Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // 27 // 27 // 28 // 28 // 29 // John Allison 19th July 1996 29 // John Allison 19th July 1996 30 // Abstract interface class for graphics scene 30 // Abstract interface class for graphics scenes. 31 31 32 #include "G4VSceneHandler.hh" 32 #include "G4VSceneHandler.hh" 33 33 34 #include "G4ios.hh" 34 #include "G4ios.hh" 35 #include <sstream> 35 #include <sstream> 36 36 37 #include "G4VisManager.hh" 37 #include "G4VisManager.hh" 38 #include "G4VGraphicsSystem.hh" 38 #include "G4VGraphicsSystem.hh" 39 #include "G4VViewer.hh" 39 #include "G4VViewer.hh" 40 #include "G4VSolid.hh" 40 #include "G4VSolid.hh" 41 #include "G4RotationMatrix.hh" 41 #include "G4RotationMatrix.hh" 42 #include "G4ThreeVector.hh" 42 #include "G4ThreeVector.hh" 43 #include "G4VPhysicalVolume.hh" 43 #include "G4VPhysicalVolume.hh" 44 #include "G4Material.hh" 44 #include "G4Material.hh" 45 #include "G4Polyline.hh" 45 #include "G4Polyline.hh" >> 46 #include "G4Scale.hh" 46 #include "G4Text.hh" 47 #include "G4Text.hh" 47 #include "G4Circle.hh" 48 #include "G4Circle.hh" 48 #include "G4Square.hh" 49 #include "G4Square.hh" 49 #include "G4Polymarker.hh" 50 #include "G4Polymarker.hh" 50 #include "G4Polyhedron.hh" 51 #include "G4Polyhedron.hh" 51 #include "G4Visible.hh" 52 #include "G4Visible.hh" 52 #include "G4VisAttributes.hh" 53 #include "G4VisAttributes.hh" 53 #include "G4VModel.hh" 54 #include "G4VModel.hh" 54 #include "G4TrajectoriesModel.hh" 55 #include "G4TrajectoriesModel.hh" 55 #include "G4Box.hh" 56 #include "G4Box.hh" 56 #include "G4Cons.hh" 57 #include "G4Cons.hh" 57 #include "G4Orb.hh" 58 #include "G4Orb.hh" 58 #include "G4Para.hh" 59 #include "G4Para.hh" 59 #include "G4Sphere.hh" 60 #include "G4Sphere.hh" 60 #include "G4Torus.hh" 61 #include "G4Torus.hh" 61 #include "G4Trap.hh" 62 #include "G4Trap.hh" 62 #include "G4Trd.hh" 63 #include "G4Trd.hh" 63 #include "G4Tubs.hh" 64 #include "G4Tubs.hh" 64 #include "G4Ellipsoid.hh" 65 #include "G4Ellipsoid.hh" 65 #include "G4Polycone.hh" 66 #include "G4Polycone.hh" 66 #include "G4Polyhedra.hh" 67 #include "G4Polyhedra.hh" 67 #include "G4Tet.hh" << 68 #include "G4DisplacedSolid.hh" 68 #include "G4DisplacedSolid.hh" 69 #include "G4UnionSolid.hh" << 70 #include "G4IntersectionSolid.hh" << 71 #include "G4SubtractionSolid.hh" << 72 #include "G4LogicalVolume.hh" 69 #include "G4LogicalVolume.hh" 73 #include "G4PhysicalVolumeModel.hh" 70 #include "G4PhysicalVolumeModel.hh" 74 #include "G4ModelingParameters.hh" 71 #include "G4ModelingParameters.hh" 75 #include "G4VTrajectory.hh" 72 #include "G4VTrajectory.hh" 76 #include "G4VTrajectoryPoint.hh" 73 #include "G4VTrajectoryPoint.hh" 77 #include "G4HitsModel.hh" 74 #include "G4HitsModel.hh" 78 #include "G4VHit.hh" 75 #include "G4VHit.hh" 79 #include "G4VDigi.hh" 76 #include "G4VDigi.hh" 80 #include "G4ScoringManager.hh" 77 #include "G4ScoringManager.hh" 81 #include "G4VScoringMesh.hh" << 82 #include "G4Mesh.hh" << 83 #include "G4DefaultLinearColorMap.hh" 78 #include "G4DefaultLinearColorMap.hh" 84 #include "G4QuickRand.hh" << 79 #include "Randomize.hh" 85 #include "G4StateManager.hh" 80 #include "G4StateManager.hh" 86 #include "G4RunManager.hh" 81 #include "G4RunManager.hh" 87 #include "G4RunManagerFactory.hh" << 82 #ifdef G4MULTITHREADED >> 83 #include "G4MTRunManager.hh" >> 84 #endif 88 #include "G4Run.hh" 85 #include "G4Run.hh" 89 #include "G4Transform3D.hh" 86 #include "G4Transform3D.hh" 90 #include "G4AttHolder.hh" 87 #include "G4AttHolder.hh" 91 #include "G4AttDef.hh" 88 #include "G4AttDef.hh" 92 #include "G4SceneTreeItem.hh" << 93 #include "G4VVisCommand.hh" 89 #include "G4VVisCommand.hh" 94 #include "G4PhysicalConstants.hh" 90 #include "G4PhysicalConstants.hh" 95 #include "G4SystemOfUnits.hh" 91 #include "G4SystemOfUnits.hh" 96 92 97 #define G4warn G4cout << 98 << 99 G4VSceneHandler::G4VSceneHandler (G4VGraphicsS 93 G4VSceneHandler::G4VSceneHandler (G4VGraphicsSystem& system, G4int id, const G4String& name): 100 fSystem (system), 94 fSystem (system), 101 fSceneHandlerId (id), 95 fSceneHandlerId (id), 102 fViewCount (0), 96 fViewCount (0), 103 fpViewer (0), 97 fpViewer (0), 104 fpScene (0), 98 fpScene (0), 105 fMarkForClearingTransientStore (true), // R 99 fMarkForClearingTransientStore (true), // Ready for first 106 // ClearTransientStoreIfMarked(), 100 // ClearTransientStoreIfMarked(), 107 // e.g., at end of run (see 101 // e.g., at end of run (see 108 // G4VisManager.cc). 102 // G4VisManager.cc). 109 fReadyForTransients (true), // Only fals 103 fReadyForTransients (true), // Only false while processing scene. 110 fProcessingSolid (false), 104 fProcessingSolid (false), 111 fProcessing2D (false), 105 fProcessing2D (false), 112 fpModel (0), 106 fpModel (0), 113 fNestingDepth (0), 107 fNestingDepth (0), 114 fpVisAttribs (0) 108 fpVisAttribs (0) 115 { 109 { 116 G4VisManager* pVMan = G4VisManager::GetInsta 110 G4VisManager* pVMan = G4VisManager::GetInstance (); 117 fpScene = pVMan -> GetCurrentScene (); 111 fpScene = pVMan -> GetCurrentScene (); 118 if (name == "") { 112 if (name == "") { 119 std::ostringstream ost; 113 std::ostringstream ost; 120 ost << fSystem.GetName () << '-' << fScene 114 ost << fSystem.GetName () << '-' << fSceneHandlerId; 121 fName = ost.str(); 115 fName = ost.str(); 122 } 116 } 123 else { 117 else { 124 fName = name; 118 fName = name; 125 } 119 } 126 fTransientsDrawnThisEvent = pVMan->GetTransi 120 fTransientsDrawnThisEvent = pVMan->GetTransientsDrawnThisEvent(); 127 fTransientsDrawnThisRun = pVMan->GetTransien 121 fTransientsDrawnThisRun = pVMan->GetTransientsDrawnThisRun(); 128 } 122 } 129 123 130 G4VSceneHandler::~G4VSceneHandler () { 124 G4VSceneHandler::~G4VSceneHandler () { 131 G4VViewer* last; 125 G4VViewer* last; 132 while( ! fViewerList.empty() ) { 126 while( ! fViewerList.empty() ) { 133 last = fViewerList.back(); 127 last = fViewerList.back(); 134 fViewerList.pop_back(); 128 fViewerList.pop_back(); 135 delete last; 129 delete last; 136 } 130 } 137 } 131 } 138 132 139 const G4VisExtent& G4VSceneHandler::GetExtent( 133 const G4VisExtent& G4VSceneHandler::GetExtent() const 140 { 134 { 141 if (fpScene) { 135 if (fpScene) { 142 return fpScene->GetExtent(); 136 return fpScene->GetExtent(); 143 } else { 137 } else { 144 static const G4VisExtent defaultExtent = G 138 static const G4VisExtent defaultExtent = G4VisExtent(); 145 return defaultExtent; 139 return defaultExtent; 146 } 140 } 147 } 141 } 148 142 149 void G4VSceneHandler::PreAddSolid (const G4Tra 143 void G4VSceneHandler::PreAddSolid (const G4Transform3D& objectTransformation, 150 const G4VisAttributes& visAttribs) 144 const G4VisAttributes& visAttribs) { 151 fObjectTransformation = objectTransformation 145 fObjectTransformation = objectTransformation; 152 fpVisAttribs = &visAttribs; 146 fpVisAttribs = &visAttribs; 153 fProcessingSolid = true; 147 fProcessingSolid = true; 154 } 148 } 155 149 156 void G4VSceneHandler::PostAddSolid () { 150 void G4VSceneHandler::PostAddSolid () { 157 fpVisAttribs = 0; 151 fpVisAttribs = 0; 158 fProcessingSolid = false; 152 fProcessingSolid = false; 159 if (fReadyForTransients) { 153 if (fReadyForTransients) { 160 fTransientsDrawnThisEvent = true; 154 fTransientsDrawnThisEvent = true; 161 fTransientsDrawnThisRun = true; 155 fTransientsDrawnThisRun = true; 162 } 156 } 163 } 157 } 164 158 165 void G4VSceneHandler::BeginPrimitives 159 void G4VSceneHandler::BeginPrimitives 166 (const G4Transform3D& objectTransformation) { 160 (const G4Transform3D& objectTransformation) { 167 //static G4int count = 0; 161 //static G4int count = 0; 168 //G4cout << "G4VSceneHandler::BeginPrimitive 162 //G4cout << "G4VSceneHandler::BeginPrimitives: " << count++ << G4endl; 169 fNestingDepth++; 163 fNestingDepth++; 170 if (fNestingDepth > 1) 164 if (fNestingDepth > 1) 171 G4Exception 165 G4Exception 172 ("G4VSceneHandler::BeginPrimitives", 166 ("G4VSceneHandler::BeginPrimitives", 173 "visman0101", FatalException, 167 "visman0101", FatalException, 174 "Nesting detected. It is illegal to nes 168 "Nesting detected. It is illegal to nest Begin/EndPrimitives."); 175 fObjectTransformation = objectTransformation 169 fObjectTransformation = objectTransformation; 176 } 170 } 177 171 178 void G4VSceneHandler::EndPrimitives () { 172 void G4VSceneHandler::EndPrimitives () { 179 if (fNestingDepth <= 0) 173 if (fNestingDepth <= 0) 180 G4Exception("G4VSceneHandler::EndPrimitive 174 G4Exception("G4VSceneHandler::EndPrimitives", 181 "visman0102", FatalException, "Nesting err 175 "visman0102", FatalException, "Nesting error."); 182 fNestingDepth--; 176 fNestingDepth--; 183 if (fReadyForTransients) { 177 if (fReadyForTransients) { 184 fTransientsDrawnThisEvent = true; 178 fTransientsDrawnThisEvent = true; 185 fTransientsDrawnThisRun = true; 179 fTransientsDrawnThisRun = true; 186 } 180 } 187 } 181 } 188 182 189 void G4VSceneHandler::BeginPrimitives2D 183 void G4VSceneHandler::BeginPrimitives2D 190 (const G4Transform3D& objectTransformation) { 184 (const G4Transform3D& objectTransformation) { 191 fNestingDepth++; 185 fNestingDepth++; 192 if (fNestingDepth > 1) 186 if (fNestingDepth > 1) 193 G4Exception 187 G4Exception 194 ("G4VSceneHandler::BeginPrimitives2D", 188 ("G4VSceneHandler::BeginPrimitives2D", 195 "visman0103", FatalException, 189 "visman0103", FatalException, 196 "Nesting detected. It is illegal to nes 190 "Nesting detected. It is illegal to nest Begin/EndPrimitives."); 197 fObjectTransformation = objectTransformation 191 fObjectTransformation = objectTransformation; 198 fProcessing2D = true; 192 fProcessing2D = true; 199 } 193 } 200 194 201 void G4VSceneHandler::EndPrimitives2D () { 195 void G4VSceneHandler::EndPrimitives2D () { 202 if (fNestingDepth <= 0) 196 if (fNestingDepth <= 0) 203 G4Exception("G4VSceneHandler::EndPrimitive 197 G4Exception("G4VSceneHandler::EndPrimitives2D", 204 "visman0104", FatalException, "Nesting err 198 "visman0104", FatalException, "Nesting error."); 205 fNestingDepth--; 199 fNestingDepth--; 206 if (fReadyForTransients) { 200 if (fReadyForTransients) { 207 fTransientsDrawnThisEvent = true; 201 fTransientsDrawnThisEvent = true; 208 fTransientsDrawnThisRun = true; 202 fTransientsDrawnThisRun = true; 209 } 203 } 210 fProcessing2D = false; 204 fProcessing2D = false; 211 } 205 } 212 206 213 void G4VSceneHandler::BeginModeling () { 207 void G4VSceneHandler::BeginModeling () { 214 } 208 } 215 209 216 void G4VSceneHandler::EndModeling () 210 void G4VSceneHandler::EndModeling () 217 { 211 { 218 fpModel = 0; 212 fpModel = 0; 219 } 213 } 220 214 221 void G4VSceneHandler::ClearStore () {} 215 void G4VSceneHandler::ClearStore () {} 222 216 223 void G4VSceneHandler::ClearTransientStore () { 217 void G4VSceneHandler::ClearTransientStore () {} 224 218 225 template <class T> void G4VSceneHandler::AddSo 219 template <class T> void G4VSceneHandler::AddSolidT 226 (const T& solid) 220 (const T& solid) 227 { 221 { 228 // Get and check applicable vis attributes. 222 // Get and check applicable vis attributes. 229 fpVisAttribs = fpViewer->GetApplicableVisAtt 223 fpVisAttribs = fpViewer->GetApplicableVisAttributes(fpVisAttribs); 230 RequestPrimitives (solid); 224 RequestPrimitives (solid); 231 } 225 } 232 226 233 template <class T> void G4VSceneHandler::AddSo 227 template <class T> void G4VSceneHandler::AddSolidWithAuxiliaryEdges 234 (const T& solid) 228 (const T& solid) 235 { 229 { 236 // Get and check applicable vis attributes. 230 // Get and check applicable vis attributes. 237 fpVisAttribs = fpViewer->GetApplicableVisAtt 231 fpVisAttribs = fpViewer->GetApplicableVisAttributes(fpVisAttribs); 238 // Draw with auxiliary edges unless otherwis 232 // Draw with auxiliary edges unless otherwise specified. 239 if (!fpVisAttribs->IsForceAuxEdgeVisible()) 233 if (!fpVisAttribs->IsForceAuxEdgeVisible()) { 240 // Create a vis atts object for the modifi 234 // Create a vis atts object for the modified vis atts. 241 // It is static so that we may return a re 235 // It is static so that we may return a reliable pointer to it. 242 static G4VisAttributes visAttsWithAuxEdges 236 static G4VisAttributes visAttsWithAuxEdges; 243 // Initialise it with the current vis atts 237 // Initialise it with the current vis atts and reset the pointer. 244 visAttsWithAuxEdges = *fpVisAttribs; 238 visAttsWithAuxEdges = *fpVisAttribs; 245 // Force auxiliary edges visible. 239 // Force auxiliary edges visible. 246 visAttsWithAuxEdges.SetForceAuxEdgeVisible 240 visAttsWithAuxEdges.SetForceAuxEdgeVisible(); 247 fpVisAttribs = &visAttsWithAuxEdges; 241 fpVisAttribs = &visAttsWithAuxEdges; 248 } 242 } 249 RequestPrimitives (solid); 243 RequestPrimitives (solid); 250 } 244 } 251 245 252 void G4VSceneHandler::AddSolid (const G4Box& b 246 void G4VSceneHandler::AddSolid (const G4Box& box) { 253 AddSolidT (box); 247 AddSolidT (box); 254 // If your graphics system is sophisticated 248 // If your graphics system is sophisticated enough to handle a 255 // particular solid shape as a primitive, i 249 // particular solid shape as a primitive, in your derived class write a 256 // function to override this. 250 // function to override this. 257 // Your function might look like this... 251 // Your function might look like this... 258 // void G4MySceneHandler::AddSolid (const G4 252 // void G4MySceneHandler::AddSolid (const G4Box& box) { 259 // Get and check applicable vis attributes. 253 // Get and check applicable vis attributes. 260 // fpVisAttribs = fpViewer->GetApplicableV 254 // fpVisAttribs = fpViewer->GetApplicableVisAttributes(fpVisAttribs); 261 // Do not draw if not visible. 255 // Do not draw if not visible. 262 // if (fpVisAttribs->IsVisible()) { 256 // if (fpVisAttribs->IsVisible()) { 263 // Get parameters of appropriate object, e 257 // Get parameters of appropriate object, e.g.: 264 // G4double dx = box.GetXHalfLength (); 258 // G4double dx = box.GetXHalfLength (); 265 // G4double dy = box.GetYHalfLength (); 259 // G4double dy = box.GetYHalfLength (); 266 // G4double dz = box.GetZHalfLength (); 260 // G4double dz = box.GetZHalfLength (); 267 // ... 261 // ... 268 // and Draw or Store in your display Lis 262 // and Draw or Store in your display List. 269 } 263 } 270 264 271 void G4VSceneHandler::AddSolid (const G4Cons& 265 void G4VSceneHandler::AddSolid (const G4Cons& cons) { 272 AddSolidT (cons); 266 AddSolidT (cons); 273 } 267 } 274 268 275 void G4VSceneHandler::AddSolid (const G4Orb& o 269 void G4VSceneHandler::AddSolid (const G4Orb& orb) { 276 AddSolidWithAuxiliaryEdges (orb); 270 AddSolidWithAuxiliaryEdges (orb); 277 } 271 } 278 272 279 void G4VSceneHandler::AddSolid (const G4Para& 273 void G4VSceneHandler::AddSolid (const G4Para& para) { 280 AddSolidT (para); 274 AddSolidT (para); 281 } 275 } 282 276 283 void G4VSceneHandler::AddSolid (const G4Sphere 277 void G4VSceneHandler::AddSolid (const G4Sphere& sphere) { 284 AddSolidWithAuxiliaryEdges (sphere); 278 AddSolidWithAuxiliaryEdges (sphere); 285 } 279 } 286 280 287 void G4VSceneHandler::AddSolid (const G4Torus& 281 void G4VSceneHandler::AddSolid (const G4Torus& torus) { 288 AddSolidWithAuxiliaryEdges (torus); 282 AddSolidWithAuxiliaryEdges (torus); 289 } 283 } 290 284 291 void G4VSceneHandler::AddSolid (const G4Trap& 285 void G4VSceneHandler::AddSolid (const G4Trap& trap) { 292 AddSolidT (trap); 286 AddSolidT (trap); 293 } 287 } 294 288 295 void G4VSceneHandler::AddSolid (const G4Trd& t 289 void G4VSceneHandler::AddSolid (const G4Trd& trd) { 296 AddSolidT (trd); 290 AddSolidT (trd); 297 } 291 } 298 292 299 void G4VSceneHandler::AddSolid (const G4Tubs& 293 void G4VSceneHandler::AddSolid (const G4Tubs& tubs) { 300 AddSolidT (tubs); 294 AddSolidT (tubs); 301 } 295 } 302 296 303 void G4VSceneHandler::AddSolid (const G4Ellips 297 void G4VSceneHandler::AddSolid (const G4Ellipsoid& ellipsoid) { 304 AddSolidWithAuxiliaryEdges (ellipsoid); 298 AddSolidWithAuxiliaryEdges (ellipsoid); 305 } 299 } 306 300 307 void G4VSceneHandler::AddSolid (const G4Polyco 301 void G4VSceneHandler::AddSolid (const G4Polycone& polycone) { 308 AddSolidT (polycone); 302 AddSolidT (polycone); 309 } 303 } 310 304 311 void G4VSceneHandler::AddSolid (const G4Polyhe 305 void G4VSceneHandler::AddSolid (const G4Polyhedra& polyhedra) { 312 AddSolidT (polyhedra); 306 AddSolidT (polyhedra); 313 } 307 } 314 308 315 void G4VSceneHandler::AddSolid (const G4Tessel << 316 AddSolidT (tess); << 317 } << 318 << 319 void G4VSceneHandler::AddSolid (const G4VSolid 309 void G4VSceneHandler::AddSolid (const G4VSolid& solid) { 320 AddSolidT (solid); 310 AddSolidT (solid); 321 } 311 } 322 312 323 void G4VSceneHandler::AddCompound (const G4VTr 313 void G4VSceneHandler::AddCompound (const G4VTrajectory& traj) { 324 G4TrajectoriesModel* trajectoriesModel = 314 G4TrajectoriesModel* trajectoriesModel = 325 dynamic_cast<G4TrajectoriesModel*>(fpModel 315 dynamic_cast<G4TrajectoriesModel*>(fpModel); 326 if (trajectoriesModel) 316 if (trajectoriesModel) 327 traj.DrawTrajectory(); 317 traj.DrawTrajectory(); 328 else { 318 else { 329 G4Exception 319 G4Exception 330 ("G4VSceneHandler::AddCompound(const G4VTr 320 ("G4VSceneHandler::AddCompound(const G4VTrajectory&)", 331 "visman0105", FatalException, "Not a G4Tr 321 "visman0105", FatalException, "Not a G4TrajectoriesModel."); 332 } 322 } 333 } 323 } 334 324 335 void G4VSceneHandler::AddCompound (const G4VHi 325 void G4VSceneHandler::AddCompound (const G4VHit& hit) { 336 // Cast away const because Draw is non-const 326 // Cast away const because Draw is non-const!!!! 337 const_cast<G4VHit&>(hit).Draw(); 327 const_cast<G4VHit&>(hit).Draw(); 338 } 328 } 339 329 340 void G4VSceneHandler::AddCompound (const G4VDi 330 void G4VSceneHandler::AddCompound (const G4VDigi& digi) { 341 // Cast away const because Draw is non-const 331 // Cast away const because Draw is non-const!!!! 342 const_cast<G4VDigi&>(digi).Draw(); 332 const_cast<G4VDigi&>(digi).Draw(); 343 } 333 } 344 334 345 void G4VSceneHandler::AddCompound (const G4THi 335 void G4VSceneHandler::AddCompound (const G4THitsMap<G4double>& hits) { 346 using MeshScoreMap = G4VScoringMesh::MeshSco << 347 //G4cout << "AddCompound: hits: " << &hits < 336 //G4cout << "AddCompound: hits: " << &hits << G4endl; 348 G4bool scoreMapHits = false; 337 G4bool scoreMapHits = false; 349 G4ScoringManager* scoringManager = G4Scoring 338 G4ScoringManager* scoringManager = G4ScoringManager::GetScoringManagerIfExist(); 350 if (scoringManager) { 339 if (scoringManager) { 351 std::size_t nMeshes = scoringManager->GetN << 340 size_t nMeshes = scoringManager->GetNumberOfMesh(); 352 for (std::size_t iMesh = 0; iMesh < nMeshe << 341 for (size_t iMesh = 0; iMesh < nMeshes; ++iMesh) { 353 G4VScoringMesh* mesh = scoringManager->G << 342 G4VScoringMesh* mesh = scoringManager->GetMesh(iMesh); 354 if (mesh && mesh->IsActive()) { 343 if (mesh && mesh->IsActive()) { 355 MeshScoreMap scoreMap = mesh->GetScoreMap(); 344 MeshScoreMap scoreMap = mesh->GetScoreMap(); 356 const G4String& mapNam = const_cast<G4 345 const G4String& mapNam = const_cast<G4THitsMap<G4double>&>(hits).GetName(); 357 for(MeshScoreMap::const_iterator i = scoreMa << 346 for(MeshScoreMap::const_iterator i = scoreMap.begin(); 358 i != scoreMap.cend(); ++i) { << 347 i != scoreMap.end(); ++i) { 359 const G4String& scoreMapName = i->first; 348 const G4String& scoreMapName = i->first; 360 if (scoreMapName == mapNam) { 349 if (scoreMapName == mapNam) { 361 G4DefaultLinearColorMap colorMap("G4VSce 350 G4DefaultLinearColorMap colorMap("G4VSceneHandlerColorMap"); 362 scoreMapHits = true; 351 scoreMapHits = true; 363 mesh->DrawMesh(scoreMapName, &colorMap); 352 mesh->DrawMesh(scoreMapName, &colorMap); 364 } 353 } 365 } 354 } 366 } 355 } 367 } 356 } 368 } 357 } 369 if (scoreMapHits) { 358 if (scoreMapHits) { 370 static G4bool first = true; 359 static G4bool first = true; 371 if (first) { 360 if (first) { 372 first = false; 361 first = false; 373 G4cout << 362 G4cout << 374 "Scoring map drawn with default parameters." 363 "Scoring map drawn with default parameters." 375 "\n To get gMocren file for gMocren browser 364 "\n To get gMocren file for gMocren browser:" 376 "\n /vis/open gMocrenFile" 365 "\n /vis/open gMocrenFile" 377 "\n /vis/viewer/flush" 366 "\n /vis/viewer/flush" 378 "\n Many other options available with /scor 367 "\n Many other options available with /score/draw... commands." 379 "\n You might want to \"/vis/viewer/set/aut 368 "\n You might want to \"/vis/viewer/set/autoRefresh false\"." 380 << G4endl; 369 << G4endl; 381 } 370 } 382 } else { // Not score map hits. Just call 371 } else { // Not score map hits. Just call DrawAllHits. 383 // Cast away const because DrawAllHits is 372 // Cast away const because DrawAllHits is non-const!!!! 384 const_cast<G4THitsMap<G4double>&>(hits).Dr 373 const_cast<G4THitsMap<G4double>&>(hits).DrawAllHits(); 385 } 374 } 386 } 375 } 387 376 388 void G4VSceneHandler::AddCompound (const G4THi 377 void G4VSceneHandler::AddCompound (const G4THitsMap<G4StatDouble>& hits) { 389 using MeshScoreMap = G4VScoringMesh::MeshSco << 390 //G4cout << "AddCompound: hits: " << &hits < 378 //G4cout << "AddCompound: hits: " << &hits << G4endl; 391 G4bool scoreMapHits = false; 379 G4bool scoreMapHits = false; 392 G4ScoringManager* scoringManager = G4Scoring 380 G4ScoringManager* scoringManager = G4ScoringManager::GetScoringManagerIfExist(); 393 if (scoringManager) { 381 if (scoringManager) { 394 std::size_t nMeshes = scoringManager->GetN << 382 size_t nMeshes = scoringManager->GetNumberOfMesh(); 395 for (std::size_t iMesh = 0; iMesh < nMeshe << 383 for (size_t iMesh = 0; iMesh < nMeshes; ++iMesh) { 396 G4VScoringMesh* mesh = scoringManager->G << 384 G4VScoringMesh* mesh = scoringManager->GetMesh(iMesh); 397 if (mesh && mesh->IsActive()) { 385 if (mesh && mesh->IsActive()) { 398 MeshScoreMap scoreMap = mesh->GetScoreMap(); 386 MeshScoreMap scoreMap = mesh->GetScoreMap(); 399 for(MeshScoreMap::const_iterator i = scoreMa << 387 for(MeshScoreMap::const_iterator i = scoreMap.begin(); 400 i != scoreMap.cend(); ++i) { << 388 i != scoreMap.end(); ++i) { 401 const G4String& scoreMapName = i->first; 389 const G4String& scoreMapName = i->first; 402 const G4THitsMap<G4StatDouble>* foundHits 390 const G4THitsMap<G4StatDouble>* foundHits = i->second; 403 if (foundHits == &hits) { 391 if (foundHits == &hits) { 404 G4DefaultLinearColorMap colorMap("G4VSce 392 G4DefaultLinearColorMap colorMap("G4VSceneHandlerColorMap"); 405 scoreMapHits = true; 393 scoreMapHits = true; 406 mesh->DrawMesh(scoreMapName, &colorMap); 394 mesh->DrawMesh(scoreMapName, &colorMap); 407 } 395 } 408 } 396 } 409 } 397 } 410 } 398 } 411 } 399 } 412 if (scoreMapHits) { 400 if (scoreMapHits) { 413 static G4bool first = true; 401 static G4bool first = true; 414 if (first) { 402 if (first) { 415 first = false; 403 first = false; 416 G4cout << 404 G4cout << 417 "Scoring map drawn with default parameters." 405 "Scoring map drawn with default parameters." 418 "\n To get gMocren file for gMocren browser 406 "\n To get gMocren file for gMocren browser:" 419 "\n /vis/open gMocrenFile" 407 "\n /vis/open gMocrenFile" 420 "\n /vis/viewer/flush" 408 "\n /vis/viewer/flush" 421 "\n Many other options available with /scor 409 "\n Many other options available with /score/draw... commands." 422 "\n You might want to \"/vis/viewer/set/aut 410 "\n You might want to \"/vis/viewer/set/autoRefresh false\"." 423 << G4endl; 411 << G4endl; 424 } 412 } 425 } else { // Not score map hits. Just call 413 } else { // Not score map hits. Just call DrawAllHits. 426 // Cast away const because DrawAllHits is 414 // Cast away const because DrawAllHits is non-const!!!! 427 const_cast<G4THitsMap<G4StatDouble>&>(hits 415 const_cast<G4THitsMap<G4StatDouble>&>(hits).DrawAllHits(); 428 } 416 } 429 } 417 } 430 418 431 void G4VSceneHandler::AddCompound(const G4Mesh << 432 { << 433 G4warn << << 434 "There has been an attempt to draw a mesh wi << 435 << fpViewer->GetViewParameters().GetSpecialM << 436 << "\":\n" << mesh << 437 << "but it is not of a recognised type or is << 438 "\nby the current graphics driver. Instead w << 439 "\ncontainer \"" << mesh.GetContainerVolume( << 440 << G4endl; << 441 const auto& pv = mesh.GetContainerVolume(); << 442 const auto& lv = pv->GetLogicalVolume(); << 443 const auto& solid = lv->GetSolid(); << 444 const auto& transform = mesh.GetTransform(); << 445 // Make sure container is visible << 446 G4VisAttributes tmpVisAtts; // Visible, whi << 447 const auto& saveVisAtts = lv->GetVisAttribut << 448 if (saveVisAtts) { << 449 tmpVisAtts = *saveVisAtts; << 450 tmpVisAtts.SetVisibility(true); << 451 auto colour = saveVisAtts->GetColour(); << 452 colour.SetAlpha(1.); << 453 tmpVisAtts.SetColour(colour); << 454 } << 455 // Draw container << 456 PreAddSolid(transform,tmpVisAtts); << 457 solid->DescribeYourselfTo(*this); << 458 PostAddSolid(); << 459 // Restore vis attributes << 460 lv->SetVisAttributes(saveVisAtts); << 461 } << 462 << 463 void G4VSceneHandler::AddViewerToList (G4VView 419 void G4VSceneHandler::AddViewerToList (G4VViewer* pViewer) { 464 fViewerList.push_back (pViewer); 420 fViewerList.push_back (pViewer); 465 } 421 } 466 422 >> 423 void G4VSceneHandler::AddPrimitive (const G4Scale& scale) { >> 424 >> 425 const G4double margin(0.01); >> 426 // Fractional margin - ensures scale is comfortably inside viewing >> 427 // volume. >> 428 const G4double oneMinusMargin (1. - margin); >> 429 >> 430 const G4VisExtent& sceneExtent = fpScene->GetExtent(); >> 431 >> 432 // Useful constants... >> 433 const G4double length(scale.GetLength()); >> 434 const G4double halfLength(length / 2.); >> 435 const G4double tickLength(length / 20.); >> 436 const G4double piBy2(halfpi); >> 437 >> 438 // Get size of scene... >> 439 const G4double xmin = sceneExtent.GetXmin(); >> 440 const G4double xmax = sceneExtent.GetXmax(); >> 441 const G4double ymin = sceneExtent.GetYmin(); >> 442 const G4double ymax = sceneExtent.GetYmax(); >> 443 const G4double zmin = sceneExtent.GetZmin(); >> 444 const G4double zmax = sceneExtent.GetZmax(); >> 445 >> 446 // Create (empty) polylines having the same vis attributes... >> 447 G4Polyline scaleLine, tick11, tick12, tick21, tick22; >> 448 G4VisAttributes visAtts(*scale.GetVisAttributes()); // Long enough life. >> 449 scaleLine.SetVisAttributes(&visAtts); >> 450 tick11.SetVisAttributes(&visAtts); >> 451 tick12.SetVisAttributes(&visAtts); >> 452 tick21.SetVisAttributes(&visAtts); >> 453 tick22.SetVisAttributes(&visAtts); >> 454 >> 455 // Add points to the polylines to represent an scale parallel to the >> 456 // x-axis centred on the origin... >> 457 G4Point3D r1(G4Point3D(-halfLength, 0., 0.)); >> 458 G4Point3D r2(G4Point3D( halfLength, 0., 0.)); >> 459 scaleLine.push_back(r1); >> 460 scaleLine.push_back(r2); >> 461 G4Point3D ticky(0., tickLength, 0.); >> 462 G4Point3D tickz(0., 0., tickLength); >> 463 tick11.push_back(r1 + ticky); >> 464 tick11.push_back(r1 - ticky); >> 465 tick12.push_back(r1 + tickz); >> 466 tick12.push_back(r1 - tickz); >> 467 tick21.push_back(r2 + ticky); >> 468 tick21.push_back(r2 - ticky); >> 469 tick22.push_back(r2 + tickz); >> 470 tick22.push_back(r2 - tickz); >> 471 G4Point3D textPosition(0., tickLength, 0.); >> 472 >> 473 // Transform appropriately... >> 474 >> 475 G4Transform3D transformation; >> 476 if (scale.GetAutoPlacing()) { >> 477 G4Transform3D rotation; >> 478 switch (scale.GetDirection()) { >> 479 case G4Scale::x: >> 480 break; >> 481 case G4Scale::y: >> 482 rotation = G4RotateZ3D(piBy2); >> 483 break; >> 484 case G4Scale::z: >> 485 rotation = G4RotateY3D(piBy2); >> 486 break; >> 487 } >> 488 G4double sxmid; >> 489 G4double symid; >> 490 G4double szmid; >> 491 sxmid = xmin + oneMinusMargin * (xmax - xmin); >> 492 symid = ymin + margin * (ymax - ymin); >> 493 szmid = zmin + oneMinusMargin * (zmax - zmin); >> 494 switch (scale.GetDirection()) { >> 495 case G4Scale::x: >> 496 sxmid -= halfLength; >> 497 break; >> 498 case G4Scale::y: >> 499 symid += halfLength; >> 500 break; >> 501 case G4Scale::z: >> 502 szmid -= halfLength; >> 503 break; >> 504 } >> 505 G4Translate3D translation(sxmid, symid, szmid); >> 506 transformation = translation * rotation; >> 507 } else { >> 508 if (fpModel) transformation = fpModel->GetTransformation(); >> 509 } >> 510 >> 511 // Draw... >> 512 // We would like to call BeginPrimitives(transformation) here but >> 513 // calling BeginPrimitives from within an AddPrimitive is not >> 514 // allowed! So we have to do our own transformation... >> 515 AddPrimitive(scaleLine.transform(transformation)); >> 516 AddPrimitive(tick11.transform(transformation)); >> 517 AddPrimitive(tick12.transform(transformation)); >> 518 AddPrimitive(tick21.transform(transformation)); >> 519 AddPrimitive(tick22.transform(transformation)); >> 520 G4Text text(scale.GetAnnotation(),textPosition.transform(transformation)); >> 521 G4VisAttributes va(G4VVisCommand::GetCurrentTextColour()); >> 522 text.SetVisAttributes(va); >> 523 text.SetScreenSize(scale.GetAnnotationSize()); >> 524 AddPrimitive(text); >> 525 } >> 526 467 void G4VSceneHandler::AddPrimitive (const G4Po 527 void G4VSceneHandler::AddPrimitive (const G4Polymarker& polymarker) { 468 switch (polymarker.GetMarkerType()) { 528 switch (polymarker.GetMarkerType()) { 469 default: << 529 default: 470 case G4Polymarker::dots: << 530 case G4Polymarker::dots: 471 { 531 { 472 G4Circle dot (polymarker); << 532 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 473 dot.SetWorldSize (0.); << 533 G4Circle dot (polymarker); 474 dot.SetScreenSize (0.1); // Very small << 475 for (std::size_t iPoint = 0; iPoint < po << 476 dot.SetPosition (polymarker[iPoint]); 534 dot.SetPosition (polymarker[iPoint]); 477 AddPrimitive (dot); << 535 dot.SetWorldSize (0.); >> 536 dot.SetScreenSize (0.1); // Very small circle. >> 537 AddPrimitive (dot); 478 } 538 } 479 } 539 } 480 break; << 540 break; 481 case G4Polymarker::circles: << 541 case G4Polymarker::circles: 482 { 542 { 483 G4Circle circle (polymarker); // Defaul << 543 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 484 for (std::size_t iPoint = 0; iPoint < po << 544 G4Circle circle (polymarker); 485 circle.SetPosition (polymarker[iPoint] << 545 circle.SetPosition (polymarker[iPoint]); 486 AddPrimitive (circle); << 546 AddPrimitive (circle); 487 } 547 } 488 } 548 } 489 break; << 549 break; 490 case G4Polymarker::squares: << 550 case G4Polymarker::squares: 491 { 551 { 492 G4Square square (polymarker); // Defaul << 552 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 493 for (std::size_t iPoint = 0; iPoint < po << 553 G4Square square (polymarker); 494 square.SetPosition (polymarker[iPoint] << 554 square.SetPosition (polymarker[iPoint]); 495 AddPrimitive (square); << 555 AddPrimitive (square); 496 } 556 } 497 } 557 } 498 break; << 558 break; 499 } 559 } 500 } 560 } 501 561 502 void G4VSceneHandler::RemoveViewerFromList (G4 562 void G4VSceneHandler::RemoveViewerFromList (G4VViewer* pViewer) { 503 fViewerList.remove(pViewer); // Does nothin << 563 fViewerList.remove(pViewer); 504 // And reset current viewer << 505 auto visManager = G4VisManager::GetInstance( << 506 visManager->SetCurrentViewer(nullptr); << 507 } << 508 << 509 << 510 void G4VSceneHandler::AddPrimitive (const G4Pl << 511 G4warn << "WARNING: Plotter not implemented << 512 G4warn << " Open a plotter-aware graphics s << 513 G4warn << " /vis/scene/removeModel Plotter" << 514 } 564 } 515 565 516 void G4VSceneHandler::SetScene (G4Scene* pScen 566 void G4VSceneHandler::SetScene (G4Scene* pScene) { 517 fpScene = pScene; 567 fpScene = pScene; 518 // Notify all viewers that a kernel visit is 568 // Notify all viewers that a kernel visit is required. 519 G4ViewerListIterator i; 569 G4ViewerListIterator i; 520 for (i = fViewerList.begin(); i != fViewerLi 570 for (i = fViewerList.begin(); i != fViewerList.end(); i++) { 521 (*i) -> SetNeedKernelVisit (true); 571 (*i) -> SetNeedKernelVisit (true); 522 } 572 } 523 } 573 } 524 574 525 void G4VSceneHandler::RequestPrimitives (const << 575 void G4VSceneHandler::RequestPrimitives (const G4VSolid& solid) { 526 { << 576 G4Polyhedron::SetNumberOfRotationSteps (GetNoOfSides (fpVisAttribs)); 527 // Sometimes solids that have no substance g << 577 G4Polyhedron* pPolyhedron = solid.GetPolyhedron (); 528 // be part of the geometry tree but have bee << 578 G4Polyhedron::ResetNumberOfRotationSteps (); 529 // example by a Boolean subtraction in which << 579 if (pPolyhedron) { 530 // is entirely inside the subtractor or an i << 580 pPolyhedron -> SetVisAttributes (fpVisAttribs); 531 // the original volume is entirely outside t << 581 BeginPrimitives (fObjectTransformation); 532 // The problem is that the Boolean Processor << 582 AddPrimitive (*pPolyhedron); 533 // polyhedron in these cases (IMHO it should << 583 EndPrimitives (); 534 // workaround is to return before the damage << 535 // Algorithm by Evgueni Tcherniaev << 536 auto pSolid = &solid; << 537 auto pBooleanSolid = dynamic_cast<const G4Bo << 538 if (pBooleanSolid) { << 539 G4ThreeVector bmin, bmax; << 540 pBooleanSolid->BoundingLimits(bmin, bmax); << 541 G4bool isGood = false; << 542 if (dynamic_cast<const G4SubtractionSolid* << 543 auto ptrB = pBooleanSolid->GetConstituen << 544 for (G4int i=0; i<10; ++i) { << 545 G4double x = bmin.x() + (bmax.x() - bm << 546 G4double y = bmin.y() + (bmax.y() - bm << 547 G4double z = bmin.z() + (bmax.z() - bm << 548 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 549 if (ptrB->Inside(G4ThreeVector(x,y,bma << 550 if (ptrB->Inside(G4ThreeVector(x,bmin. << 551 if (ptrB->Inside(G4ThreeVector(x,bmax. << 552 if (ptrB->Inside(G4ThreeVector(bmin.x( << 553 if (ptrB->Inside(G4ThreeVector(bmax.x( << 554 } << 555 } else if (dynamic_cast<const G4Intersecti << 556 auto ptrB = pBooleanSolid->GetConstituen << 557 for (G4int i=0; i<10; ++i) { << 558 G4double x = bmin.x() + (bmax.x() - bm << 559 G4double y = bmin.y() + (bmax.y() - bm << 560 G4double z = bmin.z() + (bmax.z() - bm << 561 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 562 if (ptrB->Inside(G4ThreeVector(x,y,bma << 563 if (ptrB->Inside(G4ThreeVector(x,bmin. << 564 if (ptrB->Inside(G4ThreeVector(x,bmax. << 565 if (ptrB->Inside(G4ThreeVector(bmin.x( << 566 if (ptrB->Inside(G4ThreeVector(bmax.x( << 567 } << 568 } << 569 if (!isGood) << 570 { << 571 for (G4int i=0; i<10000; ++i) { << 572 G4double x = bmin.x() + (bmax.x() - bm << 573 G4double y = bmin.y() + (bmax.y() - bm << 574 G4double z = bmin.z() + (bmax.z() - bm << 575 if (pBooleanSolid->Inside(G4ThreeVecto << 576 } << 577 } << 578 if (!isGood) return; << 579 } 584 } 580 << 585 else { 581 const G4ViewParameters::DrawingStyle style = << 586 G4VisManager::Verbosity verbosity = G4VisManager::GetVerbosity(); 582 const G4ViewParameters& vp = fpViewer->GetVi << 587 if (verbosity >= G4VisManager::errors) { 583 << 588 G4cerr << 584 switch (style) { << 589 "ERROR: G4VSceneHandler::RequestPrimitives" 585 default: << 590 "\n Polyhedron not available for " << solid.GetName () << 586 case G4ViewParameters::wireframe: << 591 "\n Touchable path: "; 587 case G4ViewParameters::hlr: << 592 G4PhysicalVolumeModel* pPVModel = dynamic_cast<G4PhysicalVolumeModel*>(fpModel); 588 case G4ViewParameters::hsr: << 593 if (pPVModel) { 589 case G4ViewParameters::hlhsr: << 594 G4cerr << pPVModel->GetFullPVPath(); 590 { << 595 } 591 // Use polyhedral representation << 596 static G4bool explanation = false; 592 G4Polyhedron::SetNumberOfRotationSteps ( << 597 if (!explanation) { 593 G4Polyhedron* pPolyhedron = solid.GetPol << 598 explanation = true; 594 G4Polyhedron::ResetNumberOfRotationSteps << 599 G4cerr << 595 if (pPolyhedron) { << 600 "\n This means it cannot be visualized on most systems (try RayTracer)." 596 pPolyhedron -> SetVisAttributes (fpVis << 601 "\n 1) The solid may not have implemented the CreatePolyhedron method." 597 BeginPrimitives (fObjectTransformation << 602 "\n 2) For Boolean solids, the BooleanProcessor, which attempts to create" 598 AddPrimitive (*pPolyhedron); << 603 "\n the resultant polyhedron, may have failed."; 599 EndPrimitives (); << 600 break; << 601 } else { // Print warnings and drop thr << 602 G4VisManager::Verbosity verbosity = G4 << 603 auto pPVModel = dynamic_cast<G4Physica << 604 if (pPVModel) { << 605 auto problematicVolume = pPVModel->G << 606 if (fProblematicVolumes.find(problem << 607 fProblematicVolumes[problematicVol << 608 if (verbosity >= G4VisManager::err << 609 G4warn << << 610 "ERROR: G4VSceneHandler::Request << 611 "\n Polyhedron not available fo << 612 G4warn << "\n Touchable path: " << 613 static G4bool explanation = fals << 614 if (!explanation) { << 615 explanation = true; << 616 G4warn << << 617 "\n This means it cannot be v << 618 "\n 1) The solid may not have << 619 "\n 2) For Boolean solids, th << 620 "\n the resultant polyhedr << 621 "\n Try RayTracer. It uses Ge << 622 } << 623 } << 624 G4warn << "\n Drawing solid with << 625 G4warn << G4endl; << 626 } << 627 } << 628 } << 629 } << 630 [[fallthrough]]; << 631 << 632 case G4ViewParameters::cloud: << 633 { << 634 // Form solid out of cloud of dots on su << 635 G4Polymarker dots; << 636 // Note: OpenGL has a fast implementatio << 637 // to build a polymarker rather than add << 638 // And anyway, in Qt, in the latter case << 639 // entry, something we would want to avo << 640 dots.SetVisAttributes(fpVisAttribs); << 641 dots.SetMarkerType(G4Polymarker::dots); << 642 dots.SetSize(G4VMarker::screen,1.); << 643 G4int numberOfCloudPoints = GetNumberOfC << 644 if (numberOfCloudPoints <= 0) numberOfCl << 645 for (G4int i = 0; i < numberOfCloudPoint << 646 G4ThreeVector p = solid.GetPointOnSurface(); << 647 dots.push_back(p); << 648 } 604 } 649 BeginPrimitives (fObjectTransformation); << 605 G4cerr << G4endl; 650 AddPrimitive(dots); << 651 EndPrimitives (); << 652 break; << 653 } 606 } 654 } 607 } 655 } 608 } 656 609 657 //namespace { << 610 void G4VSceneHandler::ProcessScene () { 658 // void DrawExtent(const G4VModel* pModel) << 659 // { << 660 // // Show extent boxes - debug only, OGLSX << 661 // if (pModel->GetExtent() != G4VisExtent:: << 662 // const auto& extent = pModel->GetExtent << 663 // const auto& centre = extent.GetExtentC << 664 // const auto& position = G4Translate3D(c << 665 // const auto& dx = (extent.GetXmax()-ext << 666 // const auto& dy = (extent.GetYmax()-ext << 667 // const auto& dz = (extent.GetZmax()-ext << 668 // auto visAtts = G4VisAttributes(); << 669 // visAtts.SetForceWireframe(); << 670 // G4Box extentBox("Extent",dx,dy,dz); << 671 // G4VisManager::GetInstance()->Draw(exte << 672 // } << 673 // } << 674 //} << 675 611 676 void G4VSceneHandler::ProcessScene() << 677 { << 678 // Assumes graphics database store has alrea 612 // Assumes graphics database store has already been cleared if 679 // relevant for the particular scene handler 613 // relevant for the particular scene handler. 680 614 681 if(!fpScene) << 615 if (!fpScene) return; 682 return; << 683 616 684 if(fpScene->GetExtent() == G4VisExtent::GetN << 617 if (fpScene->GetExtent() == G4VisExtent::GetNullExtent()) { 685 { << 618 G4Exception 686 G4Exception("G4VSceneHandler::ProcessScene << 619 ("G4VSceneHandler::ProcessScene", 687 "The scene has no extent."); << 620 "visman0106", JustWarning, >> 621 "The scene has no extent."); 688 } 622 } 689 623 690 G4VisManager* visManager = G4VisManager::Get 624 G4VisManager* visManager = G4VisManager::GetInstance(); 691 625 692 if(!visManager->GetConcreteInstance()) << 626 if (!visManager->GetConcreteInstance()) return; 693 return; << 694 627 695 G4VisManager::Verbosity verbosity = visManag 628 G4VisManager::Verbosity verbosity = visManager->GetVerbosity(); 696 629 697 fReadyForTransients = false; 630 fReadyForTransients = false; 698 631 699 // Reset fMarkForClearingTransientStore. (Le 632 // Reset fMarkForClearingTransientStore. (Leaving 700 // fMarkForClearingTransientStore true cause 633 // fMarkForClearingTransientStore true causes problems with 701 // recomputing transients below.) Restore i 634 // recomputing transients below.) Restore it again at end... 702 G4bool tmpMarkForClearingTransientStore = fM 635 G4bool tmpMarkForClearingTransientStore = fMarkForClearingTransientStore; 703 fMarkForClearingTransientStore = fa << 636 fMarkForClearingTransientStore = false; 704 637 705 // Traverse geometry tree and send drawing p 638 // Traverse geometry tree and send drawing primitives to window(s). 706 639 707 const std::vector<G4Scene::Model>& runDurati 640 const std::vector<G4Scene::Model>& runDurationModelList = 708 fpScene->GetRunDurationModelList(); << 641 fpScene -> GetRunDurationModelList (); 709 642 710 if(runDurationModelList.size()) { << 643 if (runDurationModelList.size ()) { 711 if(verbosity >= G4VisManager::confirmation << 644 if (verbosity >= G4VisManager::confirmations) { 712 G4cout << "Traversing scene data..." << 645 G4cout << "Traversing scene data..." << G4endl; 713 static G4int first = true; << 714 if (first) { << 715 first = false; << 716 G4cout << << 717 "(This could happen more than once - i << 718 "\nper rebuild, for opaque, transparen << 719 << G4endl; << 720 } << 721 } 646 } 722 647 723 // Reset visibility of all objects to fals << 648 BeginModeling (); 724 fpViewer->AccessSceneTree().ResetVisibilit << 725 << 726 BeginModeling(); << 727 649 728 // Create modeling parameters from view pa 650 // Create modeling parameters from view parameters... 729 G4ModelingParameters* pMP = CreateModeling << 651 G4ModelingParameters* pMP = CreateModelingParameters (); 730 652 731 for(std::size_t i = 0; i < runDurationMode << 653 for (size_t i = 0; i < runDurationModelList.size (); i++) { 732 if(runDurationModelList[i].fActive) { << 654 if (runDurationModelList[i].fActive) { 733 fpModel = runDurationModelList[i].fpMo 655 fpModel = runDurationModelList[i].fpModel; 734 fpModel->SetModelingParameters(pMP); << 656 // Note: this is not the place to take action on 735 << 657 // pModel->GetTransformation(). The model must take care of 736 // Describe to the current scene handl << 658 // this in pModel->DescribeYourselfTo(*this). See, for example, 737 fpModel->DescribeYourselfTo(*this); << 659 // G4PhysicalVolumeModel and /vis/scene/add/logo. 738 << 660 fpModel -> SetModelingParameters (pMP); 739 // To see the extents of each model re << 661 fpModel -> DescribeYourselfTo (*this); 740 // uncomment the next line and DrawExt << 662 fpModel -> SetModelingParameters (0); 741 // DrawExtent(fpModel); << 742 << 743 // Enter models in the scene tree. The << 744 // the model to the scene tree, i.e., << 745 fpViewer->InsertModelInSceneTree(fpMod << 746 auto pPVModel = dynamic_cast<G4Physica << 747 if (pPVModel) { << 748 G4VViewer::SceneTreeScene sceneTreeS << 749 fpModel->DescribeYourselfTo(sceneTre << 750 } << 751 << 752 // Reset modeling parameters pointer << 753 fpModel->SetModelingParameters(0); << 754 } 663 } 755 } 664 } 756 665 757 fpModel = 0; 666 fpModel = 0; 758 delete pMP; 667 delete pMP; 759 668 760 EndModeling(); << 669 EndModeling (); 761 } << 762 << 763 // Some printing << 764 if(verbosity >= G4VisManager::confirmations) << 765 for (const auto& model: runDurationModelLi << 766 if (model.fActive) { << 767 auto pvModel = dynamic_cast<G4Physical << 768 if (pvModel) { << 769 G4int nTouchables = 0; << 770 G4cout << "Numbers of touchables by << 771 << pvModel->GetGlobalDescription() < << 772 for (const auto& dn : pvModel->GetNu << 773 G4cout << "\n Depth " << dn.first << 774 nTouchables += dn.second; << 775 } << 776 G4cout << "\n Total number of touch << 777 } << 778 } << 779 } << 780 << 781 if (fProblematicVolumes.size() > 0) { << 782 G4cout << "Problematic volumes:"; << 783 for (const auto& prob: fProblematicVolum << 784 G4cout << "\n " << prob.first->GetNam << 785 } << 786 G4cout << G4endl; << 787 } << 788 } 670 } 789 671 790 fReadyForTransients = true; 672 fReadyForTransients = true; 791 673 792 // Refresh event from end-of-event model lis 674 // Refresh event from end-of-event model list. 793 // Allow only in Idle or GeomClosed state... 675 // Allow only in Idle or GeomClosed state... 794 G4StateManager* stateManager = G4StateManage 676 G4StateManager* stateManager = G4StateManager::GetStateManager(); 795 G4ApplicationState state = stateManager- << 677 G4ApplicationState state = stateManager->GetCurrentState(); 796 if(state == G4State_Idle || state == G4State << 678 if (state == G4State_Idle || state == G4State_GeomClosed) { 797 { << 679 798 visManager->SetEventRefreshing(true); 680 visManager->SetEventRefreshing(true); 799 681 800 if(visManager->GetRequestedEvent()) << 682 if (visManager->GetRequestedEvent()) { 801 { << 802 DrawEvent(visManager->GetRequestedEvent( 683 DrawEvent(visManager->GetRequestedEvent()); 803 } << 804 else << 805 { << 806 G4RunManager* runManager = G4RunManagerF << 807 if(runManager) << 808 { << 809 const G4Run* run = runManager->GetCurr << 810 // Draw a null event in order to pick << 811 if (run == nullptr) DrawEvent(0); << 812 const std::vector<const G4Event*>* eve << 813 run ? run->GetEventVector() : 0; << 814 std::size_t nKeptEvents = 0; << 815 if(events) << 816 nKeptEvents = events->size(); << 817 if(nKeptEvents) << 818 { << 819 if(fpScene->GetRefreshAtEndOfEvent() << 820 { << 821 if(verbosity >= G4VisManager::conf << 822 { << 823 G4cout << "Refreshing event..." << 824 } << 825 const G4Event* event = 0; << 826 if(events && events->size()) << 827 event = events->back(); << 828 if(event) << 829 DrawEvent(event); << 830 } << 831 else << 832 { // Accumulating events. << 833 684 834 if(verbosity >= G4VisManager::conf << 685 } else { 835 { << 836 G4cout << "Refreshing events in << 837 } << 838 for(const auto& event : *events) << 839 { << 840 if(event) << 841 DrawEvent(event); << 842 } << 843 686 844 if(!fpScene->GetRefreshAtEndOfRun( << 687 G4RunManager* runManager = G4RunManager::GetRunManager(); 845 { << 688 #ifdef G4MULTITHREADED 846 if(verbosity >= G4VisManager::wa << 689 if(G4Threading::IsMultithreadedApplication()) 847 { << 690 { runManager = G4MTRunManager::GetMasterRunManager(); } 848 G4warn << "WARNING: Cannot ref << 691 #endif 849 "\n than one runs. << 692 if (runManager) { 850 << G4endl; << 693 const G4Run* run = runManager->GetCurrentRun(); 851 } << 694 const std::vector<const G4Event*>* events = >> 695 run? run->GetEventVector(): 0; >> 696 size_t nKeptEvents = 0; >> 697 if (events) nKeptEvents = events->size(); >> 698 if (nKeptEvents) { >> 699 >> 700 if (fpScene->GetRefreshAtEndOfEvent()) { >> 701 >> 702 if (verbosity >= G4VisManager::confirmations) { >> 703 G4cout << "Refreshing event..." << G4endl; >> 704 } >> 705 const G4Event* event = 0; >> 706 if (events && events->size()) event = events->back(); >> 707 if (event) DrawEvent(event); >> 708 >> 709 } else { // Accumulating events. >> 710 >> 711 if (verbosity >= G4VisManager::confirmations) { >> 712 G4cout << "Refreshing events in run..." << G4endl; >> 713 } >> 714 for (const auto& event: *events) { >> 715 if (event) DrawEvent(event); 852 } 716 } 853 } << 717 854 } << 718 if (!fpScene->GetRefreshAtEndOfRun()) { >> 719 if (verbosity >= G4VisManager::warnings) { >> 720 G4cout << >> 721 "WARNING: Cannot refresh events accumulated over more" >> 722 "\n than one runs. Refreshed just the last run." >> 723 << G4endl; >> 724 } >> 725 } >> 726 } >> 727 } 855 } 728 } 856 } 729 } 857 visManager->SetEventRefreshing(false); 730 visManager->SetEventRefreshing(false); 858 } 731 } 859 732 860 // Refresh end-of-run model list. 733 // Refresh end-of-run model list. 861 // Allow only in Idle or GeomClosed state... 734 // Allow only in Idle or GeomClosed state... 862 if(state == G4State_Idle || state == G4State << 735 if (state == G4State_Idle || state == G4State_GeomClosed) { 863 { << 864 DrawEndOfRunModels(); 736 DrawEndOfRunModels(); 865 } 737 } 866 738 867 fMarkForClearingTransientStore = tmpMarkForC 739 fMarkForClearingTransientStore = tmpMarkForClearingTransientStore; 868 } 740 } 869 741 870 void G4VSceneHandler::DrawEvent(const G4Event* 742 void G4VSceneHandler::DrawEvent(const G4Event* event) 871 { 743 { 872 if(!fpViewer->ReadyToDraw()) return; << 873 const std::vector<G4Scene::Model>& EOEModelL 744 const std::vector<G4Scene::Model>& EOEModelList = 874 fpScene -> GetEndOfEventModelList (); 745 fpScene -> GetEndOfEventModelList (); 875 std::size_t nModels = EOEModelList.size(); << 746 size_t nModels = EOEModelList.size(); 876 if (nModels) { 747 if (nModels) { 877 G4ModelingParameters* pMP = CreateModeling 748 G4ModelingParameters* pMP = CreateModelingParameters(); 878 pMP->SetEvent(event); 749 pMP->SetEvent(event); 879 for (std::size_t i = 0; i < nModels; ++i) << 750 for (size_t i = 0; i < nModels; i++) { 880 if (EOEModelList[i].fActive) { 751 if (EOEModelList[i].fActive) { 881 fpModel = EOEModelList[i].fpModel; << 752 fpModel = EOEModelList[i].fpModel; 882 fpModel -> SetModelingParameters(pMP); << 753 fpModel -> SetModelingParameters(pMP); 883 << 754 fpModel -> DescribeYourselfTo (*this); 884 // Describe to the current scene handl << 755 fpModel -> SetModelingParameters(0); 885 fpModel -> DescribeYourselfTo (*this); << 886 << 887 // Enter models in the scene tree << 888 fpViewer->InsertModelInSceneTree(fpMod << 889 << 890 // Reset modeling parameters pointer << 891 fpModel -> SetModelingParameters(0); << 892 } 756 } 893 } 757 } 894 fpModel = 0; 758 fpModel = 0; 895 delete pMP; 759 delete pMP; 896 } 760 } 897 } 761 } 898 762 899 void G4VSceneHandler::DrawEndOfRunModels() 763 void G4VSceneHandler::DrawEndOfRunModels() 900 { 764 { 901 if(!fpViewer->ReadyToDraw()) return; << 902 const std::vector<G4Scene::Model>& EORModelL 765 const std::vector<G4Scene::Model>& EORModelList = 903 fpScene -> GetEndOfRunModelList (); 766 fpScene -> GetEndOfRunModelList (); 904 std::size_t nModels = EORModelList.size(); << 767 size_t nModels = EORModelList.size(); 905 if (nModels) { 768 if (nModels) { 906 G4ModelingParameters* pMP = CreateModeling 769 G4ModelingParameters* pMP = CreateModelingParameters(); 907 pMP->SetEvent(0); 770 pMP->SetEvent(0); 908 for (std::size_t i = 0; i < nModels; ++i) << 771 for (size_t i = 0; i < nModels; i++) { 909 if (EORModelList[i].fActive) { 772 if (EORModelList[i].fActive) { 910 fpModel = EORModelList[i].fpModel; 773 fpModel = EORModelList[i].fpModel; 911 fpModel -> SetModelingParameters(pMP); << 774 fpModel -> SetModelingParameters(pMP); 912 << 775 fpModel -> DescribeYourselfTo (*this); 913 // Describe to the current scene handl << 776 fpModel -> SetModelingParameters(0); 914 fpModel -> DescribeYourselfTo (*this); << 915 << 916 // Enter models in the scene tree << 917 fpViewer->InsertModelInSceneTree(fpMod << 918 << 919 // Reset modeling parameters pointer << 920 fpModel -> SetModelingParameters(0); << 921 } 777 } 922 } 778 } 923 fpModel = 0; 779 fpModel = 0; 924 delete pMP; 780 delete pMP; 925 } 781 } 926 } 782 } 927 783 928 G4ModelingParameters* G4VSceneHandler::CreateM 784 G4ModelingParameters* G4VSceneHandler::CreateModelingParameters () 929 { 785 { 930 // Create modeling parameters from View Para 786 // Create modeling parameters from View Parameters... 931 if (!fpViewer) return NULL; 787 if (!fpViewer) return NULL; 932 788 933 const G4ViewParameters& vp = fpViewer -> Get 789 const G4ViewParameters& vp = fpViewer -> GetViewParameters (); 934 790 935 // Convert drawing styles... 791 // Convert drawing styles... 936 G4ModelingParameters::DrawingStyle modelDraw 792 G4ModelingParameters::DrawingStyle modelDrawingStyle = 937 G4ModelingParameters::wf; << 793 G4ModelingParameters::wf; 938 switch (vp.GetDrawingStyle ()) { 794 switch (vp.GetDrawingStyle ()) { 939 default: << 795 default: 940 case G4ViewParameters::wireframe: << 796 case G4ViewParameters::wireframe: 941 modelDrawingStyle = G4ModelingParameters << 797 modelDrawingStyle = G4ModelingParameters::wf; 942 break; << 798 break; 943 case G4ViewParameters::hlr: << 799 case G4ViewParameters::hlr: 944 modelDrawingStyle = G4ModelingParameters << 800 modelDrawingStyle = G4ModelingParameters::hlr; 945 break; << 801 break; 946 case G4ViewParameters::hsr: << 802 case G4ViewParameters::hsr: 947 modelDrawingStyle = G4ModelingParameters << 803 modelDrawingStyle = G4ModelingParameters::hsr; 948 break; << 804 break; 949 case G4ViewParameters::hlhsr: << 805 case G4ViewParameters::hlhsr: 950 modelDrawingStyle = G4ModelingParameters << 806 modelDrawingStyle = G4ModelingParameters::hlhsr; 951 break; << 807 break; 952 case G4ViewParameters::cloud: << 953 modelDrawingStyle = G4ModelingParameters << 954 break; << 955 } 808 } 956 809 957 // Decide if covered daughters are really to 810 // Decide if covered daughters are really to be culled... 958 G4bool reallyCullCovered = 811 G4bool reallyCullCovered = 959 vp.IsCullingCovered() // Culling daughte 812 vp.IsCullingCovered() // Culling daughters depends also on... 960 && !vp.IsSection () // Sections (DCUT) 813 && !vp.IsSection () // Sections (DCUT) not requested. 961 && !vp.IsCutaway () // Cutaways not re 814 && !vp.IsCutaway () // Cutaways not requested. 962 ; 815 ; 963 816 964 G4ModelingParameters* pModelingParams = new 817 G4ModelingParameters* pModelingParams = new G4ModelingParameters 965 (vp.GetDefaultVisAttributes (), 818 (vp.GetDefaultVisAttributes (), 966 modelDrawingStyle, 819 modelDrawingStyle, 967 vp.IsCulling (), 820 vp.IsCulling (), 968 vp.IsCullingInvisible (), 821 vp.IsCullingInvisible (), 969 vp.IsDensityCulling (), 822 vp.IsDensityCulling (), 970 vp.GetVisibleDensity (), 823 vp.GetVisibleDensity (), 971 reallyCullCovered, 824 reallyCullCovered, 972 vp.GetNoOfSides () 825 vp.GetNoOfSides () 973 ); 826 ); 974 827 975 pModelingParams->SetNumberOfCloudPoints(vp.G << 976 pModelingParams->SetWarning 828 pModelingParams->SetWarning 977 (G4VisManager::GetVerbosity() >= G4VisMana 829 (G4VisManager::GetVerbosity() >= G4VisManager::warnings); 978 830 979 pModelingParams->SetCBDAlgorithmNumber(vp.Ge 831 pModelingParams->SetCBDAlgorithmNumber(vp.GetCBDAlgorithmNumber()); 980 pModelingParams->SetCBDParameters(vp.GetCBDP 832 pModelingParams->SetCBDParameters(vp.GetCBDParameters()); 981 833 982 pModelingParams->SetExplodeFactor(vp.GetExpl 834 pModelingParams->SetExplodeFactor(vp.GetExplodeFactor()); 983 pModelingParams->SetExplodeCentre(vp.GetExpl 835 pModelingParams->SetExplodeCentre(vp.GetExplodeCentre()); 984 836 985 pModelingParams->SetSectionSolid(CreateSecti 837 pModelingParams->SetSectionSolid(CreateSectionSolid()); 986 << 987 if (vp.GetCutawayMode() == G4ViewParameters: << 988 pModelingParams->SetCutawayMode(G4Modeling << 989 } else if (vp.GetCutawayMode() == G4ViewPara << 990 pModelingParams->SetCutawayMode(G4Modeling << 991 } << 992 << 993 pModelingParams->SetCutawaySolid(CreateCutaw 838 pModelingParams->SetCutawaySolid(CreateCutawaySolid()); 994 // The polyhedron objects are deleted in the 839 // The polyhedron objects are deleted in the modeling parameters destructor. 995 840 996 pModelingParams->SetVisAttributesModifiers(v 841 pModelingParams->SetVisAttributesModifiers(vp.GetVisAttributesModifiers()); 997 842 998 pModelingParams->SetSpecialMeshRendering(vp. << 999 pModelingParams->SetSpecialMeshVolumes(vp.Ge << 1000 << 1001 return pModelingParams; 843 return pModelingParams; 1002 } 844 } 1003 845 1004 G4DisplacedSolid* G4VSceneHandler::CreateSect << 846 G4VSolid* G4VSceneHandler::CreateSectionSolid() 1005 { 847 { 1006 G4DisplacedSolid* sectioner = 0; << 848 G4VSolid* sectioner = 0; 1007 << 1008 const G4ViewParameters& vp = fpViewer->GetV 849 const G4ViewParameters& vp = fpViewer->GetViewParameters(); 1009 if (vp.IsSection () ) { 850 if (vp.IsSection () ) { 1010 << 1011 G4double radius = fpScene->GetExtent().Ge 851 G4double radius = fpScene->GetExtent().GetExtentRadius(); 1012 G4double safe = radius + fpScene->GetExte 852 G4double safe = radius + fpScene->GetExtent().GetExtentCentre().mag(); 1013 G4VSolid* sectionBox = 853 G4VSolid* sectionBox = 1014 new G4Box("_sectioner", safe, safe, 1.e << 854 new G4Box("_sectioner", safe, safe, 1.e-5 * radius); // Thin in z-plane. 1015 << 1016 const G4Plane3D& sp = vp.GetSectionPlane 855 const G4Plane3D& sp = vp.GetSectionPlane (); 1017 G4ThreeVector normal = sp.normal(); << 856 G4double a = sp.a(); 1018 G4Transform3D requiredTransform = G4Trans << 857 G4double b = sp.b(); 1019 G4Rotate3D(G4ThreeVector(0,0,1), G4ThreeV << 858 G4double c = sp.c(); 1020 << 859 G4double d = sp.d(); >> 860 G4Transform3D transform = G4TranslateZ3D(-d); >> 861 const G4Normal3D normal(a,b,c); >> 862 if (normal != G4Normal3D(0,0,1)) { >> 863 const G4double angle = std::acos(normal.dot(G4Normal3D(0,0,1))); >> 864 const G4Vector3D axis = G4Normal3D(0,0,1).cross(normal); >> 865 transform = G4Rotate3D(angle, axis) * transform; >> 866 } 1021 sectioner = new G4DisplacedSolid 867 sectioner = new G4DisplacedSolid 1022 ("_displaced_sectioning_box", sectionBox, << 868 ("_displaced_sectioning_box", sectionBox, transform); 1023 } 869 } 1024 << 1025 return sectioner; 870 return sectioner; 1026 } 871 } 1027 872 1028 G4DisplacedSolid* G4VSceneHandler::CreateCuta << 873 G4VSolid* G4VSceneHandler::CreateCutawaySolid() 1029 { 874 { 1030 const auto& vp = fpViewer->GetViewParameter << 875 // To be reviewed. 1031 const auto& nPlanes = vp.GetCutawayPlanes() << 876 return 0; 1032 << 877 /*** An alternative way of getting a cutaway is to use 1033 if (nPlanes == 0) return nullptr; << 878 Command /vis/scene/add/volume 1034 << 879 Guidance : 1035 std::vector<G4DisplacedSolid*> cutaway_soli << 880 Adds a physical volume to current scene, with optional clipping volume. 1036 << 881 If physical-volume-name is "world" (the default), the top of the 1037 G4double radius = fpScene->GetExtent().GetE << 882 main geometry tree (material world) is added. If "worlds", the 1038 G4double safe = radius + fpScene->GetExtent << 883 top of all worlds - material world and parallel worlds, if any - are 1039 auto cutawayBox = new G4Box("_cutaway_box", << 884 added. Otherwise a search of all worlds is made, taking the first 1040 << 885 matching occurence only. To see a representation of the geometry 1041 // if (vp.GetCutawayMode() == G4ViewParamet << 886 hierarchy of the worlds, try "/vis/drawTree [worlds]" or one of the 1042 // the intersection of displaced cutaway bo << 887 driver/browser combinations that have the required functionality, e.g., HepRep. 1043 // positive values a*x+b*y+c*z+d>0, so we h << 888 If clip-volume-type is specified, the subsequent parameters are used to 1044 // "back to front". The parameter "cutawayU << 889 to define a clipping volume. For example, 1045 // that remain *after* cutaway", because we << 890 "/vis/scene/add/volume ! ! ! -box km 0 1 0 1 0 1" will draw the world 1046 // a "union" of what remains by superimposi << 891 with the positive octant cut away. (If the Boolean Processor issues 1047 // and G4OpenGLImmediate/StoredViewer::Proc << 892 warnings try replacing 0 by 0.000000001 or something.) 1048 // that is the intersection of inverted cut << 893 If clip-volume-type is prepended with '-', the clip-volume is subtracted 1049 << 894 (cutaway). (This is the default if there is no prepended character.) 1050 // Conversely, if (vp.GetCutawayMode() == G << 895 If '*' is prepended, the intersection of the physical-volume and the 1051 // create an intersector that is the inters << 896 clip-volume is made. (You can make a section/DCUT with a thin box, for 1052 << 897 example). 1053 for (size_t plane_no = 0; plane_no < nPlane << 898 For "box", the parameters are xmin,xmax,ymin,ymax,zmin,zmax. 1054 { << 899 Only "box" is programmed at present. 1055 const G4Plane3D& sp = vp.GetCutawayPlanes << 900 ***/ 1056 G4Transform3D requiredTransform; << 1057 G4ThreeVector normal; << 1058 switch (vp.GetCutawayMode()) { << 1059 case G4ViewParameters::cutawayUnion: << 1060 normal = -sp.normal(); // Invert nor << 1061 requiredTransform = G4Translate3D(nor << 1062 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1063 break; << 1064 case G4ViewParameters::cutawayIntersect << 1065 normal = sp.normal(); << 1066 requiredTransform = G4Translate3D(nor << 1067 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1068 break; << 1069 } << 1070 cutaway_solids.push_back << 1071 (new G4DisplacedSolid("_displaced_cutaway << 1072 } << 1073 << 1074 if (nPlanes == 1) return (G4DisplacedSolid* << 1075 << 1076 G4IntersectionSolid *union2 = nullptr, *uni << 1077 G4IntersectionSolid *intersection2 = nullpt << 1078 switch (vp.GetCutawayMode()) { << 1079 << 1080 case G4ViewParameters::cutawayUnion: << 1081 // Here we make a subtractor of interse << 1082 union2 = new G4IntersectionSolid("_unio << 1083 if (nPlanes == 2) return (G4DisplacedSo << 1084 else if (nPlanes == 3) { << 1085 union3 = new G4IntersectionSolid("_un << 1086 return (G4DisplacedSolid*)union3; << 1087 } << 1088 break; << 1089 << 1090 case G4ViewParameters::cutawayIntersectio << 1091 // And here we make an intersector of i << 1092 intersection2 << 1093 = new G4IntersectionSolid("_intersectio << 1094 if (nPlanes == 2) return (G4DisplacedSo << 1095 else if (nPlanes == 3) { << 1096 intersection3 << 1097 = new G4IntersectionSolid("_intersect << 1098 return (G4DisplacedSolid*)intersectio << 1099 } << 1100 break; << 1101 } << 1102 << 1103 G4Exception("G4VSceneHandler::CreateCutaway << 1104 "Not programmed for more than 3 << 1105 return nullptr; << 1106 } 901 } 1107 902 1108 void G4VSceneHandler::LoadAtts(const G4Visibl 903 void G4VSceneHandler::LoadAtts(const G4Visible& visible, G4AttHolder* holder) 1109 { 904 { 1110 // Load G4Atts from G4VisAttributes, if any 905 // Load G4Atts from G4VisAttributes, if any... 1111 const G4VisAttributes* va = visible.GetVisA 906 const G4VisAttributes* va = visible.GetVisAttributes(); 1112 if (va) { 907 if (va) { 1113 const std::map<G4String,G4AttDef>* vaDefs 908 const std::map<G4String,G4AttDef>* vaDefs = 1114 va->GetAttDefs(); 909 va->GetAttDefs(); 1115 if (vaDefs) { 910 if (vaDefs) { 1116 holder->AddAtts(visible.GetVisAttribute 911 holder->AddAtts(visible.GetVisAttributes()->CreateAttValues(), vaDefs); 1117 } 912 } 1118 } 913 } 1119 914 1120 G4PhysicalVolumeModel* pPVModel = 915 G4PhysicalVolumeModel* pPVModel = 1121 dynamic_cast<G4PhysicalVolumeModel*>(fpMo 916 dynamic_cast<G4PhysicalVolumeModel*>(fpModel); 1122 if (pPVModel) { 917 if (pPVModel) { 1123 // Load G4Atts from G4PhysicalVolumeModel 918 // Load G4Atts from G4PhysicalVolumeModel... 1124 const std::map<G4String,G4AttDef>* pvDefs 919 const std::map<G4String,G4AttDef>* pvDefs = pPVModel->GetAttDefs(); 1125 if (pvDefs) { 920 if (pvDefs) { 1126 holder->AddAtts(pPVModel->CreateCurrent 921 holder->AddAtts(pPVModel->CreateCurrentAttValues(), pvDefs); 1127 } 922 } 1128 } 923 } 1129 924 1130 G4TrajectoriesModel* trajModel = dynamic_ca 925 G4TrajectoriesModel* trajModel = dynamic_cast<G4TrajectoriesModel*>(fpModel); 1131 if (trajModel) { 926 if (trajModel) { 1132 // Load G4Atts from trajectory model... 927 // Load G4Atts from trajectory model... 1133 const std::map<G4String,G4AttDef>* trajMo 928 const std::map<G4String,G4AttDef>* trajModelDefs = trajModel->GetAttDefs(); 1134 if (trajModelDefs) { 929 if (trajModelDefs) { 1135 holder->AddAtts(trajModel->CreateCurren 930 holder->AddAtts(trajModel->CreateCurrentAttValues(), trajModelDefs); 1136 } 931 } 1137 // Load G4Atts from trajectory... 932 // Load G4Atts from trajectory... 1138 const G4VTrajectory* traj = trajModel->Ge 933 const G4VTrajectory* traj = trajModel->GetCurrentTrajectory(); 1139 if (traj) { 934 if (traj) { 1140 const std::map<G4String,G4AttDef>* traj 935 const std::map<G4String,G4AttDef>* trajDefs = traj->GetAttDefs(); 1141 if (trajDefs) { 936 if (trajDefs) { 1142 holder->AddAtts(traj->CreateAttValues 937 holder->AddAtts(traj->CreateAttValues(), trajDefs); 1143 } 938 } 1144 G4int nPoints = traj->GetPointEntries() 939 G4int nPoints = traj->GetPointEntries(); 1145 for (G4int i = 0; i < nPoints; ++i) { 940 for (G4int i = 0; i < nPoints; ++i) { 1146 G4VTrajectoryPoint* trajPoint = traj- 941 G4VTrajectoryPoint* trajPoint = traj->GetPoint(i); 1147 if (trajPoint) { 942 if (trajPoint) { 1148 const std::map<G4String,G4AttDef>* 943 const std::map<G4String,G4AttDef>* pointDefs = trajPoint->GetAttDefs(); 1149 if (pointDefs) { 944 if (pointDefs) { 1150 holder->AddAtts(trajPoint->Create 945 holder->AddAtts(trajPoint->CreateAttValues(), pointDefs); 1151 } 946 } 1152 } 947 } 1153 } 948 } 1154 } 949 } 1155 } 950 } 1156 951 1157 G4HitsModel* hitsModel = dynamic_cast<G4Hit 952 G4HitsModel* hitsModel = dynamic_cast<G4HitsModel*>(fpModel); 1158 if (hitsModel) { 953 if (hitsModel) { 1159 // Load G4Atts from hit... 954 // Load G4Atts from hit... 1160 const G4VHit* hit = hitsModel->GetCurrent 955 const G4VHit* hit = hitsModel->GetCurrentHit(); 1161 const std::map<G4String,G4AttDef>* hitsDe 956 const std::map<G4String,G4AttDef>* hitsDefs = hit->GetAttDefs(); 1162 if (hitsDefs) { 957 if (hitsDefs) { 1163 holder->AddAtts(hit->CreateAttValues(), 958 holder->AddAtts(hit->CreateAttValues(), hitsDefs); 1164 } 959 } 1165 } 960 } 1166 } 961 } 1167 962 1168 const G4Colour& G4VSceneHandler::GetColour () << 1169 fpVisAttribs = fpViewer->GetApplicableVisAt << 1170 const G4Colour& colour = fpVisAttribs -> Ge << 1171 return colour; << 1172 } << 1173 << 1174 const G4Colour& G4VSceneHandler::GetColour (c << 1175 auto pVA = visible.GetVisAttributes(); << 1176 if (!pVA) pVA = fpViewer->GetViewParameters << 1177 return pVA->GetColour(); << 1178 } << 1179 << 1180 const G4Colour& G4VSceneHandler::GetTextColou 963 const G4Colour& G4VSceneHandler::GetTextColour (const G4Text& text) { 1181 auto pVA = text.GetVisAttributes(); << 964 const G4VisAttributes* pVA = text.GetVisAttributes (); 1182 if (!pVA) pVA = fpViewer->GetViewParameters << 965 if (!pVA) { 1183 return pVA->GetColour(); << 966 return G4VVisCommand::GetCurrentTextColour(); >> 967 } >> 968 const G4Colour& colour = pVA -> GetColour (); >> 969 return colour; 1184 } 970 } 1185 971 1186 G4double G4VSceneHandler::GetLineWidth(const 972 G4double G4VSceneHandler::GetLineWidth(const G4VisAttributes* pVisAttribs) 1187 { 973 { 1188 G4double lineWidth = pVisAttribs->GetLineWi 974 G4double lineWidth = pVisAttribs->GetLineWidth(); 1189 if (lineWidth < 1.) lineWidth = 1.; 975 if (lineWidth < 1.) lineWidth = 1.; 1190 lineWidth *= fpViewer -> GetViewParameters( 976 lineWidth *= fpViewer -> GetViewParameters().GetGlobalLineWidthScale(); 1191 if (lineWidth < 1.) lineWidth = 1.; 977 if (lineWidth < 1.) lineWidth = 1.; 1192 return lineWidth; 978 return lineWidth; 1193 } 979 } 1194 980 1195 G4ViewParameters::DrawingStyle G4VSceneHandle 981 G4ViewParameters::DrawingStyle G4VSceneHandler::GetDrawingStyle 1196 (const G4VisAttributes* pVisAttribs) { 982 (const G4VisAttributes* pVisAttribs) { 1197 // Drawing style is normally determined by 983 // Drawing style is normally determined by the view parameters, but 1198 // it can be overriddden by the ForceDrawin 984 // it can be overriddden by the ForceDrawingStyle flag in the vis 1199 // attributes. 985 // attributes. 1200 const G4ViewParameters& vp = fpViewer->GetV << 986 G4ViewParameters::DrawingStyle style = 1201 const G4ViewParameters::DrawingStyle viewer << 987 fpViewer->GetViewParameters().GetDrawingStyle(); 1202 G4ViewParameters::DrawingStyle resultantSty << 1203 if (pVisAttribs -> IsForceDrawingStyle ()) 988 if (pVisAttribs -> IsForceDrawingStyle ()) { 1204 G4VisAttributes::ForcedDrawingStyle force 989 G4VisAttributes::ForcedDrawingStyle forcedStyle = 1205 pVisAttribs -> GetForcedDrawingStyle (); << 990 pVisAttribs -> GetForcedDrawingStyle (); 1206 // This is complicated because if hidden 991 // This is complicated because if hidden line and surface removal 1207 // has been requested we wish to preserve 992 // has been requested we wish to preserve this sometimes. 1208 switch (forcedStyle) { 993 switch (forcedStyle) { 1209 case (G4VisAttributes::solid): << 994 case (G4VisAttributes::solid): 1210 switch (viewerStyle) { << 995 switch (style) { 1211 case (G4ViewParameters::hlr): << 996 case (G4ViewParameters::hlr): 1212 resultantStyle = G4ViewParameters << 997 style = G4ViewParameters::hlhsr; 1213 break; << 998 break; 1214 case (G4ViewParameters::wireframe): << 999 case (G4ViewParameters::wireframe): 1215 resultantStyle = G4ViewParameters << 1000 style = G4ViewParameters::hsr; 1216 break; << 1001 break; 1217 case (G4ViewParameters::cloud): << 1002 case (G4ViewParameters::hlhsr): 1218 resultantStyle = G4ViewParameters << 1003 case (G4ViewParameters::hsr): 1219 break; << 1220 case (G4ViewParameters::hlhsr): << 1221 case (G4ViewParameters::hsr): << 1222 break; << 1223 } << 1224 break; << 1225 case (G4VisAttributes::cloud): << 1226 resultantStyle = G4ViewParameters::cl << 1227 break; << 1228 case (G4VisAttributes::wireframe): << 1229 default: 1004 default: 1230 // But if forced style is wireframe, << 1005 break; 1231 // main uses is in displaying the con << 1006 } 1232 // solid and their surfaces overlap w << 1007 break; 1233 // solid, making a mess if hlr is spe << 1008 case (G4VisAttributes::wireframe): 1234 resultantStyle = G4ViewParameters::wi << 1009 default: 1235 break; << 1010 // But if forced style is wireframe, do it, because one of its 1236 } << 1011 // main uses is in displaying the consituent solids of a Boolean 1237 } << 1012 // solid and their surfaces overlap with the resulting Booean 1238 return resultantStyle; << 1013 // solid, making a mess if hlr is specified. 1239 } << 1014 style = G4ViewParameters::wireframe; 1240 << 1015 break; 1241 G4int G4VSceneHandler::GetNumberOfCloudPoints << 1016 } 1242 (const G4VisAttributes* pVisAttribs) const { << 1243 // Returns no of cloud points from current << 1244 // has forced through the vis attributes, t << 1245 // current view parameter. << 1246 G4int numberOfCloudPoints = fpViewer->GetVi << 1247 if (pVisAttribs -> IsForceDrawingStyle() && << 1248 pVisAttribs -> GetForcedDrawingStyle() << 1249 pVisAttribs -> GetForcedNumberOfCloudPo << 1250 numberOfCloudPoints = pVisAttribs -> GetF << 1251 } 1017 } 1252 return numberOfCloudPoints; << 1018 return style; 1253 } 1019 } 1254 1020 1255 G4bool G4VSceneHandler::GetAuxEdgeVisible (co 1021 G4bool G4VSceneHandler::GetAuxEdgeVisible (const G4VisAttributes* pVisAttribs) { 1256 G4bool isAuxEdgeVisible = fpViewer->GetView 1022 G4bool isAuxEdgeVisible = fpViewer->GetViewParameters().IsAuxEdgeVisible (); 1257 if (pVisAttribs -> IsForceAuxEdgeVisible()) 1023 if (pVisAttribs -> IsForceAuxEdgeVisible()) { 1258 isAuxEdgeVisible = pVisAttribs->IsForcedA 1024 isAuxEdgeVisible = pVisAttribs->IsForcedAuxEdgeVisible(); 1259 } 1025 } 1260 return isAuxEdgeVisible; 1026 return isAuxEdgeVisible; 1261 } 1027 } 1262 1028 1263 G4double G4VSceneHandler::GetMarkerSize 1029 G4double G4VSceneHandler::GetMarkerSize 1264 (const G4VMarker& marker, 1030 (const G4VMarker& marker, 1265 G4VSceneHandler::MarkerSizeType& markerSizeT 1031 G4VSceneHandler::MarkerSizeType& markerSizeType) 1266 { 1032 { 1267 G4bool userSpecified = marker.GetWorldSize( 1033 G4bool userSpecified = marker.GetWorldSize() || marker.GetScreenSize(); 1268 const G4VMarker& defaultMarker = 1034 const G4VMarker& defaultMarker = 1269 fpViewer -> GetViewParameters().GetDefaul 1035 fpViewer -> GetViewParameters().GetDefaultMarker(); 1270 G4double size = userSpecified ? 1036 G4double size = userSpecified ? 1271 marker.GetWorldSize() : defaultMarker.Get 1037 marker.GetWorldSize() : defaultMarker.GetWorldSize(); 1272 if (size) { 1038 if (size) { 1273 // Draw in world coordinates. 1039 // Draw in world coordinates. 1274 markerSizeType = world; 1040 markerSizeType = world; 1275 } 1041 } 1276 else { 1042 else { 1277 size = userSpecified ? 1043 size = userSpecified ? 1278 marker.GetScreenSize() : defaultMarker. 1044 marker.GetScreenSize() : defaultMarker.GetScreenSize(); 1279 // Draw in screen coordinates. 1045 // Draw in screen coordinates. 1280 markerSizeType = screen; 1046 markerSizeType = screen; 1281 } 1047 } 1282 size *= fpViewer -> GetViewParameters().Get 1048 size *= fpViewer -> GetViewParameters().GetGlobalMarkerScale(); 1283 if (markerSizeType == screen && size < 1.) 1049 if (markerSizeType == screen && size < 1.) size = 1.; 1284 return size; 1050 return size; 1285 } 1051 } 1286 1052 1287 G4int G4VSceneHandler::GetNoOfSides(const G4V 1053 G4int G4VSceneHandler::GetNoOfSides(const G4VisAttributes* pVisAttribs) 1288 { 1054 { 1289 // No. of sides (lines segments per circle) 1055 // No. of sides (lines segments per circle) is normally determined 1290 // by the view parameters, but it can be ov 1056 // by the view parameters, but it can be overriddden by the 1291 // ForceLineSegmentsPerCircle in the vis at 1057 // ForceLineSegmentsPerCircle in the vis attributes. 1292 G4int lineSegmentsPerCircle = fpViewer->Get 1058 G4int lineSegmentsPerCircle = fpViewer->GetViewParameters().GetNoOfSides(); 1293 if (pVisAttribs) { 1059 if (pVisAttribs) { 1294 if (pVisAttribs->IsForceLineSegmentsPerCi 1060 if (pVisAttribs->IsForceLineSegmentsPerCircle()) 1295 lineSegmentsPerCircle = pVisAttribs->Ge 1061 lineSegmentsPerCircle = pVisAttribs->GetForcedLineSegmentsPerCircle(); 1296 if (lineSegmentsPerCircle < pVisAttribs-> 1062 if (lineSegmentsPerCircle < pVisAttribs->GetMinLineSegmentsPerCircle()) { 1297 lineSegmentsPerCircle = pVisAttribs->Ge 1063 lineSegmentsPerCircle = pVisAttribs->GetMinLineSegmentsPerCircle(); 1298 G4warn << << 1064 G4cout << 1299 "G4VSceneHandler::GetNoOfSides: attempt to 1065 "G4VSceneHandler::GetNoOfSides: attempt to set the" 1300 "\nnumber of line segments per circle < " < << 1066 "\nnumber of line segements per circle < " << lineSegmentsPerCircle 1301 << "; forced to " << pVisAttribs->GetM 1067 << "; forced to " << pVisAttribs->GetMinLineSegmentsPerCircle() << G4endl; 1302 } 1068 } 1303 } 1069 } 1304 return lineSegmentsPerCircle; 1070 return lineSegmentsPerCircle; 1305 } 1071 } 1306 1072 1307 std::ostream& operator << (std::ostream& os, 1073 std::ostream& operator << (std::ostream& os, const G4VSceneHandler& sh) { 1308 1074 1309 os << "Scene handler " << sh.fName << " has 1075 os << "Scene handler " << sh.fName << " has " 1310 << sh.fViewerList.size () << " viewer(s) 1076 << sh.fViewerList.size () << " viewer(s):"; 1311 for (std::size_t i = 0; i < sh.fViewerList. << 1077 for (size_t i = 0; i < sh.fViewerList.size (); i++) { 1312 os << "\n " << *(sh.fViewerList [i]); 1078 os << "\n " << *(sh.fViewerList [i]); 1313 } 1079 } 1314 1080 1315 if (sh.fpScene) { 1081 if (sh.fpScene) { 1316 os << "\n " << *sh.fpScene; 1082 os << "\n " << *sh.fpScene; 1317 } 1083 } 1318 else { 1084 else { 1319 os << "\n This scene handler currently h 1085 os << "\n This scene handler currently has no scene."; 1320 } 1086 } 1321 1087 1322 return os; 1088 return os; 1323 } << 1324 << 1325 void G4VSceneHandler::PseudoSceneFor3DRectMes << 1326 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1327 const auto& material = fpPVModel->GetCurr << 1328 const auto& name = material? material->Ge << 1329 const auto& pVisAtts = fpPVModel->GetCurr << 1330 // Get position in world coordinates << 1331 // As a parameterisation the box is trans << 1332 // and its centre, originally by definiti << 1333 const G4ThreeVector& position = fpCurrent << 1334 fPositionByMaterial.insert(std::make_pair << 1335 if (fNameAndVisAttsByMaterial.find(materi << 1336 // Store name and vis attributes of fir << 1337 fNameAndVisAttsByMaterial[material] = N << 1338 } << 1339 } << 1340 << 1341 void G4VSceneHandler::PseudoSceneForTetVertic << 1342 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1343 // Need to know it's a tet !!!! or implem << 1344 try { << 1345 const auto& tet = dynamic_cast<const G4 << 1346 const auto& material = fpPVModel->GetCu << 1347 const auto& name = material? material-> << 1348 const auto& pVisAtts = fpPVModel->GetCu << 1349 // Transform into world coordinates if << 1350 if (fpCurrentObjectTransformation->xx() << 1351 fpCurrentObjectTransformation->yy() << 1352 fpCurrentObjectTransformation->zz() << 1353 const auto& vertices = tet.GetVertice << 1354 fVerticesByMaterial.insert(std::make_ << 1355 } else { << 1356 auto vertices = tet.GetVertices(); << 1357 for (auto&& vertex: vertices) { << 1358 vertex = G4Point3D(vertex).transfor << 1359 } << 1360 fVerticesByMaterial.insert(std::make_ << 1361 } << 1362 if (fNameAndVisAttsByMaterial.find(mate << 1363 // Store name and vis attributes of f << 1364 fNameAndVisAttsByMaterial[material] = << 1365 } << 1366 catch (const std::bad_cast&) { << 1367 G4ExceptionDescription ed; << 1368 ed << "Called for a mesh that is not a << 1369 G4Exception("PseudoSceneForTetVertices" << 1370 } << 1371 } << 1372 } << 1373 << 1374 void G4VSceneHandler::StandardSpecialMeshRend << 1375 // Standard way of special mesh rendering. << 1376 // MySceneHandler::AddCompound(const G4Mesh& << 1377 // appropriate or implement its own special m << 1378 { << 1379 G4bool implemented = false; << 1380 switch (mesh.GetMeshType()) { << 1381 case G4Mesh::rectangle: [[fallthrough]]; << 1382 case G4Mesh::nested3DRectangular: << 1383 switch (fpViewer->GetViewParameters().G << 1384 case G4ViewParameters::meshAsDefault: << 1385 [[fallthrough]]; << 1386 case G4ViewParameters::meshAsDots: << 1387 Draw3DRectMeshAsDots(mesh); // Rec << 1388 implemented = true; << 1389 break; << 1390 case G4ViewParameters::meshAsSurfaces << 1391 Draw3DRectMeshAsSurfaces(mesh); // << 1392 implemented = true; << 1393 break; << 1394 } << 1395 break; << 1396 case G4Mesh::tetrahedron: << 1397 switch (fpViewer->GetViewParameters().G << 1398 case G4ViewParameters::meshAsDefault: << 1399 [[fallthrough]]; << 1400 case G4ViewParameters::meshAsDots: << 1401 DrawTetMeshAsDots(mesh); // Tetrah << 1402 implemented = true; << 1403 break; << 1404 case G4ViewParameters::meshAsSurfaces << 1405 DrawTetMeshAsSurfaces(mesh); // Te << 1406 implemented = true; << 1407 break; << 1408 } << 1409 break; << 1410 case G4Mesh::cylinder: [[fallthrough]]; << 1411 case G4Mesh::sphere: [[fallthrough]]; << 1412 case G4Mesh::invalid: break; << 1413 } << 1414 if (implemented) { << 1415 // Draw container if not marked invisible << 1416 auto container = mesh.GetContainerVolume( << 1417 auto containerLogical = container->GetLog << 1418 auto containerVisAtts = containerLogical- << 1419 if (containerVisAtts == nullptr || contai << 1420 auto solid = containerLogical->GetSolid << 1421 auto polyhedron = solid->GetPolyhedron( << 1422 // Always draw as wireframe << 1423 G4VisAttributes tmpVisAtts; << 1424 if (containerVisAtts != nullptr) tmpVis << 1425 tmpVisAtts.SetForceWireframe(); << 1426 polyhedron->SetVisAttributes(tmpVisAtts << 1427 BeginPrimitives(mesh.GetTransform()); << 1428 AddPrimitive(*polyhedron); << 1429 EndPrimitives(); << 1430 } << 1431 } else { << 1432 // Invoke base class function << 1433 G4VSceneHandler::AddCompound(mesh); << 1434 } << 1435 return; << 1436 } << 1437 << 1438 void G4VSceneHandler::Draw3DRectMeshAsDots(co << 1439 // For a rectangular 3-D mesh, draw as colour << 1440 // one dot randomly placed in each visible me << 1441 { << 1442 // Check << 1443 if (mesh.GetMeshType() != G4Mesh::rectangle << 1444 mesh.GetMeshType() != G4Mesh::nested3DR << 1445 G4ExceptionDescription ed; << 1446 ed << "Called with a mesh that is not rec << 1447 G4Exception("G4VSceneHandler::Draw3DRectM << 1448 return; << 1449 } << 1450 << 1451 static G4bool firstPrint = true; << 1452 const auto& verbosity = G4VisManager::GetVe << 1453 G4bool print = firstPrint && verbosity >= G << 1454 if (print) { << 1455 G4cout << 1456 << "Special case drawing of 3D rectangula << 1457 << '\n' << mesh << 1458 << G4endl; << 1459 } << 1460 << 1461 const auto& container = mesh.GetContainerVo << 1462 << 1463 // This map is static so that once filled i << 1464 static std::map<G4String,std::map<const G4M << 1465 auto& dotsByMaterial = dotsByMaterialAndMes << 1466 << 1467 // Fill map if not already filled << 1468 if (dotsByMaterial.empty()) { << 1469 << 1470 // Get positions and material one cell at << 1471 // The pseudo scene allows a "private" de << 1472 // Instantiate a temporary G4PhysicalVolu << 1473 G4ModelingParameters tmpMP; << 1474 tmpMP.SetCulling(true); // This avoids d << 1475 tmpMP.SetCullingInvisible(true); // ... << 1476 const G4bool useFullExtent = true; // To << 1477 G4PhysicalVolumeModel tmpPVModel << 1478 (container, << 1479 G4PhysicalVolumeModel::UNLIMITED, << 1480 G4Transform3D(), // so that positions a << 1481 &tmpMP, << 1482 useFullExtent); << 1483 // Accumulate information in temporary ma << 1484 std::multimap<const G4Material*,const G4T << 1485 std::map<const G4Material*,G4VSceneHandle << 1486 // Instantiate the pseudo scene << 1487 PseudoSceneFor3DRectMeshPositions pseudoS << 1488 (&tmpPVModel,&mesh,positionByMaterial,nam << 1489 // Make private descent into the paramete << 1490 tmpPVModel.DescribeYourselfTo(pseudoScene << 1491 // Now we have a map of positions by mate << 1492 // Also a map of name and colour by mater << 1493 << 1494 const auto& prms = mesh.GetThreeDRectPara << 1495 const auto& halfX = prms.fHalfX; << 1496 const auto& halfY = prms.fHalfY; << 1497 const auto& halfZ = prms.fHalfZ; << 1498 << 1499 // Fill the permanent (static) map of dot << 1500 G4int nDotsTotal = 0; << 1501 for (const auto& entry: nameAndVisAttsByM << 1502 G4int nDots = 0; << 1503 const auto& material = entry.first; << 1504 const auto& nameAndVisAtts = nameAndVis << 1505 const auto& name = nameAndVisAtts.fName << 1506 const auto& visAtts = nameAndVisAtts.fV << 1507 G4Polymarker dots; << 1508 dots.SetInfo(name); << 1509 dots.SetVisAttributes(visAtts); << 1510 dots.SetMarkerType(G4Polymarker::dots); << 1511 dots.SetSize(G4VMarker::screen,1.); << 1512 // Enter empty polymarker into the map << 1513 dotsByMaterial[material] = dots; << 1514 // Now fill it in situ << 1515 auto& dotsInMap = dotsByMaterial[materi << 1516 const auto& range = positionByMaterial. << 1517 for (auto posByMat = range.first; posBy << 1518 dotsInMap.push_back(GetPointInBox(pos << 1519 ++nDots; << 1520 } << 1521 << 1522 if (print) { << 1523 G4cout << 1524 << std::setw(30) << std::left << name << 1525 << ": " << std::setw(7) << nDots << " << 1526 << ": colour " << std::fixed << std:: << 1527 << visAtts.GetColour() << std::defaul << 1528 << G4endl; << 1529 } << 1530 << 1531 nDotsTotal += nDots; << 1532 } << 1533 << 1534 if (print) { << 1535 G4cout << "Total number of dots: " << n << 1536 } << 1537 } << 1538 << 1539 // Some subsequent expressions apply only t << 1540 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1541 << 1542 G4String parameterisationName; << 1543 if (pPVModel) { << 1544 parameterisationName = pPVModel->GetFullP << 1545 } << 1546 << 1547 // Draw the dots by material << 1548 // Ensure they are "hidden", i.e., use the << 1549 auto keepVP = fpViewer->GetViewParameters() << 1550 auto vp = fpViewer->GetViewParameters(); << 1551 vp.SetMarkerHidden(); << 1552 fpViewer->SetViewParameters(vp); << 1553 // Now we transform to world coordinates << 1554 BeginPrimitives (mesh.GetTransform()); << 1555 for (const auto& entry: dotsByMaterial) { << 1556 const auto& dots = entry.second; << 1557 // The current "leaf" node in the PVPath << 1558 // been converted into polymarkers by mat << 1559 // its name to that of the material (whos << 1560 // so that its appearance in the scene tr << 1561 // an appropriate name and its visibility << 1562 if (pPVModel) { << 1563 const auto& fullPVPath = pPVModel->GetF << 1564 auto leafPV = fullPVPath.back().GetPhys << 1565 leafPV->SetName(dots.GetInfo()); << 1566 } << 1567 // Add dots to the scene << 1568 AddPrimitive(dots); << 1569 } << 1570 EndPrimitives (); << 1571 // Restore view parameters << 1572 fpViewer->SetViewParameters(keepVP); << 1573 // Restore parameterisation name << 1574 if (pPVModel) { << 1575 pPVModel->GetFullPVPath().back().GetPhysi << 1576 } << 1577 << 1578 firstPrint = false; << 1579 return; << 1580 } << 1581 << 1582 void G4VSceneHandler::Draw3DRectMeshAsSurface << 1583 // For a rectangular 3-D mesh, draw as surfac << 1584 // with inner shared faces removed. << 1585 { << 1586 // Check << 1587 if (mesh.GetMeshType() != G4Mesh::rectangle << 1588 mesh.GetMeshType() != G4Mesh::nested3DR << 1589 G4ExceptionDescription ed; << 1590 ed << "Called with a mesh that is not rec << 1591 G4Exception("G4VSceneHandler::Draw3DRectM << 1592 return; << 1593 } << 1594 << 1595 static G4bool firstPrint = true; << 1596 const auto& verbosity = G4VisManager::GetVe << 1597 G4bool print = firstPrint && verbosity >= G << 1598 if (print) { << 1599 G4cout << 1600 << "Special case drawing of 3D rectangula << 1601 << '\n' << mesh << 1602 << G4endl; << 1603 } << 1604 << 1605 const auto& container = mesh.GetContainerVo << 1606 << 1607 // This map is static so that once filled i << 1608 static std::map<G4String,std::map<const G4M << 1609 auto& boxesByMaterial = boxesByMaterialAndM << 1610 << 1611 // Fill map if not already filled << 1612 if (boxesByMaterial.empty()) { << 1613 << 1614 // Get positions and material one cell at << 1615 // The pseudo scene allows a "private" de << 1616 // Instantiate a temporary G4PhysicalVolu << 1617 G4ModelingParameters tmpMP; << 1618 tmpMP.SetCulling(true); // This avoids d << 1619 tmpMP.SetCullingInvisible(true); // ... << 1620 const G4bool useFullExtent = true; // To << 1621 G4PhysicalVolumeModel tmpPVModel << 1622 (container, << 1623 G4PhysicalVolumeModel::UNLIMITED, << 1624 G4Transform3D(), // so that positions a << 1625 &tmpMP, << 1626 useFullExtent); << 1627 // Accumulate information in temporary ma << 1628 std::multimap<const G4Material*,const G4T << 1629 std::map<const G4Material*,G4VSceneHandle << 1630 // Instantiate the pseudo scene << 1631 PseudoSceneFor3DRectMeshPositions pseudoS << 1632 (&tmpPVModel,&mesh,positionByMaterial,nam << 1633 // Make private descent into the paramete << 1634 tmpPVModel.DescribeYourselfTo(pseudoScene << 1635 // Now we have a map of positions by mate << 1636 // Also a map of name and colour by mater << 1637 << 1638 const auto& prms = mesh.GetThreeDRectPara << 1639 const auto& sizeX = 2.*prms.fHalfX; << 1640 const auto& sizeY = 2.*prms.fHalfY; << 1641 const auto& sizeZ = 2.*prms.fHalfZ; << 1642 << 1643 // Fill the permanent (static) map of box << 1644 G4int nBoxesTotal = 0, nFacetsTotal = 0; << 1645 for (const auto& entry: nameAndVisAttsByM << 1646 G4int nBoxes = 0; << 1647 const auto& material = entry.first; << 1648 const auto& nameAndVisAtts = nameAndVis << 1649 const auto& name = nameAndVisAtts.fName << 1650 const auto& visAtts = nameAndVisAtts.fV << 1651 // Transfer positions into a vector rea << 1652 std::vector<G4ThreeVector> positionsFor << 1653 const auto& range = positionByMaterial. << 1654 for (auto posByMat = range.first; posBy << 1655 const auto& position = posByMat->seco << 1656 positionsForPolyhedron.push_back(posi << 1657 ++nBoxes; << 1658 } << 1659 // The polyhedron will be in local coor << 1660 // Add an empty place-holder to the map << 1661 auto& polyhedron = boxesByMaterial[mate << 1662 // Replace with the desired polyhedron << 1663 polyhedron = G4PolyhedronBoxMesh(sizeX, << 1664 polyhedron.SetVisAttributes(visAtts); << 1665 polyhedron.SetInfo(name); << 1666 << 1667 if (print) { << 1668 G4cout << 1669 << std::setw(30) << std::left << name << 1670 << ": " << std::setw(7) << nBoxes << << 1671 << " (" << std::setw(7) << 6*nBoxes < << 1672 << ": reduced to " << std::setw(7) << << 1673 << std::setw(2) << std::fixed << std: << 1674 << "%): colour " << std::fixed << std << 1675 << visAtts.GetColour() << std::defaul << 1676 << G4endl; << 1677 } << 1678 << 1679 nBoxesTotal += nBoxes; << 1680 nFacetsTotal += polyhedron.GetNoFacets( << 1681 } << 1682 << 1683 if (print) { << 1684 G4cout << "Total number of boxes: " << << 1685 << ": reduced to " << nFacetsTotal << " << 1686 << std::setw(2) << std::fixed << std::s << 1687 << G4endl; << 1688 } << 1689 } << 1690 << 1691 // Some subsequent expressions apply only t << 1692 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1693 << 1694 G4String parameterisationName; << 1695 if (pPVModel) { << 1696 parameterisationName = pPVModel->GetFullP << 1697 } << 1698 << 1699 // Draw the boxes by material << 1700 // Now we transform to world coordinates << 1701 BeginPrimitives (mesh.GetTransform()); << 1702 for (const auto& entry: boxesByMaterial) { << 1703 const auto& poly = entry.second; << 1704 // The current "leaf" node in the PVPath << 1705 // been converted into polyhedra by mater << 1706 // its name to that of the material (whos << 1707 // so that its appearance in the scene tr << 1708 // an appropriate name and its visibility << 1709 if (pPVModel) { << 1710 const auto& fullPVPath = pPVModel->GetF << 1711 auto leafPV = fullPVPath.back().GetPhys << 1712 leafPV->SetName(poly.GetInfo()); << 1713 } << 1714 AddPrimitive(poly); << 1715 } << 1716 EndPrimitives (); << 1717 // Restore parameterisation name << 1718 if (pPVModel) { << 1719 pPVModel->GetFullPVPath().back().GetPhysi << 1720 } << 1721 << 1722 firstPrint = false; << 1723 return; << 1724 } << 1725 << 1726 void G4VSceneHandler::DrawTetMeshAsDots(const << 1727 // For a tetrahedron mesh, draw as coloured d << 1728 // one dot randomly placed in each visible me << 1729 { << 1730 // Check << 1731 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1732 G4ExceptionDescription ed; << 1733 ed << "Called with mesh that is not a tet << 1734 G4Exception("G4VSceneHandler::DrawTetMesh << 1735 return; << 1736 } << 1737 << 1738 static G4bool firstPrint = true; << 1739 const auto& verbosity = G4VisManager::GetVe << 1740 G4bool print = firstPrint && verbosity >= G << 1741 << 1742 if (print) { << 1743 G4cout << 1744 << "Special case drawing of tetrahedron m << 1745 << '\n' << mesh << 1746 << G4endl; << 1747 } << 1748 << 1749 const auto& container = mesh.GetContainerVo << 1750 << 1751 // This map is static so that once filled i << 1752 static std::map<G4String,std::map<const G4M << 1753 auto& dotsByMaterial = dotsByMaterialAndMes << 1754 << 1755 // Fill map if not already filled << 1756 if (dotsByMaterial.empty()) { << 1757 << 1758 // Get vertices and colour one cell at a << 1759 // The pseudo scene allows a "private" de << 1760 // Instantiate a temporary G4PhysicalVolu << 1761 G4ModelingParameters tmpMP; << 1762 tmpMP.SetCulling(true); // This avoids d << 1763 tmpMP.SetCullingInvisible(true); // ... << 1764 const G4bool useFullExtent = true; // To << 1765 G4PhysicalVolumeModel tmpPVModel << 1766 (container, << 1767 G4PhysicalVolumeModel::UNLIMITED, << 1768 G4Transform3D(), // so that positions a << 1769 &tmpMP, << 1770 useFullExtent); << 1771 // Accumulate information in temporary ma << 1772 std::multimap<const G4Material*,std::vect << 1773 std::map<const G4Material*,G4VSceneHandle << 1774 // Instantiate a pseudo scene << 1775 PseudoSceneForTetVertices pseudoScene << 1776 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1777 // Make private descent into the paramete << 1778 tmpPVModel.DescribeYourselfTo(pseudoScene << 1779 // Now we have a map of vertices by mater << 1780 // Also a map of name and colour by mater << 1781 << 1782 // Fill the permanent (static) map of dot << 1783 G4int nDotsTotal = 0; << 1784 for (const auto& entry: nameAndVisAttsByM << 1785 G4int nDots = 0; << 1786 const auto& material = entry.first; << 1787 const auto& nameAndVisAtts = nameAndVis << 1788 const auto& name = nameAndVisAtts.fName << 1789 const auto& visAtts = nameAndVisAtts.fV << 1790 G4Polymarker dots; << 1791 dots.SetVisAttributes(visAtts); << 1792 dots.SetMarkerType(G4Polymarker::dots); << 1793 dots.SetSize(G4VMarker::screen,1.); << 1794 dots.SetInfo(name); << 1795 // Enter empty polymarker into the map << 1796 dotsByMaterial[material] = dots; << 1797 // Now fill it in situ << 1798 auto& dotsInMap = dotsByMaterial[materi << 1799 const auto& range = verticesByMaterial. << 1800 for (auto vByMat = range.first; vByMat << 1801 dotsInMap.push_back(GetPointInTet(vBy << 1802 ++nDots; << 1803 } << 1804 << 1805 if (print) { << 1806 G4cout << 1807 << std::setw(30) << std::left << name << 1808 << ": " << std::setw(7) << nDots << " << 1809 << ": colour " << std::fixed << std:: << 1810 << visAtts.GetColour() << std::defaul << 1811 << G4endl; << 1812 } << 1813 << 1814 nDotsTotal += nDots; << 1815 } << 1816 << 1817 if (print) { << 1818 G4cout << "Total number of dots: " << n << 1819 } << 1820 } << 1821 << 1822 // Some subsequent expressions apply only t << 1823 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1824 << 1825 G4String parameterisationName; << 1826 if (pPVModel) { << 1827 parameterisationName = pPVModel->GetFullP << 1828 } << 1829 << 1830 // Draw the dots by material << 1831 // Ensure they are "hidden", i.e., use the << 1832 auto keepVP = fpViewer->GetViewParameters() << 1833 auto vp = fpViewer->GetViewParameters(); << 1834 vp.SetMarkerHidden(); << 1835 fpViewer->SetViewParameters(vp); << 1836 << 1837 // Now we transform to world coordinates << 1838 BeginPrimitives (mesh.GetTransform()); << 1839 for (const auto& entry: dotsByMaterial) { << 1840 const auto& dots = entry.second; << 1841 // The current "leaf" node in the PVPath << 1842 // been converted into polymarkers by mat << 1843 // its name to that of the material (whos << 1844 // so that its appearance in the scene tr << 1845 // an appropriate name and its visibility << 1846 if (pPVModel) { << 1847 const auto& fullPVPath = pPVModel->GetF << 1848 auto leafPV = fullPVPath.back().GetPhys << 1849 leafPV->SetName(dots.GetInfo()); << 1850 } << 1851 AddPrimitive(dots); << 1852 } << 1853 EndPrimitives (); << 1854 << 1855 // Restore view parameters << 1856 fpViewer->SetViewParameters(keepVP); << 1857 // Restore parameterisation name << 1858 if (pPVModel) { << 1859 pPVModel->GetFullPVPath().back().GetPhysi << 1860 } << 1861 << 1862 firstPrint = false; << 1863 return; << 1864 } << 1865 << 1866 void G4VSceneHandler::DrawTetMeshAsSurfaces(c << 1867 // For a tetrahedron mesh, draw as surfaces b << 1868 // with inner shared faces removed. << 1869 { << 1870 // Check << 1871 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1872 G4ExceptionDescription ed; << 1873 ed << "Called with mesh that is not a tet << 1874 G4Exception("G4VSceneHandler::DrawTetMesh << 1875 return; << 1876 } << 1877 << 1878 static G4bool firstPrint = true; << 1879 const auto& verbosity = G4VisManager::GetVe << 1880 G4bool print = firstPrint && verbosity >= G << 1881 << 1882 if (print) { << 1883 G4cout << 1884 << "Special case drawing of tetrahedron m << 1885 << '\n' << mesh << 1886 << G4endl; << 1887 } << 1888 << 1889 // This map is static so that once filled i << 1890 static std::map<G4String,std::map<const G4M << 1891 auto& surfacesByMaterial = surfacesByMateri << 1892 << 1893 // Fill map if not already filled << 1894 if (surfacesByMaterial.empty()) { << 1895 << 1896 // Get vertices and colour one cell at a << 1897 // The pseudo scene allows a "private" de << 1898 // Instantiate a temporary G4PhysicalVolu << 1899 G4ModelingParameters tmpMP; << 1900 tmpMP.SetCulling(true); // This avoids d << 1901 tmpMP.SetCullingInvisible(true); // ... << 1902 const G4bool useFullExtent = true; // To << 1903 G4PhysicalVolumeModel tmpPVModel << 1904 (mesh.GetContainerVolume(), << 1905 G4PhysicalVolumeModel::UNLIMITED, << 1906 G4Transform3D(), // so that positions a << 1907 &tmpMP, << 1908 useFullExtent); << 1909 // Accumulate information in temporary ma << 1910 std::multimap<const G4Material*,std::vect << 1911 std::map<const G4Material*,G4VSceneHandle << 1912 // Instantiate a pseudo scene << 1913 PseudoSceneForTetVertices pseudoScene << 1914 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1915 // Make private descent into the paramete << 1916 tmpPVModel.DescribeYourselfTo(pseudoScene << 1917 // Now we have a map of vertices by mater << 1918 // Also a map of name and colour by mater << 1919 << 1920 // Fill the permanent (static) map of sur << 1921 G4int nTetsTotal = 0, nFacetsTotal = 0; << 1922 for (const auto& entry: nameAndVisAttsByM << 1923 G4int nTets = 0; << 1924 const auto& material = entry.first; << 1925 const auto& nameAndVisAtts = nameAndVis << 1926 const auto& name = nameAndVisAtts.fName << 1927 const auto& visAtts = nameAndVisAtts.fV << 1928 // Transfer vertices into a vector read << 1929 std::vector<G4ThreeVector> verticesForP << 1930 const auto& range = verticesByMaterial. << 1931 for (auto vByMat = range.first; vByMat << 1932 const std::vector<G4ThreeVector>& ver << 1933 for (const auto& vertex: vertices) << 1934 verticesForPolyhedron.push_back(ver << 1935 ++nTets; << 1936 } << 1937 // The polyhedron will be in local coor << 1938 // Add an empty place-holder to the map << 1939 auto& polyhedron = surfacesByMaterial[m << 1940 // Replace with the desired polyhedron << 1941 polyhedron = G4PolyhedronTetMesh(vertic << 1942 polyhedron.SetVisAttributes(visAtts); << 1943 polyhedron.SetInfo(name); << 1944 << 1945 if (print) { << 1946 G4cout << 1947 << std::setw(30) << std::left << name << 1948 << ": " << std::setw(7) << nTets << " << 1949 << " (" << std::setw(7) << 4*nTets << << 1950 << ": reduced to " << std::setw(7) << << 1951 << std::setw(2) << std::fixed << std: << 1952 << "%): colour " << std::fixed << std << 1953 << visAtts.GetColour() << std::defaul << 1954 << G4endl; << 1955 } << 1956 << 1957 nTetsTotal += nTets; << 1958 nFacetsTotal += polyhedron.GetNoFacets( << 1959 } << 1960 << 1961 if (print) { << 1962 G4cout << "Total number of tetrahedra: << 1963 << ": reduced to " << nFacetsTotal << " << 1964 << std::setw(2) << std::fixed << std::s << 1965 << G4endl; << 1966 } << 1967 } << 1968 << 1969 // Some subsequent expressions apply only t << 1970 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1971 << 1972 G4String parameterisationName; << 1973 if (pPVModel) { << 1974 parameterisationName = pPVModel->GetFullP << 1975 } << 1976 << 1977 // Draw the surfaces by material << 1978 // Now we transform to world coordinates << 1979 BeginPrimitives (mesh.GetTransform()); << 1980 for (const auto& entry: surfacesByMaterial) << 1981 const auto& poly = entry.second; << 1982 // The current "leaf" node in the PVPath << 1983 // been converted into polyhedra by mater << 1984 // its name to that of the material (whos << 1985 // so that its appearance in the scene tr << 1986 // an appropriate name and its visibility << 1987 if (pPVModel) { << 1988 const auto& fullPVPath = pPVModel->GetF << 1989 auto leafPV = fullPVPath.back().GetPhys << 1990 leafPV->SetName(poly.GetInfo()); << 1991 } << 1992 AddPrimitive(poly); << 1993 } << 1994 EndPrimitives (); << 1995 << 1996 // Restore parameterisation name << 1997 if (pPVModel) { << 1998 pPVModel->GetFullPVPath().back().GetPhysi << 1999 } << 2000 << 2001 firstPrint = false; << 2002 return; << 2003 } << 2004 << 2005 G4ThreeVector << 2006 G4VSceneHandler::GetPointInBox(const G4ThreeV << 2007 G4double halfX << 2008 G4double halfY << 2009 G4double halfZ << 2010 { << 2011 G4double x = pos.getX() + (2.*G4QuickRand() << 2012 G4double y = pos.getY() + (2.*G4QuickRand() << 2013 G4double z = pos.getZ() + (2.*G4QuickRand() << 2014 return G4ThreeVector(x, y, z); << 2015 } << 2016 << 2017 G4ThreeVector << 2018 G4VSceneHandler::GetPointInTet(const std::vec << 2019 { << 2020 G4double p = G4QuickRand(); << 2021 G4double q = G4QuickRand(); << 2022 G4double r = G4QuickRand(); << 2023 if (p + q > 1.) << 2024 { << 2025 p = 1. - p; << 2026 q = 1. - q; << 2027 } << 2028 if (q + r > 1.) << 2029 { << 2030 G4double tmp = r; << 2031 r = 1. - p - q; << 2032 q = 1. - tmp; << 2033 } << 2034 else if (p + q + r > 1.) << 2035 { << 2036 G4double tmp = r; << 2037 r = p + q + r - 1.; << 2038 p = 1. - q - tmp; << 2039 } << 2040 G4double a = 1. - p - q - r; << 2041 return vertices[0]*a + vertices[1]*p + vert << 2042 } 1089 } 2043 1090