestPrimitives (trd); 289 } 223 } 290 224 291 void G4VSceneHandler::AddSolid (const G4Trap& 225 void G4VSceneHandler::AddSolid (const G4Trap& trap) { 292 AddSolidT (trap); << 226 RequestPrimitives (trap); 293 } 227 } 294 228 295 void G4VSceneHandler::AddSolid (const G4Trd& t << 229 void G4VSceneHandler::AddSolid (const G4Sphere& sphere) { 296 AddSolidT (trd); << 230 RequestPrimitives (sphere ); 297 } 231 } 298 232 299 void G4VSceneHandler::AddSolid (const G4Tubs& << 233 void G4VSceneHandler::AddSolid (const G4Para& para) { 300 AddSolidT (tubs); << 234 RequestPrimitives (para); 301 } 235 } 302 236 303 void G4VSceneHandler::AddSolid (const G4Ellips << 237 void G4VSceneHandler::AddSolid (const G4Torus& torus) { 304 AddSolidWithAuxiliaryEdges (ellipsoid); << 238 RequestPrimitives (torus); 305 } 239 } 306 240 307 void G4VSceneHandler::AddSolid (const G4Polyco 241 void G4VSceneHandler::AddSolid (const G4Polycone& polycone) { 308 AddSolidT (polycone); << 242 RequestPrimitives (polycone); 309 } 243 } 310 244 311 void G4VSceneHandler::AddSolid (const G4Polyhe 245 void G4VSceneHandler::AddSolid (const G4Polyhedra& polyhedra) { 312 AddSolidT (polyhedra); << 246 RequestPrimitives (polyhedra); 313 } << 314 << 315 void G4VSceneHandler::AddSolid (const G4Tessel << 316 AddSolidT (tess); << 317 } 247 } 318 248 319 void G4VSceneHandler::AddSolid (const G4VSolid 249 void G4VSceneHandler::AddSolid (const G4VSolid& solid) { 320 AddSolidT (solid); << 250 RequestPrimitives (solid); 321 } 251 } 322 252 323 void G4VSceneHandler::AddCompound (const G4VTr 253 void G4VSceneHandler::AddCompound (const G4VTrajectory& traj) { 324 G4TrajectoriesModel* trajectoriesModel = << 254 G4TrajectoriesModel* pTrModel = 325 dynamic_cast<G4TrajectoriesModel*>(fpModel 255 dynamic_cast<G4TrajectoriesModel*>(fpModel); 326 if (trajectoriesModel) << 256 if (!pTrModel) G4Exception 327 traj.DrawTrajectory(); << 257 ("G4VSceneHandler::AddCompound(const G4VTrajectory&): Not a G4TrajectoriesModel."); 328 else { << 258 traj.DrawTrajectory(pTrModel->GetDrawingMode()); 329 G4Exception << 330 ("G4VSceneHandler::AddCompound(const G4VTr << 331 "visman0105", FatalException, "Not a G4Tr << 332 } << 333 } 259 } 334 260 335 void G4VSceneHandler::AddCompound (const G4VHi 261 void G4VSceneHandler::AddCompound (const G4VHit& hit) { 336 // Cast away const because Draw is non-const << 262 ((G4VHit&)hit).Draw(); // Cast to non-const because Draw is non-const!!!! 337 const_cast<G4VHit&>(hit).Draw(); << 338 } 263 } 339 264 340 void G4VSceneHandler::AddCompound (const G4VDi << 265 void G4VSceneHandler::AddViewerToList (G4VViewer* pViewer) { 341 // Cast away const because Draw is non-const << 266 fViewerList.push_back (pViewer); 342 const_cast<G4VDigi&>(digi).Draw(); << 343 } << 344 << 345 void G4VSceneHandler::AddCompound (const G4THi << 346 using MeshScoreMap = G4VScoringMesh::MeshSco << 347 //G4cout << "AddCompound: hits: " << &hits < << 348 G4bool scoreMapHits = false; << 349 G4ScoringManager* scoringManager = G4Scoring << 350 if (scoringManager) { << 351 std::size_t nMeshes = scoringManager->GetN << 352 for (std::size_t iMesh = 0; iMesh < nMeshe << 353 G4VScoringMesh* mesh = scoringManager->G << 354 if (mesh && mesh->IsActive()) { << 355 MeshScoreMap scoreMap = mesh->GetScoreMap(); << 356 const G4String& mapNam = const_cast<G4 << 357 for(MeshScoreMap::const_iterator i = scoreMa << 358 i != scoreMap.cend(); ++i) { << 359 const G4String& scoreMapName = i->first; << 360 if (scoreMapName == mapNam) { << 361 G4DefaultLinearColorMap colorMap("G4VSce << 362 scoreMapHits = true; << 363 mesh->DrawMesh(scoreMapName, &colorMap); << 364 } << 365 } << 366 } << 367 } << 368 } << 369 if (scoreMapHits) { << 370 static G4bool first = true; << 371 if (first) { << 372 first = false; << 373 G4cout << << 374 "Scoring map drawn with default parameters." << 375 "\n To get gMocren file for gMocren browser << 376 "\n /vis/open gMocrenFile" << 377 "\n /vis/viewer/flush" << 378 "\n Many other options available with /scor << 379 "\n You might want to \"/vis/viewer/set/aut << 380 << G4endl; << 381 } << 382 } else { // Not score map hits. Just call << 383 // Cast away const because DrawAllHits is << 384 const_cast<G4THitsMap<G4double>&>(hits).Dr << 385 } << 386 } 267 } 387 268 388 void G4VSceneHandler::AddCompound (const G4THi << 269 void G4VSceneHandler::EstablishSpecials (G4PhysicalVolumeModel& pvModel) { 389 using MeshScoreMap = G4VScoringMesh::MeshSco << 270 pvModel.DefinePointersToWorkingSpace (&fCurrentDepth, 390 //G4cout << "AddCompound: hits: " << &hits < << 271 &fpCurrentPV, 391 G4bool scoreMapHits = false; << 272 &fpCurrentLV, 392 G4ScoringManager* scoringManager = G4Scoring << 273 &fpCurrentMaterial); 393 if (scoringManager) { << 274 } 394 std::size_t nMeshes = scoringManager->GetN << 275 395 for (std::size_t iMesh = 0; iMesh < nMeshe << 276 void G4VSceneHandler::AddPrimitive (const G4Scale& scale) { 396 G4VScoringMesh* mesh = scoringManager->G << 277 397 if (mesh && mesh->IsActive()) { << 278 const G4double margin(0.01); 398 MeshScoreMap scoreMap = mesh->GetScoreMap(); << 279 // Fractional margin - ensures scale is comfortably inside viewing 399 for(MeshScoreMap::const_iterator i = scoreMa << 280 // volume. 400 i != scoreMap.cend(); ++i) { << 281 const G4double oneMinusMargin (1. - margin); 401 const G4String& scoreMapName = i->first; << 282 402 const G4THitsMap<G4StatDouble>* foundHits << 283 const G4VisExtent& sceneExtent = fpScene->GetExtent(); 403 if (foundHits == &hits) { << 284 404 G4DefaultLinearColorMap colorMap("G4VSce << 285 // Useful constants... 405 scoreMapHits = true; << 286 const G4double length(scale.GetLength()); 406 mesh->DrawMesh(scoreMapName, &colorMap); << 287 const G4double halfLength(length / 2.); 407 } << 288 const G4double tickLength(length / 20.); 408 } << 289 const G4double piBy2(halfpi); 409 } << 290 410 } << 291 // Get size of scene... 411 } << 292 const G4double xmin = sceneExtent.GetXmin(); 412 if (scoreMapHits) { << 293 const G4double xmax = sceneExtent.GetXmax(); 413 static G4bool first = true; << 294 const G4double ymin = sceneExtent.GetYmin(); 414 if (first) { << 295 const G4double ymax = sceneExtent.GetYmax(); 415 first = false; << 296 const G4double zmin = sceneExtent.GetZmin(); 416 G4cout << << 297 const G4double zmax = sceneExtent.GetZmax(); 417 "Scoring map drawn with default parameters." << 298 418 "\n To get gMocren file for gMocren browser << 299 // Create (empty) polylines having the same vis attributes... 419 "\n /vis/open gMocrenFile" << 300 G4Polyline scaleLine, tick11, tick12, tick21, tick22; 420 "\n /vis/viewer/flush" << 301 G4VisAttributes visAtts(*scale.GetVisAttributes()); // Long enough life. 421 "\n Many other options available with /scor << 302 scaleLine.SetVisAttributes(&visAtts); 422 "\n You might want to \"/vis/viewer/set/aut << 303 tick11.SetVisAttributes(&visAtts); 423 << G4endl; << 304 tick12.SetVisAttributes(&visAtts); >> 305 tick21.SetVisAttributes(&visAtts); >> 306 tick22.SetVisAttributes(&visAtts); >> 307 >> 308 // Add points to the polylines to represent an scale parallel to the >> 309 // x-axis centred on the origin... >> 310 G4Point3D r1(G4Point3D(-halfLength, 0., 0.)); >> 311 G4Point3D r2(G4Point3D( halfLength, 0., 0.)); >> 312 scaleLine.push_back(r1); >> 313 scaleLine.push_back(r2); >> 314 G4Point3D ticky(0., tickLength, 0.); >> 315 G4Point3D tickz(0., 0., tickLength); >> 316 tick11.push_back(r1 + ticky); >> 317 tick11.push_back(r1 - ticky); >> 318 tick12.push_back(r1 + tickz); >> 319 tick12.push_back(r1 - tickz); >> 320 tick21.push_back(r2 + ticky); >> 321 tick21.push_back(r2 - ticky); >> 322 tick22.push_back(r2 + tickz); >> 323 tick22.push_back(r2 - tickz); >> 324 G4Point3D textPosition(0., tickLength, 0.); >> 325 >> 326 // Transform appropriately... >> 327 >> 328 G4Transform3D transformation; >> 329 if (scale.GetAutoPlacing()) { >> 330 G4Transform3D rotation; >> 331 switch (scale.GetDirection()) { >> 332 case G4Scale::x: >> 333 break; >> 334 case G4Scale::y: >> 335 rotation = G4RotateZ3D(piBy2); >> 336 break; >> 337 case G4Scale::z: >> 338 rotation = G4RotateY3D(piBy2); >> 339 break; >> 340 } >> 341 G4double sxmid(scale.GetXmid()); >> 342 G4double symid(scale.GetYmid()); >> 343 G4double szmid(scale.GetZmid()); >> 344 sxmid = xmin + oneMinusMargin * (xmax - xmin); >> 345 symid = ymin + margin * (ymax - ymin); >> 346 szmid = zmin + oneMinusMargin * (zmax - zmin); >> 347 switch (scale.GetDirection()) { >> 348 case G4Scale::x: >> 349 sxmid -= halfLength; >> 350 break; >> 351 case G4Scale::y: >> 352 symid += halfLength; >> 353 break; >> 354 case G4Scale::z: >> 355 szmid -= halfLength; >> 356 break; 424 } 357 } 425 } else { // Not score map hits. Just call << 358 G4Translate3D translation(sxmid, symid, szmid); 426 // Cast away const because DrawAllHits is << 359 transformation = translation * rotation; 427 const_cast<G4THitsMap<G4StatDouble>&>(hits << 360 } else { >> 361 if (fpModel) transformation = fpModel->GetTransformation(); 428 } 362 } 429 } << 430 << 431 void G4VSceneHandler::AddCompound(const G4Mesh << 432 { << 433 G4warn << << 434 "There has been an attempt to draw a mesh wi << 435 << fpViewer->GetViewParameters().GetSpecialM << 436 << "\":\n" << mesh << 437 << "but it is not of a recognised type or is << 438 "\nby the current graphics driver. Instead w << 439 "\ncontainer \"" << mesh.GetContainerVolume( << 440 << G4endl; << 441 const auto& pv = mesh.GetContainerVolume(); << 442 const auto& lv = pv->GetLogicalVolume(); << 443 const auto& solid = lv->GetSolid(); << 444 const auto& transform = mesh.GetTransform(); << 445 // Make sure container is visible << 446 G4VisAttributes tmpVisAtts; // Visible, whi << 447 const auto& saveVisAtts = lv->GetVisAttribut << 448 if (saveVisAtts) { << 449 tmpVisAtts = *saveVisAtts; << 450 tmpVisAtts.SetVisibility(true); << 451 auto colour = saveVisAtts->GetColour(); << 452 colour.SetAlpha(1.); << 453 tmpVisAtts.SetColour(colour); << 454 } << 455 // Draw container << 456 PreAddSolid(transform,tmpVisAtts); << 457 solid->DescribeYourselfTo(*this); << 458 PostAddSolid(); << 459 // Restore vis attributes << 460 lv->SetVisAttributes(saveVisAtts); << 461 } << 462 363 463 void G4VSceneHandler::AddViewerToList (G4VView << 364 // Draw... 464 fViewerList.push_back (pViewer); << 365 // We would like to call BeginPrimitives(transformation) here but >> 366 // calling BeginPrimitives from within an AddPrimitive is not >> 367 // allowed! So we have to do our own transformation... >> 368 AddPrimitive(scaleLine.transform(transformation)); >> 369 AddPrimitive(tick11.transform(transformation)); >> 370 AddPrimitive(tick12.transform(transformation)); >> 371 AddPrimitive(tick21.transform(transformation)); >> 372 AddPrimitive(tick22.transform(transformation)); >> 373 G4Text text(scale.GetAnnotation(),textPosition.transform(transformation)); >> 374 text.SetScreenSize(12.); >> 375 AddPrimitive(text); 465 } 376 } 466 377 467 void G4VSceneHandler::AddPrimitive (const G4Po 378 void G4VSceneHandler::AddPrimitive (const G4Polymarker& polymarker) { 468 switch (polymarker.GetMarkerType()) { 379 switch (polymarker.GetMarkerType()) { 469 default: << 380 default: 470 case G4Polymarker::dots: << 381 case G4Polymarker::dots: 471 { 382 { 472 G4Circle dot (polymarker); << 383 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 473 dot.SetWorldSize (0.); << 384 G4Circle dot (polymarker); 474 dot.SetScreenSize (0.1); // Very small << 475 for (std::size_t iPoint = 0; iPoint < po << 476 dot.SetPosition (polymarker[iPoint]); 385 dot.SetPosition (polymarker[iPoint]); 477 AddPrimitive (dot); << 386 dot.SetWorldSize (0.); >> 387 dot.SetScreenSize (0.1); // Very small circle. >> 388 AddPrimitive (dot); 478 } 389 } 479 } 390 } 480 break; << 391 break; 481 case G4Polymarker::circles: << 392 case G4Polymarker::circles: 482 { 393 { 483 G4Circle circle (polymarker); // Defaul << 394 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 484 for (std::size_t iPoint = 0; iPoint < po << 395 G4Circle circle (polymarker); 485 circle.SetPosition (polymarker[iPoint] << 396 circle.SetPosition (polymarker[iPoint]); 486 AddPrimitive (circle); << 397 AddPrimitive (circle); 487 } 398 } 488 } 399 } 489 break; << 400 break; 490 case G4Polymarker::squares: << 401 case G4Polymarker::squares: 491 { 402 { 492 G4Square square (polymarker); // Defaul << 403 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 493 for (std::size_t iPoint = 0; iPoint < po << 404 G4Square Square (polymarker); 494 square.SetPosition (polymarker[iPoint] << 405 Square.SetPosition (polymarker[iPoint]); 495 AddPrimitive (square); << 406 AddPrimitive (Square); 496 } 407 } 497 } 408 } 498 break; << 409 break; 499 } 410 } 500 } 411 } 501 412 502 void G4VSceneHandler::RemoveViewerFromList (G4 413 void G4VSceneHandler::RemoveViewerFromList (G4VViewer* pViewer) { 503 fViewerList.remove(pViewer); // Does nothin << 414 fViewerList.remove(pViewer); 504 // And reset current viewer << 505 auto visManager = G4VisManager::GetInstance( << 506 visManager->SetCurrentViewer(nullptr); << 507 } << 508 << 509 << 510 void G4VSceneHandler::AddPrimitive (const G4Pl << 511 G4warn << "WARNING: Plotter not implemented << 512 G4warn << " Open a plotter-aware graphics s << 513 G4warn << " /vis/scene/removeModel Plotter" << 514 } 415 } 515 416 516 void G4VSceneHandler::SetScene (G4Scene* pScen 417 void G4VSceneHandler::SetScene (G4Scene* pScene) { 517 fpScene = pScene; 418 fpScene = pScene; 518 // Notify all viewers that a kernel visit is 419 // Notify all viewers that a kernel visit is required. 519 G4ViewerListIterator i; 420 G4ViewerListIterator i; 520 for (i = fViewerList.begin(); i != fViewerLi 421 for (i = fViewerList.begin(); i != fViewerList.end(); i++) { 521 (*i) -> SetNeedKernelVisit (true); 422 (*i) -> SetNeedKernelVisit (true); 522 } 423 } 523 } 424 } 524 425 525 void G4VSceneHandler::RequestPrimitives (const << 426 void G4VSceneHandler::RequestPrimitives (const G4VSolid& solid) { 526 { << 427 BeginPrimitives (*fpObjectTransformation); 527 // Sometimes solids that have no substance g << 428 G4NURBS* pNURBS = 0; 528 // be part of the geometry tree but have bee << 429 G4Polyhedron* pPolyhedron = 0; 529 // example by a Boolean subtraction in which << 430 switch (fpViewer -> GetViewParameters () . GetRepStyle ()) { 530 // is entirely inside the subtractor or an i << 431 case G4ViewParameters::nurbs: 531 // the original volume is entirely outside t << 432 pNURBS = solid.CreateNURBS (); 532 // The problem is that the Boolean Processor << 433 if (pNURBS) { 533 // polyhedron in these cases (IMHO it should << 434 pNURBS -> SetVisAttributes 534 // workaround is to return before the damage << 435 (fpViewer -> GetApplicableVisAttributes (fpVisAttribs)); 535 // Algorithm by Evgueni Tcherniaev << 436 AddPrimitive (*pNURBS); 536 auto pSolid = &solid; << 437 delete pNURBS; 537 auto pBooleanSolid = dynamic_cast<const G4Bo << 438 break; 538 if (pBooleanSolid) { << 439 } 539 G4ThreeVector bmin, bmax; << 440 else { 540 pBooleanSolid->BoundingLimits(bmin, bmax); << 441 G4VisManager::Verbosity verbosity = 541 G4bool isGood = false; << 442 G4VisManager::GetInstance()->GetVerbosity(); 542 if (dynamic_cast<const G4SubtractionSolid* << 443 if (verbosity >= G4VisManager::errors) { 543 auto ptrB = pBooleanSolid->GetConstituen << 444 G4cout << 544 for (G4int i=0; i<10; ++i) { << 445 "ERROR: G4VSceneHandler::RequestPrimitives" 545 G4double x = bmin.x() + (bmax.x() - bm << 446 "\n NURBS not available for " 546 G4double y = bmin.y() + (bmax.y() - bm << 447 << solid.GetName () << G4endl; 547 G4double z = bmin.z() + (bmax.z() - bm << 448 G4cout << "Trying polyhedron." << G4endl; 548 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 449 } 549 if (ptrB->Inside(G4ThreeVector(x,y,bma << 450 } 550 if (ptrB->Inside(G4ThreeVector(x,bmin. << 451 // Dropping through to polyhedron... 551 if (ptrB->Inside(G4ThreeVector(x,bmax. << 452 case G4ViewParameters::polyhedron: 552 if (ptrB->Inside(G4ThreeVector(bmin.x( << 453 default: 553 if (ptrB->Inside(G4ThreeVector(bmax.x( << 454 G4Polyhedron::SetNumberOfRotationSteps 554 } << 455 (fpViewer -> GetViewParameters () . GetNoOfSides ()); 555 } else if (dynamic_cast<const G4Intersecti << 456 pPolyhedron = solid.GetPolyhedron (); 556 auto ptrB = pBooleanSolid->GetConstituen << 457 G4Polyhedron::ResetNumberOfRotationSteps (); 557 for (G4int i=0; i<10; ++i) { << 458 if (pPolyhedron) { 558 G4double x = bmin.x() + (bmax.x() - bm << 459 pPolyhedron -> SetVisAttributes 559 G4double y = bmin.y() + (bmax.y() - bm << 460 (fpViewer -> GetApplicableVisAttributes (fpVisAttribs)); 560 G4double z = bmin.z() + (bmax.z() - bm << 461 AddPrimitive (*pPolyhedron); 561 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 462 } 562 if (ptrB->Inside(G4ThreeVector(x,y,bma << 463 else { 563 if (ptrB->Inside(G4ThreeVector(x,bmin. << 464 G4VisManager::Verbosity verbosity = 564 if (ptrB->Inside(G4ThreeVector(x,bmax. << 465 G4VisManager::GetInstance()->GetVerbosity(); 565 if (ptrB->Inside(G4ThreeVector(bmin.x( << 466 if (verbosity >= G4VisManager::errors) { 566 if (ptrB->Inside(G4ThreeVector(bmax.x( << 467 G4cout << 567 } << 468 "ERROR: G4VSceneHandler::RequestPrimitives" 568 } << 469 "\n Polyhedron not available for " << solid.GetName () << 569 if (!isGood) << 470 ".\n This means it cannot be visualized on most systems." 570 { << 471 "\n Contact the Visualization Coordinator." << G4endl; 571 for (G4int i=0; i<10000; ++i) { << 572 G4double x = bmin.x() + (bmax.x() - bm << 573 G4double y = bmin.y() + (bmax.y() - bm << 574 G4double z = bmin.z() + (bmax.z() - bm << 575 if (pBooleanSolid->Inside(G4ThreeVecto << 576 } 472 } 577 } 473 } 578 if (!isGood) return; << 474 break; 579 } << 580 << 581 const G4ViewParameters::DrawingStyle style = << 582 const G4ViewParameters& vp = fpViewer->GetVi << 583 << 584 switch (style) { << 585 default: << 586 case G4ViewParameters::wireframe: << 587 case G4ViewParameters::hlr: << 588 case G4ViewParameters::hsr: << 589 case G4ViewParameters::hlhsr: << 590 { << 591 // Use polyhedral representation << 592 G4Polyhedron::SetNumberOfRotationSteps ( << 593 G4Polyhedron* pPolyhedron = solid.GetPol << 594 G4Polyhedron::ResetNumberOfRotationSteps << 595 if (pPolyhedron) { << 596 pPolyhedron -> SetVisAttributes (fpVis << 597 BeginPrimitives (fObjectTransformation << 598 AddPrimitive (*pPolyhedron); << 599 EndPrimitives (); << 600 break; << 601 } else { // Print warnings and drop thr << 602 G4VisManager::Verbosity verbosity = G4 << 603 auto pPVModel = dynamic_cast<G4Physica << 604 if (pPVModel) { << 605 auto problematicVolume = pPVModel->G << 606 if (fProblematicVolumes.find(problem << 607 fProblematicVolumes[problematicVol << 608 if (verbosity >= G4VisManager::err << 609 G4warn << << 610 "ERROR: G4VSceneHandler::Request << 611 "\n Polyhedron not available fo << 612 G4warn << "\n Touchable path: " << 613 static G4bool explanation = fals << 614 if (!explanation) { << 615 explanation = true; << 616 G4warn << << 617 "\n This means it cannot be v << 618 "\n 1) The solid may not have << 619 "\n 2) For Boolean solids, th << 620 "\n the resultant polyhedr << 621 "\n Try RayTracer. It uses Ge << 622 } << 623 } << 624 G4warn << "\n Drawing solid with << 625 G4warn << G4endl; << 626 } << 627 } << 628 } << 629 } << 630 [[fallthrough]]; << 631 << 632 case G4ViewParameters::cloud: << 633 { << 634 // Form solid out of cloud of dots on su << 635 G4Polymarker dots; << 636 // Note: OpenGL has a fast implementatio << 637 // to build a polymarker rather than add << 638 // And anyway, in Qt, in the latter case << 639 // entry, something we would want to avo << 640 dots.SetVisAttributes(fpVisAttribs); << 641 dots.SetMarkerType(G4Polymarker::dots); << 642 dots.SetSize(G4VMarker::screen,1.); << 643 G4int numberOfCloudPoints = GetNumberOfC << 644 if (numberOfCloudPoints <= 0) numberOfCl << 645 for (G4int i = 0; i < numberOfCloudPoint << 646 G4ThreeVector p = solid.GetPointOnSurface(); << 647 dots.push_back(p); << 648 } << 649 BeginPrimitives (fObjectTransformation); << 650 AddPrimitive(dots); << 651 EndPrimitives (); << 652 break; << 653 } << 654 } 475 } >> 476 EndPrimitives (); 655 } 477 } 656 478 657 //namespace { << 479 void G4VSceneHandler::ProcessScene (G4VViewer&) { 658 // void DrawExtent(const G4VModel* pModel) << 659 // { << 660 // // Show extent boxes - debug only, OGLSX << 661 // if (pModel->GetExtent() != G4VisExtent:: << 662 // const auto& extent = pModel->GetExtent << 663 // const auto& centre = extent.GetExtentC << 664 // const auto& position = G4Translate3D(c << 665 // const auto& dx = (extent.GetXmax()-ext << 666 // const auto& dy = (extent.GetYmax()-ext << 667 // const auto& dz = (extent.GetZmax()-ext << 668 // auto visAtts = G4VisAttributes(); << 669 // visAtts.SetForceWireframe(); << 670 // G4Box extentBox("Extent",dx,dy,dz); << 671 // G4VisManager::GetInstance()->Draw(exte << 672 // } << 673 // } << 674 //} << 675 << 676 void G4VSceneHandler::ProcessScene() << 677 { << 678 // Assumes graphics database store has alrea << 679 // relevant for the particular scene handler << 680 << 681 if(!fpScene) << 682 return; << 683 480 684 if(fpScene->GetExtent() == G4VisExtent::GetN << 481 if (!fpScene) return; 685 { << 686 G4Exception("G4VSceneHandler::ProcessScene << 687 "The scene has no extent."); << 688 } << 689 << 690 G4VisManager* visManager = G4VisManager::Get << 691 << 692 if(!visManager->GetConcreteInstance()) << 693 return; << 694 << 695 G4VisManager::Verbosity verbosity = visManag << 696 482 697 fReadyForTransients = false; 483 fReadyForTransients = false; 698 484 699 // Reset fMarkForClearingTransientStore. (Le << 485 // Clear stored scene, if any, i.e., display lists, scene graphs. >> 486 ClearStore (); >> 487 >> 488 // Reset fMarkForClearingTransientStore. No need to clear transient >> 489 // store since it has just been cleared above. (Leaving 700 // fMarkForClearingTransientStore true cause 490 // fMarkForClearingTransientStore true causes problems with 701 // recomputing transients below.) Restore i 491 // recomputing transients below.) Restore it again at end... 702 G4bool tmpMarkForClearingTransientStore = fM 492 G4bool tmpMarkForClearingTransientStore = fMarkForClearingTransientStore; 703 fMarkForClearingTransientStore = fa << 493 fMarkForClearingTransientStore = false; >> 494 >> 495 G4VisManager* visManager = G4VisManager::GetInstance(); >> 496 G4VisManager::Verbosity verbosity = visManager->GetVerbosity(); 704 497 705 // Traverse geometry tree and send drawing p 498 // Traverse geometry tree and send drawing primitives to window(s). 706 499 707 const std::vector<G4Scene::Model>& runDurati << 500 const std::vector<G4VModel*>& runDurationModelList = 708 fpScene->GetRunDurationModelList(); << 501 fpScene -> GetRunDurationModelList (); 709 502 710 if(runDurationModelList.size()) { << 503 if (runDurationModelList.size ()) { 711 if(verbosity >= G4VisManager::confirmation << 504 if (verbosity >= G4VisManager::confirmations) { 712 G4cout << "Traversing scene data..." << 505 G4cout << "Traversing scene data..." << G4endl; 713 static G4int first = true; << 714 if (first) { << 715 first = false; << 716 G4cout << << 717 "(This could happen more than once - i << 718 "\nper rebuild, for opaque, transparen << 719 << G4endl; << 720 } << 721 } 506 } 722 507 723 // Reset visibility of all objects to fals << 508 BeginModeling (); 724 fpViewer->AccessSceneTree().ResetVisibilit << 725 << 726 BeginModeling(); << 727 509 728 // Create modeling parameters from view pa 510 // Create modeling parameters from view parameters... 729 G4ModelingParameters* pMP = CreateModeling << 511 G4ModelingParameters* pMP = CreateModelingParameters (); 730 << 731 for(std::size_t i = 0; i < runDurationMode << 732 if(runDurationModelList[i].fActive) { << 733 fpModel = runDurationModelList[i].fpMo << 734 fpModel->SetModelingParameters(pMP); << 735 << 736 // Describe to the current scene handl << 737 fpModel->DescribeYourselfTo(*this); << 738 << 739 // To see the extents of each model re << 740 // uncomment the next line and DrawExt << 741 // DrawExtent(fpModel); << 742 << 743 // Enter models in the scene tree. The << 744 // the model to the scene tree, i.e., << 745 fpViewer->InsertModelInSceneTree(fpMod << 746 auto pPVModel = dynamic_cast<G4Physica << 747 if (pPVModel) { << 748 G4VViewer::SceneTreeScene sceneTreeS << 749 fpModel->DescribeYourselfTo(sceneTre << 750 } << 751 512 752 // Reset modeling parameters pointer << 513 for (size_t i = 0; i < runDurationModelList.size (); i++) { 753 fpModel->SetModelingParameters(0); << 514 G4VModel* pModel = runDurationModelList[i]; >> 515 // Note: this is not the place to take action on >> 516 // pModel->GetTransformation(). The model must take care of >> 517 // this in pModel->DescribeYourselfTo(*this). See, for example, >> 518 // G4PhysicalVolumeModel and /vis/scene/add/logo. >> 519 pModel -> SetModelingParameters (pMP); >> 520 SetModel (pModel); // Store for use by derived class. >> 521 pModel -> DescribeYourselfTo (*this); >> 522 pModel -> SetModelingParameters (0); >> 523 } >> 524 >> 525 // Repeat if required... >> 526 if (fSecondPassRequested) { >> 527 fSecondPass = true; >> 528 for (size_t i = 0; i < runDurationModelList.size (); i++) { >> 529 G4VModel* pModel = runDurationModelList[i]; >> 530 pModel -> SetModelingParameters (pMP); >> 531 SetModel (pModel); // Store for use by derived class. >> 532 pModel -> DescribeYourselfTo (*this); >> 533 pModel -> SetModelingParameters (0); 754 } 534 } >> 535 fSecondPass = false; >> 536 fSecondPassRequested = false; 755 } 537 } 756 538 757 fpModel = 0; << 758 delete pMP; 539 delete pMP; >> 540 EndModeling (); 759 541 760 EndModeling(); << 542 } else { 761 } << 543 G4VisManager::Verbosity verbosity = 762 << 544 G4VisManager::GetInstance()->GetVerbosity(); 763 // Some printing << 545 if (verbosity >= G4VisManager::warnings) { 764 if(verbosity >= G4VisManager::confirmations) << 546 G4cout << 765 for (const auto& model: runDurationModelLi << 547 "WARNING: G4VSceneHandler::ProcessScene: No run-duration models in" 766 if (model.fActive) { << 548 "\n scene. \"World\" will be added if you attempt to draw a view" 767 auto pvModel = dynamic_cast<G4Physical << 549 << G4endl; 768 if (pvModel) { << 769 G4int nTouchables = 0; << 770 G4cout << "Numbers of touchables by << 771 << pvModel->GetGlobalDescription() < << 772 for (const auto& dn : pvModel->GetNu << 773 G4cout << "\n Depth " << dn.first << 774 nTouchables += dn.second; << 775 } << 776 G4cout << "\n Total number of touch << 777 } << 778 } << 779 } << 780 << 781 if (fProblematicVolumes.size() > 0) { << 782 G4cout << "Problematic volumes:"; << 783 for (const auto& prob: fProblematicVolum << 784 G4cout << "\n " << prob.first->GetNam << 785 } << 786 G4cout << G4endl; << 787 } 550 } 788 } 551 } 789 552 >> 553 fpViewer->FinishView(); // Flush streams and/or swap buffers. >> 554 790 fReadyForTransients = true; 555 fReadyForTransients = true; 791 556 792 // Refresh event from end-of-event model lis << 557 // Now (re-)do transients (trajectories, hits, user drawing, etc.)... 793 // Allow only in Idle or GeomClosed state... << 558 if (fpScene->GetRecomputeTransients()) { // ...if requested... 794 G4StateManager* stateManager = G4StateManage << 795 G4ApplicationState state = stateManager- << 796 if(state == G4State_Idle || state == G4State << 797 { << 798 visManager->SetEventRefreshing(true); << 799 559 800 if(visManager->GetRequestedEvent()) << 560 // Allowed only in idle state... 801 { << 561 G4StateManager* stateManager = G4StateManager::GetStateManager(); 802 DrawEvent(visManager->GetRequestedEvent( << 562 G4ApplicationState currentState = stateManager->GetCurrentState(); 803 } << 563 if(currentState != G4State_Idle) { 804 else << 564 if (verbosity >= G4VisManager::warnings) { 805 { << 565 G4cout << 806 G4RunManager* runManager = G4RunManagerF << 566 "Cannot re-compute transients during existing run." 807 if(runManager) << 567 "\n Trajectories, etc., will be lost." 808 { << 568 << G4endl; 809 const G4Run* run = runManager->GetCurr << 569 } 810 // Draw a null event in order to pick << 570 } else { 811 if (run == nullptr) DrawEvent(0); << 571 812 const std::vector<const G4Event*>* eve << 572 // Uses run manager via UImanager->ApplyCommand("/run/beamOn") so 813 run ? run->GetEventVector() : 0; << 573 // only makes sense if a run manager exists. More than that - the 814 std::size_t nKeptEvents = 0; << 574 // random number status strings are created by G4RunManager, so they 815 if(events) << 575 // are null if a G4RunManager does not exist... 816 nKeptEvents = events->size(); << 576 G4RunManager* runManager = G4RunManager::GetRunManager(); 817 if(nKeptEvents) << 577 if (runManager) { 818 { << 578 if (visManager->GetEventCount()) { // Must have had some prior event(s)... 819 if(fpScene->GetRefreshAtEndOfEvent() << 579 if (fpScene->GetRefreshAtEndOfEvent()) { 820 { << 580 // Check if transients have been drawn. Note: Use the flag in 821 if(verbosity >= G4VisManager::conf << 581 // the vis manager, which is set *after* a pass triggered by 822 { << 582 // ClearTransientStoreIfMarked. Avoids early processing. 823 G4cout << "Refreshing event..." << 583 if (visManager->GetTransientsDrawnThisEvent()) { 824 } << 584 // Change "warnings" to "confirmations" if this settles!!!!!!!!!! 825 const G4Event* event = 0; << 585 if (verbosity >= G4VisManager::warnings) { 826 if(events && events->size()) << 586 G4cout << 827 event = events->back(); << 587 "Recomputing transients generated by previous event..." 828 if(event) << 588 "\n \"/vis/scene/transientsAction none\" to suppress." 829 DrawEvent(event); << 589 << G4endl; 830 } << 590 } 831 else << 591 std::istringstream 832 { // Accumulating events. << 592 iss(visManager->GetBeginOfLastEventRandomStatus()); 833 << 593 CLHEP::HepRandom::restoreFullState(iss); 834 if(verbosity >= G4VisManager::conf << 594 visManager->SetReprocessing(true); 835 { << 595 visManager->SetReprocessingLastEvent(true); 836 G4cout << "Refreshing events in << 596 G4int runID = visManager->GetLastRunID(); 837 } << 597 runManager->SetRunIDCounter(runID); 838 for(const auto& event : *events) << 598 runManager->BeamOn(1); 839 { << 599 } 840 if(event) << 600 } else { 841 DrawEvent(event); << 601 if (!fpScene->GetRefreshAtEndOfRun()) { 842 } << 602 if (verbosity >= G4VisManager::warnings) { 843 << 603 G4cout << 844 if(!fpScene->GetRefreshAtEndOfRun( << 604 "WARNING: Cannot refresh trajectories, etc., accumulated over more" 845 { << 605 "\n than one runs. Refreshing just the last run..." 846 if(verbosity >= G4VisManager::wa << 606 << G4endl; 847 { << 607 } 848 G4warn << "WARNING: Cannot ref << 608 } 849 "\n than one runs. << 609 // Check if transients have been drawn. Note: Use the flag in 850 << G4endl; << 610 // the vis manager, which is set *after* a pass triggered by 851 } << 611 // ClearTransientStoreIfMarked. Avoids early processing. 852 } << 612 if (visManager->GetTransientsDrawnThisRun()) { 853 } << 613 // Change "warnings" to "confirmations" if this settles!!!!!!!!!! 854 } << 614 if (verbosity >= G4VisManager::warnings) { >> 615 G4cout << >> 616 "Recomputing transients generated by previous run..." >> 617 "\n \"/vis/scene/transientsAction none\" to suppress." >> 618 << G4endl; >> 619 } >> 620 std::istringstream iss(visManager->GetBeginOfLastRunRandomStatus()); >> 621 CLHEP::HepRandom::restoreFullState(iss); >> 622 G4int nEvents = visManager->GetEventCount(); >> 623 visManager->SetReprocessing(true); >> 624 G4int runID = visManager->GetLastRunID(); >> 625 runManager->SetRunIDCounter(runID); >> 626 runManager->BeamOn(nEvents); >> 627 } 855 } 628 } 856 } 629 } 857 visManager->SetEventRefreshing(false); << 858 } 630 } 859 << 860 // Refresh end-of-run model list. << 861 // Allow only in Idle or GeomClosed state... << 862 if(state == G4State_Idle || state == G4State << 863 { << 864 DrawEndOfRunModels(); << 865 } 631 } 866 << 867 fMarkForClearingTransientStore = tmpMarkForC << 868 } << 869 << 870 void G4VSceneHandler::DrawEvent(const G4Event* << 871 { << 872 if(!fpViewer->ReadyToDraw()) return; << 873 const std::vector<G4Scene::Model>& EOEModelL << 874 fpScene -> GetEndOfEventModelList (); << 875 std::size_t nModels = EOEModelList.size(); << 876 if (nModels) { << 877 G4ModelingParameters* pMP = CreateModeling << 878 pMP->SetEvent(event); << 879 for (std::size_t i = 0; i < nModels; ++i) << 880 if (EOEModelList[i].fActive) { << 881 fpModel = EOEModelList[i].fpModel; << 882 fpModel -> SetModelingParameters(pMP); << 883 << 884 // Describe to the current scene handl << 885 fpModel -> DescribeYourselfTo (*this); << 886 << 887 // Enter models in the scene tree << 888 fpViewer->InsertModelInSceneTree(fpMod << 889 << 890 // Reset modeling parameters pointer << 891 fpModel -> SetModelingParameters(0); << 892 } << 893 } << 894 fpModel = 0; << 895 delete pMP; << 896 } 632 } 897 } << 898 633 899 void G4VSceneHandler::DrawEndOfRunModels() << 634 fMarkForClearingTransientStore = tmpMarkForClearingTransientStore; 900 { << 901 if(!fpViewer->ReadyToDraw()) return; << 902 const std::vector<G4Scene::Model>& EORModelL << 903 fpScene -> GetEndOfRunModelList (); << 904 std::size_t nModels = EORModelList.size(); << 905 if (nModels) { << 906 G4ModelingParameters* pMP = CreateModeling << 907 pMP->SetEvent(0); << 908 for (std::size_t i = 0; i < nModels; ++i) << 909 if (EORModelList[i].fActive) { << 910 fpModel = EORModelList[i].fpModel; << 911 fpModel -> SetModelingParameters(pMP); << 912 << 913 // Describe to the current scene handl << 914 fpModel -> DescribeYourselfTo (*this); << 915 << 916 // Enter models in the scene tree << 917 fpViewer->InsertModelInSceneTree(fpMod << 918 << 919 // Reset modeling parameters pointer << 920 fpModel -> SetModelingParameters(0); << 921 } << 922 } << 923 fpModel = 0; << 924 delete pMP; << 925 } << 926 } 635 } 927 636 928 G4ModelingParameters* G4VSceneHandler::CreateM << 637 G4ModelingParameters* G4VSceneHandler::CreateModelingParameters () { 929 { << 930 // Create modeling parameters from View Para 638 // Create modeling parameters from View Parameters... 931 if (!fpViewer) return NULL; << 932 << 933 const G4ViewParameters& vp = fpViewer -> Get 639 const G4ViewParameters& vp = fpViewer -> GetViewParameters (); 934 640 935 // Convert drawing styles... 641 // Convert drawing styles... 936 G4ModelingParameters::DrawingStyle modelDraw 642 G4ModelingParameters::DrawingStyle modelDrawingStyle = 937 G4ModelingParameters::wf; << 643 G4ModelingParameters::wf; 938 switch (vp.GetDrawingStyle ()) { 644 switch (vp.GetDrawingStyle ()) { >> 645 default: >> 646 case G4ViewParameters::wireframe: >> 647 modelDrawingStyle = G4ModelingParameters::wf; >> 648 break; >> 649 case G4ViewParameters::hlr: >> 650 modelDrawingStyle = G4ModelingParameters::hlr; >> 651 break; >> 652 case G4ViewParameters::hsr: >> 653 modelDrawingStyle = G4ModelingParameters::hsr; >> 654 break; >> 655 case G4ViewParameters::hlhsr: >> 656 modelDrawingStyle = G4ModelingParameters::hlhsr; >> 657 break; >> 658 } >> 659 >> 660 // Convert rep styles... >> 661 G4ModelingParameters::RepStyle modelRepStyle = >> 662 G4ModelingParameters::wireframe; >> 663 if (vp.GetDrawingStyle () != G4ViewParameters::wireframe) { >> 664 switch (vp.GetRepStyle ()) { 939 default: 665 default: 940 case G4ViewParameters::wireframe: << 666 case G4ViewParameters::polyhedron: 941 modelDrawingStyle = G4ModelingParameters << 667 modelRepStyle = G4ModelingParameters::polyhedron; 942 break; << 943 case G4ViewParameters::hlr: << 944 modelDrawingStyle = G4ModelingParameters << 945 break; << 946 case G4ViewParameters::hsr: << 947 modelDrawingStyle = G4ModelingParameters << 948 break; 668 break; 949 case G4ViewParameters::hlhsr: << 669 case G4ViewParameters::nurbs: 950 modelDrawingStyle = G4ModelingParameters << 670 modelRepStyle = G4ModelingParameters::nurbs; 951 break; << 952 case G4ViewParameters::cloud: << 953 modelDrawingStyle = G4ModelingParameters << 954 break; 671 break; >> 672 } 955 } 673 } 956 674 957 // Decide if covered daughters are really to 675 // Decide if covered daughters are really to be culled... 958 G4bool reallyCullCovered = 676 G4bool reallyCullCovered = 959 vp.IsCullingCovered() // Culling daughte 677 vp.IsCullingCovered() // Culling daughters depends also on... 960 && !vp.IsSection () // Sections (DCUT) 678 && !vp.IsSection () // Sections (DCUT) not requested. 961 && !vp.IsCutaway () // Cutaways not re 679 && !vp.IsCutaway () // Cutaways not requested. 962 ; 680 ; 963 681 964 G4ModelingParameters* pModelingParams = new 682 G4ModelingParameters* pModelingParams = new G4ModelingParameters 965 (vp.GetDefaultVisAttributes (), 683 (vp.GetDefaultVisAttributes (), 966 modelDrawingStyle, 684 modelDrawingStyle, >> 685 modelRepStyle, 967 vp.IsCulling (), 686 vp.IsCulling (), 968 vp.IsCullingInvisible (), 687 vp.IsCullingInvisible (), 969 vp.IsDensityCulling (), 688 vp.IsDensityCulling (), 970 vp.GetVisibleDensity (), 689 vp.GetVisibleDensity (), 971 reallyCullCovered, 690 reallyCullCovered, 972 vp.GetNoOfSides () << 691 vp.GetNoOfSides (), >> 692 vp.IsViewGeom (), >> 693 vp.IsViewHits (), >> 694 vp.IsViewDigis () 973 ); 695 ); 974 696 975 pModelingParams->SetNumberOfCloudPoints(vp.G << 976 pModelingParams->SetWarning << 977 (G4VisManager::GetVerbosity() >= G4VisMana << 978 << 979 pModelingParams->SetCBDAlgorithmNumber(vp.Ge << 980 pModelingParams->SetCBDParameters(vp.GetCBDP << 981 << 982 pModelingParams->SetExplodeFactor(vp.GetExpl << 983 pModelingParams->SetExplodeCentre(vp.GetExpl << 984 << 985 pModelingParams->SetSectionSolid(CreateSecti << 986 << 987 if (vp.GetCutawayMode() == G4ViewParameters: << 988 pModelingParams->SetCutawayMode(G4Modeling << 989 } else if (vp.GetCutawayMode() == G4ViewPara << 990 pModelingParams->SetCutawayMode(G4Modeling << 991 } << 992 << 993 pModelingParams->SetCutawaySolid(CreateCutaw << 994 // The polyhedron objects are deleted in the << 995 << 996 pModelingParams->SetVisAttributesModifiers(v << 997 << 998 pModelingParams->SetSpecialMeshRendering(vp. << 999 pModelingParams->SetSpecialMeshVolumes(vp.Ge << 1000 << 1001 return pModelingParams; 697 return pModelingParams; 1002 } 698 } 1003 699 1004 G4DisplacedSolid* G4VSceneHandler::CreateSect << 1005 { << 1006 G4DisplacedSolid* sectioner = 0; << 1007 << 1008 const G4ViewParameters& vp = fpViewer->GetV << 1009 if (vp.IsSection () ) { << 1010 << 1011 G4double radius = fpScene->GetExtent().Ge << 1012 G4double safe = radius + fpScene->GetExte << 1013 G4VSolid* sectionBox = << 1014 new G4Box("_sectioner", safe, safe, 1.e << 1015 << 1016 const G4Plane3D& sp = vp.GetSectionPlane << 1017 G4ThreeVector normal = sp.normal(); << 1018 G4Transform3D requiredTransform = G4Trans << 1019 G4Rotate3D(G4ThreeVector(0,0,1), G4ThreeV << 1020 << 1021 sectioner = new G4DisplacedSolid << 1022 ("_displaced_sectioning_box", sectionBox, << 1023 } << 1024 << 1025 return sectioner; << 1026 } << 1027 << 1028 G4DisplacedSolid* G4VSceneHandler::CreateCuta << 1029 { << 1030 const auto& vp = fpViewer->GetViewParameter << 1031 const auto& nPlanes = vp.GetCutawayPlanes() << 1032 << 1033 if (nPlanes == 0) return nullptr; << 1034 << 1035 std::vector<G4DisplacedSolid*> cutaway_soli << 1036 << 1037 G4double radius = fpScene->GetExtent().GetE << 1038 G4double safe = radius + fpScene->GetExtent << 1039 auto cutawayBox = new G4Box("_cutaway_box", << 1040 << 1041 // if (vp.GetCutawayMode() == G4ViewParamet << 1042 // the intersection of displaced cutaway bo << 1043 // positive values a*x+b*y+c*z+d>0, so we h << 1044 // "back to front". The parameter "cutawayU << 1045 // that remain *after* cutaway", because we << 1046 // a "union" of what remains by superimposi << 1047 // and G4OpenGLImmediate/StoredViewer::Proc << 1048 // that is the intersection of inverted cut << 1049 << 1050 // Conversely, if (vp.GetCutawayMode() == G << 1051 // create an intersector that is the inters << 1052 << 1053 for (size_t plane_no = 0; plane_no < nPlane << 1054 { << 1055 const G4Plane3D& sp = vp.GetCutawayPlanes << 1056 G4Transform3D requiredTransform; << 1057 G4ThreeVector normal; << 1058 switch (vp.GetCutawayMode()) { << 1059 case G4ViewParameters::cutawayUnion: << 1060 normal = -sp.normal(); // Invert nor << 1061 requiredTransform = G4Translate3D(nor << 1062 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1063 break; << 1064 case G4ViewParameters::cutawayIntersect << 1065 normal = sp.normal(); << 1066 requiredTransform = G4Translate3D(nor << 1067 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1068 break; << 1069 } << 1070 cutaway_solids.push_back << 1071 (new G4DisplacedSolid("_displaced_cutaway << 1072 } << 1073 << 1074 if (nPlanes == 1) return (G4DisplacedSolid* << 1075 << 1076 G4IntersectionSolid *union2 = nullptr, *uni << 1077 G4IntersectionSolid *intersection2 = nullpt << 1078 switch (vp.GetCutawayMode()) { << 1079 << 1080 case G4ViewParameters::cutawayUnion: << 1081 // Here we make a subtractor of interse << 1082 union2 = new G4IntersectionSolid("_unio << 1083 if (nPlanes == 2) return (G4DisplacedSo << 1084 else if (nPlanes == 3) { << 1085 union3 = new G4IntersectionSolid("_un << 1086 return (G4DisplacedSolid*)union3; << 1087 } << 1088 break; << 1089 << 1090 case G4ViewParameters::cutawayIntersectio << 1091 // And here we make an intersector of i << 1092 intersection2 << 1093 = new G4IntersectionSolid("_intersectio << 1094 if (nPlanes == 2) return (G4DisplacedSo << 1095 else if (nPlanes == 3) { << 1096 intersection3 << 1097 = new G4IntersectionSolid("_intersect << 1098 return (G4DisplacedSolid*)intersectio << 1099 } << 1100 break; << 1101 } << 1102 << 1103 G4Exception("G4VSceneHandler::CreateCutaway << 1104 "Not programmed for more than 3 << 1105 return nullptr; << 1106 } << 1107 << 1108 void G4VSceneHandler::LoadAtts(const G4Visibl << 1109 { << 1110 // Load G4Atts from G4VisAttributes, if any << 1111 const G4VisAttributes* va = visible.GetVisA << 1112 if (va) { << 1113 const std::map<G4String,G4AttDef>* vaDefs << 1114 va->GetAttDefs(); << 1115 if (vaDefs) { << 1116 holder->AddAtts(visible.GetVisAttribute << 1117 } << 1118 } << 1119 << 1120 G4PhysicalVolumeModel* pPVModel = << 1121 dynamic_cast<G4PhysicalVolumeModel*>(fpMo << 1122 if (pPVModel) { << 1123 // Load G4Atts from G4PhysicalVolumeModel << 1124 const std::map<G4String,G4AttDef>* pvDefs << 1125 if (pvDefs) { << 1126 holder->AddAtts(pPVModel->CreateCurrent << 1127 } << 1128 } << 1129 << 1130 G4TrajectoriesModel* trajModel = dynamic_ca << 1131 if (trajModel) { << 1132 // Load G4Atts from trajectory model... << 1133 const std::map<G4String,G4AttDef>* trajMo << 1134 if (trajModelDefs) { << 1135 holder->AddAtts(trajModel->CreateCurren << 1136 } << 1137 // Load G4Atts from trajectory... << 1138 const G4VTrajectory* traj = trajModel->Ge << 1139 if (traj) { << 1140 const std::map<G4String,G4AttDef>* traj << 1141 if (trajDefs) { << 1142 holder->AddAtts(traj->CreateAttValues << 1143 } << 1144 G4int nPoints = traj->GetPointEntries() << 1145 for (G4int i = 0; i < nPoints; ++i) { << 1146 G4VTrajectoryPoint* trajPoint = traj- << 1147 if (trajPoint) { << 1148 const std::map<G4String,G4AttDef>* << 1149 if (pointDefs) { << 1150 holder->AddAtts(trajPoint->Create << 1151 } << 1152 } << 1153 } << 1154 } << 1155 } << 1156 << 1157 G4HitsModel* hitsModel = dynamic_cast<G4Hit << 1158 if (hitsModel) { << 1159 // Load G4Atts from hit... << 1160 const G4VHit* hit = hitsModel->GetCurrent << 1161 const std::map<G4String,G4AttDef>* hitsDe << 1162 if (hitsDefs) { << 1163 holder->AddAtts(hit->CreateAttValues(), << 1164 } << 1165 } << 1166 } << 1167 << 1168 const G4Colour& G4VSceneHandler::GetColour () << 1169 fpVisAttribs = fpViewer->GetApplicableVisAt << 1170 const G4Colour& colour = fpVisAttribs -> Ge << 1171 return colour; << 1172 } << 1173 << 1174 const G4Colour& G4VSceneHandler::GetColour (c 700 const G4Colour& G4VSceneHandler::GetColour (const G4Visible& visible) { 1175 auto pVA = visible.GetVisAttributes(); << 701 // Colour is determined by the applicable vis attributes. 1176 if (!pVA) pVA = fpViewer->GetViewParameters << 702 const G4Colour& colour = fpViewer -> 1177 return pVA->GetColour(); << 703 GetApplicableVisAttributes (visible.GetVisAttributes ()) -> GetColour (); >> 704 return colour; 1178 } 705 } 1179 706 1180 const G4Colour& G4VSceneHandler::GetTextColou 707 const G4Colour& G4VSceneHandler::GetTextColour (const G4Text& text) { 1181 auto pVA = text.GetVisAttributes(); << 708 const G4VisAttributes* pVA = text.GetVisAttributes (); 1182 if (!pVA) pVA = fpViewer->GetViewParameters << 709 if (!pVA) { 1183 return pVA->GetColour(); << 710 pVA = fpViewer -> GetViewParameters (). GetDefaultTextVisAttributes (); 1184 } << 711 } 1185 << 712 const G4Colour& colour = pVA -> GetColour (); 1186 G4double G4VSceneHandler::GetLineWidth(const << 713 return colour; 1187 { << 1188 G4double lineWidth = pVisAttribs->GetLineWi << 1189 if (lineWidth < 1.) lineWidth = 1.; << 1190 lineWidth *= fpViewer -> GetViewParameters( << 1191 if (lineWidth < 1.) lineWidth = 1.; << 1192 return lineWidth; << 1193 } 714 } 1194 715 1195 G4ViewParameters::DrawingStyle G4VSceneHandle 716 G4ViewParameters::DrawingStyle G4VSceneHandler::GetDrawingStyle 1196 (const G4VisAttributes* pVisAttribs) { 717 (const G4VisAttributes* pVisAttribs) { 1197 // Drawing style is normally determined by 718 // Drawing style is normally determined by the view parameters, but 1198 // it can be overriddden by the ForceDrawin 719 // it can be overriddden by the ForceDrawingStyle flag in the vis 1199 // attributes. 720 // attributes. 1200 const G4ViewParameters& vp = fpViewer->GetV << 721 G4ViewParameters::DrawingStyle style = 1201 const G4ViewParameters::DrawingStyle viewer << 722 fpViewer->GetViewParameters().GetDrawingStyle(); 1202 G4ViewParameters::DrawingStyle resultantSty << 1203 if (pVisAttribs -> IsForceDrawingStyle ()) 723 if (pVisAttribs -> IsForceDrawingStyle ()) { 1204 G4VisAttributes::ForcedDrawingStyle force 724 G4VisAttributes::ForcedDrawingStyle forcedStyle = 1205 pVisAttribs -> GetForcedDrawingStyle (); << 725 pVisAttribs -> GetForcedDrawingStyle (); 1206 // This is complicated because if hidden 726 // This is complicated because if hidden line and surface removal 1207 // has been requested we wish to preserve 727 // has been requested we wish to preserve this sometimes. 1208 switch (forcedStyle) { 728 switch (forcedStyle) { 1209 case (G4VisAttributes::solid): << 729 case (G4VisAttributes::solid): 1210 switch (viewerStyle) { << 730 switch (style) { 1211 case (G4ViewParameters::hlr): << 731 case (G4ViewParameters::hlr): 1212 resultantStyle = G4ViewParameters << 732 style = G4ViewParameters::hlhsr; 1213 break; << 733 break; 1214 case (G4ViewParameters::wireframe): << 734 case (G4ViewParameters::wireframe): 1215 resultantStyle = G4ViewParameters << 735 style = G4ViewParameters::hsr; 1216 break; << 736 break; 1217 case (G4ViewParameters::cloud): << 737 case (G4ViewParameters::hlhsr): 1218 resultantStyle = G4ViewParameters << 738 case (G4ViewParameters::hsr): 1219 break; << 1220 case (G4ViewParameters::hlhsr): << 1221 case (G4ViewParameters::hsr): << 1222 break; << 1223 } << 1224 break; << 1225 case (G4VisAttributes::cloud): << 1226 resultantStyle = G4ViewParameters::cl << 1227 break; << 1228 case (G4VisAttributes::wireframe): << 1229 default: 739 default: 1230 // But if forced style is wireframe, << 740 break; 1231 // main uses is in displaying the con << 741 } 1232 // solid and their surfaces overlap w << 742 break; 1233 // solid, making a mess if hlr is spe << 743 case (G4VisAttributes::wireframe): 1234 resultantStyle = G4ViewParameters::wi << 744 default: 1235 break; << 745 // But if forced style is wireframe, do it, because one of its >> 746 // main uses is in displaying the consituent solids of a Boolean >> 747 // solid and their surfaces overlap with the resulting Booean >> 748 // solid, making a mess if hlr is specified. >> 749 style = G4ViewParameters::wireframe; >> 750 break; 1236 } 751 } 1237 } 752 } 1238 return resultantStyle; << 753 return style; 1239 } << 1240 << 1241 G4int G4VSceneHandler::GetNumberOfCloudPoints << 1242 (const G4VisAttributes* pVisAttribs) const { << 1243 // Returns no of cloud points from current << 1244 // has forced through the vis attributes, t << 1245 // current view parameter. << 1246 G4int numberOfCloudPoints = fpViewer->GetVi << 1247 if (pVisAttribs -> IsForceDrawingStyle() && << 1248 pVisAttribs -> GetForcedDrawingStyle() << 1249 pVisAttribs -> GetForcedNumberOfCloudPo << 1250 numberOfCloudPoints = pVisAttribs -> GetF << 1251 } << 1252 return numberOfCloudPoints; << 1253 } 754 } 1254 755 1255 G4bool G4VSceneHandler::GetAuxEdgeVisible (co 756 G4bool G4VSceneHandler::GetAuxEdgeVisible (const G4VisAttributes* pVisAttribs) { 1256 G4bool isAuxEdgeVisible = fpViewer->GetView 757 G4bool isAuxEdgeVisible = fpViewer->GetViewParameters().IsAuxEdgeVisible (); 1257 if (pVisAttribs -> IsForceAuxEdgeVisible()) << 758 if (pVisAttribs -> IsForceAuxEdgeVisible()) isAuxEdgeVisible = true; 1258 isAuxEdgeVisible = pVisAttribs->IsForcedA << 1259 } << 1260 return isAuxEdgeVisible; 759 return isAuxEdgeVisible; 1261 } 760 } 1262 761 1263 G4double G4VSceneHandler::GetMarkerSize << 762 G4double G4VSceneHandler::GetMarkerSize (const G4VMarker& marker, 1264 (const G4VMarker& marker, << 763 G4VSceneHandler::MarkerSizeType& markerSizeType) { 1265 G4VSceneHandler::MarkerSizeType& markerSizeT << 1266 { << 1267 G4bool userSpecified = marker.GetWorldSize( 764 G4bool userSpecified = marker.GetWorldSize() || marker.GetScreenSize(); 1268 const G4VMarker& defaultMarker = 765 const G4VMarker& defaultMarker = 1269 fpViewer -> GetViewParameters().GetDefaul 766 fpViewer -> GetViewParameters().GetDefaultMarker(); 1270 G4double size = userSpecified ? 767 G4double size = userSpecified ? 1271 marker.GetWorldSize() : defaultMarker.Get 768 marker.GetWorldSize() : defaultMarker.GetWorldSize(); 1272 if (size) { 769 if (size) { 1273 // Draw in world coordinates. 770 // Draw in world coordinates. 1274 markerSizeType = world; 771 markerSizeType = world; 1275 } 772 } 1276 else { 773 else { 1277 size = userSpecified ? 774 size = userSpecified ? 1278 marker.GetScreenSize() : defaultMarker. 775 marker.GetScreenSize() : defaultMarker.GetScreenSize(); 1279 // Draw in screen coordinates. 776 // Draw in screen coordinates. 1280 markerSizeType = screen; 777 markerSizeType = screen; 1281 } 778 } >> 779 if (size <= 0.) size = 1.; 1282 size *= fpViewer -> GetViewParameters().Get 780 size *= fpViewer -> GetViewParameters().GetGlobalMarkerScale(); 1283 if (markerSizeType == screen && size < 1.) << 1284 return size; 781 return size; 1285 } 782 } 1286 783 1287 G4int G4VSceneHandler::GetNoOfSides(const G4V << 784 std::ostream& operator << (std::ostream& os, const G4VSceneHandler& s) { 1288 { << 1289 // No. of sides (lines segments per circle) << 1290 // by the view parameters, but it can be ov << 1291 // ForceLineSegmentsPerCircle in the vis at << 1292 G4int lineSegmentsPerCircle = fpViewer->Get << 1293 if (pVisAttribs) { << 1294 if (pVisAttribs->IsForceLineSegmentsPerCi << 1295 lineSegmentsPerCircle = pVisAttribs->Ge << 1296 if (lineSegmentsPerCircle < pVisAttribs-> << 1297 lineSegmentsPerCircle = pVisAttribs->Ge << 1298 G4warn << << 1299 "G4VSceneHandler::GetNoOfSides: attempt to << 1300 "\nnumber of line segments per circle < " < << 1301 << "; forced to " << pVisAttribs->GetM << 1302 } << 1303 } << 1304 return lineSegmentsPerCircle; << 1305 } << 1306 785 1307 std::ostream& operator << (std::ostream& os, << 786 os << "Scene handler " << s.fName << " has " 1308 << 787 << s.fViewerList.size () << " viewer(s):"; 1309 os << "Scene handler " << sh.fName << " has << 788 for (size_t i = 0; i < s.fViewerList.size (); i++) { 1310 << sh.fViewerList.size () << " viewer(s) << 789 os << "\n " << *(s.fViewerList [i]); 1311 for (std::size_t i = 0; i < sh.fViewerList. << 1312 os << "\n " << *(sh.fViewerList [i]); << 1313 } 790 } 1314 791 1315 if (sh.fpScene) { << 792 if (s.fpScene) { 1316 os << "\n " << *sh.fpScene; << 793 os << "\n " << *s.fpScene; 1317 } 794 } 1318 else { 795 else { 1319 os << "\n This scene handler currently h 796 os << "\n This scene handler currently has no scene."; 1320 } 797 } 1321 798 1322 return os; 799 return os; 1323 } << 1324 << 1325 void G4VSceneHandler::PseudoSceneFor3DRectMes << 1326 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1327 const auto& material = fpPVModel->GetCurr << 1328 const auto& name = material? material->Ge << 1329 const auto& pVisAtts = fpPVModel->GetCurr << 1330 // Get position in world coordinates << 1331 // As a parameterisation the box is trans << 1332 // and its centre, originally by definiti << 1333 const G4ThreeVector& position = fpCurrent << 1334 fPositionByMaterial.insert(std::make_pair << 1335 if (fNameAndVisAttsByMaterial.find(materi << 1336 // Store name and vis attributes of fir << 1337 fNameAndVisAttsByMaterial[material] = N << 1338 } << 1339 } << 1340 << 1341 void G4VSceneHandler::PseudoSceneForTetVertic << 1342 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1343 // Need to know it's a tet !!!! or implem << 1344 try { << 1345 const auto& tet = dynamic_cast<const G4 << 1346 const auto& material = fpPVModel->GetCu << 1347 const auto& name = material? material-> << 1348 const auto& pVisAtts = fpPVModel->GetCu << 1349 // Transform into world coordinates if << 1350 if (fpCurrentObjectTransformation->xx() << 1351 fpCurrentObjectTransformation->yy() << 1352 fpCurrentObjectTransformation->zz() << 1353 const auto& vertices = tet.GetVertice << 1354 fVerticesByMaterial.insert(std::make_ << 1355 } else { << 1356 auto vertices = tet.GetVertices(); << 1357 for (auto&& vertex: vertices) { << 1358 vertex = G4Point3D(vertex).transfor << 1359 } << 1360 fVerticesByMaterial.insert(std::make_ << 1361 } << 1362 if (fNameAndVisAttsByMaterial.find(mate << 1363 // Store name and vis attributes of f << 1364 fNameAndVisAttsByMaterial[material] = << 1365 } << 1366 catch (const std::bad_cast&) { << 1367 G4ExceptionDescription ed; << 1368 ed << "Called for a mesh that is not a << 1369 G4Exception("PseudoSceneForTetVertices" << 1370 } << 1371 } << 1372 } << 1373 << 1374 void G4VSceneHandler::StandardSpecialMeshRend << 1375 // Standard way of special mesh rendering. << 1376 // MySceneHandler::AddCompound(const G4Mesh& << 1377 // appropriate or implement its own special m << 1378 { << 1379 G4bool implemented = false; << 1380 switch (mesh.GetMeshType()) { << 1381 case G4Mesh::rectangle: [[fallthrough]]; << 1382 case G4Mesh::nested3DRectangular: << 1383 switch (fpViewer->GetViewParameters().G << 1384 case G4ViewParameters::meshAsDefault: << 1385 [[fallthrough]]; << 1386 case G4ViewParameters::meshAsDots: << 1387 Draw3DRectMeshAsDots(mesh); // Rec << 1388 implemented = true; << 1389 break; << 1390 case G4ViewParameters::meshAsSurfaces << 1391 Draw3DRectMeshAsSurfaces(mesh); // << 1392 implemented = true; << 1393 break; << 1394 } << 1395 break; << 1396 case G4Mesh::tetrahedron: << 1397 switch (fpViewer->GetViewParameters().G << 1398 case G4ViewParameters::meshAsDefault: << 1399 [[fallthrough]]; << 1400 case G4ViewParameters::meshAsDots: << 1401 DrawTetMeshAsDots(mesh); // Tetrah << 1402 implemented = true; << 1403 break; << 1404 case G4ViewParameters::meshAsSurfaces << 1405 DrawTetMeshAsSurfaces(mesh); // Te << 1406 implemented = true; << 1407 break; << 1408 } << 1409 break; << 1410 case G4Mesh::cylinder: [[fallthrough]]; << 1411 case G4Mesh::sphere: [[fallthrough]]; << 1412 case G4Mesh::invalid: break; << 1413 } << 1414 if (implemented) { << 1415 // Draw container if not marked invisible << 1416 auto container = mesh.GetContainerVolume( << 1417 auto containerLogical = container->GetLog << 1418 auto containerVisAtts = containerLogical- << 1419 if (containerVisAtts == nullptr || contai << 1420 auto solid = containerLogical->GetSolid << 1421 auto polyhedron = solid->GetPolyhedron( << 1422 // Always draw as wireframe << 1423 G4VisAttributes tmpVisAtts; << 1424 if (containerVisAtts != nullptr) tmpVis << 1425 tmpVisAtts.SetForceWireframe(); << 1426 polyhedron->SetVisAttributes(tmpVisAtts << 1427 BeginPrimitives(mesh.GetTransform()); << 1428 AddPrimitive(*polyhedron); << 1429 EndPrimitives(); << 1430 } << 1431 } else { << 1432 // Invoke base class function << 1433 G4VSceneHandler::AddCompound(mesh); << 1434 } << 1435 return; << 1436 } << 1437 << 1438 void G4VSceneHandler::Draw3DRectMeshAsDots(co << 1439 // For a rectangular 3-D mesh, draw as colour << 1440 // one dot randomly placed in each visible me << 1441 { << 1442 // Check << 1443 if (mesh.GetMeshType() != G4Mesh::rectangle << 1444 mesh.GetMeshType() != G4Mesh::nested3DR << 1445 G4ExceptionDescription ed; << 1446 ed << "Called with a mesh that is not rec << 1447 G4Exception("G4VSceneHandler::Draw3DRectM << 1448 return; << 1449 } << 1450 << 1451 static G4bool firstPrint = true; << 1452 const auto& verbosity = G4VisManager::GetVe << 1453 G4bool print = firstPrint && verbosity >= G << 1454 if (print) { << 1455 G4cout << 1456 << "Special case drawing of 3D rectangula << 1457 << '\n' << mesh << 1458 << G4endl; << 1459 } << 1460 << 1461 const auto& container = mesh.GetContainerVo << 1462 << 1463 // This map is static so that once filled i << 1464 static std::map<G4String,std::map<const G4M << 1465 auto& dotsByMaterial = dotsByMaterialAndMes << 1466 << 1467 // Fill map if not already filled << 1468 if (dotsByMaterial.empty()) { << 1469 << 1470 // Get positions and material one cell at << 1471 // The pseudo scene allows a "private" de << 1472 // Instantiate a temporary G4PhysicalVolu << 1473 G4ModelingParameters tmpMP; << 1474 tmpMP.SetCulling(true); // This avoids d << 1475 tmpMP.SetCullingInvisible(true); // ... << 1476 const G4bool useFullExtent = true; // To << 1477 G4PhysicalVolumeModel tmpPVModel << 1478 (container, << 1479 G4PhysicalVolumeModel::UNLIMITED, << 1480 G4Transform3D(), // so that positions a << 1481 &tmpMP, << 1482 useFullExtent); << 1483 // Accumulate information in temporary ma << 1484 std::multimap<const G4Material*,const G4T << 1485 std::map<const G4Material*,G4VSceneHandle << 1486 // Instantiate the pseudo scene << 1487 PseudoSceneFor3DRectMeshPositions pseudoS << 1488 (&tmpPVModel,&mesh,positionByMaterial,nam << 1489 // Make private descent into the paramete << 1490 tmpPVModel.DescribeYourselfTo(pseudoScene << 1491 // Now we have a map of positions by mate << 1492 // Also a map of name and colour by mater << 1493 << 1494 const auto& prms = mesh.GetThreeDRectPara << 1495 const auto& halfX = prms.fHalfX; << 1496 const auto& halfY = prms.fHalfY; << 1497 const auto& halfZ = prms.fHalfZ; << 1498 << 1499 // Fill the permanent (static) map of dot << 1500 G4int nDotsTotal = 0; << 1501 for (const auto& entry: nameAndVisAttsByM << 1502 G4int nDots = 0; << 1503 const auto& material = entry.first; << 1504 const auto& nameAndVisAtts = nameAndVis << 1505 const auto& name = nameAndVisAtts.fName << 1506 const auto& visAtts = nameAndVisAtts.fV << 1507 G4Polymarker dots; << 1508 dots.SetInfo(name); << 1509 dots.SetVisAttributes(visAtts); << 1510 dots.SetMarkerType(G4Polymarker::dots); << 1511 dots.SetSize(G4VMarker::screen,1.); << 1512 // Enter empty polymarker into the map << 1513 dotsByMaterial[material] = dots; << 1514 // Now fill it in situ << 1515 auto& dotsInMap = dotsByMaterial[materi << 1516 const auto& range = positionByMaterial. << 1517 for (auto posByMat = range.first; posBy << 1518 dotsInMap.push_back(GetPointInBox(pos << 1519 ++nDots; << 1520 } << 1521 << 1522 if (print) { << 1523 G4cout << 1524 << std::setw(30) << std::left << name << 1525 << ": " << std::setw(7) << nDots << " << 1526 << ": colour " << std::fixed << std:: << 1527 << visAtts.GetColour() << std::defaul << 1528 << G4endl; << 1529 } << 1530 << 1531 nDotsTotal += nDots; << 1532 } << 1533 << 1534 if (print) { << 1535 G4cout << "Total number of dots: " << n << 1536 } << 1537 } << 1538 << 1539 // Some subsequent expressions apply only t << 1540 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1541 << 1542 G4String parameterisationName; << 1543 if (pPVModel) { << 1544 parameterisationName = pPVModel->GetFullP << 1545 } << 1546 << 1547 // Draw the dots by material << 1548 // Ensure they are "hidden", i.e., use the << 1549 auto keepVP = fpViewer->GetViewParameters() << 1550 auto vp = fpViewer->GetViewParameters(); << 1551 vp.SetMarkerHidden(); << 1552 fpViewer->SetViewParameters(vp); << 1553 // Now we transform to world coordinates << 1554 BeginPrimitives (mesh.GetTransform()); << 1555 for (const auto& entry: dotsByMaterial) { << 1556 const auto& dots = entry.second; << 1557 // The current "leaf" node in the PVPath << 1558 // been converted into polymarkers by mat << 1559 // its name to that of the material (whos << 1560 // so that its appearance in the scene tr << 1561 // an appropriate name and its visibility << 1562 if (pPVModel) { << 1563 const auto& fullPVPath = pPVModel->GetF << 1564 auto leafPV = fullPVPath.back().GetPhys << 1565 leafPV->SetName(dots.GetInfo()); << 1566 } << 1567 // Add dots to the scene << 1568 AddPrimitive(dots); << 1569 } << 1570 EndPrimitives (); << 1571 // Restore view parameters << 1572 fpViewer->SetViewParameters(keepVP); << 1573 // Restore parameterisation name << 1574 if (pPVModel) { << 1575 pPVModel->GetFullPVPath().back().GetPhysi << 1576 } << 1577 << 1578 firstPrint = false; << 1579 return; << 1580 } << 1581 << 1582 void G4VSceneHandler::Draw3DRectMeshAsSurface << 1583 // For a rectangular 3-D mesh, draw as surfac << 1584 // with inner shared faces removed. << 1585 { << 1586 // Check << 1587 if (mesh.GetMeshType() != G4Mesh::rectangle << 1588 mesh.GetMeshType() != G4Mesh::nested3DR << 1589 G4ExceptionDescription ed; << 1590 ed << "Called with a mesh that is not rec << 1591 G4Exception("G4VSceneHandler::Draw3DRectM << 1592 return; << 1593 } << 1594 << 1595 static G4bool firstPrint = true; << 1596 const auto& verbosity = G4VisManager::GetVe << 1597 G4bool print = firstPrint && verbosity >= G << 1598 if (print) { << 1599 G4cout << 1600 << "Special case drawing of 3D rectangula << 1601 << '\n' << mesh << 1602 << G4endl; << 1603 } << 1604 << 1605 const auto& container = mesh.GetContainerVo << 1606 << 1607 // This map is static so that once filled i << 1608 static std::map<G4String,std::map<const G4M << 1609 auto& boxesByMaterial = boxesByMaterialAndM << 1610 << 1611 // Fill map if not already filled << 1612 if (boxesByMaterial.empty()) { << 1613 << 1614 // Get positions and material one cell at << 1615 // The pseudo scene allows a "private" de << 1616 // Instantiate a temporary G4PhysicalVolu << 1617 G4ModelingParameters tmpMP; << 1618 tmpMP.SetCulling(true); // This avoids d << 1619 tmpMP.SetCullingInvisible(true); // ... << 1620 const G4bool useFullExtent = true; // To << 1621 G4PhysicalVolumeModel tmpPVModel << 1622 (container, << 1623 G4PhysicalVolumeModel::UNLIMITED, << 1624 G4Transform3D(), // so that positions a << 1625 &tmpMP, << 1626 useFullExtent); << 1627 // Accumulate information in temporary ma << 1628 std::multimap<const G4Material*,const G4T << 1629 std::map<const G4Material*,G4VSceneHandle << 1630 // Instantiate the pseudo scene << 1631 PseudoSceneFor3DRectMeshPositions pseudoS << 1632 (&tmpPVModel,&mesh,positionByMaterial,nam << 1633 // Make private descent into the paramete << 1634 tmpPVModel.DescribeYourselfTo(pseudoScene << 1635 // Now we have a map of positions by mate << 1636 // Also a map of name and colour by mater << 1637 << 1638 const auto& prms = mesh.GetThreeDRectPara << 1639 const auto& sizeX = 2.*prms.fHalfX; << 1640 const auto& sizeY = 2.*prms.fHalfY; << 1641 const auto& sizeZ = 2.*prms.fHalfZ; << 1642 << 1643 // Fill the permanent (static) map of box << 1644 G4int nBoxesTotal = 0, nFacetsTotal = 0; << 1645 for (const auto& entry: nameAndVisAttsByM << 1646 G4int nBoxes = 0; << 1647 const auto& material = entry.first; << 1648 const auto& nameAndVisAtts = nameAndVis << 1649 const auto& name = nameAndVisAtts.fName << 1650 const auto& visAtts = nameAndVisAtts.fV << 1651 // Transfer positions into a vector rea << 1652 std::vector<G4ThreeVector> positionsFor << 1653 const auto& range = positionByMaterial. << 1654 for (auto posByMat = range.first; posBy << 1655 const auto& position = posByMat->seco << 1656 positionsForPolyhedron.push_back(posi << 1657 ++nBoxes; << 1658 } << 1659 // The polyhedron will be in local coor << 1660 // Add an empty place-holder to the map << 1661 auto& polyhedron = boxesByMaterial[mate << 1662 // Replace with the desired polyhedron << 1663 polyhedron = G4PolyhedronBoxMesh(sizeX, << 1664 polyhedron.SetVisAttributes(visAtts); << 1665 polyhedron.SetInfo(name); << 1666 << 1667 if (print) { << 1668 G4cout << 1669 << std::setw(30) << std::left << name << 1670 << ": " << std::setw(7) << nBoxes << << 1671 << " (" << std::setw(7) << 6*nBoxes < << 1672 << ": reduced to " << std::setw(7) << << 1673 << std::setw(2) << std::fixed << std: << 1674 << "%): colour " << std::fixed << std << 1675 << visAtts.GetColour() << std::defaul << 1676 << G4endl; << 1677 } << 1678 << 1679 nBoxesTotal += nBoxes; << 1680 nFacetsTotal += polyhedron.GetNoFacets( << 1681 } << 1682 << 1683 if (print) { << 1684 G4cout << "Total number of boxes: " << << 1685 << ": reduced to " << nFacetsTotal << " << 1686 << std::setw(2) << std::fixed << std::s << 1687 << G4endl; << 1688 } << 1689 } << 1690 << 1691 // Some subsequent expressions apply only t << 1692 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1693 << 1694 G4String parameterisationName; << 1695 if (pPVModel) { << 1696 parameterisationName = pPVModel->GetFullP << 1697 } << 1698 << 1699 // Draw the boxes by material << 1700 // Now we transform to world coordinates << 1701 BeginPrimitives (mesh.GetTransform()); << 1702 for (const auto& entry: boxesByMaterial) { << 1703 const auto& poly = entry.second; << 1704 // The current "leaf" node in the PVPath << 1705 // been converted into polyhedra by mater << 1706 // its name to that of the material (whos << 1707 // so that its appearance in the scene tr << 1708 // an appropriate name and its visibility << 1709 if (pPVModel) { << 1710 const auto& fullPVPath = pPVModel->GetF << 1711 auto leafPV = fullPVPath.back().GetPhys << 1712 leafPV->SetName(poly.GetInfo()); << 1713 } << 1714 AddPrimitive(poly); << 1715 } << 1716 EndPrimitives (); << 1717 // Restore parameterisation name << 1718 if (pPVModel) { << 1719 pPVModel->GetFullPVPath().back().GetPhysi << 1720 } << 1721 << 1722 firstPrint = false; << 1723 return; << 1724 } << 1725 << 1726 void G4VSceneHandler::DrawTetMeshAsDots(const << 1727 // For a tetrahedron mesh, draw as coloured d << 1728 // one dot randomly placed in each visible me << 1729 { << 1730 // Check << 1731 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1732 G4ExceptionDescription ed; << 1733 ed << "Called with mesh that is not a tet << 1734 G4Exception("G4VSceneHandler::DrawTetMesh << 1735 return; << 1736 } << 1737 << 1738 static G4bool firstPrint = true; << 1739 const auto& verbosity = G4VisManager::GetVe << 1740 G4bool print = firstPrint && verbosity >= G << 1741 << 1742 if (print) { << 1743 G4cout << 1744 << "Special case drawing of tetrahedron m << 1745 << '\n' << mesh << 1746 << G4endl; << 1747 } << 1748 << 1749 const auto& container = mesh.GetContainerVo << 1750 << 1751 // This map is static so that once filled i << 1752 static std::map<G4String,std::map<const G4M << 1753 auto& dotsByMaterial = dotsByMaterialAndMes << 1754 << 1755 // Fill map if not already filled << 1756 if (dotsByMaterial.empty()) { << 1757 << 1758 // Get vertices and colour one cell at a << 1759 // The pseudo scene allows a "private" de << 1760 // Instantiate a temporary G4PhysicalVolu << 1761 G4ModelingParameters tmpMP; << 1762 tmpMP.SetCulling(true); // This avoids d << 1763 tmpMP.SetCullingInvisible(true); // ... << 1764 const G4bool useFullExtent = true; // To << 1765 G4PhysicalVolumeModel tmpPVModel << 1766 (container, << 1767 G4PhysicalVolumeModel::UNLIMITED, << 1768 G4Transform3D(), // so that positions a << 1769 &tmpMP, << 1770 useFullExtent); << 1771 // Accumulate information in temporary ma << 1772 std::multimap<const G4Material*,std::vect << 1773 std::map<const G4Material*,G4VSceneHandle << 1774 // Instantiate a pseudo scene << 1775 PseudoSceneForTetVertices pseudoScene << 1776 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1777 // Make private descent into the paramete << 1778 tmpPVModel.DescribeYourselfTo(pseudoScene << 1779 // Now we have a map of vertices by mater << 1780 // Also a map of name and colour by mater << 1781 << 1782 // Fill the permanent (static) map of dot << 1783 G4int nDotsTotal = 0; << 1784 for (const auto& entry: nameAndVisAttsByM << 1785 G4int nDots = 0; << 1786 const auto& material = entry.first; << 1787 const auto& nameAndVisAtts = nameAndVis << 1788 const auto& name = nameAndVisAtts.fName << 1789 const auto& visAtts = nameAndVisAtts.fV << 1790 G4Polymarker dots; << 1791 dots.SetVisAttributes(visAtts); << 1792 dots.SetMarkerType(G4Polymarker::dots); << 1793 dots.SetSize(G4VMarker::screen,1.); << 1794 dots.SetInfo(name); << 1795 // Enter empty polymarker into the map << 1796 dotsByMaterial[material] = dots; << 1797 // Now fill it in situ << 1798 auto& dotsInMap = dotsByMaterial[materi << 1799 const auto& range = verticesByMaterial. << 1800 for (auto vByMat = range.first; vByMat << 1801 dotsInMap.push_back(GetPointInTet(vBy << 1802 ++nDots; << 1803 } << 1804 << 1805 if (print) { << 1806 G4cout << 1807 << std::setw(30) << std::left << name << 1808 << ": " << std::setw(7) << nDots << " << 1809 << ": colour " << std::fixed << std:: << 1810 << visAtts.GetColour() << std::defaul << 1811 << G4endl; << 1812 } << 1813 << 1814 nDotsTotal += nDots; << 1815 } << 1816 << 1817 if (print) { << 1818 G4cout << "Total number of dots: " << n << 1819 } << 1820 } << 1821 << 1822 // Some subsequent expressions apply only t << 1823 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1824 << 1825 G4String parameterisationName; << 1826 if (pPVModel) { << 1827 parameterisationName = pPVModel->GetFullP << 1828 } << 1829 << 1830 // Draw the dots by material << 1831 // Ensure they are "hidden", i.e., use the << 1832 auto keepVP = fpViewer->GetViewParameters() << 1833 auto vp = fpViewer->GetViewParameters(); << 1834 vp.SetMarkerHidden(); << 1835 fpViewer->SetViewParameters(vp); << 1836 << 1837 // Now we transform to world coordinates << 1838 BeginPrimitives (mesh.GetTransform()); << 1839 for (const auto& entry: dotsByMaterial) { << 1840 const auto& dots = entry.second; << 1841 // The current "leaf" node in the PVPath << 1842 // been converted into polymarkers by mat << 1843 // its name to that of the material (whos << 1844 // so that its appearance in the scene tr << 1845 // an appropriate name and its visibility << 1846 if (pPVModel) { << 1847 const auto& fullPVPath = pPVModel->GetF << 1848 auto leafPV = fullPVPath.back().GetPhys << 1849 leafPV->SetName(dots.GetInfo()); << 1850 } << 1851 AddPrimitive(dots); << 1852 } << 1853 EndPrimitives (); << 1854 << 1855 // Restore view parameters << 1856 fpViewer->SetViewParameters(keepVP); << 1857 // Restore parameterisation name << 1858 if (pPVModel) { << 1859 pPVModel->GetFullPVPath().back().GetPhysi << 1860 } << 1861 << 1862 firstPrint = false; << 1863 return; << 1864 } << 1865 << 1866 void G4VSceneHandler::DrawTetMeshAsSurfaces(c << 1867 // For a tetrahedron mesh, draw as surfaces b << 1868 // with inner shared faces removed. << 1869 { << 1870 // Check << 1871 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1872 G4ExceptionDescription ed; << 1873 ed << "Called with mesh that is not a tet << 1874 G4Exception("G4VSceneHandler::DrawTetMesh << 1875 return; << 1876 } << 1877 << 1878 static G4bool firstPrint = true; << 1879 const auto& verbosity = G4VisManager::GetVe << 1880 G4bool print = firstPrint && verbosity >= G << 1881 << 1882 if (print) { << 1883 G4cout << 1884 << "Special case drawing of tetrahedron m << 1885 << '\n' << mesh << 1886 << G4endl; << 1887 } << 1888 << 1889 // This map is static so that once filled i << 1890 static std::map<G4String,std::map<const G4M << 1891 auto& surfacesByMaterial = surfacesByMateri << 1892 << 1893 // Fill map if not already filled << 1894 if (surfacesByMaterial.empty()) { << 1895 << 1896 // Get vertices and colour one cell at a << 1897 // The pseudo scene allows a "private" de << 1898 // Instantiate a temporary G4PhysicalVolu << 1899 G4ModelingParameters tmpMP; << 1900 tmpMP.SetCulling(true); // This avoids d << 1901 tmpMP.SetCullingInvisible(true); // ... << 1902 const G4bool useFullExtent = true; // To << 1903 G4PhysicalVolumeModel tmpPVModel << 1904 (mesh.GetContainerVolume(), << 1905 G4PhysicalVolumeModel::UNLIMITED, << 1906 G4Transform3D(), // so that positions a << 1907 &tmpMP, << 1908 useFullExtent); << 1909 // Accumulate information in temporary ma << 1910 std::multimap<const G4Material*,std::vect << 1911 std::map<const G4Material*,G4VSceneHandle << 1912 // Instantiate a pseudo scene << 1913 PseudoSceneForTetVertices pseudoScene << 1914 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1915 // Make private descent into the paramete << 1916 tmpPVModel.DescribeYourselfTo(pseudoScene << 1917 // Now we have a map of vertices by mater << 1918 // Also a map of name and colour by mater << 1919 << 1920 // Fill the permanent (static) map of sur << 1921 G4int nTetsTotal = 0, nFacetsTotal = 0; << 1922 for (const auto& entry: nameAndVisAttsByM << 1923 G4int nTets = 0; << 1924 const auto& material = entry.first; << 1925 const auto& nameAndVisAtts = nameAndVis << 1926 const auto& name = nameAndVisAtts.fName << 1927 const auto& visAtts = nameAndVisAtts.fV << 1928 // Transfer vertices into a vector read << 1929 std::vector<G4ThreeVector> verticesForP << 1930 const auto& range = verticesByMaterial. << 1931 for (auto vByMat = range.first; vByMat << 1932 const std::vector<G4ThreeVector>& ver << 1933 for (const auto& vertex: vertices) << 1934 verticesForPolyhedron.push_back(ver << 1935 ++nTets; << 1936 } << 1937 // The polyhedron will be in local coor << 1938 // Add an empty place-holder to the map << 1939 auto& polyhedron = surfacesByMaterial[m << 1940 // Replace with the desired polyhedron << 1941 polyhedron = G4PolyhedronTetMesh(vertic << 1942 polyhedron.SetVisAttributes(visAtts); << 1943 polyhedron.SetInfo(name); << 1944 << 1945 if (print) { << 1946 G4cout << 1947 << std::setw(30) << std::left << name << 1948 << ": " << std::setw(7) << nTets << " << 1949 << " (" << std::setw(7) << 4*nTets << << 1950 << ": reduced to " << std::setw(7) << << 1951 << std::setw(2) << std::fixed << std: << 1952 << "%): colour " << std::fixed << std << 1953 << visAtts.GetColour() << std::defaul << 1954 << G4endl; << 1955 } << 1956 << 1957 nTetsTotal += nTets; << 1958 nFacetsTotal += polyhedron.GetNoFacets( << 1959 } << 1960 << 1961 if (print) { << 1962 G4cout << "Total number of tetrahedra: << 1963 << ": reduced to " << nFacetsTotal << " << 1964 << std::setw(2) << std::fixed << std::s << 1965 << G4endl; << 1966 } << 1967 } << 1968 << 1969 // Some subsequent expressions apply only t << 1970 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1971 << 1972 G4String parameterisationName; << 1973 if (pPVModel) { << 1974 parameterisationName = pPVModel->GetFullP << 1975 } << 1976 << 1977 // Draw the surfaces by material << 1978 // Now we transform to world coordinates << 1979 BeginPrimitives (mesh.GetTransform()); << 1980 for (const auto& entry: surfacesByMaterial) << 1981 const auto& poly = entry.second; << 1982 // The current "leaf" node in the PVPath << 1983 // been converted into polyhedra by mater << 1984 // its name to that of the material (whos << 1985 // so that its appearance in the scene tr << 1986 // an appropriate name and its visibility << 1987 if (pPVModel) { << 1988 const auto& fullPVPath = pPVModel->GetF << 1989 auto leafPV = fullPVPath.back().GetPhys << 1990 leafPV->SetName(poly.GetInfo()); << 1991 } << 1992 AddPrimitive(poly); << 1993 } << 1994 EndPrimitives (); << 1995 << 1996 // Restore parameterisation name << 1997 if (pPVModel) { << 1998 pPVModel->GetFullPVPath().back().GetPhysi << 1999 } << 2000 << 2001 firstPrint = false; << 2002 return; << 2003 } << 2004 << 2005 G4ThreeVector << 2006 G4VSceneHandler::GetPointInBox(const G4ThreeV << 2007 G4double halfX << 2008 G4double halfY << 2009 G4double halfZ << 2010 { << 2011 G4double x = pos.getX() + (2.*G4QuickRand() << 2012 G4double y = pos.getY() + (2.*G4QuickRand() << 2013 G4double z = pos.getZ() + (2.*G4QuickRand() << 2014 return G4ThreeVector(x, y, z); << 2015 } << 2016 << 2017 G4ThreeVector << 2018 G4VSceneHandler::GetPointInTet(const std::vec << 2019 { << 2020 G4double p = G4QuickRand(); << 2021 G4double q = G4QuickRand(); << 2022 G4double r = G4QuickRand(); << 2023 if (p + q > 1.) << 2024 { << 2025 p = 1. - p; << 2026 q = 1. - q; << 2027 } << 2028 if (q + r > 1.) << 2029 { << 2030 G4double tmp = r; << 2031 r = 1. - p - q; << 2032 q = 1. - tmp; << 2033 } << 2034 else if (p + q + r > 1.) << 2035 { << 2036 G4double tmp = r; << 2037 r = p + q + r - 1.; << 2038 p = 1. - q - tmp; << 2039 } << 2040 G4double a = 1. - p - q - r; << 2041 return vertices[0]*a + vertices[1]*p + vert << 2042 } 800 } 2043 801