Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 // 23 // >> 24 // $Id: G4VSceneHandler.cc,v 1.28 2003/11/12 13:43:25 johna Exp $ >> 25 // GEANT4 tag $Name: geant4-06-00-patch-01 $ 27 // 26 // 28 // 27 // 29 // John Allison 19th July 1996 28 // John Allison 19th July 1996 30 // Abstract interface class for graphics scene 29 // Abstract interface class for graphics scenes. 31 30 32 #include "G4VSceneHandler.hh" 31 #include "G4VSceneHandler.hh" 33 32 34 #include "G4ios.hh" 33 #include "G4ios.hh" 35 #include <sstream> << 34 #include <strstream> 36 35 37 #include "G4VisManager.hh" 36 #include "G4VisManager.hh" 38 #include "G4VGraphicsSystem.hh" 37 #include "G4VGraphicsSystem.hh" 39 #include "G4VViewer.hh" 38 #include "G4VViewer.hh" 40 #include "G4VSolid.hh" 39 #include "G4VSolid.hh" 41 #include "G4RotationMatrix.hh" 40 #include "G4RotationMatrix.hh" 42 #include "G4ThreeVector.hh" 41 #include "G4ThreeVector.hh" 43 #include "G4VPhysicalVolume.hh" 42 #include "G4VPhysicalVolume.hh" 44 #include "G4Material.hh" 43 #include "G4Material.hh" 45 #include "G4Polyline.hh" 44 #include "G4Polyline.hh" >> 45 #include "G4Scale.hh" 46 #include "G4Text.hh" 46 #include "G4Text.hh" 47 #include "G4Circle.hh" 47 #include "G4Circle.hh" 48 #include "G4Square.hh" 48 #include "G4Square.hh" 49 #include "G4Polymarker.hh" 49 #include "G4Polymarker.hh" 50 #include "G4Polyhedron.hh" 50 #include "G4Polyhedron.hh" >> 51 #include "G4NURBS.hh" 51 #include "G4Visible.hh" 52 #include "G4Visible.hh" 52 #include "G4VisAttributes.hh" 53 #include "G4VisAttributes.hh" 53 #include "G4VModel.hh" 54 #include "G4VModel.hh" 54 #include "G4TrajectoriesModel.hh" 55 #include "G4TrajectoriesModel.hh" 55 #include "G4Box.hh" 56 #include "G4Box.hh" 56 #include "G4Cons.hh" 57 #include "G4Cons.hh" 57 #include "G4Orb.hh" << 58 #include "G4Tubs.hh" 58 #include "G4Para.hh" << 59 #include "G4Trd.hh" >> 60 #include "G4Trap.hh" 59 #include "G4Sphere.hh" 61 #include "G4Sphere.hh" >> 62 #include "G4Para.hh" 60 #include "G4Torus.hh" 63 #include "G4Torus.hh" 61 #include "G4Trap.hh" << 62 #include "G4Trd.hh" << 63 #include "G4Tubs.hh" << 64 #include "G4Ellipsoid.hh" << 65 #include "G4Polycone.hh" 64 #include "G4Polycone.hh" 66 #include "G4Polyhedra.hh" 65 #include "G4Polyhedra.hh" 67 #include "G4Tet.hh" << 68 #include "G4DisplacedSolid.hh" << 69 #include "G4UnionSolid.hh" << 70 #include "G4IntersectionSolid.hh" << 71 #include "G4SubtractionSolid.hh" << 72 #include "G4LogicalVolume.hh" 66 #include "G4LogicalVolume.hh" 73 #include "G4PhysicalVolumeModel.hh" 67 #include "G4PhysicalVolumeModel.hh" 74 #include "G4ModelingParameters.hh" 68 #include "G4ModelingParameters.hh" 75 #include "G4VTrajectory.hh" 69 #include "G4VTrajectory.hh" 76 #include "G4VTrajectoryPoint.hh" << 77 #include "G4HitsModel.hh" << 78 #include "G4VHit.hh" 70 #include "G4VHit.hh" 79 #include "G4VDigi.hh" << 80 #include "G4ScoringManager.hh" << 81 #include "G4VScoringMesh.hh" << 82 #include "G4Mesh.hh" << 83 #include "G4DefaultLinearColorMap.hh" << 84 #include "G4QuickRand.hh" << 85 #include "G4StateManager.hh" << 86 #include "G4RunManager.hh" << 87 #include "G4RunManagerFactory.hh" << 88 #include "G4Run.hh" << 89 #include "G4Transform3D.hh" << 90 #include "G4AttHolder.hh" << 91 #include "G4AttDef.hh" << 92 #include "G4SceneTreeItem.hh" << 93 #include "G4VVisCommand.hh" << 94 #include "G4PhysicalConstants.hh" << 95 #include "G4SystemOfUnits.hh" << 96 << 97 #define G4warn G4cout << 98 71 99 G4VSceneHandler::G4VSceneHandler (G4VGraphicsS 72 G4VSceneHandler::G4VSceneHandler (G4VGraphicsSystem& system, G4int id, const G4String& name): 100 fSystem (system), 73 fSystem (system), 101 fSceneHandlerId (id), 74 fSceneHandlerId (id), 102 fViewCount (0), 75 fViewCount (0), 103 fpViewer (0), 76 fpViewer (0), 104 fpScene (0), 77 fpScene (0), 105 fMarkForClearingTransientStore (true), // R << 78 fMarkForClearingTransientStore (true), // Always clear and refesh first time. 106 // ClearTransientStoreIfMarked(), << 79 fReadyForTransients (false), 107 // e.g., at end of run (see << 108 // G4VisManager.cc). << 109 fReadyForTransients (true), // Only fals << 110 fProcessingSolid (false), << 111 fProcessing2D (false), << 112 fpModel (0), 80 fpModel (0), 113 fNestingDepth (0), << 81 fpObjectTransformation (&G4Transform3D::Identity), 114 fpVisAttribs (0) << 82 fpVisAttribs (0), >> 83 fCurrentDepth (0), >> 84 fpCurrentPV (0), >> 85 fpCurrentLV (0) 115 { 86 { 116 G4VisManager* pVMan = G4VisManager::GetInsta 87 G4VisManager* pVMan = G4VisManager::GetInstance (); 117 fpScene = pVMan -> GetCurrentScene (); 88 fpScene = pVMan -> GetCurrentScene (); 118 if (name == "") { 89 if (name == "") { 119 std::ostringstream ost; << 90 char charname [50]; 120 ost << fSystem.GetName () << '-' << fScene << 91 std::ostrstream ost (charname, 50); 121 fName = ost.str(); << 92 ost << fSystem.GetName () << '-' << fSceneHandlerId << std::ends; >> 93 fName = charname; 122 } 94 } 123 else { 95 else { 124 fName = name; 96 fName = name; 125 } 97 } 126 fTransientsDrawnThisEvent = pVMan->GetTransi << 127 fTransientsDrawnThisRun = pVMan->GetTransien << 128 } 98 } 129 99 130 G4VSceneHandler::~G4VSceneHandler () { 100 G4VSceneHandler::~G4VSceneHandler () { 131 G4VViewer* last; << 101 G4ViewerListIterator i; 132 while( ! fViewerList.empty() ) { << 102 for (i = fViewerList.begin(); i != fViewerList.end(); ++i) { 133 last = fViewerList.back(); << 103 delete *i; 134 fViewerList.pop_back(); << 135 delete last; << 136 } 104 } 137 } 105 } 138 106 139 const G4VisExtent& G4VSceneHandler::GetExtent( << 107 void G4VSceneHandler::EndModeling () {} 140 { << 141 if (fpScene) { << 142 return fpScene->GetExtent(); << 143 } else { << 144 static const G4VisExtent defaultExtent = G << 145 return defaultExtent; << 146 } << 147 } << 148 108 149 void G4VSceneHandler::PreAddSolid (const G4Tra << 109 void G4VSceneHandler::PreAddThis (const G4Transform3D& objectTransformation, 150 const G4VisAttributes& visAttribs) << 110 const G4VisAttributes& visAttribs) { 151 fObjectTransformation = objectTransformation << 111 fpObjectTransformation = &objectTransformation; 152 fpVisAttribs = &visAttribs; 112 fpVisAttribs = &visAttribs; 153 fProcessingSolid = true; << 154 } 113 } 155 114 156 void G4VSceneHandler::PostAddSolid () { << 115 void G4VSceneHandler::PostAddThis () { >> 116 fpObjectTransformation = &G4Transform3D::Identity; 157 fpVisAttribs = 0; 117 fpVisAttribs = 0; 158 fProcessingSolid = false; << 159 if (fReadyForTransients) { << 160 fTransientsDrawnThisEvent = true; << 161 fTransientsDrawnThisRun = true; << 162 } << 163 } << 164 << 165 void G4VSceneHandler::BeginPrimitives << 166 (const G4Transform3D& objectTransformation) { << 167 //static G4int count = 0; << 168 //G4cout << "G4VSceneHandler::BeginPrimitive << 169 fNestingDepth++; << 170 if (fNestingDepth > 1) << 171 G4Exception << 172 ("G4VSceneHandler::BeginPrimitives", << 173 "visman0101", FatalException, << 174 "Nesting detected. It is illegal to nes << 175 fObjectTransformation = objectTransformation << 176 } << 177 << 178 void G4VSceneHandler::EndPrimitives () { << 179 if (fNestingDepth <= 0) << 180 G4Exception("G4VSceneHandler::EndPrimitive << 181 "visman0102", FatalException, "Nesting err << 182 fNestingDepth--; << 183 if (fReadyForTransients) { << 184 fTransientsDrawnThisEvent = true; << 185 fTransientsDrawnThisRun = true; << 186 } << 187 } << 188 << 189 void G4VSceneHandler::BeginPrimitives2D << 190 (const G4Transform3D& objectTransformation) { << 191 fNestingDepth++; << 192 if (fNestingDepth > 1) << 193 G4Exception << 194 ("G4VSceneHandler::BeginPrimitives2D", << 195 "visman0103", FatalException, << 196 "Nesting detected. It is illegal to nes << 197 fObjectTransformation = objectTransformation << 198 fProcessing2D = true; << 199 } << 200 << 201 void G4VSceneHandler::EndPrimitives2D () { << 202 if (fNestingDepth <= 0) << 203 G4Exception("G4VSceneHandler::EndPrimitive << 204 "visman0104", FatalException, "Nesting err << 205 fNestingDepth--; << 206 if (fReadyForTransients) { << 207 fTransientsDrawnThisEvent = true; << 208 fTransientsDrawnThisRun = true; << 209 } << 210 fProcessing2D = false; << 211 } 118 } 212 119 213 void G4VSceneHandler::BeginModeling () { << 120 void G4VSceneHandler::ClearStore () { >> 121 if (fpViewer) fpViewer -> NeedKernelVisit (); >> 122 // ?? Viewer is supposed to be smart enough to know when to visit >> 123 // kernel, but a problem in OpenGL Stored seems to require a forced >> 124 // kernel visit triggered by the above code. John Allison Aug 2001 214 } 125 } 215 126 216 void G4VSceneHandler::EndModeling () << 127 void G4VSceneHandler::ClearTransientStore () { 217 { << 218 fpModel = 0; << 219 } 128 } 220 129 221 void G4VSceneHandler::ClearStore () {} << 130 void G4VSceneHandler::AddThis (const G4Box& box) { 222 << 131 RequestPrimitives (box); 223 void G4VSceneHandler::ClearTransientStore () { << 132 // If your graphics system is sophisticated enough to handle a 224 << 133 // particular solid shape as a primitive, in your derived class write a 225 template <class T> void G4VSceneHandler::AddSo << 134 // function to override this. (Note: some compilers warn that your 226 (const T& solid) << 135 // function "hides" this one. That's OK.) 227 { << 136 // Your function might look like this... 228 // Get and check applicable vis attributes. << 137 // void G4MyScene::AddThis (const G4Box& box) { 229 fpVisAttribs = fpViewer->GetApplicableVisAtt << 138 // Get parameters of appropriate object, e.g.: 230 RequestPrimitives (solid); << 139 // G4double dx = box.GetXHalfLength (); 231 } << 140 // G4double dy = box.GetYHalfLength (); 232 << 141 // G4double dz = box.GetZHalfLength (); 233 template <class T> void G4VSceneHandler::AddSo << 142 // and Draw or Store in your display List. 234 (const T& solid) << 235 { << 236 // Get and check applicable vis attributes. << 237 fpVisAttribs = fpViewer->GetApplicableVisAtt << 238 // Draw with auxiliary edges unless otherwis << 239 if (!fpVisAttribs->IsForceAuxEdgeVisible()) << 240 // Create a vis atts object for the modifi << 241 // It is static so that we may return a re << 242 static G4VisAttributes visAttsWithAuxEdges << 243 // Initialise it with the current vis atts << 244 visAttsWithAuxEdges = *fpVisAttribs; << 245 // Force auxiliary edges visible. << 246 visAttsWithAuxEdges.SetForceAuxEdgeVisible << 247 fpVisAttribs = &visAttsWithAuxEdges; << 248 } << 249 RequestPrimitives (solid); << 250 } 143 } 251 144 252 void G4VSceneHandler::AddSolid (const G4Box& b << 145 void G4VSceneHandler::AddThis (const G4Tubs& tubs) { 253 AddSolidT (box); << 146 RequestPrimitives (tubs); 254 // If your graphics system is sophisticated << 255 // particular solid shape as a primitive, i << 256 // function to override this. << 257 // Your function might look like this... << 258 // void G4MySceneHandler::AddSolid (const G4 << 259 // Get and check applicable vis attributes. << 260 // fpVisAttribs = fpViewer->GetApplicableV << 261 // Do not draw if not visible. << 262 // if (fpVisAttribs->IsVisible()) { << 263 // Get parameters of appropriate object, e << 264 // G4double dx = box.GetXHalfLength (); << 265 // G4double dy = box.GetYHalfLength (); << 266 // G4double dz = box.GetZHalfLength (); << 267 // ... << 268 // and Draw or Store in your display Lis << 269 } 147 } 270 148 271 void G4VSceneHandler::AddSolid (const G4Cons& << 149 void G4VSceneHandler::AddThis (const G4Cons& cons) { 272 AddSolidT (cons); << 150 RequestPrimitives (cons); 273 } 151 } 274 152 275 void G4VSceneHandler::AddSolid (const G4Orb& o << 153 void G4VSceneHandler::AddThis (const G4Trd& trd) { 276 AddSolidWithAuxiliaryEdges (orb); << 154 RequestPrimitives (trd); 277 } 155 } 278 156 279 void G4VSceneHandler::AddSolid (const G4Para& << 157 void G4VSceneHandler::AddThis (const G4Trap& trap) { 280 AddSolidT (para); << 158 RequestPrimitives (trap); 281 } 159 } 282 160 283 void G4VSceneHandler::AddSolid (const G4Sphere << 161 void G4VSceneHandler::AddThis (const G4Sphere& sphere) { 284 AddSolidWithAuxiliaryEdges (sphere); << 162 RequestPrimitives (sphere ); 285 } 163 } 286 164 287 void G4VSceneHandler::AddSolid (const G4Torus& << 165 void G4VSceneHandler::AddThis (const G4Para& para) { 288 AddSolidWithAuxiliaryEdges (torus); << 166 RequestPrimitives (para); 289 } 167 } 290 168 291 void G4VSceneHandler::AddSolid (const G4Trap& << 169 void G4VSceneHandler::AddThis (const G4Torus& torus) { 292 AddSolidT (trap); << 170 RequestPrimitives (torus); 293 } 171 } 294 172 295 void G4VSceneHandler::AddSolid (const G4Trd& t << 173 void G4VSceneHandler::AddThis (const G4Polycone& polycone) { 296 AddSolidT (trd); << 174 RequestPrimitives (polycone); 297 } 175 } 298 176 299 void G4VSceneHandler::AddSolid (const G4Tubs& << 177 void G4VSceneHandler::AddThis (const G4Polyhedra& polyhedra) { 300 AddSolidT (tubs); << 178 RequestPrimitives (polyhedra); 301 } 179 } 302 180 303 void G4VSceneHandler::AddSolid (const G4Ellips << 181 void G4VSceneHandler::AddThis (const G4VSolid& solid) { 304 AddSolidWithAuxiliaryEdges (ellipsoid); << 182 RequestPrimitives (solid); 305 } 183 } 306 184 307 void G4VSceneHandler::AddSolid (const G4Polyco << 185 void G4VSceneHandler::AddThis (const G4VTrajectory& traj) { 308 AddSolidT (polycone); << 186 >> 187 traj.DrawTrajectory(((G4TrajectoriesModel*)fpModel)->GetDrawingMode()); 309 } 188 } 310 189 311 void G4VSceneHandler::AddSolid (const G4Polyhe << 190 void G4VSceneHandler::AddThis (const G4VHit& hit) { 312 AddSolidT (polyhedra); << 191 ((G4VHit&)hit).Draw(); // Cast to non-const because Draw is non-const!!!! 313 } 192 } 314 193 315 void G4VSceneHandler::AddSolid (const G4Tessel << 194 void G4VSceneHandler::AddViewerToList (G4VViewer* pViewer) { 316 AddSolidT (tess); << 195 fViewerList.push_back (pViewer); 317 } 196 } 318 197 319 void G4VSceneHandler::AddSolid (const G4VSolid << 198 void G4VSceneHandler::EstablishSpecials (G4PhysicalVolumeModel& pvModel) { 320 AddSolidT (solid); << 199 pvModel.DefinePointersToWorkingSpace (&fCurrentDepth, >> 200 &fpCurrentPV, >> 201 &fpCurrentLV); 321 } 202 } 322 203 323 void G4VSceneHandler::AddCompound (const G4VTr << 204 void G4VSceneHandler::BeginModeling () { 324 G4TrajectoriesModel* trajectoriesModel = << 325 dynamic_cast<G4TrajectoriesModel*>(fpModel << 326 if (trajectoriesModel) << 327 traj.DrawTrajectory(); << 328 else { << 329 G4Exception << 330 ("G4VSceneHandler::AddCompound(const G4VTr << 331 "visman0105", FatalException, "Not a G4Tr << 332 } << 333 } 205 } 334 206 335 void G4VSceneHandler::AddCompound (const G4VHi << 207 void G4VSceneHandler::BeginPrimitives 336 // Cast away const because Draw is non-const << 208 (const G4Transform3D& objectTransformation) { 337 const_cast<G4VHit&>(hit).Draw(); << 209 if (!fpModel) G4Exception ("G4VSceneHandler::BeginPrimitives: NO MODEL!!!"); 338 } << 210 fpObjectTransformation = &objectTransformation; 339 << 340 void G4VSceneHandler::AddCompound (const G4VDi << 341 // Cast away const because Draw is non-const << 342 const_cast<G4VDigi&>(digi).Draw(); << 343 } << 344 << 345 void G4VSceneHandler::AddCompound (const G4THi << 346 using MeshScoreMap = G4VScoringMesh::MeshSco << 347 //G4cout << "AddCompound: hits: " << &hits < << 348 G4bool scoreMapHits = false; << 349 G4ScoringManager* scoringManager = G4Scoring << 350 if (scoringManager) { << 351 std::size_t nMeshes = scoringManager->GetN << 352 for (std::size_t iMesh = 0; iMesh < nMeshe << 353 G4VScoringMesh* mesh = scoringManager->G << 354 if (mesh && mesh->IsActive()) { << 355 MeshScoreMap scoreMap = mesh->GetScoreMap(); << 356 const G4String& mapNam = const_cast<G4 << 357 for(MeshScoreMap::const_iterator i = scoreMa << 358 i != scoreMap.cend(); ++i) { << 359 const G4String& scoreMapName = i->first; << 360 if (scoreMapName == mapNam) { << 361 G4DefaultLinearColorMap colorMap("G4VSce << 362 scoreMapHits = true; << 363 mesh->DrawMesh(scoreMapName, &colorMap); << 364 } << 365 } << 366 } << 367 } << 368 } << 369 if (scoreMapHits) { << 370 static G4bool first = true; << 371 if (first) { << 372 first = false; << 373 G4cout << << 374 "Scoring map drawn with default parameters." << 375 "\n To get gMocren file for gMocren browser << 376 "\n /vis/open gMocrenFile" << 377 "\n /vis/viewer/flush" << 378 "\n Many other options available with /scor << 379 "\n You might want to \"/vis/viewer/set/aut << 380 << G4endl; << 381 } << 382 } else { // Not score map hits. Just call << 383 // Cast away const because DrawAllHits is << 384 const_cast<G4THitsMap<G4double>&>(hits).Dr << 385 } << 386 } 211 } 387 212 388 void G4VSceneHandler::AddCompound (const G4THi << 213 void G4VSceneHandler::EndPrimitives () {} 389 using MeshScoreMap = G4VScoringMesh::MeshSco << 390 //G4cout << "AddCompound: hits: " << &hits < << 391 G4bool scoreMapHits = false; << 392 G4ScoringManager* scoringManager = G4Scoring << 393 if (scoringManager) { << 394 std::size_t nMeshes = scoringManager->GetN << 395 for (std::size_t iMesh = 0; iMesh < nMeshe << 396 G4VScoringMesh* mesh = scoringManager->G << 397 if (mesh && mesh->IsActive()) { << 398 MeshScoreMap scoreMap = mesh->GetScoreMap(); << 399 for(MeshScoreMap::const_iterator i = scoreMa << 400 i != scoreMap.cend(); ++i) { << 401 const G4String& scoreMapName = i->first; << 402 const G4THitsMap<G4StatDouble>* foundHits << 403 if (foundHits == &hits) { << 404 G4DefaultLinearColorMap colorMap("G4VSce << 405 scoreMapHits = true; << 406 mesh->DrawMesh(scoreMapName, &colorMap); << 407 } << 408 } << 409 } << 410 } << 411 } << 412 if (scoreMapHits) { << 413 static G4bool first = true; << 414 if (first) { << 415 first = false; << 416 G4cout << << 417 "Scoring map drawn with default parameters." << 418 "\n To get gMocren file for gMocren browser << 419 "\n /vis/open gMocrenFile" << 420 "\n /vis/viewer/flush" << 421 "\n Many other options available with /scor << 422 "\n You might want to \"/vis/viewer/set/aut << 423 << G4endl; << 424 } << 425 } else { // Not score map hits. Just call << 426 // Cast away const because DrawAllHits is << 427 const_cast<G4THitsMap<G4StatDouble>&>(hits << 428 } << 429 } << 430 214 431 void G4VSceneHandler::AddCompound(const G4Mesh << 215 void G4VSceneHandler::AddPrimitive (const G4Scale& scale) { 432 { << 433 G4warn << << 434 "There has been an attempt to draw a mesh wi << 435 << fpViewer->GetViewParameters().GetSpecialM << 436 << "\":\n" << mesh << 437 << "but it is not of a recognised type or is << 438 "\nby the current graphics driver. Instead w << 439 "\ncontainer \"" << mesh.GetContainerVolume( << 440 << G4endl; << 441 const auto& pv = mesh.GetContainerVolume(); << 442 const auto& lv = pv->GetLogicalVolume(); << 443 const auto& solid = lv->GetSolid(); << 444 const auto& transform = mesh.GetTransform(); << 445 // Make sure container is visible << 446 G4VisAttributes tmpVisAtts; // Visible, whi << 447 const auto& saveVisAtts = lv->GetVisAttribut << 448 if (saveVisAtts) { << 449 tmpVisAtts = *saveVisAtts; << 450 tmpVisAtts.SetVisibility(true); << 451 auto colour = saveVisAtts->GetColour(); << 452 colour.SetAlpha(1.); << 453 tmpVisAtts.SetColour(colour); << 454 } << 455 // Draw container << 456 PreAddSolid(transform,tmpVisAtts); << 457 solid->DescribeYourselfTo(*this); << 458 PostAddSolid(); << 459 // Restore vis attributes << 460 lv->SetVisAttributes(saveVisAtts); << 461 } << 462 216 463 void G4VSceneHandler::AddViewerToList (G4VView << 217 const G4double margin(0.01); 464 fViewerList.push_back (pViewer); << 218 // Fractional margin - ensures scale is comfortably inside viewing >> 219 // volume. >> 220 const G4double oneMinusMargin (1. - margin); >> 221 >> 222 const G4VisExtent& sceneExtent = fpScene->GetExtent(); >> 223 >> 224 // Useful constants... >> 225 const G4double length(scale.GetLength()); >> 226 const G4double halfLength(length / 2.); >> 227 const G4double tickLength(length / 20.); >> 228 const G4double piBy2(M_PI / 2.); >> 229 >> 230 // Get size of scene... >> 231 const G4double xmin = sceneExtent.GetXmin(); >> 232 const G4double xmax = sceneExtent.GetXmax(); >> 233 const G4double ymin = sceneExtent.GetYmin(); >> 234 const G4double ymax = sceneExtent.GetYmax(); >> 235 const G4double zmin = sceneExtent.GetZmin(); >> 236 const G4double zmax = sceneExtent.GetZmax(); >> 237 >> 238 // Create (empty) polylines having the same vis attributes... >> 239 G4Polyline scaleLine, tick11, tick12, tick21, tick22; >> 240 G4VisAttributes visAtts(*scale.GetVisAttributes()); // Long enough life. >> 241 scaleLine.SetVisAttributes(&visAtts); >> 242 tick11.SetVisAttributes(&visAtts); >> 243 tick12.SetVisAttributes(&visAtts); >> 244 tick21.SetVisAttributes(&visAtts); >> 245 tick22.SetVisAttributes(&visAtts); >> 246 >> 247 // Add points to the polylines to represent an scale parallel to the >> 248 // x-axis centred on the origin... >> 249 G4Point3D r1(G4Point3D(-halfLength, 0., 0.)); >> 250 G4Point3D r2(G4Point3D( halfLength, 0., 0.)); >> 251 scaleLine.push_back(r1); >> 252 scaleLine.push_back(r2); >> 253 G4Point3D ticky(0., tickLength, 0.); >> 254 G4Point3D tickz(0., 0., tickLength); >> 255 tick11.push_back(r1 + ticky); >> 256 tick11.push_back(r1 - ticky); >> 257 tick12.push_back(r1 + tickz); >> 258 tick12.push_back(r1 - tickz); >> 259 tick21.push_back(r2 + ticky); >> 260 tick21.push_back(r2 - ticky); >> 261 tick22.push_back(r2 + tickz); >> 262 tick22.push_back(r2 - tickz); >> 263 G4Point3D textPosition(0., tickLength, 0.); >> 264 >> 265 // Transform appropriately... >> 266 >> 267 G4Transform3D rotation; >> 268 switch (scale.GetDirection()) { >> 269 case G4Scale::x: >> 270 break; >> 271 case G4Scale::y: >> 272 rotation = G4RotateZ3D(piBy2); >> 273 break; >> 274 case G4Scale::z: >> 275 rotation = G4RotateY3D(piBy2); >> 276 break; >> 277 } >> 278 >> 279 G4double sxmid(scale.GetXmid()); >> 280 G4double symid(scale.GetYmid()); >> 281 G4double szmid(scale.GetZmid()); >> 282 if (scale.GetAutoPlacing()) { >> 283 sxmid = xmin + oneMinusMargin * (xmax - xmin); >> 284 symid = ymin + margin * (ymax - ymin); >> 285 szmid = zmin + oneMinusMargin * (zmax - zmin); >> 286 switch (scale.GetDirection()) { >> 287 case G4Scale::x: >> 288 sxmid -= halfLength; >> 289 break; >> 290 case G4Scale::y: >> 291 symid += halfLength; >> 292 break; >> 293 case G4Scale::z: >> 294 szmid -= halfLength; >> 295 break; >> 296 } >> 297 } >> 298 >> 299 G4Translate3D translation(sxmid, symid, szmid); >> 300 >> 301 G4Transform3D transformation(translation * rotation); >> 302 >> 303 // Draw... >> 304 // We would like to call BeginPrimitives(transformation) here but >> 305 // calling BeginPrimitives from within an AddPrimitive is not >> 306 // allowed! So we have to do our own transformation... >> 307 AddPrimitive(scaleLine.transform(transformation)); >> 308 AddPrimitive(tick11.transform(transformation)); >> 309 AddPrimitive(tick12.transform(transformation)); >> 310 AddPrimitive(tick21.transform(transformation)); >> 311 AddPrimitive(tick22.transform(transformation)); >> 312 G4Text text(scale.GetAnnotation(),textPosition.transform(transformation)); >> 313 text.SetScreenSize(24.); >> 314 AddPrimitive(text); 465 } 315 } 466 316 467 void G4VSceneHandler::AddPrimitive (const G4Po 317 void G4VSceneHandler::AddPrimitive (const G4Polymarker& polymarker) { 468 switch (polymarker.GetMarkerType()) { 318 switch (polymarker.GetMarkerType()) { 469 default: << 319 default: 470 case G4Polymarker::dots: << 320 case G4Polymarker::line: 471 { 321 { 472 G4Circle dot (polymarker); << 322 G4Polyline polyline (polymarker); 473 dot.SetWorldSize (0.); << 323 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 474 dot.SetScreenSize (0.1); // Very small << 324 polyline.push_back (polymarker[iPoint]); 475 for (std::size_t iPoint = 0; iPoint < po << 325 } >> 326 AddPrimitive (polyline); >> 327 } >> 328 break; >> 329 case G4Polymarker::dots: >> 330 { >> 331 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { >> 332 G4Circle dot (polymarker); 476 dot.SetPosition (polymarker[iPoint]); 333 dot.SetPosition (polymarker[iPoint]); 477 AddPrimitive (dot); << 334 dot.SetWorldSize (0.); >> 335 dot.SetScreenSize (0.1); // Very small circle. >> 336 AddPrimitive (dot); 478 } 337 } 479 } 338 } 480 break; << 339 break; 481 case G4Polymarker::circles: << 340 case G4Polymarker::circles: 482 { 341 { 483 G4Circle circle (polymarker); // Defaul << 342 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 484 for (std::size_t iPoint = 0; iPoint < po << 343 G4Circle circle (polymarker); 485 circle.SetPosition (polymarker[iPoint] << 344 circle.SetPosition (polymarker[iPoint]); 486 AddPrimitive (circle); << 345 AddPrimitive (circle); 487 } 346 } 488 } 347 } 489 break; << 348 break; 490 case G4Polymarker::squares: << 349 case G4Polymarker::squares: 491 { 350 { 492 G4Square square (polymarker); // Defaul << 351 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 493 for (std::size_t iPoint = 0; iPoint < po << 352 G4Square Square (polymarker); 494 square.SetPosition (polymarker[iPoint] << 353 Square.SetPosition (polymarker[iPoint]); 495 AddPrimitive (square); << 354 AddPrimitive (Square); 496 } 355 } 497 } 356 } 498 break; << 357 break; 499 } 358 } 500 } 359 } 501 360 502 void G4VSceneHandler::RemoveViewerFromList (G4 361 void G4VSceneHandler::RemoveViewerFromList (G4VViewer* pViewer) { 503 fViewerList.remove(pViewer); // Does nothin << 362 fViewerList.remove(pViewer); 504 // And reset current viewer << 505 auto visManager = G4VisManager::GetInstance( << 506 visManager->SetCurrentViewer(nullptr); << 507 } << 508 << 509 << 510 void G4VSceneHandler::AddPrimitive (const G4Pl << 511 G4warn << "WARNING: Plotter not implemented << 512 G4warn << " Open a plotter-aware graphics s << 513 G4warn << " /vis/scene/removeModel Plotter" << 514 } 363 } 515 364 516 void G4VSceneHandler::SetScene (G4Scene* pScen 365 void G4VSceneHandler::SetScene (G4Scene* pScene) { 517 fpScene = pScene; 366 fpScene = pScene; 518 // Notify all viewers that a kernel visit is 367 // Notify all viewers that a kernel visit is required. 519 G4ViewerListIterator i; 368 G4ViewerListIterator i; 520 for (i = fViewerList.begin(); i != fViewerLi 369 for (i = fViewerList.begin(); i != fViewerList.end(); i++) { 521 (*i) -> SetNeedKernelVisit (true); << 370 (*i) -> SetNeedKernelVisit (); 522 } 371 } 523 } 372 } 524 373 525 void G4VSceneHandler::RequestPrimitives (const << 374 void G4VSceneHandler::RequestPrimitives (const G4VSolid& solid) { 526 { << 375 if (!fpModel) 527 // Sometimes solids that have no substance g << 376 G4Exception ("G4VSceneHandler::RequestPrimitives: NO MODEL!!!"); 528 // be part of the geometry tree but have bee << 377 G4Polyhedron* pPolyhedron; 529 // example by a Boolean subtraction in which << 378 G4NURBS* pNURBS; 530 // is entirely inside the subtractor or an i << 379 BeginPrimitives (*fpObjectTransformation); 531 // the original volume is entirely outside t << 380 switch (fpModel -> GetModelingParameters () -> GetRepStyle ()) { 532 // The problem is that the Boolean Processor << 381 case G4ModelingParameters::nurbs: 533 // polyhedron in these cases (IMHO it should << 382 pNURBS = solid.CreateNURBS (); 534 // workaround is to return before the damage << 383 if (pNURBS) { 535 // Algorithm by Evgueni Tcherniaev << 384 pNURBS -> SetVisAttributes 536 auto pSolid = &solid; << 385 (fpViewer -> GetApplicableVisAttributes (fpVisAttribs)); 537 auto pBooleanSolid = dynamic_cast<const G4Bo << 386 AddPrimitive (*pNURBS); 538 if (pBooleanSolid) { << 387 delete pNURBS; 539 G4ThreeVector bmin, bmax; << 388 break; 540 pBooleanSolid->BoundingLimits(bmin, bmax); << 389 } 541 G4bool isGood = false; << 390 else { 542 if (dynamic_cast<const G4SubtractionSolid* << 391 G4VisManager::Verbosity verbosity = 543 auto ptrB = pBooleanSolid->GetConstituen << 392 G4VisManager::GetInstance()->GetVerbosity(); 544 for (G4int i=0; i<10; ++i) { << 393 if (verbosity >= G4VisManager::errors) { 545 G4double x = bmin.x() + (bmax.x() - bm << 394 G4cout << 546 G4double y = bmin.y() + (bmax.y() - bm << 395 "ERROR: G4VSceneHandler::RequestPrimitives" 547 G4double z = bmin.z() + (bmax.z() - bm << 396 "\n NURBS not available for " 548 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 397 << solid.GetName () << G4endl; 549 if (ptrB->Inside(G4ThreeVector(x,y,bma << 398 G4cout << "Trying polyhedron." << G4endl; 550 if (ptrB->Inside(G4ThreeVector(x,bmin. << 399 } 551 if (ptrB->Inside(G4ThreeVector(x,bmax. << 400 } 552 if (ptrB->Inside(G4ThreeVector(bmin.x( << 401 // Dropping through to polyhedron... 553 if (ptrB->Inside(G4ThreeVector(bmax.x( << 402 case G4ModelingParameters::polyhedron: 554 } << 403 default: 555 } else if (dynamic_cast<const G4Intersecti << 404 G4Polyhedron::SetNumberOfRotationSteps 556 auto ptrB = pBooleanSolid->GetConstituen << 405 (fpModel -> GetModelingParameters () -> GetNoOfSides ()); 557 for (G4int i=0; i<10; ++i) { << 406 pPolyhedron = solid.CreatePolyhedron (); 558 G4double x = bmin.x() + (bmax.x() - bm << 407 G4Polyhedron::ResetNumberOfRotationSteps (); 559 G4double y = bmin.y() + (bmax.y() - bm << 408 if (pPolyhedron) { 560 G4double z = bmin.z() + (bmax.z() - bm << 409 pPolyhedron -> SetVisAttributes 561 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 410 (fpViewer -> GetApplicableVisAttributes (fpVisAttribs)); 562 if (ptrB->Inside(G4ThreeVector(x,y,bma << 411 AddPrimitive (*pPolyhedron); 563 if (ptrB->Inside(G4ThreeVector(x,bmin. << 412 delete pPolyhedron; 564 if (ptrB->Inside(G4ThreeVector(x,bmax. << 413 } 565 if (ptrB->Inside(G4ThreeVector(bmin.x( << 414 else { 566 if (ptrB->Inside(G4ThreeVector(bmax.x( << 415 G4VisManager::Verbosity verbosity = 567 } << 416 G4VisManager::GetInstance()->GetVerbosity(); 568 } << 417 if (verbosity >= G4VisManager::errors) { 569 if (!isGood) << 418 G4cout << 570 { << 419 "ERROR: G4VSceneHandler::RequestPrimitives" 571 for (G4int i=0; i<10000; ++i) { << 420 "\n Polyhedron not available for " << solid.GetName () << 572 G4double x = bmin.x() + (bmax.x() - bm << 421 ".\nThis means it cannot be visualized on most systems." 573 G4double y = bmin.y() + (bmax.y() - bm << 422 "\nContact the Visualization Coordinator." << G4endl; 574 G4double z = bmin.z() + (bmax.z() - bm << 575 if (pBooleanSolid->Inside(G4ThreeVecto << 576 } << 577 } << 578 if (!isGood) return; << 579 } << 580 << 581 const G4ViewParameters::DrawingStyle style = << 582 const G4ViewParameters& vp = fpViewer->GetVi << 583 << 584 switch (style) { << 585 default: << 586 case G4ViewParameters::wireframe: << 587 case G4ViewParameters::hlr: << 588 case G4ViewParameters::hsr: << 589 case G4ViewParameters::hlhsr: << 590 { << 591 // Use polyhedral representation << 592 G4Polyhedron::SetNumberOfRotationSteps ( << 593 G4Polyhedron* pPolyhedron = solid.GetPol << 594 G4Polyhedron::ResetNumberOfRotationSteps << 595 if (pPolyhedron) { << 596 pPolyhedron -> SetVisAttributes (fpVis << 597 BeginPrimitives (fObjectTransformation << 598 AddPrimitive (*pPolyhedron); << 599 EndPrimitives (); << 600 break; << 601 } else { // Print warnings and drop thr << 602 G4VisManager::Verbosity verbosity = G4 << 603 auto pPVModel = dynamic_cast<G4Physica << 604 if (pPVModel) { << 605 auto problematicVolume = pPVModel->G << 606 if (fProblematicVolumes.find(problem << 607 fProblematicVolumes[problematicVol << 608 if (verbosity >= G4VisManager::err << 609 G4warn << << 610 "ERROR: G4VSceneHandler::Request << 611 "\n Polyhedron not available fo << 612 G4warn << "\n Touchable path: " << 613 static G4bool explanation = fals << 614 if (!explanation) { << 615 explanation = true; << 616 G4warn << << 617 "\n This means it cannot be v << 618 "\n 1) The solid may not have << 619 "\n 2) For Boolean solids, th << 620 "\n the resultant polyhedr << 621 "\n Try RayTracer. It uses Ge << 622 } << 623 } << 624 G4warn << "\n Drawing solid with << 625 G4warn << G4endl; << 626 } << 627 } << 628 } << 629 } << 630 [[fallthrough]]; << 631 << 632 case G4ViewParameters::cloud: << 633 { << 634 // Form solid out of cloud of dots on su << 635 G4Polymarker dots; << 636 // Note: OpenGL has a fast implementatio << 637 // to build a polymarker rather than add << 638 // And anyway, in Qt, in the latter case << 639 // entry, something we would want to avo << 640 dots.SetVisAttributes(fpVisAttribs); << 641 dots.SetMarkerType(G4Polymarker::dots); << 642 dots.SetSize(G4VMarker::screen,1.); << 643 G4int numberOfCloudPoints = GetNumberOfC << 644 if (numberOfCloudPoints <= 0) numberOfCl << 645 for (G4int i = 0; i < numberOfCloudPoint << 646 G4ThreeVector p = solid.GetPointOnSurface(); << 647 dots.push_back(p); << 648 } 423 } 649 BeginPrimitives (fObjectTransformation); << 650 AddPrimitive(dots); << 651 EndPrimitives (); << 652 break; << 653 } 424 } >> 425 break; 654 } 426 } >> 427 EndPrimitives (); 655 } 428 } 656 429 657 //namespace { << 430 void G4VSceneHandler::ProcessScene (G4VViewer&) { 658 // void DrawExtent(const G4VModel* pModel) << 659 // { << 660 // // Show extent boxes - debug only, OGLSX << 661 // if (pModel->GetExtent() != G4VisExtent:: << 662 // const auto& extent = pModel->GetExtent << 663 // const auto& centre = extent.GetExtentC << 664 // const auto& position = G4Translate3D(c << 665 // const auto& dx = (extent.GetXmax()-ext << 666 // const auto& dy = (extent.GetYmax()-ext << 667 // const auto& dz = (extent.GetZmax()-ext << 668 // auto visAtts = G4VisAttributes(); << 669 // visAtts.SetForceWireframe(); << 670 // G4Box extentBox("Extent",dx,dy,dz); << 671 // G4VisManager::GetInstance()->Draw(exte << 672 // } << 673 // } << 674 //} << 675 << 676 void G4VSceneHandler::ProcessScene() << 677 { << 678 // Assumes graphics database store has alrea << 679 // relevant for the particular scene handler << 680 << 681 if(!fpScene) << 682 return; << 683 << 684 if(fpScene->GetExtent() == G4VisExtent::GetN << 685 { << 686 G4Exception("G4VSceneHandler::ProcessScene << 687 "The scene has no extent."); << 688 } << 689 << 690 G4VisManager* visManager = G4VisManager::Get << 691 << 692 if(!visManager->GetConcreteInstance()) << 693 return; << 694 << 695 G4VisManager::Verbosity verbosity = visManag << 696 431 697 fReadyForTransients = false; 432 fReadyForTransients = false; 698 433 699 // Reset fMarkForClearingTransientStore. (Le << 434 // Clear stored scene, if any, i.e., display lists, scene graphs. 700 // fMarkForClearingTransientStore true cause << 435 ClearStore (); 701 // recomputing transients below.) Restore i << 702 G4bool tmpMarkForClearingTransientStore = fM << 703 fMarkForClearingTransientStore = fa << 704 436 705 // Traverse geometry tree and send drawing p 437 // Traverse geometry tree and send drawing primitives to window(s). 706 438 707 const std::vector<G4Scene::Model>& runDurati << 439 const std::vector<G4VModel*>& runDurationModelList = 708 fpScene->GetRunDurationModelList(); << 440 fpScene -> GetRunDurationModelList (); 709 441 710 if(runDurationModelList.size()) { << 442 if (runDurationModelList.size ()) { 711 if(verbosity >= G4VisManager::confirmation << 443 G4VisManager::Verbosity verbosity = >> 444 G4VisManager::GetInstance()->GetVerbosity(); >> 445 if (verbosity >= G4VisManager::confirmations) { 712 G4cout << "Traversing scene data..." << 446 G4cout << "Traversing scene data..." << G4endl; 713 static G4int first = true; << 714 if (first) { << 715 first = false; << 716 G4cout << << 717 "(This could happen more than once - i << 718 "\nper rebuild, for opaque, transparen << 719 << G4endl; << 720 } << 721 } 447 } 722 << 448 BeginModeling (); 723 // Reset visibility of all objects to fals << 449 G4ModelingParameters* pMP = CreateModelingParameters (); 724 fpViewer->AccessSceneTree().ResetVisibilit << 450 for (size_t i = 0; i < runDurationModelList.size (); i++) { 725 << 451 G4VModel* pModel = runDurationModelList[i]; 726 BeginModeling(); << 452 const G4ModelingParameters* tempMP = 727 << 453 pModel -> GetModelingParameters (); 728 // Create modeling parameters from view pa << 454 // NOTE THAT pModel->GetModelingParameters() COULD BE ZERO. 729 G4ModelingParameters* pMP = CreateModeling << 455 // (Not sure the above is necessary; but in future we might 730 << 456 // want to take notice of the modeling parameters with which 731 for(std::size_t i = 0; i < runDurationMode << 457 // the model was created. For the time being we are ignoring 732 if(runDurationModelList[i].fActive) { << 458 // them and simply using the view parameters. When the time 733 fpModel = runDurationModelList[i].fpMo << 459 // comes to do this, then perhaps there should be a default 734 fpModel->SetModelingParameters(pMP); << 460 // set of modeling parameters in the view parameters for the 735 << 461 // case of a zero modeling parameters pointer.) 736 // Describe to the current scene handl << 462 // (I think for the G4 Vis System we'll rely on view parameters 737 fpModel->DescribeYourselfTo(*this); << 463 // and convert using pMP = CreateModelingParameters () as above.) 738 << 464 pModel -> SetModelingParameters (pMP); 739 // To see the extents of each model re << 465 SetModel (pModel); // Store for use by derived class. 740 // uncomment the next line and DrawExt << 466 pModel -> DescribeYourselfTo (*this); 741 // DrawExtent(fpModel); << 467 pModel -> SetModelingParameters (tempMP); 742 << 743 // Enter models in the scene tree. The << 744 // the model to the scene tree, i.e., << 745 fpViewer->InsertModelInSceneTree(fpMod << 746 auto pPVModel = dynamic_cast<G4Physica << 747 if (pPVModel) { << 748 G4VViewer::SceneTreeScene sceneTreeS << 749 fpModel->DescribeYourselfTo(sceneTre << 750 } << 751 << 752 // Reset modeling parameters pointer << 753 fpModel->SetModelingParameters(0); << 754 } << 755 } 468 } 756 << 757 fpModel = 0; << 758 delete pMP; 469 delete pMP; 759 << 470 SetModel (0); // Flags invalid model. 760 EndModeling(); << 471 EndModeling (); 761 } 472 } 762 << 473 else { 763 // Some printing << 474 G4VisManager::Verbosity verbosity = 764 if(verbosity >= G4VisManager::confirmations) << 475 G4VisManager::GetInstance()->GetVerbosity(); 765 for (const auto& model: runDurationModelLi << 476 if (verbosity >= G4VisManager::errors) { 766 if (model.fActive) { << 477 G4cout << 767 auto pvModel = dynamic_cast<G4Physical << 478 "ERROR: G4VSceneHandler::ProcessScene:" 768 if (pvModel) { << 479 "\n No run-duration models in scene data." << G4endl; 769 G4int nTouchables = 0; << 770 G4cout << "Numbers of touchables by << 771 << pvModel->GetGlobalDescription() < << 772 for (const auto& dn : pvModel->GetNu << 773 G4cout << "\n Depth " << dn.first << 774 nTouchables += dn.second; << 775 } << 776 G4cout << "\n Total number of touch << 777 } << 778 } << 779 } << 780 << 781 if (fProblematicVolumes.size() > 0) { << 782 G4cout << "Problematic volumes:"; << 783 for (const auto& prob: fProblematicVolum << 784 G4cout << "\n " << prob.first->GetNam << 785 } << 786 G4cout << G4endl; << 787 } 480 } 788 } 481 } 789 482 790 fReadyForTransients = true; 483 fReadyForTransients = true; 791 << 792 // Refresh event from end-of-event model lis << 793 // Allow only in Idle or GeomClosed state... << 794 G4StateManager* stateManager = G4StateManage << 795 G4ApplicationState state = stateManager- << 796 if(state == G4State_Idle || state == G4State << 797 { << 798 visManager->SetEventRefreshing(true); << 799 << 800 if(visManager->GetRequestedEvent()) << 801 { << 802 DrawEvent(visManager->GetRequestedEvent( << 803 } << 804 else << 805 { << 806 G4RunManager* runManager = G4RunManagerF << 807 if(runManager) << 808 { << 809 const G4Run* run = runManager->GetCurr << 810 // Draw a null event in order to pick << 811 if (run == nullptr) DrawEvent(0); << 812 const std::vector<const G4Event*>* eve << 813 run ? run->GetEventVector() : 0; << 814 std::size_t nKeptEvents = 0; << 815 if(events) << 816 nKeptEvents = events->size(); << 817 if(nKeptEvents) << 818 { << 819 if(fpScene->GetRefreshAtEndOfEvent() << 820 { << 821 if(verbosity >= G4VisManager::conf << 822 { << 823 G4cout << "Refreshing event..." << 824 } << 825 const G4Event* event = 0; << 826 if(events && events->size()) << 827 event = events->back(); << 828 if(event) << 829 DrawEvent(event); << 830 } << 831 else << 832 { // Accumulating events. << 833 << 834 if(verbosity >= G4VisManager::conf << 835 { << 836 G4cout << "Refreshing events in << 837 } << 838 for(const auto& event : *events) << 839 { << 840 if(event) << 841 DrawEvent(event); << 842 } << 843 << 844 if(!fpScene->GetRefreshAtEndOfRun( << 845 { << 846 if(verbosity >= G4VisManager::wa << 847 { << 848 G4warn << "WARNING: Cannot ref << 849 "\n than one runs. << 850 << G4endl; << 851 } << 852 } << 853 } << 854 } << 855 } << 856 } << 857 visManager->SetEventRefreshing(false); << 858 } << 859 << 860 // Refresh end-of-run model list. << 861 // Allow only in Idle or GeomClosed state... << 862 if(state == G4State_Idle || state == G4State << 863 { << 864 DrawEndOfRunModels(); << 865 } << 866 << 867 fMarkForClearingTransientStore = tmpMarkForC << 868 } << 869 << 870 void G4VSceneHandler::DrawEvent(const G4Event* << 871 { << 872 if(!fpViewer->ReadyToDraw()) return; << 873 const std::vector<G4Scene::Model>& EOEModelL << 874 fpScene -> GetEndOfEventModelList (); << 875 std::size_t nModels = EOEModelList.size(); << 876 if (nModels) { << 877 G4ModelingParameters* pMP = CreateModeling << 878 pMP->SetEvent(event); << 879 for (std::size_t i = 0; i < nModels; ++i) << 880 if (EOEModelList[i].fActive) { << 881 fpModel = EOEModelList[i].fpModel; << 882 fpModel -> SetModelingParameters(pMP); << 883 << 884 // Describe to the current scene handl << 885 fpModel -> DescribeYourselfTo (*this); << 886 << 887 // Enter models in the scene tree << 888 fpViewer->InsertModelInSceneTree(fpMod << 889 << 890 // Reset modeling parameters pointer << 891 fpModel -> SetModelingParameters(0); << 892 } << 893 } << 894 fpModel = 0; << 895 delete pMP; << 896 } << 897 } << 898 << 899 void G4VSceneHandler::DrawEndOfRunModels() << 900 { << 901 if(!fpViewer->ReadyToDraw()) return; << 902 const std::vector<G4Scene::Model>& EORModelL << 903 fpScene -> GetEndOfRunModelList (); << 904 std::size_t nModels = EORModelList.size(); << 905 if (nModels) { << 906 G4ModelingParameters* pMP = CreateModeling << 907 pMP->SetEvent(0); << 908 for (std::size_t i = 0; i < nModels; ++i) << 909 if (EORModelList[i].fActive) { << 910 fpModel = EORModelList[i].fpModel; << 911 fpModel -> SetModelingParameters(pMP); << 912 << 913 // Describe to the current scene handl << 914 fpModel -> DescribeYourselfTo (*this); << 915 << 916 // Enter models in the scene tree << 917 fpViewer->InsertModelInSceneTree(fpMod << 918 << 919 // Reset modeling parameters pointer << 920 fpModel -> SetModelingParameters(0); << 921 } << 922 } << 923 fpModel = 0; << 924 delete pMP; << 925 } << 926 } 484 } 927 485 928 G4ModelingParameters* G4VSceneHandler::CreateM << 486 G4ModelingParameters* G4VSceneHandler::CreateModelingParameters () { 929 { << 930 // Create modeling parameters from View Para 487 // Create modeling parameters from View Parameters... 931 if (!fpViewer) return NULL; << 932 << 933 const G4ViewParameters& vp = fpViewer -> Get 488 const G4ViewParameters& vp = fpViewer -> GetViewParameters (); 934 << 489 // Convert rep styles... 935 // Convert drawing styles... << 490 G4ModelingParameters::RepStyle modelRepStyle = 936 G4ModelingParameters::DrawingStyle modelDraw << 491 G4ModelingParameters::wireframe; 937 G4ModelingParameters::wf; << 492 if (vp.GetDrawingStyle () != G4ViewParameters::wireframe) { 938 switch (vp.GetDrawingStyle ()) { << 493 switch (vp.GetRepStyle ()) { 939 default: 494 default: 940 case G4ViewParameters::wireframe: << 495 case G4ViewParameters::polyhedron: 941 modelDrawingStyle = G4ModelingParameters << 496 modelRepStyle = G4ModelingParameters::polyhedron; 942 break; << 943 case G4ViewParameters::hlr: << 944 modelDrawingStyle = G4ModelingParameters << 945 break; << 946 case G4ViewParameters::hsr: << 947 modelDrawingStyle = G4ModelingParameters << 948 break; 497 break; 949 case G4ViewParameters::hlhsr: << 498 case G4ViewParameters::nurbs: 950 modelDrawingStyle = G4ModelingParameters << 499 modelRepStyle = G4ModelingParameters::nurbs; 951 break; << 952 case G4ViewParameters::cloud: << 953 modelDrawingStyle = G4ModelingParameters << 954 break; 500 break; >> 501 } 955 } 502 } 956 503 957 // Decide if covered daughters are really to 504 // Decide if covered daughters are really to be culled... 958 G4bool reallyCullCovered = 505 G4bool reallyCullCovered = 959 vp.IsCullingCovered() // Culling daughte 506 vp.IsCullingCovered() // Culling daughters depends also on... 960 && !vp.IsSection () // Sections (DCUT) 507 && !vp.IsSection () // Sections (DCUT) not requested. 961 && !vp.IsCutaway () // Cutaways not re 508 && !vp.IsCutaway () // Cutaways not requested. 962 ; << 509 && ( // Surface drawing in operation. >> 510 vp.GetDrawingStyle () == G4ViewParameters::hsr || >> 511 vp.GetDrawingStyle () == G4ViewParameters::hlhsr >> 512 ); 963 513 964 G4ModelingParameters* pModelingParams = new 514 G4ModelingParameters* pModelingParams = new G4ModelingParameters 965 (vp.GetDefaultVisAttributes (), 515 (vp.GetDefaultVisAttributes (), 966 modelDrawingStyle, << 516 modelRepStyle, 967 vp.IsCulling (), 517 vp.IsCulling (), 968 vp.IsCullingInvisible (), 518 vp.IsCullingInvisible (), 969 vp.IsDensityCulling (), 519 vp.IsDensityCulling (), 970 vp.GetVisibleDensity (), 520 vp.GetVisibleDensity (), 971 reallyCullCovered, 521 reallyCullCovered, 972 vp.GetNoOfSides () << 522 vp.GetNoOfSides (), >> 523 vp.IsViewGeom (), >> 524 vp.IsViewHits (), >> 525 vp.IsViewDigis () 973 ); 526 ); 974 527 975 pModelingParams->SetNumberOfCloudPoints(vp.G << 976 pModelingParams->SetWarning << 977 (G4VisManager::GetVerbosity() >= G4VisMana << 978 << 979 pModelingParams->SetCBDAlgorithmNumber(vp.Ge << 980 pModelingParams->SetCBDParameters(vp.GetCBDP << 981 << 982 pModelingParams->SetExplodeFactor(vp.GetExpl << 983 pModelingParams->SetExplodeCentre(vp.GetExpl << 984 << 985 pModelingParams->SetSectionSolid(CreateSecti << 986 << 987 if (vp.GetCutawayMode() == G4ViewParameters: << 988 pModelingParams->SetCutawayMode(G4Modeling << 989 } else if (vp.GetCutawayMode() == G4ViewPara << 990 pModelingParams->SetCutawayMode(G4Modeling << 991 } << 992 << 993 pModelingParams->SetCutawaySolid(CreateCutaw << 994 // The polyhedron objects are deleted in the << 995 << 996 pModelingParams->SetVisAttributesModifiers(v << 997 << 998 pModelingParams->SetSpecialMeshRendering(vp. << 999 pModelingParams->SetSpecialMeshVolumes(vp.Ge << 1000 << 1001 return pModelingParams; 528 return pModelingParams; 1002 } 529 } 1003 530 1004 G4DisplacedSolid* G4VSceneHandler::CreateSect << 1005 { << 1006 G4DisplacedSolid* sectioner = 0; << 1007 << 1008 const G4ViewParameters& vp = fpViewer->GetV << 1009 if (vp.IsSection () ) { << 1010 << 1011 G4double radius = fpScene->GetExtent().Ge << 1012 G4double safe = radius + fpScene->GetExte << 1013 G4VSolid* sectionBox = << 1014 new G4Box("_sectioner", safe, safe, 1.e << 1015 << 1016 const G4Plane3D& sp = vp.GetSectionPlane << 1017 G4ThreeVector normal = sp.normal(); << 1018 G4Transform3D requiredTransform = G4Trans << 1019 G4Rotate3D(G4ThreeVector(0,0,1), G4ThreeV << 1020 << 1021 sectioner = new G4DisplacedSolid << 1022 ("_displaced_sectioning_box", sectionBox, << 1023 } << 1024 << 1025 return sectioner; << 1026 } << 1027 << 1028 G4DisplacedSolid* G4VSceneHandler::CreateCuta << 1029 { << 1030 const auto& vp = fpViewer->GetViewParameter << 1031 const auto& nPlanes = vp.GetCutawayPlanes() << 1032 << 1033 if (nPlanes == 0) return nullptr; << 1034 << 1035 std::vector<G4DisplacedSolid*> cutaway_soli << 1036 << 1037 G4double radius = fpScene->GetExtent().GetE << 1038 G4double safe = radius + fpScene->GetExtent << 1039 auto cutawayBox = new G4Box("_cutaway_box", << 1040 << 1041 // if (vp.GetCutawayMode() == G4ViewParamet << 1042 // the intersection of displaced cutaway bo << 1043 // positive values a*x+b*y+c*z+d>0, so we h << 1044 // "back to front". The parameter "cutawayU << 1045 // that remain *after* cutaway", because we << 1046 // a "union" of what remains by superimposi << 1047 // and G4OpenGLImmediate/StoredViewer::Proc << 1048 // that is the intersection of inverted cut << 1049 << 1050 // Conversely, if (vp.GetCutawayMode() == G << 1051 // create an intersector that is the inters << 1052 << 1053 for (size_t plane_no = 0; plane_no < nPlane << 1054 { << 1055 const G4Plane3D& sp = vp.GetCutawayPlanes << 1056 G4Transform3D requiredTransform; << 1057 G4ThreeVector normal; << 1058 switch (vp.GetCutawayMode()) { << 1059 case G4ViewParameters::cutawayUnion: << 1060 normal = -sp.normal(); // Invert nor << 1061 requiredTransform = G4Translate3D(nor << 1062 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1063 break; << 1064 case G4ViewParameters::cutawayIntersect << 1065 normal = sp.normal(); << 1066 requiredTransform = G4Translate3D(nor << 1067 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1068 break; << 1069 } << 1070 cutaway_solids.push_back << 1071 (new G4DisplacedSolid("_displaced_cutaway << 1072 } << 1073 << 1074 if (nPlanes == 1) return (G4DisplacedSolid* << 1075 << 1076 G4IntersectionSolid *union2 = nullptr, *uni << 1077 G4IntersectionSolid *intersection2 = nullpt << 1078 switch (vp.GetCutawayMode()) { << 1079 << 1080 case G4ViewParameters::cutawayUnion: << 1081 // Here we make a subtractor of interse << 1082 union2 = new G4IntersectionSolid("_unio << 1083 if (nPlanes == 2) return (G4DisplacedSo << 1084 else if (nPlanes == 3) { << 1085 union3 = new G4IntersectionSolid("_un << 1086 return (G4DisplacedSolid*)union3; << 1087 } << 1088 break; << 1089 << 1090 case G4ViewParameters::cutawayIntersectio << 1091 // And here we make an intersector of i << 1092 intersection2 << 1093 = new G4IntersectionSolid("_intersectio << 1094 if (nPlanes == 2) return (G4DisplacedSo << 1095 else if (nPlanes == 3) { << 1096 intersection3 << 1097 = new G4IntersectionSolid("_intersect << 1098 return (G4DisplacedSolid*)intersectio << 1099 } << 1100 break; << 1101 } << 1102 << 1103 G4Exception("G4VSceneHandler::CreateCutaway << 1104 "Not programmed for more than 3 << 1105 return nullptr; << 1106 } << 1107 << 1108 void G4VSceneHandler::LoadAtts(const G4Visibl << 1109 { << 1110 // Load G4Atts from G4VisAttributes, if any << 1111 const G4VisAttributes* va = visible.GetVisA << 1112 if (va) { << 1113 const std::map<G4String,G4AttDef>* vaDefs << 1114 va->GetAttDefs(); << 1115 if (vaDefs) { << 1116 holder->AddAtts(visible.GetVisAttribute << 1117 } << 1118 } << 1119 << 1120 G4PhysicalVolumeModel* pPVModel = << 1121 dynamic_cast<G4PhysicalVolumeModel*>(fpMo << 1122 if (pPVModel) { << 1123 // Load G4Atts from G4PhysicalVolumeModel << 1124 const std::map<G4String,G4AttDef>* pvDefs << 1125 if (pvDefs) { << 1126 holder->AddAtts(pPVModel->CreateCurrent << 1127 } << 1128 } << 1129 << 1130 G4TrajectoriesModel* trajModel = dynamic_ca << 1131 if (trajModel) { << 1132 // Load G4Atts from trajectory model... << 1133 const std::map<G4String,G4AttDef>* trajMo << 1134 if (trajModelDefs) { << 1135 holder->AddAtts(trajModel->CreateCurren << 1136 } << 1137 // Load G4Atts from trajectory... << 1138 const G4VTrajectory* traj = trajModel->Ge << 1139 if (traj) { << 1140 const std::map<G4String,G4AttDef>* traj << 1141 if (trajDefs) { << 1142 holder->AddAtts(traj->CreateAttValues << 1143 } << 1144 G4int nPoints = traj->GetPointEntries() << 1145 for (G4int i = 0; i < nPoints; ++i) { << 1146 G4VTrajectoryPoint* trajPoint = traj- << 1147 if (trajPoint) { << 1148 const std::map<G4String,G4AttDef>* << 1149 if (pointDefs) { << 1150 holder->AddAtts(trajPoint->Create << 1151 } << 1152 } << 1153 } << 1154 } << 1155 } << 1156 << 1157 G4HitsModel* hitsModel = dynamic_cast<G4Hit << 1158 if (hitsModel) { << 1159 // Load G4Atts from hit... << 1160 const G4VHit* hit = hitsModel->GetCurrent << 1161 const std::map<G4String,G4AttDef>* hitsDe << 1162 if (hitsDefs) { << 1163 holder->AddAtts(hit->CreateAttValues(), << 1164 } << 1165 } << 1166 } << 1167 << 1168 const G4Colour& G4VSceneHandler::GetColour () << 1169 fpVisAttribs = fpViewer->GetApplicableVisAt << 1170 const G4Colour& colour = fpVisAttribs -> Ge << 1171 return colour; << 1172 } << 1173 << 1174 const G4Colour& G4VSceneHandler::GetColour (c 531 const G4Colour& G4VSceneHandler::GetColour (const G4Visible& visible) { 1175 auto pVA = visible.GetVisAttributes(); << 532 // Colour is determined by the applicable (real) vis attributes. 1176 if (!pVA) pVA = fpViewer->GetViewParameters << 533 const G4VisAttributes* pVA = visible.GetVisAttributes (); 1177 return pVA->GetColour(); << 534 pVA = fpViewer -> GetApplicableVisAttributes (pVA); >> 535 return pVA -> GetColour (); 1178 } 536 } 1179 537 1180 const G4Colour& G4VSceneHandler::GetTextColou 538 const G4Colour& G4VSceneHandler::GetTextColour (const G4Text& text) { 1181 auto pVA = text.GetVisAttributes(); << 539 const G4VisAttributes* pVA = text.GetVisAttributes (); 1182 if (!pVA) pVA = fpViewer->GetViewParameters << 540 if (!pVA) { 1183 return pVA->GetColour(); << 541 pVA = fpViewer -> GetViewParameters (). GetDefaultTextVisAttributes (); >> 542 } >> 543 return pVA -> GetColour (); 1184 } 544 } 1185 545 1186 G4double G4VSceneHandler::GetLineWidth(const << 546 G4ViewParameters::DrawingStyle G4VSceneHandler::GetDrawingStyle 1187 { << 547 (const G4Visible& visible) { 1188 G4double lineWidth = pVisAttribs->GetLineWi << 548 // Drawing style is determined by the applicable (real) vis 1189 if (lineWidth < 1.) lineWidth = 1.; << 549 // attributes, except when overridden - see GetDrawingStyle (const 1190 lineWidth *= fpViewer -> GetViewParameters( << 550 // G4VisAttributes* pVisAttribs). 1191 if (lineWidth < 1.) lineWidth = 1.; << 551 const G4VisAttributes* pVA = visible.GetVisAttributes (); 1192 return lineWidth; << 552 pVA = fpViewer -> GetApplicableVisAttributes (pVA); >> 553 return GetDrawingStyle (pVA); 1193 } 554 } 1194 555 1195 G4ViewParameters::DrawingStyle G4VSceneHandle 556 G4ViewParameters::DrawingStyle G4VSceneHandler::GetDrawingStyle 1196 (const G4VisAttributes* pVisAttribs) { 557 (const G4VisAttributes* pVisAttribs) { 1197 // Drawing style is normally determined by 558 // Drawing style is normally determined by the view parameters, but 1198 // it can be overriddden by the ForceDrawin 559 // it can be overriddden by the ForceDrawingStyle flag in the vis 1199 // attributes. 560 // attributes. 1200 const G4ViewParameters& vp = fpViewer->GetV << 561 G4ViewParameters::DrawingStyle style = 1201 const G4ViewParameters::DrawingStyle viewer << 562 fpViewer->GetViewParameters().GetDrawingStyle(); 1202 G4ViewParameters::DrawingStyle resultantSty << 1203 if (pVisAttribs -> IsForceDrawingStyle ()) 563 if (pVisAttribs -> IsForceDrawingStyle ()) { 1204 G4VisAttributes::ForcedDrawingStyle force 564 G4VisAttributes::ForcedDrawingStyle forcedStyle = 1205 pVisAttribs -> GetForcedDrawingStyle (); << 565 pVisAttribs -> GetForcedDrawingStyle (); 1206 // This is complicated because if hidden << 566 // This is complicated because is hidden line removal has been 1207 // has been requested we wish to preserve << 567 // requested we wish to preserve this. 1208 switch (forcedStyle) { 568 switch (forcedStyle) { 1209 case (G4VisAttributes::solid): << 569 case (G4VisAttributes::solid): 1210 switch (viewerStyle) { << 570 switch (style) { 1211 case (G4ViewParameters::hlr): << 571 case (G4ViewParameters::hlr): 1212 resultantStyle = G4ViewParameters << 572 style = G4ViewParameters::hlhsr; 1213 break; << 573 break; 1214 case (G4ViewParameters::wireframe): << 574 case (G4ViewParameters::wireframe): 1215 resultantStyle = G4ViewParameters << 575 style = G4ViewParameters::hsr; 1216 break; << 576 break; 1217 case (G4ViewParameters::cloud): << 577 case (G4ViewParameters::hlhsr): 1218 resultantStyle = G4ViewParameters << 578 case (G4ViewParameters::hsr): 1219 break; << 579 default: 1220 case (G4ViewParameters::hlhsr): << 580 break; 1221 case (G4ViewParameters::hsr): << 581 } 1222 break; << 582 break; 1223 } << 583 case (G4VisAttributes::wireframe): 1224 break; << 584 default: 1225 case (G4VisAttributes::cloud): << 585 switch (style) { 1226 resultantStyle = G4ViewParameters::cl << 586 case (G4ViewParameters::hlhsr): 1227 break; << 587 style = G4ViewParameters::hlr; 1228 case (G4VisAttributes::wireframe): << 588 break; >> 589 case (G4ViewParameters::hsr): >> 590 style = G4ViewParameters::wireframe; >> 591 break; >> 592 case (G4ViewParameters::hlr): >> 593 case (G4ViewParameters::wireframe): 1229 default: 594 default: 1230 // But if forced style is wireframe, << 595 break; 1231 // main uses is in displaying the con << 596 } 1232 // solid and their surfaces overlap w << 597 break; 1233 // solid, making a mess if hlr is spe << 1234 resultantStyle = G4ViewParameters::wi << 1235 break; << 1236 } 598 } 1237 } 599 } 1238 return resultantStyle; << 600 return style; 1239 } << 1240 << 1241 G4int G4VSceneHandler::GetNumberOfCloudPoints << 1242 (const G4VisAttributes* pVisAttribs) const { << 1243 // Returns no of cloud points from current << 1244 // has forced through the vis attributes, t << 1245 // current view parameter. << 1246 G4int numberOfCloudPoints = fpViewer->GetVi << 1247 if (pVisAttribs -> IsForceDrawingStyle() && << 1248 pVisAttribs -> GetForcedDrawingStyle() << 1249 pVisAttribs -> GetForcedNumberOfCloudPo << 1250 numberOfCloudPoints = pVisAttribs -> GetF << 1251 } << 1252 return numberOfCloudPoints; << 1253 } 601 } 1254 602 1255 G4bool G4VSceneHandler::GetAuxEdgeVisible (co << 603 G4double G4VSceneHandler::GetMarkerSize (const G4VMarker& marker, 1256 G4bool isAuxEdgeVisible = fpViewer->GetView << 604 G4VSceneHandler::MarkerSizeType& markerSizeType) { 1257 if (pVisAttribs -> IsForceAuxEdgeVisible()) << 1258 isAuxEdgeVisible = pVisAttribs->IsForcedA << 1259 } << 1260 return isAuxEdgeVisible; << 1261 } << 1262 << 1263 G4double G4VSceneHandler::GetMarkerSize << 1264 (const G4VMarker& marker, << 1265 G4VSceneHandler::MarkerSizeType& markerSizeT << 1266 { << 1267 G4bool userSpecified = marker.GetWorldSize( 605 G4bool userSpecified = marker.GetWorldSize() || marker.GetScreenSize(); 1268 const G4VMarker& defaultMarker = 606 const G4VMarker& defaultMarker = 1269 fpViewer -> GetViewParameters().GetDefaul 607 fpViewer -> GetViewParameters().GetDefaultMarker(); 1270 G4double size = userSpecified ? 608 G4double size = userSpecified ? 1271 marker.GetWorldSize() : defaultMarker.Get 609 marker.GetWorldSize() : defaultMarker.GetWorldSize(); 1272 if (size) { 610 if (size) { 1273 // Draw in world coordinates. 611 // Draw in world coordinates. 1274 markerSizeType = world; 612 markerSizeType = world; 1275 } 613 } 1276 else { 614 else { 1277 size = userSpecified ? 615 size = userSpecified ? 1278 marker.GetScreenSize() : defaultMarker. 616 marker.GetScreenSize() : defaultMarker.GetScreenSize(); 1279 // Draw in screen coordinates. 617 // Draw in screen coordinates. 1280 markerSizeType = screen; 618 markerSizeType = screen; 1281 } 619 } >> 620 if (size <= 0.) size = 1.; 1282 size *= fpViewer -> GetViewParameters().Get 621 size *= fpViewer -> GetViewParameters().GetGlobalMarkerScale(); 1283 if (markerSizeType == screen && size < 1.) << 1284 return size; 622 return size; 1285 } 623 } 1286 624 1287 G4int G4VSceneHandler::GetNoOfSides(const G4V << 625 std::ostream& operator << (std::ostream& os, const G4VSceneHandler& s) { 1288 { << 1289 // No. of sides (lines segments per circle) << 1290 // by the view parameters, but it can be ov << 1291 // ForceLineSegmentsPerCircle in the vis at << 1292 G4int lineSegmentsPerCircle = fpViewer->Get << 1293 if (pVisAttribs) { << 1294 if (pVisAttribs->IsForceLineSegmentsPerCi << 1295 lineSegmentsPerCircle = pVisAttribs->Ge << 1296 if (lineSegmentsPerCircle < pVisAttribs-> << 1297 lineSegmentsPerCircle = pVisAttribs->Ge << 1298 G4warn << << 1299 "G4VSceneHandler::GetNoOfSides: attempt to << 1300 "\nnumber of line segments per circle < " < << 1301 << "; forced to " << pVisAttribs->GetM << 1302 } << 1303 } << 1304 return lineSegmentsPerCircle; << 1305 } << 1306 << 1307 std::ostream& operator << (std::ostream& os, << 1308 626 1309 os << "Scene handler " << sh.fName << " has << 627 os << "Scene handler " << s.fName << " has " 1310 << sh.fViewerList.size () << " viewer(s) << 628 << s.fViewerList.size () << " viewer(s):"; 1311 for (std::size_t i = 0; i < sh.fViewerList. << 629 for (size_t i = 0; i < s.fViewerList.size (); i++) { 1312 os << "\n " << *(sh.fViewerList [i]); << 630 os << "\n " << *(s.fViewerList [i]); 1313 } 631 } 1314 632 1315 if (sh.fpScene) { << 633 if (s.fpScene) { 1316 os << "\n " << *sh.fpScene; << 634 os << "\n " << *s.fpScene; 1317 } 635 } 1318 else { 636 else { 1319 os << "\n This scene handler currently h 637 os << "\n This scene handler currently has no scene."; 1320 } 638 } 1321 639 1322 return os; 640 return os; 1323 } << 1324 << 1325 void G4VSceneHandler::PseudoSceneFor3DRectMes << 1326 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1327 const auto& material = fpPVModel->GetCurr << 1328 const auto& name = material? material->Ge << 1329 const auto& pVisAtts = fpPVModel->GetCurr << 1330 // Get position in world coordinates << 1331 // As a parameterisation the box is trans << 1332 // and its centre, originally by definiti << 1333 const G4ThreeVector& position = fpCurrent << 1334 fPositionByMaterial.insert(std::make_pair << 1335 if (fNameAndVisAttsByMaterial.find(materi << 1336 // Store name and vis attributes of fir << 1337 fNameAndVisAttsByMaterial[material] = N << 1338 } << 1339 } << 1340 << 1341 void G4VSceneHandler::PseudoSceneForTetVertic << 1342 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1343 // Need to know it's a tet !!!! or implem << 1344 try { << 1345 const auto& tet = dynamic_cast<const G4 << 1346 const auto& material = fpPVModel->GetCu << 1347 const auto& name = material? material-> << 1348 const auto& pVisAtts = fpPVModel->GetCu << 1349 // Transform into world coordinates if << 1350 if (fpCurrentObjectTransformation->xx() << 1351 fpCurrentObjectTransformation->yy() << 1352 fpCurrentObjectTransformation->zz() << 1353 const auto& vertices = tet.GetVertice << 1354 fVerticesByMaterial.insert(std::make_ << 1355 } else { << 1356 auto vertices = tet.GetVertices(); << 1357 for (auto&& vertex: vertices) { << 1358 vertex = G4Point3D(vertex).transfor << 1359 } << 1360 fVerticesByMaterial.insert(std::make_ << 1361 } << 1362 if (fNameAndVisAttsByMaterial.find(mate << 1363 // Store name and vis attributes of f << 1364 fNameAndVisAttsByMaterial[material] = << 1365 } << 1366 catch (const std::bad_cast&) { << 1367 G4ExceptionDescription ed; << 1368 ed << "Called for a mesh that is not a << 1369 G4Exception("PseudoSceneForTetVertices" << 1370 } << 1371 } << 1372 } << 1373 << 1374 void G4VSceneHandler::StandardSpecialMeshRend << 1375 // Standard way of special mesh rendering. << 1376 // MySceneHandler::AddCompound(const G4Mesh& << 1377 // appropriate or implement its own special m << 1378 { << 1379 G4bool implemented = false; << 1380 switch (mesh.GetMeshType()) { << 1381 case G4Mesh::rectangle: [[fallthrough]]; << 1382 case G4Mesh::nested3DRectangular: << 1383 switch (fpViewer->GetViewParameters().G << 1384 case G4ViewParameters::meshAsDefault: << 1385 [[fallthrough]]; << 1386 case G4ViewParameters::meshAsDots: << 1387 Draw3DRectMeshAsDots(mesh); // Rec << 1388 implemented = true; << 1389 break; << 1390 case G4ViewParameters::meshAsSurfaces << 1391 Draw3DRectMeshAsSurfaces(mesh); // << 1392 implemented = true; << 1393 break; << 1394 } << 1395 break; << 1396 case G4Mesh::tetrahedron: << 1397 switch (fpViewer->GetViewParameters().G << 1398 case G4ViewParameters::meshAsDefault: << 1399 [[fallthrough]]; << 1400 case G4ViewParameters::meshAsDots: << 1401 DrawTetMeshAsDots(mesh); // Tetrah << 1402 implemented = true; << 1403 break; << 1404 case G4ViewParameters::meshAsSurfaces << 1405 DrawTetMeshAsSurfaces(mesh); // Te << 1406 implemented = true; << 1407 break; << 1408 } << 1409 break; << 1410 case G4Mesh::cylinder: [[fallthrough]]; << 1411 case G4Mesh::sphere: [[fallthrough]]; << 1412 case G4Mesh::invalid: break; << 1413 } << 1414 if (implemented) { << 1415 // Draw container if not marked invisible << 1416 auto container = mesh.GetContainerVolume( << 1417 auto containerLogical = container->GetLog << 1418 auto containerVisAtts = containerLogical- << 1419 if (containerVisAtts == nullptr || contai << 1420 auto solid = containerLogical->GetSolid << 1421 auto polyhedron = solid->GetPolyhedron( << 1422 // Always draw as wireframe << 1423 G4VisAttributes tmpVisAtts; << 1424 if (containerVisAtts != nullptr) tmpVis << 1425 tmpVisAtts.SetForceWireframe(); << 1426 polyhedron->SetVisAttributes(tmpVisAtts << 1427 BeginPrimitives(mesh.GetTransform()); << 1428 AddPrimitive(*polyhedron); << 1429 EndPrimitives(); << 1430 } << 1431 } else { << 1432 // Invoke base class function << 1433 G4VSceneHandler::AddCompound(mesh); << 1434 } << 1435 return; << 1436 } << 1437 << 1438 void G4VSceneHandler::Draw3DRectMeshAsDots(co << 1439 // For a rectangular 3-D mesh, draw as colour << 1440 // one dot randomly placed in each visible me << 1441 { << 1442 // Check << 1443 if (mesh.GetMeshType() != G4Mesh::rectangle << 1444 mesh.GetMeshType() != G4Mesh::nested3DR << 1445 G4ExceptionDescription ed; << 1446 ed << "Called with a mesh that is not rec << 1447 G4Exception("G4VSceneHandler::Draw3DRectM << 1448 return; << 1449 } << 1450 << 1451 static G4bool firstPrint = true; << 1452 const auto& verbosity = G4VisManager::GetVe << 1453 G4bool print = firstPrint && verbosity >= G << 1454 if (print) { << 1455 G4cout << 1456 << "Special case drawing of 3D rectangula << 1457 << '\n' << mesh << 1458 << G4endl; << 1459 } << 1460 << 1461 const auto& container = mesh.GetContainerVo << 1462 << 1463 // This map is static so that once filled i << 1464 static std::map<G4String,std::map<const G4M << 1465 auto& dotsByMaterial = dotsByMaterialAndMes << 1466 << 1467 // Fill map if not already filled << 1468 if (dotsByMaterial.empty()) { << 1469 << 1470 // Get positions and material one cell at << 1471 // The pseudo scene allows a "private" de << 1472 // Instantiate a temporary G4PhysicalVolu << 1473 G4ModelingParameters tmpMP; << 1474 tmpMP.SetCulling(true); // This avoids d << 1475 tmpMP.SetCullingInvisible(true); // ... << 1476 const G4bool useFullExtent = true; // To << 1477 G4PhysicalVolumeModel tmpPVModel << 1478 (container, << 1479 G4PhysicalVolumeModel::UNLIMITED, << 1480 G4Transform3D(), // so that positions a << 1481 &tmpMP, << 1482 useFullExtent); << 1483 // Accumulate information in temporary ma << 1484 std::multimap<const G4Material*,const G4T << 1485 std::map<const G4Material*,G4VSceneHandle << 1486 // Instantiate the pseudo scene << 1487 PseudoSceneFor3DRectMeshPositions pseudoS << 1488 (&tmpPVModel,&mesh,positionByMaterial,nam << 1489 // Make private descent into the paramete << 1490 tmpPVModel.DescribeYourselfTo(pseudoScene << 1491 // Now we have a map of positions by mate << 1492 // Also a map of name and colour by mater << 1493 << 1494 const auto& prms = mesh.GetThreeDRectPara << 1495 const auto& halfX = prms.fHalfX; << 1496 const auto& halfY = prms.fHalfY; << 1497 const auto& halfZ = prms.fHalfZ; << 1498 << 1499 // Fill the permanent (static) map of dot << 1500 G4int nDotsTotal = 0; << 1501 for (const auto& entry: nameAndVisAttsByM << 1502 G4int nDots = 0; << 1503 const auto& material = entry.first; << 1504 const auto& nameAndVisAtts = nameAndVis << 1505 const auto& name = nameAndVisAtts.fName << 1506 const auto& visAtts = nameAndVisAtts.fV << 1507 G4Polymarker dots; << 1508 dots.SetInfo(name); << 1509 dots.SetVisAttributes(visAtts); << 1510 dots.SetMarkerType(G4Polymarker::dots); << 1511 dots.SetSize(G4VMarker::screen,1.); << 1512 // Enter empty polymarker into the map << 1513 dotsByMaterial[material] = dots; << 1514 // Now fill it in situ << 1515 auto& dotsInMap = dotsByMaterial[materi << 1516 const auto& range = positionByMaterial. << 1517 for (auto posByMat = range.first; posBy << 1518 dotsInMap.push_back(GetPointInBox(pos << 1519 ++nDots; << 1520 } << 1521 << 1522 if (print) { << 1523 G4cout << 1524 << std::setw(30) << std::left << name << 1525 << ": " << std::setw(7) << nDots << " << 1526 << ": colour " << std::fixed << std:: << 1527 << visAtts.GetColour() << std::defaul << 1528 << G4endl; << 1529 } << 1530 << 1531 nDotsTotal += nDots; << 1532 } << 1533 << 1534 if (print) { << 1535 G4cout << "Total number of dots: " << n << 1536 } << 1537 } << 1538 << 1539 // Some subsequent expressions apply only t << 1540 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1541 << 1542 G4String parameterisationName; << 1543 if (pPVModel) { << 1544 parameterisationName = pPVModel->GetFullP << 1545 } << 1546 << 1547 // Draw the dots by material << 1548 // Ensure they are "hidden", i.e., use the << 1549 auto keepVP = fpViewer->GetViewParameters() << 1550 auto vp = fpViewer->GetViewParameters(); << 1551 vp.SetMarkerHidden(); << 1552 fpViewer->SetViewParameters(vp); << 1553 // Now we transform to world coordinates << 1554 BeginPrimitives (mesh.GetTransform()); << 1555 for (const auto& entry: dotsByMaterial) { << 1556 const auto& dots = entry.second; << 1557 // The current "leaf" node in the PVPath << 1558 // been converted into polymarkers by mat << 1559 // its name to that of the material (whos << 1560 // so that its appearance in the scene tr << 1561 // an appropriate name and its visibility << 1562 if (pPVModel) { << 1563 const auto& fullPVPath = pPVModel->GetF << 1564 auto leafPV = fullPVPath.back().GetPhys << 1565 leafPV->SetName(dots.GetInfo()); << 1566 } << 1567 // Add dots to the scene << 1568 AddPrimitive(dots); << 1569 } << 1570 EndPrimitives (); << 1571 // Restore view parameters << 1572 fpViewer->SetViewParameters(keepVP); << 1573 // Restore parameterisation name << 1574 if (pPVModel) { << 1575 pPVModel->GetFullPVPath().back().GetPhysi << 1576 } << 1577 << 1578 firstPrint = false; << 1579 return; << 1580 } << 1581 << 1582 void G4VSceneHandler::Draw3DRectMeshAsSurface << 1583 // For a rectangular 3-D mesh, draw as surfac << 1584 // with inner shared faces removed. << 1585 { << 1586 // Check << 1587 if (mesh.GetMeshType() != G4Mesh::rectangle << 1588 mesh.GetMeshType() != G4Mesh::nested3DR << 1589 G4ExceptionDescription ed; << 1590 ed << "Called with a mesh that is not rec << 1591 G4Exception("G4VSceneHandler::Draw3DRectM << 1592 return; << 1593 } << 1594 << 1595 static G4bool firstPrint = true; << 1596 const auto& verbosity = G4VisManager::GetVe << 1597 G4bool print = firstPrint && verbosity >= G << 1598 if (print) { << 1599 G4cout << 1600 << "Special case drawing of 3D rectangula << 1601 << '\n' << mesh << 1602 << G4endl; << 1603 } << 1604 << 1605 const auto& container = mesh.GetContainerVo << 1606 << 1607 // This map is static so that once filled i << 1608 static std::map<G4String,std::map<const G4M << 1609 auto& boxesByMaterial = boxesByMaterialAndM << 1610 << 1611 // Fill map if not already filled << 1612 if (boxesByMaterial.empty()) { << 1613 << 1614 // Get positions and material one cell at << 1615 // The pseudo scene allows a "private" de << 1616 // Instantiate a temporary G4PhysicalVolu << 1617 G4ModelingParameters tmpMP; << 1618 tmpMP.SetCulling(true); // This avoids d << 1619 tmpMP.SetCullingInvisible(true); // ... << 1620 const G4bool useFullExtent = true; // To << 1621 G4PhysicalVolumeModel tmpPVModel << 1622 (container, << 1623 G4PhysicalVolumeModel::UNLIMITED, << 1624 G4Transform3D(), // so that positions a << 1625 &tmpMP, << 1626 useFullExtent); << 1627 // Accumulate information in temporary ma << 1628 std::multimap<const G4Material*,const G4T << 1629 std::map<const G4Material*,G4VSceneHandle << 1630 // Instantiate the pseudo scene << 1631 PseudoSceneFor3DRectMeshPositions pseudoS << 1632 (&tmpPVModel,&mesh,positionByMaterial,nam << 1633 // Make private descent into the paramete << 1634 tmpPVModel.DescribeYourselfTo(pseudoScene << 1635 // Now we have a map of positions by mate << 1636 // Also a map of name and colour by mater << 1637 << 1638 const auto& prms = mesh.GetThreeDRectPara << 1639 const auto& sizeX = 2.*prms.fHalfX; << 1640 const auto& sizeY = 2.*prms.fHalfY; << 1641 const auto& sizeZ = 2.*prms.fHalfZ; << 1642 << 1643 // Fill the permanent (static) map of box << 1644 G4int nBoxesTotal = 0, nFacetsTotal = 0; << 1645 for (const auto& entry: nameAndVisAttsByM << 1646 G4int nBoxes = 0; << 1647 const auto& material = entry.first; << 1648 const auto& nameAndVisAtts = nameAndVis << 1649 const auto& name = nameAndVisAtts.fName << 1650 const auto& visAtts = nameAndVisAtts.fV << 1651 // Transfer positions into a vector rea << 1652 std::vector<G4ThreeVector> positionsFor << 1653 const auto& range = positionByMaterial. << 1654 for (auto posByMat = range.first; posBy << 1655 const auto& position = posByMat->seco << 1656 positionsForPolyhedron.push_back(posi << 1657 ++nBoxes; << 1658 } << 1659 // The polyhedron will be in local coor << 1660 // Add an empty place-holder to the map << 1661 auto& polyhedron = boxesByMaterial[mate << 1662 // Replace with the desired polyhedron << 1663 polyhedron = G4PolyhedronBoxMesh(sizeX, << 1664 polyhedron.SetVisAttributes(visAtts); << 1665 polyhedron.SetInfo(name); << 1666 << 1667 if (print) { << 1668 G4cout << 1669 << std::setw(30) << std::left << name << 1670 << ": " << std::setw(7) << nBoxes << << 1671 << " (" << std::setw(7) << 6*nBoxes < << 1672 << ": reduced to " << std::setw(7) << << 1673 << std::setw(2) << std::fixed << std: << 1674 << "%): colour " << std::fixed << std << 1675 << visAtts.GetColour() << std::defaul << 1676 << G4endl; << 1677 } << 1678 << 1679 nBoxesTotal += nBoxes; << 1680 nFacetsTotal += polyhedron.GetNoFacets( << 1681 } << 1682 << 1683 if (print) { << 1684 G4cout << "Total number of boxes: " << << 1685 << ": reduced to " << nFacetsTotal << " << 1686 << std::setw(2) << std::fixed << std::s << 1687 << G4endl; << 1688 } << 1689 } << 1690 << 1691 // Some subsequent expressions apply only t << 1692 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1693 << 1694 G4String parameterisationName; << 1695 if (pPVModel) { << 1696 parameterisationName = pPVModel->GetFullP << 1697 } << 1698 << 1699 // Draw the boxes by material << 1700 // Now we transform to world coordinates << 1701 BeginPrimitives (mesh.GetTransform()); << 1702 for (const auto& entry: boxesByMaterial) { << 1703 const auto& poly = entry.second; << 1704 // The current "leaf" node in the PVPath << 1705 // been converted into polyhedra by mater << 1706 // its name to that of the material (whos << 1707 // so that its appearance in the scene tr << 1708 // an appropriate name and its visibility << 1709 if (pPVModel) { << 1710 const auto& fullPVPath = pPVModel->GetF << 1711 auto leafPV = fullPVPath.back().GetPhys << 1712 leafPV->SetName(poly.GetInfo()); << 1713 } << 1714 AddPrimitive(poly); << 1715 } << 1716 EndPrimitives (); << 1717 // Restore parameterisation name << 1718 if (pPVModel) { << 1719 pPVModel->GetFullPVPath().back().GetPhysi << 1720 } << 1721 << 1722 firstPrint = false; << 1723 return; << 1724 } << 1725 << 1726 void G4VSceneHandler::DrawTetMeshAsDots(const << 1727 // For a tetrahedron mesh, draw as coloured d << 1728 // one dot randomly placed in each visible me << 1729 { << 1730 // Check << 1731 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1732 G4ExceptionDescription ed; << 1733 ed << "Called with mesh that is not a tet << 1734 G4Exception("G4VSceneHandler::DrawTetMesh << 1735 return; << 1736 } << 1737 << 1738 static G4bool firstPrint = true; << 1739 const auto& verbosity = G4VisManager::GetVe << 1740 G4bool print = firstPrint && verbosity >= G << 1741 << 1742 if (print) { << 1743 G4cout << 1744 << "Special case drawing of tetrahedron m << 1745 << '\n' << mesh << 1746 << G4endl; << 1747 } << 1748 << 1749 const auto& container = mesh.GetContainerVo << 1750 << 1751 // This map is static so that once filled i << 1752 static std::map<G4String,std::map<const G4M << 1753 auto& dotsByMaterial = dotsByMaterialAndMes << 1754 << 1755 // Fill map if not already filled << 1756 if (dotsByMaterial.empty()) { << 1757 << 1758 // Get vertices and colour one cell at a << 1759 // The pseudo scene allows a "private" de << 1760 // Instantiate a temporary G4PhysicalVolu << 1761 G4ModelingParameters tmpMP; << 1762 tmpMP.SetCulling(true); // This avoids d << 1763 tmpMP.SetCullingInvisible(true); // ... << 1764 const G4bool useFullExtent = true; // To << 1765 G4PhysicalVolumeModel tmpPVModel << 1766 (container, << 1767 G4PhysicalVolumeModel::UNLIMITED, << 1768 G4Transform3D(), // so that positions a << 1769 &tmpMP, << 1770 useFullExtent); << 1771 // Accumulate information in temporary ma << 1772 std::multimap<const G4Material*,std::vect << 1773 std::map<const G4Material*,G4VSceneHandle << 1774 // Instantiate a pseudo scene << 1775 PseudoSceneForTetVertices pseudoScene << 1776 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1777 // Make private descent into the paramete << 1778 tmpPVModel.DescribeYourselfTo(pseudoScene << 1779 // Now we have a map of vertices by mater << 1780 // Also a map of name and colour by mater << 1781 << 1782 // Fill the permanent (static) map of dot << 1783 G4int nDotsTotal = 0; << 1784 for (const auto& entry: nameAndVisAttsByM << 1785 G4int nDots = 0; << 1786 const auto& material = entry.first; << 1787 const auto& nameAndVisAtts = nameAndVis << 1788 const auto& name = nameAndVisAtts.fName << 1789 const auto& visAtts = nameAndVisAtts.fV << 1790 G4Polymarker dots; << 1791 dots.SetVisAttributes(visAtts); << 1792 dots.SetMarkerType(G4Polymarker::dots); << 1793 dots.SetSize(G4VMarker::screen,1.); << 1794 dots.SetInfo(name); << 1795 // Enter empty polymarker into the map << 1796 dotsByMaterial[material] = dots; << 1797 // Now fill it in situ << 1798 auto& dotsInMap = dotsByMaterial[materi << 1799 const auto& range = verticesByMaterial. << 1800 for (auto vByMat = range.first; vByMat << 1801 dotsInMap.push_back(GetPointInTet(vBy << 1802 ++nDots; << 1803 } << 1804 << 1805 if (print) { << 1806 G4cout << 1807 << std::setw(30) << std::left << name << 1808 << ": " << std::setw(7) << nDots << " << 1809 << ": colour " << std::fixed << std:: << 1810 << visAtts.GetColour() << std::defaul << 1811 << G4endl; << 1812 } << 1813 << 1814 nDotsTotal += nDots; << 1815 } << 1816 << 1817 if (print) { << 1818 G4cout << "Total number of dots: " << n << 1819 } << 1820 } << 1821 << 1822 // Some subsequent expressions apply only t << 1823 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1824 << 1825 G4String parameterisationName; << 1826 if (pPVModel) { << 1827 parameterisationName = pPVModel->GetFullP << 1828 } << 1829 << 1830 // Draw the dots by material << 1831 // Ensure they are "hidden", i.e., use the << 1832 auto keepVP = fpViewer->GetViewParameters() << 1833 auto vp = fpViewer->GetViewParameters(); << 1834 vp.SetMarkerHidden(); << 1835 fpViewer->SetViewParameters(vp); << 1836 << 1837 // Now we transform to world coordinates << 1838 BeginPrimitives (mesh.GetTransform()); << 1839 for (const auto& entry: dotsByMaterial) { << 1840 const auto& dots = entry.second; << 1841 // The current "leaf" node in the PVPath << 1842 // been converted into polymarkers by mat << 1843 // its name to that of the material (whos << 1844 // so that its appearance in the scene tr << 1845 // an appropriate name and its visibility << 1846 if (pPVModel) { << 1847 const auto& fullPVPath = pPVModel->GetF << 1848 auto leafPV = fullPVPath.back().GetPhys << 1849 leafPV->SetName(dots.GetInfo()); << 1850 } << 1851 AddPrimitive(dots); << 1852 } << 1853 EndPrimitives (); << 1854 << 1855 // Restore view parameters << 1856 fpViewer->SetViewParameters(keepVP); << 1857 // Restore parameterisation name << 1858 if (pPVModel) { << 1859 pPVModel->GetFullPVPath().back().GetPhysi << 1860 } << 1861 << 1862 firstPrint = false; << 1863 return; << 1864 } << 1865 << 1866 void G4VSceneHandler::DrawTetMeshAsSurfaces(c << 1867 // For a tetrahedron mesh, draw as surfaces b << 1868 // with inner shared faces removed. << 1869 { << 1870 // Check << 1871 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1872 G4ExceptionDescription ed; << 1873 ed << "Called with mesh that is not a tet << 1874 G4Exception("G4VSceneHandler::DrawTetMesh << 1875 return; << 1876 } << 1877 << 1878 static G4bool firstPrint = true; << 1879 const auto& verbosity = G4VisManager::GetVe << 1880 G4bool print = firstPrint && verbosity >= G << 1881 << 1882 if (print) { << 1883 G4cout << 1884 << "Special case drawing of tetrahedron m << 1885 << '\n' << mesh << 1886 << G4endl; << 1887 } << 1888 << 1889 // This map is static so that once filled i << 1890 static std::map<G4String,std::map<const G4M << 1891 auto& surfacesByMaterial = surfacesByMateri << 1892 << 1893 // Fill map if not already filled << 1894 if (surfacesByMaterial.empty()) { << 1895 << 1896 // Get vertices and colour one cell at a << 1897 // The pseudo scene allows a "private" de << 1898 // Instantiate a temporary G4PhysicalVolu << 1899 G4ModelingParameters tmpMP; << 1900 tmpMP.SetCulling(true); // This avoids d << 1901 tmpMP.SetCullingInvisible(true); // ... << 1902 const G4bool useFullExtent = true; // To << 1903 G4PhysicalVolumeModel tmpPVModel << 1904 (mesh.GetContainerVolume(), << 1905 G4PhysicalVolumeModel::UNLIMITED, << 1906 G4Transform3D(), // so that positions a << 1907 &tmpMP, << 1908 useFullExtent); << 1909 // Accumulate information in temporary ma << 1910 std::multimap<const G4Material*,std::vect << 1911 std::map<const G4Material*,G4VSceneHandle << 1912 // Instantiate a pseudo scene << 1913 PseudoSceneForTetVertices pseudoScene << 1914 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1915 // Make private descent into the paramete << 1916 tmpPVModel.DescribeYourselfTo(pseudoScene << 1917 // Now we have a map of vertices by mater << 1918 // Also a map of name and colour by mater << 1919 << 1920 // Fill the permanent (static) map of sur << 1921 G4int nTetsTotal = 0, nFacetsTotal = 0; << 1922 for (const auto& entry: nameAndVisAttsByM << 1923 G4int nTets = 0; << 1924 const auto& material = entry.first; << 1925 const auto& nameAndVisAtts = nameAndVis << 1926 const auto& name = nameAndVisAtts.fName << 1927 const auto& visAtts = nameAndVisAtts.fV << 1928 // Transfer vertices into a vector read << 1929 std::vector<G4ThreeVector> verticesForP << 1930 const auto& range = verticesByMaterial. << 1931 for (auto vByMat = range.first; vByMat << 1932 const std::vector<G4ThreeVector>& ver << 1933 for (const auto& vertex: vertices) << 1934 verticesForPolyhedron.push_back(ver << 1935 ++nTets; << 1936 } << 1937 // The polyhedron will be in local coor << 1938 // Add an empty place-holder to the map << 1939 auto& polyhedron = surfacesByMaterial[m << 1940 // Replace with the desired polyhedron << 1941 polyhedron = G4PolyhedronTetMesh(vertic << 1942 polyhedron.SetVisAttributes(visAtts); << 1943 polyhedron.SetInfo(name); << 1944 << 1945 if (print) { << 1946 G4cout << 1947 << std::setw(30) << std::left << name << 1948 << ": " << std::setw(7) << nTets << " << 1949 << " (" << std::setw(7) << 4*nTets << << 1950 << ": reduced to " << std::setw(7) << << 1951 << std::setw(2) << std::fixed << std: << 1952 << "%): colour " << std::fixed << std << 1953 << visAtts.GetColour() << std::defaul << 1954 << G4endl; << 1955 } << 1956 << 1957 nTetsTotal += nTets; << 1958 nFacetsTotal += polyhedron.GetNoFacets( << 1959 } << 1960 << 1961 if (print) { << 1962 G4cout << "Total number of tetrahedra: << 1963 << ": reduced to " << nFacetsTotal << " << 1964 << std::setw(2) << std::fixed << std::s << 1965 << G4endl; << 1966 } << 1967 } << 1968 << 1969 // Some subsequent expressions apply only t << 1970 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1971 << 1972 G4String parameterisationName; << 1973 if (pPVModel) { << 1974 parameterisationName = pPVModel->GetFullP << 1975 } << 1976 << 1977 // Draw the surfaces by material << 1978 // Now we transform to world coordinates << 1979 BeginPrimitives (mesh.GetTransform()); << 1980 for (const auto& entry: surfacesByMaterial) << 1981 const auto& poly = entry.second; << 1982 // The current "leaf" node in the PVPath << 1983 // been converted into polyhedra by mater << 1984 // its name to that of the material (whos << 1985 // so that its appearance in the scene tr << 1986 // an appropriate name and its visibility << 1987 if (pPVModel) { << 1988 const auto& fullPVPath = pPVModel->GetF << 1989 auto leafPV = fullPVPath.back().GetPhys << 1990 leafPV->SetName(poly.GetInfo()); << 1991 } << 1992 AddPrimitive(poly); << 1993 } << 1994 EndPrimitives (); << 1995 << 1996 // Restore parameterisation name << 1997 if (pPVModel) { << 1998 pPVModel->GetFullPVPath().back().GetPhysi << 1999 } << 2000 << 2001 firstPrint = false; << 2002 return; << 2003 } << 2004 << 2005 G4ThreeVector << 2006 G4VSceneHandler::GetPointInBox(const G4ThreeV << 2007 G4double halfX << 2008 G4double halfY << 2009 G4double halfZ << 2010 { << 2011 G4double x = pos.getX() + (2.*G4QuickRand() << 2012 G4double y = pos.getY() + (2.*G4QuickRand() << 2013 G4double z = pos.getZ() + (2.*G4QuickRand() << 2014 return G4ThreeVector(x, y, z); << 2015 } << 2016 << 2017 G4ThreeVector << 2018 G4VSceneHandler::GetPointInTet(const std::vec << 2019 { << 2020 G4double p = G4QuickRand(); << 2021 G4double q = G4QuickRand(); << 2022 G4double r = G4QuickRand(); << 2023 if (p + q > 1.) << 2024 { << 2025 p = 1. - p; << 2026 q = 1. - q; << 2027 } << 2028 if (q + r > 1.) << 2029 { << 2030 G4double tmp = r; << 2031 r = 1. - p - q; << 2032 q = 1. - tmp; << 2033 } << 2034 else if (p + q + r > 1.) << 2035 { << 2036 G4double tmp = r; << 2037 r = p + q + r - 1.; << 2038 p = 1. - q - tmp; << 2039 } << 2040 G4double a = 1. - p - q - r; << 2041 return vertices[0]*a + vertices[1]*p + vert << 2042 } 641 } 2043 642