Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id: G4VSceneHandler.cc 91686 2015-07-31 09:40:08Z gcosmo $ 27 // 28 // 28 // 29 // 29 // John Allison 19th July 1996 30 // John Allison 19th July 1996 30 // Abstract interface class for graphics scene 31 // Abstract interface class for graphics scenes. 31 32 32 #include "G4VSceneHandler.hh" 33 #include "G4VSceneHandler.hh" 33 34 34 #include "G4ios.hh" 35 #include "G4ios.hh" 35 #include <sstream> 36 #include <sstream> 36 37 37 #include "G4VisManager.hh" 38 #include "G4VisManager.hh" 38 #include "G4VGraphicsSystem.hh" 39 #include "G4VGraphicsSystem.hh" 39 #include "G4VViewer.hh" 40 #include "G4VViewer.hh" 40 #include "G4VSolid.hh" 41 #include "G4VSolid.hh" 41 #include "G4RotationMatrix.hh" 42 #include "G4RotationMatrix.hh" 42 #include "G4ThreeVector.hh" 43 #include "G4ThreeVector.hh" 43 #include "G4VPhysicalVolume.hh" 44 #include "G4VPhysicalVolume.hh" 44 #include "G4Material.hh" 45 #include "G4Material.hh" 45 #include "G4Polyline.hh" 46 #include "G4Polyline.hh" >> 47 #include "G4Scale.hh" 46 #include "G4Text.hh" 48 #include "G4Text.hh" 47 #include "G4Circle.hh" 49 #include "G4Circle.hh" 48 #include "G4Square.hh" 50 #include "G4Square.hh" 49 #include "G4Polymarker.hh" 51 #include "G4Polymarker.hh" 50 #include "G4Polyhedron.hh" 52 #include "G4Polyhedron.hh" 51 #include "G4Visible.hh" 53 #include "G4Visible.hh" 52 #include "G4VisAttributes.hh" 54 #include "G4VisAttributes.hh" 53 #include "G4VModel.hh" 55 #include "G4VModel.hh" 54 #include "G4TrajectoriesModel.hh" 56 #include "G4TrajectoriesModel.hh" 55 #include "G4Box.hh" 57 #include "G4Box.hh" 56 #include "G4Cons.hh" 58 #include "G4Cons.hh" 57 #include "G4Orb.hh" << 59 #include "G4Tubs.hh" 58 #include "G4Para.hh" << 60 #include "G4Trd.hh" >> 61 #include "G4Trap.hh" 59 #include "G4Sphere.hh" 62 #include "G4Sphere.hh" >> 63 #include "G4Para.hh" 60 #include "G4Torus.hh" 64 #include "G4Torus.hh" 61 #include "G4Trap.hh" << 62 #include "G4Trd.hh" << 63 #include "G4Tubs.hh" << 64 #include "G4Ellipsoid.hh" << 65 #include "G4Polycone.hh" 65 #include "G4Polycone.hh" 66 #include "G4Polyhedra.hh" 66 #include "G4Polyhedra.hh" 67 #include "G4Tet.hh" << 68 #include "G4DisplacedSolid.hh" 67 #include "G4DisplacedSolid.hh" 69 #include "G4UnionSolid.hh" << 70 #include "G4IntersectionSolid.hh" << 71 #include "G4SubtractionSolid.hh" << 72 #include "G4LogicalVolume.hh" 68 #include "G4LogicalVolume.hh" 73 #include "G4PhysicalVolumeModel.hh" 69 #include "G4PhysicalVolumeModel.hh" 74 #include "G4ModelingParameters.hh" 70 #include "G4ModelingParameters.hh" 75 #include "G4VTrajectory.hh" 71 #include "G4VTrajectory.hh" 76 #include "G4VTrajectoryPoint.hh" 72 #include "G4VTrajectoryPoint.hh" 77 #include "G4HitsModel.hh" 73 #include "G4HitsModel.hh" 78 #include "G4VHit.hh" 74 #include "G4VHit.hh" 79 #include "G4VDigi.hh" 75 #include "G4VDigi.hh" 80 #include "G4ScoringManager.hh" 76 #include "G4ScoringManager.hh" 81 #include "G4VScoringMesh.hh" << 82 #include "G4Mesh.hh" << 83 #include "G4DefaultLinearColorMap.hh" 77 #include "G4DefaultLinearColorMap.hh" 84 #include "G4QuickRand.hh" << 78 #include "Randomize.hh" 85 #include "G4StateManager.hh" 79 #include "G4StateManager.hh" 86 #include "G4RunManager.hh" 80 #include "G4RunManager.hh" 87 #include "G4RunManagerFactory.hh" << 81 #ifdef G4MULTITHREADED >> 82 #include "G4MTRunManager.hh" >> 83 #endif 88 #include "G4Run.hh" 84 #include "G4Run.hh" 89 #include "G4Transform3D.hh" 85 #include "G4Transform3D.hh" 90 #include "G4AttHolder.hh" 86 #include "G4AttHolder.hh" 91 #include "G4AttDef.hh" 87 #include "G4AttDef.hh" 92 #include "G4SceneTreeItem.hh" << 93 #include "G4VVisCommand.hh" 88 #include "G4VVisCommand.hh" 94 #include "G4PhysicalConstants.hh" 89 #include "G4PhysicalConstants.hh" 95 #include "G4SystemOfUnits.hh" << 96 << 97 #define G4warn G4cout << 98 90 99 G4VSceneHandler::G4VSceneHandler (G4VGraphicsS 91 G4VSceneHandler::G4VSceneHandler (G4VGraphicsSystem& system, G4int id, const G4String& name): 100 fSystem (system), 92 fSystem (system), 101 fSceneHandlerId (id), 93 fSceneHandlerId (id), 102 fViewCount (0), 94 fViewCount (0), 103 fpViewer (0), 95 fpViewer (0), 104 fpScene (0), 96 fpScene (0), 105 fMarkForClearingTransientStore (true), // R 97 fMarkForClearingTransientStore (true), // Ready for first 106 // ClearTransientStoreIfMarked(), 98 // ClearTransientStoreIfMarked(), 107 // e.g., at end of run (see 99 // e.g., at end of run (see 108 // G4VisManager.cc). 100 // G4VisManager.cc). 109 fReadyForTransients (true), // Only fals 101 fReadyForTransients (true), // Only false while processing scene. 110 fProcessingSolid (false), 102 fProcessingSolid (false), 111 fProcessing2D (false), 103 fProcessing2D (false), 112 fpModel (0), 104 fpModel (0), 113 fNestingDepth (0), 105 fNestingDepth (0), 114 fpVisAttribs (0) 106 fpVisAttribs (0) 115 { 107 { 116 G4VisManager* pVMan = G4VisManager::GetInsta 108 G4VisManager* pVMan = G4VisManager::GetInstance (); 117 fpScene = pVMan -> GetCurrentScene (); 109 fpScene = pVMan -> GetCurrentScene (); 118 if (name == "") { 110 if (name == "") { 119 std::ostringstream ost; 111 std::ostringstream ost; 120 ost << fSystem.GetName () << '-' << fScene 112 ost << fSystem.GetName () << '-' << fSceneHandlerId; 121 fName = ost.str(); 113 fName = ost.str(); 122 } 114 } 123 else { 115 else { 124 fName = name; 116 fName = name; 125 } 117 } 126 fTransientsDrawnThisEvent = pVMan->GetTransi 118 fTransientsDrawnThisEvent = pVMan->GetTransientsDrawnThisEvent(); 127 fTransientsDrawnThisRun = pVMan->GetTransien 119 fTransientsDrawnThisRun = pVMan->GetTransientsDrawnThisRun(); 128 } 120 } 129 121 130 G4VSceneHandler::~G4VSceneHandler () { 122 G4VSceneHandler::~G4VSceneHandler () { 131 G4VViewer* last; 123 G4VViewer* last; 132 while( ! fViewerList.empty() ) { 124 while( ! fViewerList.empty() ) { 133 last = fViewerList.back(); 125 last = fViewerList.back(); 134 fViewerList.pop_back(); 126 fViewerList.pop_back(); 135 delete last; 127 delete last; 136 } 128 } 137 } 129 } 138 130 139 const G4VisExtent& G4VSceneHandler::GetExtent( 131 const G4VisExtent& G4VSceneHandler::GetExtent() const 140 { 132 { 141 if (fpScene) { 133 if (fpScene) { 142 return fpScene->GetExtent(); 134 return fpScene->GetExtent(); 143 } else { 135 } else { 144 static const G4VisExtent defaultExtent = G << 136 return G4VisExtent::NullExtent; 145 return defaultExtent; << 146 } 137 } 147 } 138 } 148 139 149 void G4VSceneHandler::PreAddSolid (const G4Tra 140 void G4VSceneHandler::PreAddSolid (const G4Transform3D& objectTransformation, 150 const G4VisAttributes& visAttribs) 141 const G4VisAttributes& visAttribs) { 151 fObjectTransformation = objectTransformation 142 fObjectTransformation = objectTransformation; 152 fpVisAttribs = &visAttribs; 143 fpVisAttribs = &visAttribs; 153 fProcessingSolid = true; 144 fProcessingSolid = true; 154 } 145 } 155 146 156 void G4VSceneHandler::PostAddSolid () { 147 void G4VSceneHandler::PostAddSolid () { 157 fpVisAttribs = 0; 148 fpVisAttribs = 0; 158 fProcessingSolid = false; 149 fProcessingSolid = false; 159 if (fReadyForTransients) { 150 if (fReadyForTransients) { 160 fTransientsDrawnThisEvent = true; 151 fTransientsDrawnThisEvent = true; 161 fTransientsDrawnThisRun = true; 152 fTransientsDrawnThisRun = true; 162 } 153 } 163 } 154 } 164 155 165 void G4VSceneHandler::BeginPrimitives 156 void G4VSceneHandler::BeginPrimitives 166 (const G4Transform3D& objectTransformation) { 157 (const G4Transform3D& objectTransformation) { 167 //static G4int count = 0; 158 //static G4int count = 0; 168 //G4cout << "G4VSceneHandler::BeginPrimitive 159 //G4cout << "G4VSceneHandler::BeginPrimitives: " << count++ << G4endl; 169 fNestingDepth++; 160 fNestingDepth++; 170 if (fNestingDepth > 1) 161 if (fNestingDepth > 1) 171 G4Exception 162 G4Exception 172 ("G4VSceneHandler::BeginPrimitives", 163 ("G4VSceneHandler::BeginPrimitives", 173 "visman0101", FatalException, 164 "visman0101", FatalException, 174 "Nesting detected. It is illegal to nes 165 "Nesting detected. It is illegal to nest Begin/EndPrimitives."); 175 fObjectTransformation = objectTransformation 166 fObjectTransformation = objectTransformation; 176 } 167 } 177 168 178 void G4VSceneHandler::EndPrimitives () { 169 void G4VSceneHandler::EndPrimitives () { 179 if (fNestingDepth <= 0) 170 if (fNestingDepth <= 0) 180 G4Exception("G4VSceneHandler::EndPrimitive 171 G4Exception("G4VSceneHandler::EndPrimitives", 181 "visman0102", FatalException, "Nesting err 172 "visman0102", FatalException, "Nesting error."); 182 fNestingDepth--; 173 fNestingDepth--; 183 if (fReadyForTransients) { 174 if (fReadyForTransients) { 184 fTransientsDrawnThisEvent = true; 175 fTransientsDrawnThisEvent = true; 185 fTransientsDrawnThisRun = true; 176 fTransientsDrawnThisRun = true; 186 } 177 } 187 } 178 } 188 179 189 void G4VSceneHandler::BeginPrimitives2D 180 void G4VSceneHandler::BeginPrimitives2D 190 (const G4Transform3D& objectTransformation) { 181 (const G4Transform3D& objectTransformation) { 191 fNestingDepth++; 182 fNestingDepth++; 192 if (fNestingDepth > 1) 183 if (fNestingDepth > 1) 193 G4Exception 184 G4Exception 194 ("G4VSceneHandler::BeginPrimitives2D", 185 ("G4VSceneHandler::BeginPrimitives2D", 195 "visman0103", FatalException, 186 "visman0103", FatalException, 196 "Nesting detected. It is illegal to nes 187 "Nesting detected. It is illegal to nest Begin/EndPrimitives."); 197 fObjectTransformation = objectTransformation 188 fObjectTransformation = objectTransformation; 198 fProcessing2D = true; 189 fProcessing2D = true; 199 } 190 } 200 191 201 void G4VSceneHandler::EndPrimitives2D () { 192 void G4VSceneHandler::EndPrimitives2D () { 202 if (fNestingDepth <= 0) 193 if (fNestingDepth <= 0) 203 G4Exception("G4VSceneHandler::EndPrimitive 194 G4Exception("G4VSceneHandler::EndPrimitives2D", 204 "visman0104", FatalException, "Nesting err 195 "visman0104", FatalException, "Nesting error."); 205 fNestingDepth--; 196 fNestingDepth--; 206 if (fReadyForTransients) { 197 if (fReadyForTransients) { 207 fTransientsDrawnThisEvent = true; 198 fTransientsDrawnThisEvent = true; 208 fTransientsDrawnThisRun = true; 199 fTransientsDrawnThisRun = true; 209 } 200 } 210 fProcessing2D = false; 201 fProcessing2D = false; 211 } 202 } 212 203 213 void G4VSceneHandler::BeginModeling () { 204 void G4VSceneHandler::BeginModeling () { 214 } 205 } 215 206 216 void G4VSceneHandler::EndModeling () 207 void G4VSceneHandler::EndModeling () 217 { 208 { 218 fpModel = 0; 209 fpModel = 0; 219 } 210 } 220 211 221 void G4VSceneHandler::ClearStore () {} 212 void G4VSceneHandler::ClearStore () {} 222 213 223 void G4VSceneHandler::ClearTransientStore () { 214 void G4VSceneHandler::ClearTransientStore () {} 224 215 225 template <class T> void G4VSceneHandler::AddSo << 226 (const T& solid) << 227 { << 228 // Get and check applicable vis attributes. << 229 fpVisAttribs = fpViewer->GetApplicableVisAtt << 230 RequestPrimitives (solid); << 231 } << 232 << 233 template <class T> void G4VSceneHandler::AddSo << 234 (const T& solid) << 235 { << 236 // Get and check applicable vis attributes. << 237 fpVisAttribs = fpViewer->GetApplicableVisAtt << 238 // Draw with auxiliary edges unless otherwis << 239 if (!fpVisAttribs->IsForceAuxEdgeVisible()) << 240 // Create a vis atts object for the modifi << 241 // It is static so that we may return a re << 242 static G4VisAttributes visAttsWithAuxEdges << 243 // Initialise it with the current vis atts << 244 visAttsWithAuxEdges = *fpVisAttribs; << 245 // Force auxiliary edges visible. << 246 visAttsWithAuxEdges.SetForceAuxEdgeVisible << 247 fpVisAttribs = &visAttsWithAuxEdges; << 248 } << 249 RequestPrimitives (solid); << 250 } << 251 << 252 void G4VSceneHandler::AddSolid (const G4Box& b 216 void G4VSceneHandler::AddSolid (const G4Box& box) { 253 AddSolidT (box); << 217 RequestPrimitives (box); 254 // If your graphics system is sophisticated << 218 // If your graphics system is sophisticated enough to handle a 255 // particular solid shape as a primitive, i << 219 // particular solid shape as a primitive, in your derived class write a 256 // function to override this. << 220 // function to override this. (Note: some compilers warn that your 257 // Your function might look like this... << 221 // function "hides" this one. That's OK.) 258 // void G4MySceneHandler::AddSolid (const G4 << 222 // Your function might look like this... 259 // Get and check applicable vis attributes. << 223 // void G4MyScene::AddSolid (const G4Box& box) { 260 // fpVisAttribs = fpViewer->GetApplicableV << 224 // Get parameters of appropriate object, e.g.: 261 // Do not draw if not visible. << 225 // G4double dx = box.GetXHalfLength (); 262 // if (fpVisAttribs->IsVisible()) { << 226 // G4double dy = box.GetYHalfLength (); 263 // Get parameters of appropriate object, e << 227 // G4double dz = box.GetZHalfLength (); 264 // G4double dx = box.GetXHalfLength (); << 228 // and Draw or Store in your display List. 265 // G4double dy = box.GetYHalfLength (); << 266 // G4double dz = box.GetZHalfLength (); << 267 // ... << 268 // and Draw or Store in your display Lis << 269 } << 270 << 271 void G4VSceneHandler::AddSolid (const G4Cons& << 272 AddSolidT (cons); << 273 } 229 } 274 230 275 void G4VSceneHandler::AddSolid (const G4Orb& o << 231 void G4VSceneHandler::AddSolid (const G4Tubs& tubs) { 276 AddSolidWithAuxiliaryEdges (orb); << 232 RequestPrimitives (tubs); 277 } << 278 << 279 void G4VSceneHandler::AddSolid (const G4Para& << 280 AddSolidT (para); << 281 } 233 } 282 234 283 void G4VSceneHandler::AddSolid (const G4Sphere << 235 void G4VSceneHandler::AddSolid (const G4Cons& cons) { 284 AddSolidWithAuxiliaryEdges (sphere); << 236 RequestPrimitives (cons); 285 } 237 } 286 238 287 void G4VSceneHandler::AddSolid (const G4Torus& << 239 void G4VSceneHandler::AddSolid (const G4Trd& trd) { 288 AddSolidWithAuxiliaryEdges (torus); << 240 RequestPrimitives (trd); 289 } 241 } 290 242 291 void G4VSceneHandler::AddSolid (const G4Trap& 243 void G4VSceneHandler::AddSolid (const G4Trap& trap) { 292 AddSolidT (trap); << 244 RequestPrimitives (trap); 293 } 245 } 294 246 295 void G4VSceneHandler::AddSolid (const G4Trd& t << 247 void G4VSceneHandler::AddSolid (const G4Sphere& sphere) { 296 AddSolidT (trd); << 248 RequestPrimitives (sphere ); 297 } 249 } 298 250 299 void G4VSceneHandler::AddSolid (const G4Tubs& << 251 void G4VSceneHandler::AddSolid (const G4Para& para) { 300 AddSolidT (tubs); << 252 RequestPrimitives (para); 301 } 253 } 302 254 303 void G4VSceneHandler::AddSolid (const G4Ellips << 255 void G4VSceneHandler::AddSolid (const G4Torus& torus) { 304 AddSolidWithAuxiliaryEdges (ellipsoid); << 256 RequestPrimitives (torus); 305 } 257 } 306 258 307 void G4VSceneHandler::AddSolid (const G4Polyco 259 void G4VSceneHandler::AddSolid (const G4Polycone& polycone) { 308 AddSolidT (polycone); << 260 RequestPrimitives (polycone); 309 } 261 } 310 262 311 void G4VSceneHandler::AddSolid (const G4Polyhe 263 void G4VSceneHandler::AddSolid (const G4Polyhedra& polyhedra) { 312 AddSolidT (polyhedra); << 264 RequestPrimitives (polyhedra); 313 } << 314 << 315 void G4VSceneHandler::AddSolid (const G4Tessel << 316 AddSolidT (tess); << 317 } 265 } 318 266 319 void G4VSceneHandler::AddSolid (const G4VSolid 267 void G4VSceneHandler::AddSolid (const G4VSolid& solid) { 320 AddSolidT (solid); << 268 RequestPrimitives (solid); 321 } 269 } 322 270 323 void G4VSceneHandler::AddCompound (const G4VTr 271 void G4VSceneHandler::AddCompound (const G4VTrajectory& traj) { 324 G4TrajectoriesModel* trajectoriesModel = 272 G4TrajectoriesModel* trajectoriesModel = 325 dynamic_cast<G4TrajectoriesModel*>(fpModel 273 dynamic_cast<G4TrajectoriesModel*>(fpModel); 326 if (trajectoriesModel) 274 if (trajectoriesModel) 327 traj.DrawTrajectory(); 275 traj.DrawTrajectory(); 328 else { 276 else { 329 G4Exception 277 G4Exception 330 ("G4VSceneHandler::AddCompound(const G4VTr 278 ("G4VSceneHandler::AddCompound(const G4VTrajectory&)", 331 "visman0105", FatalException, "Not a G4Tr 279 "visman0105", FatalException, "Not a G4TrajectoriesModel."); 332 } 280 } 333 } 281 } 334 282 335 void G4VSceneHandler::AddCompound (const G4VHi 283 void G4VSceneHandler::AddCompound (const G4VHit& hit) { 336 // Cast away const because Draw is non-const 284 // Cast away const because Draw is non-const!!!! 337 const_cast<G4VHit&>(hit).Draw(); 285 const_cast<G4VHit&>(hit).Draw(); 338 } 286 } 339 287 340 void G4VSceneHandler::AddCompound (const G4VDi 288 void G4VSceneHandler::AddCompound (const G4VDigi& digi) { 341 // Cast away const because Draw is non-const 289 // Cast away const because Draw is non-const!!!! 342 const_cast<G4VDigi&>(digi).Draw(); 290 const_cast<G4VDigi&>(digi).Draw(); 343 } 291 } 344 292 345 void G4VSceneHandler::AddCompound (const G4THi 293 void G4VSceneHandler::AddCompound (const G4THitsMap<G4double>& hits) { 346 using MeshScoreMap = G4VScoringMesh::MeshSco << 347 //G4cout << "AddCompound: hits: " << &hits < 294 //G4cout << "AddCompound: hits: " << &hits << G4endl; 348 G4bool scoreMapHits = false; 295 G4bool scoreMapHits = false; 349 G4ScoringManager* scoringManager = G4Scoring 296 G4ScoringManager* scoringManager = G4ScoringManager::GetScoringManagerIfExist(); 350 if (scoringManager) { 297 if (scoringManager) { 351 std::size_t nMeshes = scoringManager->GetN << 298 size_t nMeshes = scoringManager->GetNumberOfMesh(); 352 for (std::size_t iMesh = 0; iMesh < nMeshe << 299 for (size_t iMesh = 0; iMesh < nMeshes; ++iMesh) { 353 G4VScoringMesh* mesh = scoringManager->G << 300 G4VScoringMesh* mesh = scoringManager->GetMesh(iMesh); 354 if (mesh && mesh->IsActive()) { 301 if (mesh && mesh->IsActive()) { 355 MeshScoreMap scoreMap = mesh->GetScoreMap(); 302 MeshScoreMap scoreMap = mesh->GetScoreMap(); 356 const G4String& mapNam = const_cast<G4 << 303 for(MeshScoreMap::const_iterator i = scoreMap.begin(); 357 for(MeshScoreMap::const_iterator i = scoreMa << 304 i != scoreMap.end(); ++i) { 358 i != scoreMap.cend(); ++i) { << 359 const G4String& scoreMapName = i->first; 305 const G4String& scoreMapName = i->first; 360 if (scoreMapName == mapNam) { << 306 const G4THitsMap<G4double>* foundHits = i->second; >> 307 if (foundHits == &hits) { 361 G4DefaultLinearColorMap colorMap("G4VSce 308 G4DefaultLinearColorMap colorMap("G4VSceneHandlerColorMap"); 362 scoreMapHits = true; 309 scoreMapHits = true; 363 mesh->DrawMesh(scoreMapName, &colorMap); 310 mesh->DrawMesh(scoreMapName, &colorMap); 364 } 311 } 365 } 312 } 366 } 313 } 367 } 314 } 368 } 315 } 369 if (scoreMapHits) { 316 if (scoreMapHits) { 370 static G4bool first = true; 317 static G4bool first = true; 371 if (first) { 318 if (first) { 372 first = false; 319 first = false; 373 G4cout << 320 G4cout << 374 "Scoring map drawn with default parameters." 321 "Scoring map drawn with default parameters." 375 "\n To get gMocren file for gMocren browser 322 "\n To get gMocren file for gMocren browser:" 376 "\n /vis/open gMocrenFile" 323 "\n /vis/open gMocrenFile" 377 "\n /vis/viewer/flush" 324 "\n /vis/viewer/flush" 378 "\n Many other options available with /scor 325 "\n Many other options available with /score/draw... commands." 379 "\n You might want to \"/vis/viewer/set/aut 326 "\n You might want to \"/vis/viewer/set/autoRefresh false\"." 380 << G4endl; 327 << G4endl; 381 } 328 } 382 } else { // Not score map hits. Just call 329 } else { // Not score map hits. Just call DrawAllHits. 383 // Cast away const because DrawAllHits is 330 // Cast away const because DrawAllHits is non-const!!!! 384 const_cast<G4THitsMap<G4double>&>(hits).Dr 331 const_cast<G4THitsMap<G4double>&>(hits).DrawAllHits(); 385 } 332 } 386 } 333 } 387 334 388 void G4VSceneHandler::AddCompound (const G4THi << 335 void G4VSceneHandler::AddViewerToList (G4VViewer* pViewer) { 389 using MeshScoreMap = G4VScoringMesh::MeshSco << 336 fViewerList.push_back (pViewer); 390 //G4cout << "AddCompound: hits: " << &hits < << 391 G4bool scoreMapHits = false; << 392 G4ScoringManager* scoringManager = G4Scoring << 393 if (scoringManager) { << 394 std::size_t nMeshes = scoringManager->GetN << 395 for (std::size_t iMesh = 0; iMesh < nMeshe << 396 G4VScoringMesh* mesh = scoringManager->G << 397 if (mesh && mesh->IsActive()) { << 398 MeshScoreMap scoreMap = mesh->GetScoreMap(); << 399 for(MeshScoreMap::const_iterator i = scoreMa << 400 i != scoreMap.cend(); ++i) { << 401 const G4String& scoreMapName = i->first; << 402 const G4THitsMap<G4StatDouble>* foundHits << 403 if (foundHits == &hits) { << 404 G4DefaultLinearColorMap colorMap("G4VSce << 405 scoreMapHits = true; << 406 mesh->DrawMesh(scoreMapName, &colorMap); << 407 } << 408 } << 409 } << 410 } << 411 } << 412 if (scoreMapHits) { << 413 static G4bool first = true; << 414 if (first) { << 415 first = false; << 416 G4cout << << 417 "Scoring map drawn with default parameters." << 418 "\n To get gMocren file for gMocren browser << 419 "\n /vis/open gMocrenFile" << 420 "\n /vis/viewer/flush" << 421 "\n Many other options available with /scor << 422 "\n You might want to \"/vis/viewer/set/aut << 423 << G4endl; << 424 } << 425 } else { // Not score map hits. Just call << 426 // Cast away const because DrawAllHits is << 427 const_cast<G4THitsMap<G4StatDouble>&>(hits << 428 } << 429 } 337 } 430 338 431 void G4VSceneHandler::AddCompound(const G4Mesh << 339 void G4VSceneHandler::AddPrimitive (const G4Scale& scale) { 432 { << 433 G4warn << << 434 "There has been an attempt to draw a mesh wi << 435 << fpViewer->GetViewParameters().GetSpecialM << 436 << "\":\n" << mesh << 437 << "but it is not of a recognised type or is << 438 "\nby the current graphics driver. Instead w << 439 "\ncontainer \"" << mesh.GetContainerVolume( << 440 << G4endl; << 441 const auto& pv = mesh.GetContainerVolume(); << 442 const auto& lv = pv->GetLogicalVolume(); << 443 const auto& solid = lv->GetSolid(); << 444 const auto& transform = mesh.GetTransform(); << 445 // Make sure container is visible << 446 G4VisAttributes tmpVisAtts; // Visible, whi << 447 const auto& saveVisAtts = lv->GetVisAttribut << 448 if (saveVisAtts) { << 449 tmpVisAtts = *saveVisAtts; << 450 tmpVisAtts.SetVisibility(true); << 451 auto colour = saveVisAtts->GetColour(); << 452 colour.SetAlpha(1.); << 453 tmpVisAtts.SetColour(colour); << 454 } << 455 // Draw container << 456 PreAddSolid(transform,tmpVisAtts); << 457 solid->DescribeYourselfTo(*this); << 458 PostAddSolid(); << 459 // Restore vis attributes << 460 lv->SetVisAttributes(saveVisAtts); << 461 } << 462 340 463 void G4VSceneHandler::AddViewerToList (G4VView << 341 const G4double margin(0.01); 464 fViewerList.push_back (pViewer); << 342 // Fractional margin - ensures scale is comfortably inside viewing >> 343 // volume. >> 344 const G4double oneMinusMargin (1. - margin); >> 345 >> 346 const G4VisExtent& sceneExtent = fpScene->GetExtent(); >> 347 >> 348 // Useful constants... >> 349 const G4double length(scale.GetLength()); >> 350 const G4double halfLength(length / 2.); >> 351 const G4double tickLength(length / 20.); >> 352 const G4double piBy2(halfpi); >> 353 >> 354 // Get size of scene... >> 355 const G4double xmin = sceneExtent.GetXmin(); >> 356 const G4double xmax = sceneExtent.GetXmax(); >> 357 const G4double ymin = sceneExtent.GetYmin(); >> 358 const G4double ymax = sceneExtent.GetYmax(); >> 359 const G4double zmin = sceneExtent.GetZmin(); >> 360 const G4double zmax = sceneExtent.GetZmax(); >> 361 >> 362 // Create (empty) polylines having the same vis attributes... >> 363 G4Polyline scaleLine, tick11, tick12, tick21, tick22; >> 364 G4VisAttributes visAtts(*scale.GetVisAttributes()); // Long enough life. >> 365 scaleLine.SetVisAttributes(&visAtts); >> 366 tick11.SetVisAttributes(&visAtts); >> 367 tick12.SetVisAttributes(&visAtts); >> 368 tick21.SetVisAttributes(&visAtts); >> 369 tick22.SetVisAttributes(&visAtts); >> 370 >> 371 // Add points to the polylines to represent an scale parallel to the >> 372 // x-axis centred on the origin... >> 373 G4Point3D r1(G4Point3D(-halfLength, 0., 0.)); >> 374 G4Point3D r2(G4Point3D( halfLength, 0., 0.)); >> 375 scaleLine.push_back(r1); >> 376 scaleLine.push_back(r2); >> 377 G4Point3D ticky(0., tickLength, 0.); >> 378 G4Point3D tickz(0., 0., tickLength); >> 379 tick11.push_back(r1 + ticky); >> 380 tick11.push_back(r1 - ticky); >> 381 tick12.push_back(r1 + tickz); >> 382 tick12.push_back(r1 - tickz); >> 383 tick21.push_back(r2 + ticky); >> 384 tick21.push_back(r2 - ticky); >> 385 tick22.push_back(r2 + tickz); >> 386 tick22.push_back(r2 - tickz); >> 387 G4Point3D textPosition(0., tickLength, 0.); >> 388 >> 389 // Transform appropriately... >> 390 >> 391 G4Transform3D transformation; >> 392 if (scale.GetAutoPlacing()) { >> 393 G4Transform3D rotation; >> 394 switch (scale.GetDirection()) { >> 395 case G4Scale::x: >> 396 break; >> 397 case G4Scale::y: >> 398 rotation = G4RotateZ3D(piBy2); >> 399 break; >> 400 case G4Scale::z: >> 401 rotation = G4RotateY3D(piBy2); >> 402 break; >> 403 } >> 404 G4double sxmid; >> 405 G4double symid; >> 406 G4double szmid; >> 407 sxmid = xmin + oneMinusMargin * (xmax - xmin); >> 408 symid = ymin + margin * (ymax - ymin); >> 409 szmid = zmin + oneMinusMargin * (zmax - zmin); >> 410 switch (scale.GetDirection()) { >> 411 case G4Scale::x: >> 412 sxmid -= halfLength; >> 413 break; >> 414 case G4Scale::y: >> 415 symid += halfLength; >> 416 break; >> 417 case G4Scale::z: >> 418 szmid -= halfLength; >> 419 break; >> 420 } >> 421 G4Translate3D translation(sxmid, symid, szmid); >> 422 transformation = translation * rotation; >> 423 } else { >> 424 if (fpModel) transformation = fpModel->GetTransformation(); >> 425 } >> 426 >> 427 // Draw... >> 428 // We would like to call BeginPrimitives(transformation) here but >> 429 // calling BeginPrimitives from within an AddPrimitive is not >> 430 // allowed! So we have to do our own transformation... >> 431 AddPrimitive(scaleLine.transform(transformation)); >> 432 AddPrimitive(tick11.transform(transformation)); >> 433 AddPrimitive(tick12.transform(transformation)); >> 434 AddPrimitive(tick21.transform(transformation)); >> 435 AddPrimitive(tick22.transform(transformation)); >> 436 G4Text text(scale.GetAnnotation(),textPosition.transform(transformation)); >> 437 text.SetScreenSize(scale.GetAnnotationSize()); >> 438 AddPrimitive(text); 465 } 439 } 466 440 467 void G4VSceneHandler::AddPrimitive (const G4Po 441 void G4VSceneHandler::AddPrimitive (const G4Polymarker& polymarker) { 468 switch (polymarker.GetMarkerType()) { 442 switch (polymarker.GetMarkerType()) { 469 default: << 443 default: 470 case G4Polymarker::dots: << 444 case G4Polymarker::dots: 471 { 445 { 472 G4Circle dot (polymarker); << 446 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 473 dot.SetWorldSize (0.); << 447 G4Circle dot (polymarker); 474 dot.SetScreenSize (0.1); // Very small << 475 for (std::size_t iPoint = 0; iPoint < po << 476 dot.SetPosition (polymarker[iPoint]); 448 dot.SetPosition (polymarker[iPoint]); 477 AddPrimitive (dot); << 449 dot.SetWorldSize (0.); >> 450 dot.SetScreenSize (0.1); // Very small circle. >> 451 AddPrimitive (dot); 478 } 452 } 479 } 453 } 480 break; << 454 break; 481 case G4Polymarker::circles: << 455 case G4Polymarker::circles: 482 { 456 { 483 G4Circle circle (polymarker); // Defaul << 457 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 484 for (std::size_t iPoint = 0; iPoint < po << 458 G4Circle circle (polymarker); 485 circle.SetPosition (polymarker[iPoint] << 459 circle.SetPosition (polymarker[iPoint]); 486 AddPrimitive (circle); << 460 AddPrimitive (circle); 487 } 461 } 488 } 462 } 489 break; << 463 break; 490 case G4Polymarker::squares: << 464 case G4Polymarker::squares: 491 { 465 { 492 G4Square square (polymarker); // Defaul << 466 for (size_t iPoint = 0; iPoint < polymarker.size (); iPoint++) { 493 for (std::size_t iPoint = 0; iPoint < po << 467 G4Square square (polymarker); 494 square.SetPosition (polymarker[iPoint] << 468 square.SetPosition (polymarker[iPoint]); 495 AddPrimitive (square); << 469 AddPrimitive (square); 496 } 470 } 497 } 471 } 498 break; << 472 break; 499 } 473 } 500 } 474 } 501 475 502 void G4VSceneHandler::RemoveViewerFromList (G4 476 void G4VSceneHandler::RemoveViewerFromList (G4VViewer* pViewer) { 503 fViewerList.remove(pViewer); // Does nothin << 477 fViewerList.remove(pViewer); 504 // And reset current viewer << 505 auto visManager = G4VisManager::GetInstance( << 506 visManager->SetCurrentViewer(nullptr); << 507 } << 508 << 509 << 510 void G4VSceneHandler::AddPrimitive (const G4Pl << 511 G4warn << "WARNING: Plotter not implemented << 512 G4warn << " Open a plotter-aware graphics s << 513 G4warn << " /vis/scene/removeModel Plotter" << 514 } 478 } 515 479 516 void G4VSceneHandler::SetScene (G4Scene* pScen 480 void G4VSceneHandler::SetScene (G4Scene* pScene) { 517 fpScene = pScene; 481 fpScene = pScene; 518 // Notify all viewers that a kernel visit is 482 // Notify all viewers that a kernel visit is required. 519 G4ViewerListIterator i; 483 G4ViewerListIterator i; 520 for (i = fViewerList.begin(); i != fViewerLi 484 for (i = fViewerList.begin(); i != fViewerList.end(); i++) { 521 (*i) -> SetNeedKernelVisit (true); 485 (*i) -> SetNeedKernelVisit (true); 522 } 486 } 523 } 487 } 524 488 525 void G4VSceneHandler::RequestPrimitives (const << 489 void G4VSceneHandler::RequestPrimitives (const G4VSolid& solid) { 526 { << 490 BeginPrimitives (fObjectTransformation); 527 // Sometimes solids that have no substance g << 491 G4Polyhedron::SetNumberOfRotationSteps (GetNoOfSides (fpVisAttribs)); 528 // be part of the geometry tree but have bee << 492 G4Polyhedron* pPolyhedron = solid.GetPolyhedron (); 529 // example by a Boolean subtraction in which << 493 G4Polyhedron::ResetNumberOfRotationSteps (); 530 // is entirely inside the subtractor or an i << 494 if (pPolyhedron) { 531 // the original volume is entirely outside t << 495 pPolyhedron -> SetVisAttributes (fpVisAttribs); 532 // The problem is that the Boolean Processor << 496 AddPrimitive (*pPolyhedron); 533 // polyhedron in these cases (IMHO it should << 534 // workaround is to return before the damage << 535 // Algorithm by Evgueni Tcherniaev << 536 auto pSolid = &solid; << 537 auto pBooleanSolid = dynamic_cast<const G4Bo << 538 if (pBooleanSolid) { << 539 G4ThreeVector bmin, bmax; << 540 pBooleanSolid->BoundingLimits(bmin, bmax); << 541 G4bool isGood = false; << 542 if (dynamic_cast<const G4SubtractionSolid* << 543 auto ptrB = pBooleanSolid->GetConstituen << 544 for (G4int i=0; i<10; ++i) { << 545 G4double x = bmin.x() + (bmax.x() - bm << 546 G4double y = bmin.y() + (bmax.y() - bm << 547 G4double z = bmin.z() + (bmax.z() - bm << 548 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 549 if (ptrB->Inside(G4ThreeVector(x,y,bma << 550 if (ptrB->Inside(G4ThreeVector(x,bmin. << 551 if (ptrB->Inside(G4ThreeVector(x,bmax. << 552 if (ptrB->Inside(G4ThreeVector(bmin.x( << 553 if (ptrB->Inside(G4ThreeVector(bmax.x( << 554 } << 555 } else if (dynamic_cast<const G4Intersecti << 556 auto ptrB = pBooleanSolid->GetConstituen << 557 for (G4int i=0; i<10; ++i) { << 558 G4double x = bmin.x() + (bmax.x() - bm << 559 G4double y = bmin.y() + (bmax.y() - bm << 560 G4double z = bmin.z() + (bmax.z() - bm << 561 if (ptrB->Inside(G4ThreeVector(x,y,bmi << 562 if (ptrB->Inside(G4ThreeVector(x,y,bma << 563 if (ptrB->Inside(G4ThreeVector(x,bmin. << 564 if (ptrB->Inside(G4ThreeVector(x,bmax. << 565 if (ptrB->Inside(G4ThreeVector(bmin.x( << 566 if (ptrB->Inside(G4ThreeVector(bmax.x( << 567 } << 568 } << 569 if (!isGood) << 570 { << 571 for (G4int i=0; i<10000; ++i) { << 572 G4double x = bmin.x() + (bmax.x() - bm << 573 G4double y = bmin.y() + (bmax.y() - bm << 574 G4double z = bmin.z() + (bmax.z() - bm << 575 if (pBooleanSolid->Inside(G4ThreeVecto << 576 } << 577 } << 578 if (!isGood) return; << 579 } 497 } 580 << 498 else { 581 const G4ViewParameters::DrawingStyle style = << 499 G4VisManager::Verbosity verbosity = G4VisManager::GetVerbosity(); 582 const G4ViewParameters& vp = fpViewer->GetVi << 500 if (verbosity >= G4VisManager::errors) { 583 << 501 G4cerr << 584 switch (style) { << 502 "ERROR: G4VSceneHandler::RequestPrimitives" 585 default: << 503 "\n Polyhedron not available for " << solid.GetName () << 586 case G4ViewParameters::wireframe: << 504 ".\n This means it cannot be visualized on most systems." 587 case G4ViewParameters::hlr: << 505 "\n Contact the Visualization Coordinator." << G4endl; 588 case G4ViewParameters::hsr: << 589 case G4ViewParameters::hlhsr: << 590 { << 591 // Use polyhedral representation << 592 G4Polyhedron::SetNumberOfRotationSteps ( << 593 G4Polyhedron* pPolyhedron = solid.GetPol << 594 G4Polyhedron::ResetNumberOfRotationSteps << 595 if (pPolyhedron) { << 596 pPolyhedron -> SetVisAttributes (fpVis << 597 BeginPrimitives (fObjectTransformation << 598 AddPrimitive (*pPolyhedron); << 599 EndPrimitives (); << 600 break; << 601 } else { // Print warnings and drop thr << 602 G4VisManager::Verbosity verbosity = G4 << 603 auto pPVModel = dynamic_cast<G4Physica << 604 if (pPVModel) { << 605 auto problematicVolume = pPVModel->G << 606 if (fProblematicVolumes.find(problem << 607 fProblematicVolumes[problematicVol << 608 if (verbosity >= G4VisManager::err << 609 G4warn << << 610 "ERROR: G4VSceneHandler::Request << 611 "\n Polyhedron not available fo << 612 G4warn << "\n Touchable path: " << 613 static G4bool explanation = fals << 614 if (!explanation) { << 615 explanation = true; << 616 G4warn << << 617 "\n This means it cannot be v << 618 "\n 1) The solid may not have << 619 "\n 2) For Boolean solids, th << 620 "\n the resultant polyhedr << 621 "\n Try RayTracer. It uses Ge << 622 } << 623 } << 624 G4warn << "\n Drawing solid with << 625 G4warn << G4endl; << 626 } << 627 } << 628 } << 629 } << 630 [[fallthrough]]; << 631 << 632 case G4ViewParameters::cloud: << 633 { << 634 // Form solid out of cloud of dots on su << 635 G4Polymarker dots; << 636 // Note: OpenGL has a fast implementatio << 637 // to build a polymarker rather than add << 638 // And anyway, in Qt, in the latter case << 639 // entry, something we would want to avo << 640 dots.SetVisAttributes(fpVisAttribs); << 641 dots.SetMarkerType(G4Polymarker::dots); << 642 dots.SetSize(G4VMarker::screen,1.); << 643 G4int numberOfCloudPoints = GetNumberOfC << 644 if (numberOfCloudPoints <= 0) numberOfCl << 645 for (G4int i = 0; i < numberOfCloudPoint << 646 G4ThreeVector p = solid.GetPointOnSurface(); << 647 dots.push_back(p); << 648 } << 649 BeginPrimitives (fObjectTransformation); << 650 AddPrimitive(dots); << 651 EndPrimitives (); << 652 break; << 653 } 506 } 654 } 507 } >> 508 EndPrimitives (); 655 } 509 } 656 510 657 //namespace { << 511 void G4VSceneHandler::ProcessScene () { 658 // void DrawExtent(const G4VModel* pModel) << 659 // { << 660 // // Show extent boxes - debug only, OGLSX << 661 // if (pModel->GetExtent() != G4VisExtent:: << 662 // const auto& extent = pModel->GetExtent << 663 // const auto& centre = extent.GetExtentC << 664 // const auto& position = G4Translate3D(c << 665 // const auto& dx = (extent.GetXmax()-ext << 666 // const auto& dy = (extent.GetYmax()-ext << 667 // const auto& dz = (extent.GetZmax()-ext << 668 // auto visAtts = G4VisAttributes(); << 669 // visAtts.SetForceWireframe(); << 670 // G4Box extentBox("Extent",dx,dy,dz); << 671 // G4VisManager::GetInstance()->Draw(exte << 672 // } << 673 // } << 674 //} << 675 512 676 void G4VSceneHandler::ProcessScene() << 677 { << 678 // Assumes graphics database store has alrea 513 // Assumes graphics database store has already been cleared if 679 // relevant for the particular scene handler 514 // relevant for the particular scene handler. 680 515 681 if(!fpScene) << 516 if (!fpScene) return; 682 return; << 683 << 684 if(fpScene->GetExtent() == G4VisExtent::GetN << 685 { << 686 G4Exception("G4VSceneHandler::ProcessScene << 687 "The scene has no extent."); << 688 } << 689 517 690 G4VisManager* visManager = G4VisManager::Get 518 G4VisManager* visManager = G4VisManager::GetInstance(); 691 519 692 if(!visManager->GetConcreteInstance()) << 520 if (!visManager->GetConcreteInstance()) return; 693 return; << 694 521 695 G4VisManager::Verbosity verbosity = visManag 522 G4VisManager::Verbosity verbosity = visManager->GetVerbosity(); 696 523 697 fReadyForTransients = false; 524 fReadyForTransients = false; 698 525 699 // Reset fMarkForClearingTransientStore. (Le 526 // Reset fMarkForClearingTransientStore. (Leaving 700 // fMarkForClearingTransientStore true cause 527 // fMarkForClearingTransientStore true causes problems with 701 // recomputing transients below.) Restore i 528 // recomputing transients below.) Restore it again at end... 702 G4bool tmpMarkForClearingTransientStore = fM 529 G4bool tmpMarkForClearingTransientStore = fMarkForClearingTransientStore; 703 fMarkForClearingTransientStore = fa << 530 fMarkForClearingTransientStore = false; 704 531 705 // Traverse geometry tree and send drawing p 532 // Traverse geometry tree and send drawing primitives to window(s). 706 533 707 const std::vector<G4Scene::Model>& runDurati 534 const std::vector<G4Scene::Model>& runDurationModelList = 708 fpScene->GetRunDurationModelList(); << 535 fpScene -> GetRunDurationModelList (); 709 536 710 if(runDurationModelList.size()) { << 537 if (runDurationModelList.size ()) { 711 if(verbosity >= G4VisManager::confirmation << 538 if (verbosity >= G4VisManager::confirmations) { 712 G4cout << "Traversing scene data..." << 539 G4cout << "Traversing scene data..." << G4endl; 713 static G4int first = true; << 714 if (first) { << 715 first = false; << 716 G4cout << << 717 "(This could happen more than once - i << 718 "\nper rebuild, for opaque, transparen << 719 << G4endl; << 720 } << 721 } 540 } 722 541 723 // Reset visibility of all objects to fals << 542 BeginModeling (); 724 fpViewer->AccessSceneTree().ResetVisibilit << 725 << 726 BeginModeling(); << 727 543 728 // Create modeling parameters from view pa 544 // Create modeling parameters from view parameters... 729 G4ModelingParameters* pMP = CreateModeling << 545 G4ModelingParameters* pMP = CreateModelingParameters (); 730 << 731 for(std::size_t i = 0; i < runDurationMode << 732 if(runDurationModelList[i].fActive) { << 733 fpModel = runDurationModelList[i].fpMo << 734 fpModel->SetModelingParameters(pMP); << 735 << 736 // Describe to the current scene handl << 737 fpModel->DescribeYourselfTo(*this); << 738 << 739 // To see the extents of each model re << 740 // uncomment the next line and DrawExt << 741 // DrawExtent(fpModel); << 742 << 743 // Enter models in the scene tree. The << 744 // the model to the scene tree, i.e., << 745 fpViewer->InsertModelInSceneTree(fpMod << 746 auto pPVModel = dynamic_cast<G4Physica << 747 if (pPVModel) { << 748 G4VViewer::SceneTreeScene sceneTreeS << 749 fpModel->DescribeYourselfTo(sceneTre << 750 } << 751 546 752 // Reset modeling parameters pointer << 547 for (size_t i = 0; i < runDurationModelList.size (); i++) { 753 fpModel->SetModelingParameters(0); << 548 if (runDurationModelList[i].fActive) { >> 549 G4VModel* pModel = runDurationModelList[i].fpModel; >> 550 // Note: this is not the place to take action on >> 551 // pModel->GetTransformation(). The model must take care of >> 552 // this in pModel->DescribeYourselfTo(*this). See, for example, >> 553 // G4PhysicalVolumeModel and /vis/scene/add/logo. >> 554 pModel -> SetModelingParameters (pMP); >> 555 SetModel (pModel); // Store for use by derived class. >> 556 pModel -> DescribeYourselfTo (*this); >> 557 pModel -> SetModelingParameters (0); 754 } 558 } 755 } 559 } 756 560 757 fpModel = 0; << 758 delete pMP; 561 delete pMP; 759 << 562 EndModeling (); 760 EndModeling(); << 761 } << 762 << 763 // Some printing << 764 if(verbosity >= G4VisManager::confirmations) << 765 for (const auto& model: runDurationModelLi << 766 if (model.fActive) { << 767 auto pvModel = dynamic_cast<G4Physical << 768 if (pvModel) { << 769 G4int nTouchables = 0; << 770 G4cout << "Numbers of touchables by << 771 << pvModel->GetGlobalDescription() < << 772 for (const auto& dn : pvModel->GetNu << 773 G4cout << "\n Depth " << dn.first << 774 nTouchables += dn.second; << 775 } << 776 G4cout << "\n Total number of touch << 777 } << 778 } << 779 } << 780 << 781 if (fProblematicVolumes.size() > 0) { << 782 G4cout << "Problematic volumes:"; << 783 for (const auto& prob: fProblematicVolum << 784 G4cout << "\n " << prob.first->GetNam << 785 } << 786 G4cout << G4endl; << 787 } << 788 } 563 } 789 564 790 fReadyForTransients = true; 565 fReadyForTransients = true; 791 566 792 // Refresh event from end-of-event model lis 567 // Refresh event from end-of-event model list. 793 // Allow only in Idle or GeomClosed state... 568 // Allow only in Idle or GeomClosed state... 794 G4StateManager* stateManager = G4StateManage 569 G4StateManager* stateManager = G4StateManager::GetStateManager(); 795 G4ApplicationState state = stateManager- << 570 G4ApplicationState state = stateManager->GetCurrentState(); 796 if(state == G4State_Idle || state == G4State << 571 if (state == G4State_Idle || state == G4State_GeomClosed) { 797 { << 572 798 visManager->SetEventRefreshing(true); 573 visManager->SetEventRefreshing(true); 799 574 800 if(visManager->GetRequestedEvent()) << 575 if (visManager->GetRequestedEvent()) { 801 { << 802 DrawEvent(visManager->GetRequestedEvent( 576 DrawEvent(visManager->GetRequestedEvent()); 803 } << 804 else << 805 { << 806 G4RunManager* runManager = G4RunManagerF << 807 if(runManager) << 808 { << 809 const G4Run* run = runManager->GetCurr << 810 // Draw a null event in order to pick << 811 if (run == nullptr) DrawEvent(0); << 812 const std::vector<const G4Event*>* eve << 813 run ? run->GetEventVector() : 0; << 814 std::size_t nKeptEvents = 0; << 815 if(events) << 816 nKeptEvents = events->size(); << 817 if(nKeptEvents) << 818 { << 819 if(fpScene->GetRefreshAtEndOfEvent() << 820 { << 821 if(verbosity >= G4VisManager::conf << 822 { << 823 G4cout << "Refreshing event..." << 824 } << 825 const G4Event* event = 0; << 826 if(events && events->size()) << 827 event = events->back(); << 828 if(event) << 829 DrawEvent(event); << 830 } << 831 else << 832 { // Accumulating events. << 833 577 834 if(verbosity >= G4VisManager::conf << 578 } else { 835 { << 836 G4cout << "Refreshing events in << 837 } << 838 for(const auto& event : *events) << 839 { << 840 if(event) << 841 DrawEvent(event); << 842 } << 843 579 844 if(!fpScene->GetRefreshAtEndOfRun( << 580 G4RunManager* runManager = G4RunManager::GetRunManager(); 845 { << 581 #ifdef G4MULTITHREADED 846 if(verbosity >= G4VisManager::wa << 582 if(G4Threading::IsMultithreadedApplication()) 847 { << 583 { runManager = G4MTRunManager::GetMasterRunManager(); } 848 G4warn << "WARNING: Cannot ref << 584 #endif 849 "\n than one runs. << 585 if (runManager) { 850 << G4endl; << 586 const G4Run* run = runManager->GetCurrentRun(); 851 } << 587 const std::vector<const G4Event*>* events = >> 588 run? run->GetEventVector(): 0; >> 589 size_t nKeptEvents = 0; >> 590 if (events) nKeptEvents = events->size(); >> 591 if (nKeptEvents) { >> 592 >> 593 if (fpScene->GetRefreshAtEndOfEvent()) { >> 594 >> 595 if (verbosity >= G4VisManager::confirmations) { >> 596 G4cout << "Refreshing event..." << G4endl; >> 597 } >> 598 const G4Event* event = 0; >> 599 if (events && events->size()) event = events->back(); >> 600 if (event) DrawEvent(event); >> 601 >> 602 } else { // Accumulating events. >> 603 >> 604 if (verbosity >= G4VisManager::confirmations) { >> 605 G4cout << "Refreshing events in run..." << G4endl; >> 606 } >> 607 for (auto&& event: *events) { >> 608 if (event) DrawEvent(event); 852 } 609 } 853 } << 610 854 } << 611 if (!fpScene->GetRefreshAtEndOfRun()) { >> 612 if (verbosity >= G4VisManager::warnings) { >> 613 G4cout << >> 614 "WARNING: Cannot refresh events accumulated over more" >> 615 "\n than one runs. Refreshed just the last run." >> 616 << G4endl; >> 617 } >> 618 } >> 619 } >> 620 } 855 } 621 } 856 } 622 } 857 visManager->SetEventRefreshing(false); 623 visManager->SetEventRefreshing(false); 858 } 624 } 859 625 860 // Refresh end-of-run model list. 626 // Refresh end-of-run model list. 861 // Allow only in Idle or GeomClosed state... 627 // Allow only in Idle or GeomClosed state... 862 if(state == G4State_Idle || state == G4State << 628 if (state == G4State_Idle || state == G4State_GeomClosed) { 863 { << 864 DrawEndOfRunModels(); 629 DrawEndOfRunModels(); 865 } 630 } 866 631 867 fMarkForClearingTransientStore = tmpMarkForC 632 fMarkForClearingTransientStore = tmpMarkForClearingTransientStore; 868 } 633 } 869 634 870 void G4VSceneHandler::DrawEvent(const G4Event* 635 void G4VSceneHandler::DrawEvent(const G4Event* event) 871 { 636 { 872 if(!fpViewer->ReadyToDraw()) return; << 873 const std::vector<G4Scene::Model>& EOEModelL 637 const std::vector<G4Scene::Model>& EOEModelList = 874 fpScene -> GetEndOfEventModelList (); 638 fpScene -> GetEndOfEventModelList (); 875 std::size_t nModels = EOEModelList.size(); << 639 size_t nModels = EOEModelList.size(); 876 if (nModels) { 640 if (nModels) { 877 G4ModelingParameters* pMP = CreateModeling 641 G4ModelingParameters* pMP = CreateModelingParameters(); 878 pMP->SetEvent(event); 642 pMP->SetEvent(event); 879 for (std::size_t i = 0; i < nModels; ++i) << 643 for (size_t i = 0; i < nModels; i++) { 880 if (EOEModelList[i].fActive) { 644 if (EOEModelList[i].fActive) { 881 fpModel = EOEModelList[i].fpModel; << 645 G4VModel* pModel = EOEModelList[i].fpModel; 882 fpModel -> SetModelingParameters(pMP); << 646 pModel -> SetModelingParameters(pMP); 883 << 647 SetModel (pModel); 884 // Describe to the current scene handl << 648 pModel -> DescribeYourselfTo (*this); 885 fpModel -> DescribeYourselfTo (*this); << 649 pModel -> SetModelingParameters(0); 886 << 887 // Enter models in the scene tree << 888 fpViewer->InsertModelInSceneTree(fpMod << 889 << 890 // Reset modeling parameters pointer << 891 fpModel -> SetModelingParameters(0); << 892 } 650 } 893 } 651 } 894 fpModel = 0; << 895 delete pMP; 652 delete pMP; >> 653 SetModel (0); 896 } 654 } 897 } 655 } 898 656 899 void G4VSceneHandler::DrawEndOfRunModels() 657 void G4VSceneHandler::DrawEndOfRunModels() 900 { 658 { 901 if(!fpViewer->ReadyToDraw()) return; << 902 const std::vector<G4Scene::Model>& EORModelL 659 const std::vector<G4Scene::Model>& EORModelList = 903 fpScene -> GetEndOfRunModelList (); 660 fpScene -> GetEndOfRunModelList (); 904 std::size_t nModels = EORModelList.size(); << 661 size_t nModels = EORModelList.size(); 905 if (nModels) { 662 if (nModels) { 906 G4ModelingParameters* pMP = CreateModeling 663 G4ModelingParameters* pMP = CreateModelingParameters(); 907 pMP->SetEvent(0); 664 pMP->SetEvent(0); 908 for (std::size_t i = 0; i < nModels; ++i) << 665 for (size_t i = 0; i < nModels; i++) { 909 if (EORModelList[i].fActive) { 666 if (EORModelList[i].fActive) { 910 fpModel = EORModelList[i].fpModel; << 667 G4VModel* pModel = EORModelList[i].fpModel; 911 fpModel -> SetModelingParameters(pMP); << 668 pModel -> SetModelingParameters(pMP); 912 << 669 SetModel (pModel); 913 // Describe to the current scene handl << 670 pModel -> DescribeYourselfTo (*this); 914 fpModel -> DescribeYourselfTo (*this); << 671 pModel -> SetModelingParameters(0); 915 << 916 // Enter models in the scene tree << 917 fpViewer->InsertModelInSceneTree(fpMod << 918 << 919 // Reset modeling parameters pointer << 920 fpModel -> SetModelingParameters(0); << 921 } 672 } 922 } 673 } 923 fpModel = 0; << 924 delete pMP; 674 delete pMP; >> 675 SetModel (0); 925 } 676 } 926 } 677 } 927 678 928 G4ModelingParameters* G4VSceneHandler::CreateM 679 G4ModelingParameters* G4VSceneHandler::CreateModelingParameters () 929 { 680 { 930 // Create modeling parameters from View Para 681 // Create modeling parameters from View Parameters... 931 if (!fpViewer) return NULL; 682 if (!fpViewer) return NULL; 932 683 933 const G4ViewParameters& vp = fpViewer -> Get 684 const G4ViewParameters& vp = fpViewer -> GetViewParameters (); 934 685 935 // Convert drawing styles... 686 // Convert drawing styles... 936 G4ModelingParameters::DrawingStyle modelDraw 687 G4ModelingParameters::DrawingStyle modelDrawingStyle = 937 G4ModelingParameters::wf; << 688 G4ModelingParameters::wf; 938 switch (vp.GetDrawingStyle ()) { 689 switch (vp.GetDrawingStyle ()) { 939 default: << 690 default: 940 case G4ViewParameters::wireframe: << 691 case G4ViewParameters::wireframe: 941 modelDrawingStyle = G4ModelingParameters << 692 modelDrawingStyle = G4ModelingParameters::wf; 942 break; << 693 break; 943 case G4ViewParameters::hlr: << 694 case G4ViewParameters::hlr: 944 modelDrawingStyle = G4ModelingParameters << 695 modelDrawingStyle = G4ModelingParameters::hlr; 945 break; << 696 break; 946 case G4ViewParameters::hsr: << 697 case G4ViewParameters::hsr: 947 modelDrawingStyle = G4ModelingParameters << 698 modelDrawingStyle = G4ModelingParameters::hsr; 948 break; << 699 break; 949 case G4ViewParameters::hlhsr: << 700 case G4ViewParameters::hlhsr: 950 modelDrawingStyle = G4ModelingParameters << 701 modelDrawingStyle = G4ModelingParameters::hlhsr; 951 break; << 702 break; 952 case G4ViewParameters::cloud: << 953 modelDrawingStyle = G4ModelingParameters << 954 break; << 955 } 703 } 956 704 957 // Decide if covered daughters are really to 705 // Decide if covered daughters are really to be culled... 958 G4bool reallyCullCovered = 706 G4bool reallyCullCovered = 959 vp.IsCullingCovered() // Culling daughte 707 vp.IsCullingCovered() // Culling daughters depends also on... 960 && !vp.IsSection () // Sections (DCUT) 708 && !vp.IsSection () // Sections (DCUT) not requested. 961 && !vp.IsCutaway () // Cutaways not re 709 && !vp.IsCutaway () // Cutaways not requested. 962 ; 710 ; 963 711 964 G4ModelingParameters* pModelingParams = new 712 G4ModelingParameters* pModelingParams = new G4ModelingParameters 965 (vp.GetDefaultVisAttributes (), 713 (vp.GetDefaultVisAttributes (), 966 modelDrawingStyle, 714 modelDrawingStyle, 967 vp.IsCulling (), 715 vp.IsCulling (), 968 vp.IsCullingInvisible (), 716 vp.IsCullingInvisible (), 969 vp.IsDensityCulling (), 717 vp.IsDensityCulling (), 970 vp.GetVisibleDensity (), 718 vp.GetVisibleDensity (), 971 reallyCullCovered, 719 reallyCullCovered, 972 vp.GetNoOfSides () 720 vp.GetNoOfSides () 973 ); 721 ); 974 722 975 pModelingParams->SetNumberOfCloudPoints(vp.G << 976 pModelingParams->SetWarning 723 pModelingParams->SetWarning 977 (G4VisManager::GetVerbosity() >= G4VisMana 724 (G4VisManager::GetVerbosity() >= G4VisManager::warnings); 978 725 979 pModelingParams->SetCBDAlgorithmNumber(vp.Ge << 980 pModelingParams->SetCBDParameters(vp.GetCBDP << 981 << 982 pModelingParams->SetExplodeFactor(vp.GetExpl 726 pModelingParams->SetExplodeFactor(vp.GetExplodeFactor()); 983 pModelingParams->SetExplodeCentre(vp.GetExpl 727 pModelingParams->SetExplodeCentre(vp.GetExplodeCentre()); 984 728 985 pModelingParams->SetSectionSolid(CreateSecti 729 pModelingParams->SetSectionSolid(CreateSectionSolid()); 986 << 987 if (vp.GetCutawayMode() == G4ViewParameters: << 988 pModelingParams->SetCutawayMode(G4Modeling << 989 } else if (vp.GetCutawayMode() == G4ViewPara << 990 pModelingParams->SetCutawayMode(G4Modeling << 991 } << 992 << 993 pModelingParams->SetCutawaySolid(CreateCutaw 730 pModelingParams->SetCutawaySolid(CreateCutawaySolid()); 994 // The polyhedron objects are deleted in the 731 // The polyhedron objects are deleted in the modeling parameters destructor. 995 732 996 pModelingParams->SetVisAttributesModifiers(v 733 pModelingParams->SetVisAttributesModifiers(vp.GetVisAttributesModifiers()); 997 734 998 pModelingParams->SetSpecialMeshRendering(vp. << 999 pModelingParams->SetSpecialMeshVolumes(vp.Ge << 1000 << 1001 return pModelingParams; 735 return pModelingParams; 1002 } 736 } 1003 737 1004 G4DisplacedSolid* G4VSceneHandler::CreateSect << 738 G4VSolid* G4VSceneHandler::CreateSectionSolid() 1005 { 739 { 1006 G4DisplacedSolid* sectioner = 0; << 740 G4VSolid* sectioner = 0; 1007 << 1008 const G4ViewParameters& vp = fpViewer->GetV 741 const G4ViewParameters& vp = fpViewer->GetViewParameters(); 1009 if (vp.IsSection () ) { 742 if (vp.IsSection () ) { 1010 << 1011 G4double radius = fpScene->GetExtent().Ge 743 G4double radius = fpScene->GetExtent().GetExtentRadius(); 1012 G4double safe = radius + fpScene->GetExte 744 G4double safe = radius + fpScene->GetExtent().GetExtentCentre().mag(); 1013 G4VSolid* sectionBox = 745 G4VSolid* sectionBox = 1014 new G4Box("_sectioner", safe, safe, 1.e << 746 new G4Box("_sectioner", safe, safe, 1.e-5 * radius); // Thin in z-plane. 1015 << 1016 const G4Plane3D& sp = vp.GetSectionPlane 747 const G4Plane3D& sp = vp.GetSectionPlane (); 1017 G4ThreeVector normal = sp.normal(); << 748 G4double a = sp.a(); 1018 G4Transform3D requiredTransform = G4Trans << 749 G4double b = sp.b(); 1019 G4Rotate3D(G4ThreeVector(0,0,1), G4ThreeV << 750 G4double c = sp.c(); 1020 << 751 G4double d = sp.d(); >> 752 G4Transform3D transform = G4TranslateZ3D(-d); >> 753 const G4Normal3D normal(a,b,c); >> 754 if (normal != G4Normal3D(0,0,1)) { >> 755 const G4double angle = std::acos(normal.dot(G4Normal3D(0,0,1))); >> 756 const G4Vector3D axis = G4Normal3D(0,0,1).cross(normal); >> 757 transform = G4Rotate3D(angle, axis) * transform; >> 758 } 1021 sectioner = new G4DisplacedSolid 759 sectioner = new G4DisplacedSolid 1022 ("_displaced_sectioning_box", sectionBox, << 760 ("_displaced_sectioning_box", sectionBox, transform); 1023 } 761 } 1024 << 1025 return sectioner; 762 return sectioner; 1026 } 763 } 1027 764 1028 G4DisplacedSolid* G4VSceneHandler::CreateCuta << 765 G4VSolid* G4VSceneHandler::CreateCutawaySolid() 1029 { 766 { 1030 const auto& vp = fpViewer->GetViewParameter << 767 return 0; 1031 const auto& nPlanes = vp.GetCutawayPlanes() << 1032 << 1033 if (nPlanes == 0) return nullptr; << 1034 << 1035 std::vector<G4DisplacedSolid*> cutaway_soli << 1036 << 1037 G4double radius = fpScene->GetExtent().GetE << 1038 G4double safe = radius + fpScene->GetExtent << 1039 auto cutawayBox = new G4Box("_cutaway_box", << 1040 << 1041 // if (vp.GetCutawayMode() == G4ViewParamet << 1042 // the intersection of displaced cutaway bo << 1043 // positive values a*x+b*y+c*z+d>0, so we h << 1044 // "back to front". The parameter "cutawayU << 1045 // that remain *after* cutaway", because we << 1046 // a "union" of what remains by superimposi << 1047 // and G4OpenGLImmediate/StoredViewer::Proc << 1048 // that is the intersection of inverted cut << 1049 << 1050 // Conversely, if (vp.GetCutawayMode() == G << 1051 // create an intersector that is the inters << 1052 << 1053 for (size_t plane_no = 0; plane_no < nPlane << 1054 { << 1055 const G4Plane3D& sp = vp.GetCutawayPlanes << 1056 G4Transform3D requiredTransform; << 1057 G4ThreeVector normal; << 1058 switch (vp.GetCutawayMode()) { << 1059 case G4ViewParameters::cutawayUnion: << 1060 normal = -sp.normal(); // Invert nor << 1061 requiredTransform = G4Translate3D(nor << 1062 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1063 break; << 1064 case G4ViewParameters::cutawayIntersect << 1065 normal = sp.normal(); << 1066 requiredTransform = G4Translate3D(nor << 1067 G4Rotate3D(G4ThreeVector(0,0,1), G4Th << 1068 break; << 1069 } << 1070 cutaway_solids.push_back << 1071 (new G4DisplacedSolid("_displaced_cutaway << 1072 } << 1073 << 1074 if (nPlanes == 1) return (G4DisplacedSolid* << 1075 << 1076 G4IntersectionSolid *union2 = nullptr, *uni << 1077 G4IntersectionSolid *intersection2 = nullpt << 1078 switch (vp.GetCutawayMode()) { << 1079 << 1080 case G4ViewParameters::cutawayUnion: << 1081 // Here we make a subtractor of interse << 1082 union2 = new G4IntersectionSolid("_unio << 1083 if (nPlanes == 2) return (G4DisplacedSo << 1084 else if (nPlanes == 3) { << 1085 union3 = new G4IntersectionSolid("_un << 1086 return (G4DisplacedSolid*)union3; << 1087 } << 1088 break; << 1089 << 1090 case G4ViewParameters::cutawayIntersectio << 1091 // And here we make an intersector of i << 1092 intersection2 << 1093 = new G4IntersectionSolid("_intersectio << 1094 if (nPlanes == 2) return (G4DisplacedSo << 1095 else if (nPlanes == 3) { << 1096 intersection3 << 1097 = new G4IntersectionSolid("_intersect << 1098 return (G4DisplacedSolid*)intersectio << 1099 } << 1100 break; << 1101 } << 1102 << 1103 G4Exception("G4VSceneHandler::CreateCutaway << 1104 "Not programmed for more than 3 << 1105 return nullptr; << 1106 } 768 } 1107 769 1108 void G4VSceneHandler::LoadAtts(const G4Visibl 770 void G4VSceneHandler::LoadAtts(const G4Visible& visible, G4AttHolder* holder) 1109 { 771 { 1110 // Load G4Atts from G4VisAttributes, if any 772 // Load G4Atts from G4VisAttributes, if any... 1111 const G4VisAttributes* va = visible.GetVisA 773 const G4VisAttributes* va = visible.GetVisAttributes(); 1112 if (va) { 774 if (va) { 1113 const std::map<G4String,G4AttDef>* vaDefs 775 const std::map<G4String,G4AttDef>* vaDefs = 1114 va->GetAttDefs(); 776 va->GetAttDefs(); 1115 if (vaDefs) { 777 if (vaDefs) { 1116 holder->AddAtts(visible.GetVisAttribute 778 holder->AddAtts(visible.GetVisAttributes()->CreateAttValues(), vaDefs); 1117 } 779 } 1118 } 780 } 1119 781 1120 G4PhysicalVolumeModel* pPVModel = 782 G4PhysicalVolumeModel* pPVModel = 1121 dynamic_cast<G4PhysicalVolumeModel*>(fpMo 783 dynamic_cast<G4PhysicalVolumeModel*>(fpModel); 1122 if (pPVModel) { 784 if (pPVModel) { 1123 // Load G4Atts from G4PhysicalVolumeModel 785 // Load G4Atts from G4PhysicalVolumeModel... 1124 const std::map<G4String,G4AttDef>* pvDefs 786 const std::map<G4String,G4AttDef>* pvDefs = pPVModel->GetAttDefs(); 1125 if (pvDefs) { 787 if (pvDefs) { 1126 holder->AddAtts(pPVModel->CreateCurrent 788 holder->AddAtts(pPVModel->CreateCurrentAttValues(), pvDefs); 1127 } 789 } 1128 } 790 } 1129 791 1130 G4TrajectoriesModel* trajModel = dynamic_ca 792 G4TrajectoriesModel* trajModel = dynamic_cast<G4TrajectoriesModel*>(fpModel); 1131 if (trajModel) { 793 if (trajModel) { 1132 // Load G4Atts from trajectory model... 794 // Load G4Atts from trajectory model... 1133 const std::map<G4String,G4AttDef>* trajMo 795 const std::map<G4String,G4AttDef>* trajModelDefs = trajModel->GetAttDefs(); 1134 if (trajModelDefs) { 796 if (trajModelDefs) { 1135 holder->AddAtts(trajModel->CreateCurren 797 holder->AddAtts(trajModel->CreateCurrentAttValues(), trajModelDefs); 1136 } 798 } 1137 // Load G4Atts from trajectory... 799 // Load G4Atts from trajectory... 1138 const G4VTrajectory* traj = trajModel->Ge 800 const G4VTrajectory* traj = trajModel->GetCurrentTrajectory(); 1139 if (traj) { 801 if (traj) { 1140 const std::map<G4String,G4AttDef>* traj 802 const std::map<G4String,G4AttDef>* trajDefs = traj->GetAttDefs(); 1141 if (trajDefs) { 803 if (trajDefs) { 1142 holder->AddAtts(traj->CreateAttValues 804 holder->AddAtts(traj->CreateAttValues(), trajDefs); 1143 } 805 } 1144 G4int nPoints = traj->GetPointEntries() 806 G4int nPoints = traj->GetPointEntries(); 1145 for (G4int i = 0; i < nPoints; ++i) { 807 for (G4int i = 0; i < nPoints; ++i) { 1146 G4VTrajectoryPoint* trajPoint = traj- 808 G4VTrajectoryPoint* trajPoint = traj->GetPoint(i); 1147 if (trajPoint) { 809 if (trajPoint) { 1148 const std::map<G4String,G4AttDef>* 810 const std::map<G4String,G4AttDef>* pointDefs = trajPoint->GetAttDefs(); 1149 if (pointDefs) { 811 if (pointDefs) { 1150 holder->AddAtts(trajPoint->Create 812 holder->AddAtts(trajPoint->CreateAttValues(), pointDefs); 1151 } 813 } 1152 } 814 } 1153 } 815 } 1154 } 816 } 1155 } 817 } 1156 818 1157 G4HitsModel* hitsModel = dynamic_cast<G4Hit 819 G4HitsModel* hitsModel = dynamic_cast<G4HitsModel*>(fpModel); 1158 if (hitsModel) { 820 if (hitsModel) { 1159 // Load G4Atts from hit... 821 // Load G4Atts from hit... 1160 const G4VHit* hit = hitsModel->GetCurrent 822 const G4VHit* hit = hitsModel->GetCurrentHit(); 1161 const std::map<G4String,G4AttDef>* hitsDe 823 const std::map<G4String,G4AttDef>* hitsDefs = hit->GetAttDefs(); 1162 if (hitsDefs) { 824 if (hitsDefs) { 1163 holder->AddAtts(hit->CreateAttValues(), 825 holder->AddAtts(hit->CreateAttValues(), hitsDefs); 1164 } 826 } 1165 } 827 } 1166 } 828 } 1167 829 1168 const G4Colour& G4VSceneHandler::GetColour () << 1169 fpVisAttribs = fpViewer->GetApplicableVisAt << 1170 const G4Colour& colour = fpVisAttribs -> Ge << 1171 return colour; << 1172 } << 1173 << 1174 const G4Colour& G4VSceneHandler::GetColour (c 830 const G4Colour& G4VSceneHandler::GetColour (const G4Visible& visible) { 1175 auto pVA = visible.GetVisAttributes(); << 831 // Colour is determined by the applicable vis attributes. 1176 if (!pVA) pVA = fpViewer->GetViewParameters << 832 const G4Colour& colour = fpViewer -> 1177 return pVA->GetColour(); << 833 GetApplicableVisAttributes (visible.GetVisAttributes ()) -> GetColour (); >> 834 return colour; 1178 } 835 } 1179 836 1180 const G4Colour& G4VSceneHandler::GetTextColou 837 const G4Colour& G4VSceneHandler::GetTextColour (const G4Text& text) { 1181 auto pVA = text.GetVisAttributes(); << 838 const G4VisAttributes* pVA = text.GetVisAttributes (); 1182 if (!pVA) pVA = fpViewer->GetViewParameters << 839 if (!pVA) { 1183 return pVA->GetColour(); << 840 pVA = fpViewer -> GetViewParameters (). GetDefaultTextVisAttributes (); >> 841 } >> 842 const G4Colour& colour = pVA -> GetColour (); >> 843 return colour; 1184 } 844 } 1185 845 1186 G4double G4VSceneHandler::GetLineWidth(const 846 G4double G4VSceneHandler::GetLineWidth(const G4VisAttributes* pVisAttribs) 1187 { 847 { 1188 G4double lineWidth = pVisAttribs->GetLineWi 848 G4double lineWidth = pVisAttribs->GetLineWidth(); 1189 if (lineWidth < 1.) lineWidth = 1.; 849 if (lineWidth < 1.) lineWidth = 1.; 1190 lineWidth *= fpViewer -> GetViewParameters( 850 lineWidth *= fpViewer -> GetViewParameters().GetGlobalLineWidthScale(); 1191 if (lineWidth < 1.) lineWidth = 1.; 851 if (lineWidth < 1.) lineWidth = 1.; 1192 return lineWidth; 852 return lineWidth; 1193 } 853 } 1194 854 1195 G4ViewParameters::DrawingStyle G4VSceneHandle 855 G4ViewParameters::DrawingStyle G4VSceneHandler::GetDrawingStyle 1196 (const G4VisAttributes* pVisAttribs) { 856 (const G4VisAttributes* pVisAttribs) { 1197 // Drawing style is normally determined by 857 // Drawing style is normally determined by the view parameters, but 1198 // it can be overriddden by the ForceDrawin 858 // it can be overriddden by the ForceDrawingStyle flag in the vis 1199 // attributes. 859 // attributes. 1200 const G4ViewParameters& vp = fpViewer->GetV << 860 G4ViewParameters::DrawingStyle style = 1201 const G4ViewParameters::DrawingStyle viewer << 861 fpViewer->GetViewParameters().GetDrawingStyle(); 1202 G4ViewParameters::DrawingStyle resultantSty << 1203 if (pVisAttribs -> IsForceDrawingStyle ()) 862 if (pVisAttribs -> IsForceDrawingStyle ()) { 1204 G4VisAttributes::ForcedDrawingStyle force 863 G4VisAttributes::ForcedDrawingStyle forcedStyle = 1205 pVisAttribs -> GetForcedDrawingStyle (); << 864 pVisAttribs -> GetForcedDrawingStyle (); 1206 // This is complicated because if hidden 865 // This is complicated because if hidden line and surface removal 1207 // has been requested we wish to preserve 866 // has been requested we wish to preserve this sometimes. 1208 switch (forcedStyle) { 867 switch (forcedStyle) { 1209 case (G4VisAttributes::solid): << 868 case (G4VisAttributes::solid): 1210 switch (viewerStyle) { << 869 switch (style) { 1211 case (G4ViewParameters::hlr): << 870 case (G4ViewParameters::hlr): 1212 resultantStyle = G4ViewParameters << 871 style = G4ViewParameters::hlhsr; 1213 break; << 872 break; 1214 case (G4ViewParameters::wireframe): << 873 case (G4ViewParameters::wireframe): 1215 resultantStyle = G4ViewParameters << 874 style = G4ViewParameters::hsr; 1216 break; << 875 break; 1217 case (G4ViewParameters::cloud): << 876 case (G4ViewParameters::hlhsr): 1218 resultantStyle = G4ViewParameters << 877 case (G4ViewParameters::hsr): 1219 break; << 1220 case (G4ViewParameters::hlhsr): << 1221 case (G4ViewParameters::hsr): << 1222 break; << 1223 } << 1224 break; << 1225 case (G4VisAttributes::cloud): << 1226 resultantStyle = G4ViewParameters::cl << 1227 break; << 1228 case (G4VisAttributes::wireframe): << 1229 default: 878 default: 1230 // But if forced style is wireframe, << 879 break; 1231 // main uses is in displaying the con << 880 } 1232 // solid and their surfaces overlap w << 881 break; 1233 // solid, making a mess if hlr is spe << 882 case (G4VisAttributes::wireframe): 1234 resultantStyle = G4ViewParameters::wi << 883 default: 1235 break; << 884 // But if forced style is wireframe, do it, because one of its 1236 } << 885 // main uses is in displaying the consituent solids of a Boolean 1237 } << 886 // solid and their surfaces overlap with the resulting Booean 1238 return resultantStyle; << 887 // solid, making a mess if hlr is specified. 1239 } << 888 style = G4ViewParameters::wireframe; 1240 << 889 break; 1241 G4int G4VSceneHandler::GetNumberOfCloudPoints << 890 } 1242 (const G4VisAttributes* pVisAttribs) const { << 1243 // Returns no of cloud points from current << 1244 // has forced through the vis attributes, t << 1245 // current view parameter. << 1246 G4int numberOfCloudPoints = fpViewer->GetVi << 1247 if (pVisAttribs -> IsForceDrawingStyle() && << 1248 pVisAttribs -> GetForcedDrawingStyle() << 1249 pVisAttribs -> GetForcedNumberOfCloudPo << 1250 numberOfCloudPoints = pVisAttribs -> GetF << 1251 } 891 } 1252 return numberOfCloudPoints; << 892 return style; 1253 } 893 } 1254 894 1255 G4bool G4VSceneHandler::GetAuxEdgeVisible (co 895 G4bool G4VSceneHandler::GetAuxEdgeVisible (const G4VisAttributes* pVisAttribs) { 1256 G4bool isAuxEdgeVisible = fpViewer->GetView 896 G4bool isAuxEdgeVisible = fpViewer->GetViewParameters().IsAuxEdgeVisible (); 1257 if (pVisAttribs -> IsForceAuxEdgeVisible()) << 897 if (pVisAttribs -> IsForceAuxEdgeVisible()) isAuxEdgeVisible = true; 1258 isAuxEdgeVisible = pVisAttribs->IsForcedA << 1259 } << 1260 return isAuxEdgeVisible; 898 return isAuxEdgeVisible; 1261 } 899 } 1262 900 1263 G4double G4VSceneHandler::GetMarkerSize 901 G4double G4VSceneHandler::GetMarkerSize 1264 (const G4VMarker& marker, 902 (const G4VMarker& marker, 1265 G4VSceneHandler::MarkerSizeType& markerSizeT 903 G4VSceneHandler::MarkerSizeType& markerSizeType) 1266 { 904 { 1267 G4bool userSpecified = marker.GetWorldSize( 905 G4bool userSpecified = marker.GetWorldSize() || marker.GetScreenSize(); 1268 const G4VMarker& defaultMarker = 906 const G4VMarker& defaultMarker = 1269 fpViewer -> GetViewParameters().GetDefaul 907 fpViewer -> GetViewParameters().GetDefaultMarker(); 1270 G4double size = userSpecified ? 908 G4double size = userSpecified ? 1271 marker.GetWorldSize() : defaultMarker.Get 909 marker.GetWorldSize() : defaultMarker.GetWorldSize(); 1272 if (size) { 910 if (size) { 1273 // Draw in world coordinates. 911 // Draw in world coordinates. 1274 markerSizeType = world; 912 markerSizeType = world; 1275 } 913 } 1276 else { 914 else { 1277 size = userSpecified ? 915 size = userSpecified ? 1278 marker.GetScreenSize() : defaultMarker. 916 marker.GetScreenSize() : defaultMarker.GetScreenSize(); 1279 // Draw in screen coordinates. 917 // Draw in screen coordinates. 1280 markerSizeType = screen; 918 markerSizeType = screen; 1281 } 919 } 1282 size *= fpViewer -> GetViewParameters().Get 920 size *= fpViewer -> GetViewParameters().GetGlobalMarkerScale(); 1283 if (markerSizeType == screen && size < 1.) 921 if (markerSizeType == screen && size < 1.) size = 1.; 1284 return size; 922 return size; 1285 } 923 } 1286 924 1287 G4int G4VSceneHandler::GetNoOfSides(const G4V 925 G4int G4VSceneHandler::GetNoOfSides(const G4VisAttributes* pVisAttribs) 1288 { 926 { 1289 // No. of sides (lines segments per circle) 927 // No. of sides (lines segments per circle) is normally determined 1290 // by the view parameters, but it can be ov 928 // by the view parameters, but it can be overriddden by the 1291 // ForceLineSegmentsPerCircle in the vis at 929 // ForceLineSegmentsPerCircle in the vis attributes. 1292 G4int lineSegmentsPerCircle = fpViewer->Get 930 G4int lineSegmentsPerCircle = fpViewer->GetViewParameters().GetNoOfSides(); 1293 if (pVisAttribs) { 931 if (pVisAttribs) { 1294 if (pVisAttribs->IsForceLineSegmentsPerCi 932 if (pVisAttribs->IsForceLineSegmentsPerCircle()) 1295 lineSegmentsPerCircle = pVisAttribs->Ge 933 lineSegmentsPerCircle = pVisAttribs->GetForcedLineSegmentsPerCircle(); 1296 if (lineSegmentsPerCircle < pVisAttribs-> 934 if (lineSegmentsPerCircle < pVisAttribs->GetMinLineSegmentsPerCircle()) { 1297 lineSegmentsPerCircle = pVisAttribs->Ge 935 lineSegmentsPerCircle = pVisAttribs->GetMinLineSegmentsPerCircle(); 1298 G4warn << << 936 G4cout << 1299 "G4VSceneHandler::GetNoOfSides: attempt to 937 "G4VSceneHandler::GetNoOfSides: attempt to set the" 1300 "\nnumber of line segments per circle < " < << 938 "\nnumber of line segements per circle < " << lineSegmentsPerCircle 1301 << "; forced to " << pVisAttribs->GetM 939 << "; forced to " << pVisAttribs->GetMinLineSegmentsPerCircle() << G4endl; 1302 } 940 } 1303 } 941 } 1304 return lineSegmentsPerCircle; 942 return lineSegmentsPerCircle; 1305 } 943 } 1306 944 1307 std::ostream& operator << (std::ostream& os, 945 std::ostream& operator << (std::ostream& os, const G4VSceneHandler& sh) { 1308 946 1309 os << "Scene handler " << sh.fName << " has 947 os << "Scene handler " << sh.fName << " has " 1310 << sh.fViewerList.size () << " viewer(s) 948 << sh.fViewerList.size () << " viewer(s):"; 1311 for (std::size_t i = 0; i < sh.fViewerList. << 949 for (size_t i = 0; i < sh.fViewerList.size (); i++) { 1312 os << "\n " << *(sh.fViewerList [i]); 950 os << "\n " << *(sh.fViewerList [i]); 1313 } 951 } 1314 952 1315 if (sh.fpScene) { 953 if (sh.fpScene) { 1316 os << "\n " << *sh.fpScene; 954 os << "\n " << *sh.fpScene; 1317 } 955 } 1318 else { 956 else { 1319 os << "\n This scene handler currently h 957 os << "\n This scene handler currently has no scene."; 1320 } 958 } 1321 959 1322 return os; 960 return os; 1323 } << 1324 << 1325 void G4VSceneHandler::PseudoSceneFor3DRectMes << 1326 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1327 const auto& material = fpPVModel->GetCurr << 1328 const auto& name = material? material->Ge << 1329 const auto& pVisAtts = fpPVModel->GetCurr << 1330 // Get position in world coordinates << 1331 // As a parameterisation the box is trans << 1332 // and its centre, originally by definiti << 1333 const G4ThreeVector& position = fpCurrent << 1334 fPositionByMaterial.insert(std::make_pair << 1335 if (fNameAndVisAttsByMaterial.find(materi << 1336 // Store name and vis attributes of fir << 1337 fNameAndVisAttsByMaterial[material] = N << 1338 } << 1339 } << 1340 << 1341 void G4VSceneHandler::PseudoSceneForTetVertic << 1342 if (fpPVModel->GetCurrentDepth() == fpMesh- << 1343 // Need to know it's a tet !!!! or implem << 1344 try { << 1345 const auto& tet = dynamic_cast<const G4 << 1346 const auto& material = fpPVModel->GetCu << 1347 const auto& name = material? material-> << 1348 const auto& pVisAtts = fpPVModel->GetCu << 1349 // Transform into world coordinates if << 1350 if (fpCurrentObjectTransformation->xx() << 1351 fpCurrentObjectTransformation->yy() << 1352 fpCurrentObjectTransformation->zz() << 1353 const auto& vertices = tet.GetVertice << 1354 fVerticesByMaterial.insert(std::make_ << 1355 } else { << 1356 auto vertices = tet.GetVertices(); << 1357 for (auto&& vertex: vertices) { << 1358 vertex = G4Point3D(vertex).transfor << 1359 } << 1360 fVerticesByMaterial.insert(std::make_ << 1361 } << 1362 if (fNameAndVisAttsByMaterial.find(mate << 1363 // Store name and vis attributes of f << 1364 fNameAndVisAttsByMaterial[material] = << 1365 } << 1366 catch (const std::bad_cast&) { << 1367 G4ExceptionDescription ed; << 1368 ed << "Called for a mesh that is not a << 1369 G4Exception("PseudoSceneForTetVertices" << 1370 } << 1371 } << 1372 } << 1373 << 1374 void G4VSceneHandler::StandardSpecialMeshRend << 1375 // Standard way of special mesh rendering. << 1376 // MySceneHandler::AddCompound(const G4Mesh& << 1377 // appropriate or implement its own special m << 1378 { << 1379 G4bool implemented = false; << 1380 switch (mesh.GetMeshType()) { << 1381 case G4Mesh::rectangle: [[fallthrough]]; << 1382 case G4Mesh::nested3DRectangular: << 1383 switch (fpViewer->GetViewParameters().G << 1384 case G4ViewParameters::meshAsDefault: << 1385 [[fallthrough]]; << 1386 case G4ViewParameters::meshAsDots: << 1387 Draw3DRectMeshAsDots(mesh); // Rec << 1388 implemented = true; << 1389 break; << 1390 case G4ViewParameters::meshAsSurfaces << 1391 Draw3DRectMeshAsSurfaces(mesh); // << 1392 implemented = true; << 1393 break; << 1394 } << 1395 break; << 1396 case G4Mesh::tetrahedron: << 1397 switch (fpViewer->GetViewParameters().G << 1398 case G4ViewParameters::meshAsDefault: << 1399 [[fallthrough]]; << 1400 case G4ViewParameters::meshAsDots: << 1401 DrawTetMeshAsDots(mesh); // Tetrah << 1402 implemented = true; << 1403 break; << 1404 case G4ViewParameters::meshAsSurfaces << 1405 DrawTetMeshAsSurfaces(mesh); // Te << 1406 implemented = true; << 1407 break; << 1408 } << 1409 break; << 1410 case G4Mesh::cylinder: [[fallthrough]]; << 1411 case G4Mesh::sphere: [[fallthrough]]; << 1412 case G4Mesh::invalid: break; << 1413 } << 1414 if (implemented) { << 1415 // Draw container if not marked invisible << 1416 auto container = mesh.GetContainerVolume( << 1417 auto containerLogical = container->GetLog << 1418 auto containerVisAtts = containerLogical- << 1419 if (containerVisAtts == nullptr || contai << 1420 auto solid = containerLogical->GetSolid << 1421 auto polyhedron = solid->GetPolyhedron( << 1422 // Always draw as wireframe << 1423 G4VisAttributes tmpVisAtts; << 1424 if (containerVisAtts != nullptr) tmpVis << 1425 tmpVisAtts.SetForceWireframe(); << 1426 polyhedron->SetVisAttributes(tmpVisAtts << 1427 BeginPrimitives(mesh.GetTransform()); << 1428 AddPrimitive(*polyhedron); << 1429 EndPrimitives(); << 1430 } << 1431 } else { << 1432 // Invoke base class function << 1433 G4VSceneHandler::AddCompound(mesh); << 1434 } << 1435 return; << 1436 } << 1437 << 1438 void G4VSceneHandler::Draw3DRectMeshAsDots(co << 1439 // For a rectangular 3-D mesh, draw as colour << 1440 // one dot randomly placed in each visible me << 1441 { << 1442 // Check << 1443 if (mesh.GetMeshType() != G4Mesh::rectangle << 1444 mesh.GetMeshType() != G4Mesh::nested3DR << 1445 G4ExceptionDescription ed; << 1446 ed << "Called with a mesh that is not rec << 1447 G4Exception("G4VSceneHandler::Draw3DRectM << 1448 return; << 1449 } << 1450 << 1451 static G4bool firstPrint = true; << 1452 const auto& verbosity = G4VisManager::GetVe << 1453 G4bool print = firstPrint && verbosity >= G << 1454 if (print) { << 1455 G4cout << 1456 << "Special case drawing of 3D rectangula << 1457 << '\n' << mesh << 1458 << G4endl; << 1459 } << 1460 << 1461 const auto& container = mesh.GetContainerVo << 1462 << 1463 // This map is static so that once filled i << 1464 static std::map<G4String,std::map<const G4M << 1465 auto& dotsByMaterial = dotsByMaterialAndMes << 1466 << 1467 // Fill map if not already filled << 1468 if (dotsByMaterial.empty()) { << 1469 << 1470 // Get positions and material one cell at << 1471 // The pseudo scene allows a "private" de << 1472 // Instantiate a temporary G4PhysicalVolu << 1473 G4ModelingParameters tmpMP; << 1474 tmpMP.SetCulling(true); // This avoids d << 1475 tmpMP.SetCullingInvisible(true); // ... << 1476 const G4bool useFullExtent = true; // To << 1477 G4PhysicalVolumeModel tmpPVModel << 1478 (container, << 1479 G4PhysicalVolumeModel::UNLIMITED, << 1480 G4Transform3D(), // so that positions a << 1481 &tmpMP, << 1482 useFullExtent); << 1483 // Accumulate information in temporary ma << 1484 std::multimap<const G4Material*,const G4T << 1485 std::map<const G4Material*,G4VSceneHandle << 1486 // Instantiate the pseudo scene << 1487 PseudoSceneFor3DRectMeshPositions pseudoS << 1488 (&tmpPVModel,&mesh,positionByMaterial,nam << 1489 // Make private descent into the paramete << 1490 tmpPVModel.DescribeYourselfTo(pseudoScene << 1491 // Now we have a map of positions by mate << 1492 // Also a map of name and colour by mater << 1493 << 1494 const auto& prms = mesh.GetThreeDRectPara << 1495 const auto& halfX = prms.fHalfX; << 1496 const auto& halfY = prms.fHalfY; << 1497 const auto& halfZ = prms.fHalfZ; << 1498 << 1499 // Fill the permanent (static) map of dot << 1500 G4int nDotsTotal = 0; << 1501 for (const auto& entry: nameAndVisAttsByM << 1502 G4int nDots = 0; << 1503 const auto& material = entry.first; << 1504 const auto& nameAndVisAtts = nameAndVis << 1505 const auto& name = nameAndVisAtts.fName << 1506 const auto& visAtts = nameAndVisAtts.fV << 1507 G4Polymarker dots; << 1508 dots.SetInfo(name); << 1509 dots.SetVisAttributes(visAtts); << 1510 dots.SetMarkerType(G4Polymarker::dots); << 1511 dots.SetSize(G4VMarker::screen,1.); << 1512 // Enter empty polymarker into the map << 1513 dotsByMaterial[material] = dots; << 1514 // Now fill it in situ << 1515 auto& dotsInMap = dotsByMaterial[materi << 1516 const auto& range = positionByMaterial. << 1517 for (auto posByMat = range.first; posBy << 1518 dotsInMap.push_back(GetPointInBox(pos << 1519 ++nDots; << 1520 } << 1521 << 1522 if (print) { << 1523 G4cout << 1524 << std::setw(30) << std::left << name << 1525 << ": " << std::setw(7) << nDots << " << 1526 << ": colour " << std::fixed << std:: << 1527 << visAtts.GetColour() << std::defaul << 1528 << G4endl; << 1529 } << 1530 << 1531 nDotsTotal += nDots; << 1532 } << 1533 << 1534 if (print) { << 1535 G4cout << "Total number of dots: " << n << 1536 } << 1537 } << 1538 << 1539 // Some subsequent expressions apply only t << 1540 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1541 << 1542 G4String parameterisationName; << 1543 if (pPVModel) { << 1544 parameterisationName = pPVModel->GetFullP << 1545 } << 1546 << 1547 // Draw the dots by material << 1548 // Ensure they are "hidden", i.e., use the << 1549 auto keepVP = fpViewer->GetViewParameters() << 1550 auto vp = fpViewer->GetViewParameters(); << 1551 vp.SetMarkerHidden(); << 1552 fpViewer->SetViewParameters(vp); << 1553 // Now we transform to world coordinates << 1554 BeginPrimitives (mesh.GetTransform()); << 1555 for (const auto& entry: dotsByMaterial) { << 1556 const auto& dots = entry.second; << 1557 // The current "leaf" node in the PVPath << 1558 // been converted into polymarkers by mat << 1559 // its name to that of the material (whos << 1560 // so that its appearance in the scene tr << 1561 // an appropriate name and its visibility << 1562 if (pPVModel) { << 1563 const auto& fullPVPath = pPVModel->GetF << 1564 auto leafPV = fullPVPath.back().GetPhys << 1565 leafPV->SetName(dots.GetInfo()); << 1566 } << 1567 // Add dots to the scene << 1568 AddPrimitive(dots); << 1569 } << 1570 EndPrimitives (); << 1571 // Restore view parameters << 1572 fpViewer->SetViewParameters(keepVP); << 1573 // Restore parameterisation name << 1574 if (pPVModel) { << 1575 pPVModel->GetFullPVPath().back().GetPhysi << 1576 } << 1577 << 1578 firstPrint = false; << 1579 return; << 1580 } << 1581 << 1582 void G4VSceneHandler::Draw3DRectMeshAsSurface << 1583 // For a rectangular 3-D mesh, draw as surfac << 1584 // with inner shared faces removed. << 1585 { << 1586 // Check << 1587 if (mesh.GetMeshType() != G4Mesh::rectangle << 1588 mesh.GetMeshType() != G4Mesh::nested3DR << 1589 G4ExceptionDescription ed; << 1590 ed << "Called with a mesh that is not rec << 1591 G4Exception("G4VSceneHandler::Draw3DRectM << 1592 return; << 1593 } << 1594 << 1595 static G4bool firstPrint = true; << 1596 const auto& verbosity = G4VisManager::GetVe << 1597 G4bool print = firstPrint && verbosity >= G << 1598 if (print) { << 1599 G4cout << 1600 << "Special case drawing of 3D rectangula << 1601 << '\n' << mesh << 1602 << G4endl; << 1603 } << 1604 << 1605 const auto& container = mesh.GetContainerVo << 1606 << 1607 // This map is static so that once filled i << 1608 static std::map<G4String,std::map<const G4M << 1609 auto& boxesByMaterial = boxesByMaterialAndM << 1610 << 1611 // Fill map if not already filled << 1612 if (boxesByMaterial.empty()) { << 1613 << 1614 // Get positions and material one cell at << 1615 // The pseudo scene allows a "private" de << 1616 // Instantiate a temporary G4PhysicalVolu << 1617 G4ModelingParameters tmpMP; << 1618 tmpMP.SetCulling(true); // This avoids d << 1619 tmpMP.SetCullingInvisible(true); // ... << 1620 const G4bool useFullExtent = true; // To << 1621 G4PhysicalVolumeModel tmpPVModel << 1622 (container, << 1623 G4PhysicalVolumeModel::UNLIMITED, << 1624 G4Transform3D(), // so that positions a << 1625 &tmpMP, << 1626 useFullExtent); << 1627 // Accumulate information in temporary ma << 1628 std::multimap<const G4Material*,const G4T << 1629 std::map<const G4Material*,G4VSceneHandle << 1630 // Instantiate the pseudo scene << 1631 PseudoSceneFor3DRectMeshPositions pseudoS << 1632 (&tmpPVModel,&mesh,positionByMaterial,nam << 1633 // Make private descent into the paramete << 1634 tmpPVModel.DescribeYourselfTo(pseudoScene << 1635 // Now we have a map of positions by mate << 1636 // Also a map of name and colour by mater << 1637 << 1638 const auto& prms = mesh.GetThreeDRectPara << 1639 const auto& sizeX = 2.*prms.fHalfX; << 1640 const auto& sizeY = 2.*prms.fHalfY; << 1641 const auto& sizeZ = 2.*prms.fHalfZ; << 1642 << 1643 // Fill the permanent (static) map of box << 1644 G4int nBoxesTotal = 0, nFacetsTotal = 0; << 1645 for (const auto& entry: nameAndVisAttsByM << 1646 G4int nBoxes = 0; << 1647 const auto& material = entry.first; << 1648 const auto& nameAndVisAtts = nameAndVis << 1649 const auto& name = nameAndVisAtts.fName << 1650 const auto& visAtts = nameAndVisAtts.fV << 1651 // Transfer positions into a vector rea << 1652 std::vector<G4ThreeVector> positionsFor << 1653 const auto& range = positionByMaterial. << 1654 for (auto posByMat = range.first; posBy << 1655 const auto& position = posByMat->seco << 1656 positionsForPolyhedron.push_back(posi << 1657 ++nBoxes; << 1658 } << 1659 // The polyhedron will be in local coor << 1660 // Add an empty place-holder to the map << 1661 auto& polyhedron = boxesByMaterial[mate << 1662 // Replace with the desired polyhedron << 1663 polyhedron = G4PolyhedronBoxMesh(sizeX, << 1664 polyhedron.SetVisAttributes(visAtts); << 1665 polyhedron.SetInfo(name); << 1666 << 1667 if (print) { << 1668 G4cout << 1669 << std::setw(30) << std::left << name << 1670 << ": " << std::setw(7) << nBoxes << << 1671 << " (" << std::setw(7) << 6*nBoxes < << 1672 << ": reduced to " << std::setw(7) << << 1673 << std::setw(2) << std::fixed << std: << 1674 << "%): colour " << std::fixed << std << 1675 << visAtts.GetColour() << std::defaul << 1676 << G4endl; << 1677 } << 1678 << 1679 nBoxesTotal += nBoxes; << 1680 nFacetsTotal += polyhedron.GetNoFacets( << 1681 } << 1682 << 1683 if (print) { << 1684 G4cout << "Total number of boxes: " << << 1685 << ": reduced to " << nFacetsTotal << " << 1686 << std::setw(2) << std::fixed << std::s << 1687 << G4endl; << 1688 } << 1689 } << 1690 << 1691 // Some subsequent expressions apply only t << 1692 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1693 << 1694 G4String parameterisationName; << 1695 if (pPVModel) { << 1696 parameterisationName = pPVModel->GetFullP << 1697 } << 1698 << 1699 // Draw the boxes by material << 1700 // Now we transform to world coordinates << 1701 BeginPrimitives (mesh.GetTransform()); << 1702 for (const auto& entry: boxesByMaterial) { << 1703 const auto& poly = entry.second; << 1704 // The current "leaf" node in the PVPath << 1705 // been converted into polyhedra by mater << 1706 // its name to that of the material (whos << 1707 // so that its appearance in the scene tr << 1708 // an appropriate name and its visibility << 1709 if (pPVModel) { << 1710 const auto& fullPVPath = pPVModel->GetF << 1711 auto leafPV = fullPVPath.back().GetPhys << 1712 leafPV->SetName(poly.GetInfo()); << 1713 } << 1714 AddPrimitive(poly); << 1715 } << 1716 EndPrimitives (); << 1717 // Restore parameterisation name << 1718 if (pPVModel) { << 1719 pPVModel->GetFullPVPath().back().GetPhysi << 1720 } << 1721 << 1722 firstPrint = false; << 1723 return; << 1724 } << 1725 << 1726 void G4VSceneHandler::DrawTetMeshAsDots(const << 1727 // For a tetrahedron mesh, draw as coloured d << 1728 // one dot randomly placed in each visible me << 1729 { << 1730 // Check << 1731 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1732 G4ExceptionDescription ed; << 1733 ed << "Called with mesh that is not a tet << 1734 G4Exception("G4VSceneHandler::DrawTetMesh << 1735 return; << 1736 } << 1737 << 1738 static G4bool firstPrint = true; << 1739 const auto& verbosity = G4VisManager::GetVe << 1740 G4bool print = firstPrint && verbosity >= G << 1741 << 1742 if (print) { << 1743 G4cout << 1744 << "Special case drawing of tetrahedron m << 1745 << '\n' << mesh << 1746 << G4endl; << 1747 } << 1748 << 1749 const auto& container = mesh.GetContainerVo << 1750 << 1751 // This map is static so that once filled i << 1752 static std::map<G4String,std::map<const G4M << 1753 auto& dotsByMaterial = dotsByMaterialAndMes << 1754 << 1755 // Fill map if not already filled << 1756 if (dotsByMaterial.empty()) { << 1757 << 1758 // Get vertices and colour one cell at a << 1759 // The pseudo scene allows a "private" de << 1760 // Instantiate a temporary G4PhysicalVolu << 1761 G4ModelingParameters tmpMP; << 1762 tmpMP.SetCulling(true); // This avoids d << 1763 tmpMP.SetCullingInvisible(true); // ... << 1764 const G4bool useFullExtent = true; // To << 1765 G4PhysicalVolumeModel tmpPVModel << 1766 (container, << 1767 G4PhysicalVolumeModel::UNLIMITED, << 1768 G4Transform3D(), // so that positions a << 1769 &tmpMP, << 1770 useFullExtent); << 1771 // Accumulate information in temporary ma << 1772 std::multimap<const G4Material*,std::vect << 1773 std::map<const G4Material*,G4VSceneHandle << 1774 // Instantiate a pseudo scene << 1775 PseudoSceneForTetVertices pseudoScene << 1776 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1777 // Make private descent into the paramete << 1778 tmpPVModel.DescribeYourselfTo(pseudoScene << 1779 // Now we have a map of vertices by mater << 1780 // Also a map of name and colour by mater << 1781 << 1782 // Fill the permanent (static) map of dot << 1783 G4int nDotsTotal = 0; << 1784 for (const auto& entry: nameAndVisAttsByM << 1785 G4int nDots = 0; << 1786 const auto& material = entry.first; << 1787 const auto& nameAndVisAtts = nameAndVis << 1788 const auto& name = nameAndVisAtts.fName << 1789 const auto& visAtts = nameAndVisAtts.fV << 1790 G4Polymarker dots; << 1791 dots.SetVisAttributes(visAtts); << 1792 dots.SetMarkerType(G4Polymarker::dots); << 1793 dots.SetSize(G4VMarker::screen,1.); << 1794 dots.SetInfo(name); << 1795 // Enter empty polymarker into the map << 1796 dotsByMaterial[material] = dots; << 1797 // Now fill it in situ << 1798 auto& dotsInMap = dotsByMaterial[materi << 1799 const auto& range = verticesByMaterial. << 1800 for (auto vByMat = range.first; vByMat << 1801 dotsInMap.push_back(GetPointInTet(vBy << 1802 ++nDots; << 1803 } << 1804 << 1805 if (print) { << 1806 G4cout << 1807 << std::setw(30) << std::left << name << 1808 << ": " << std::setw(7) << nDots << " << 1809 << ": colour " << std::fixed << std:: << 1810 << visAtts.GetColour() << std::defaul << 1811 << G4endl; << 1812 } << 1813 << 1814 nDotsTotal += nDots; << 1815 } << 1816 << 1817 if (print) { << 1818 G4cout << "Total number of dots: " << n << 1819 } << 1820 } << 1821 << 1822 // Some subsequent expressions apply only t << 1823 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1824 << 1825 G4String parameterisationName; << 1826 if (pPVModel) { << 1827 parameterisationName = pPVModel->GetFullP << 1828 } << 1829 << 1830 // Draw the dots by material << 1831 // Ensure they are "hidden", i.e., use the << 1832 auto keepVP = fpViewer->GetViewParameters() << 1833 auto vp = fpViewer->GetViewParameters(); << 1834 vp.SetMarkerHidden(); << 1835 fpViewer->SetViewParameters(vp); << 1836 << 1837 // Now we transform to world coordinates << 1838 BeginPrimitives (mesh.GetTransform()); << 1839 for (const auto& entry: dotsByMaterial) { << 1840 const auto& dots = entry.second; << 1841 // The current "leaf" node in the PVPath << 1842 // been converted into polymarkers by mat << 1843 // its name to that of the material (whos << 1844 // so that its appearance in the scene tr << 1845 // an appropriate name and its visibility << 1846 if (pPVModel) { << 1847 const auto& fullPVPath = pPVModel->GetF << 1848 auto leafPV = fullPVPath.back().GetPhys << 1849 leafPV->SetName(dots.GetInfo()); << 1850 } << 1851 AddPrimitive(dots); << 1852 } << 1853 EndPrimitives (); << 1854 << 1855 // Restore view parameters << 1856 fpViewer->SetViewParameters(keepVP); << 1857 // Restore parameterisation name << 1858 if (pPVModel) { << 1859 pPVModel->GetFullPVPath().back().GetPhysi << 1860 } << 1861 << 1862 firstPrint = false; << 1863 return; << 1864 } << 1865 << 1866 void G4VSceneHandler::DrawTetMeshAsSurfaces(c << 1867 // For a tetrahedron mesh, draw as surfaces b << 1868 // with inner shared faces removed. << 1869 { << 1870 // Check << 1871 if (mesh.GetMeshType() != G4Mesh::tetrahedr << 1872 G4ExceptionDescription ed; << 1873 ed << "Called with mesh that is not a tet << 1874 G4Exception("G4VSceneHandler::DrawTetMesh << 1875 return; << 1876 } << 1877 << 1878 static G4bool firstPrint = true; << 1879 const auto& verbosity = G4VisManager::GetVe << 1880 G4bool print = firstPrint && verbosity >= G << 1881 << 1882 if (print) { << 1883 G4cout << 1884 << "Special case drawing of tetrahedron m << 1885 << '\n' << mesh << 1886 << G4endl; << 1887 } << 1888 << 1889 // This map is static so that once filled i << 1890 static std::map<G4String,std::map<const G4M << 1891 auto& surfacesByMaterial = surfacesByMateri << 1892 << 1893 // Fill map if not already filled << 1894 if (surfacesByMaterial.empty()) { << 1895 << 1896 // Get vertices and colour one cell at a << 1897 // The pseudo scene allows a "private" de << 1898 // Instantiate a temporary G4PhysicalVolu << 1899 G4ModelingParameters tmpMP; << 1900 tmpMP.SetCulling(true); // This avoids d << 1901 tmpMP.SetCullingInvisible(true); // ... << 1902 const G4bool useFullExtent = true; // To << 1903 G4PhysicalVolumeModel tmpPVModel << 1904 (mesh.GetContainerVolume(), << 1905 G4PhysicalVolumeModel::UNLIMITED, << 1906 G4Transform3D(), // so that positions a << 1907 &tmpMP, << 1908 useFullExtent); << 1909 // Accumulate information in temporary ma << 1910 std::multimap<const G4Material*,std::vect << 1911 std::map<const G4Material*,G4VSceneHandle << 1912 // Instantiate a pseudo scene << 1913 PseudoSceneForTetVertices pseudoScene << 1914 (&tmpPVModel,&mesh,verticesByMaterial,nam << 1915 // Make private descent into the paramete << 1916 tmpPVModel.DescribeYourselfTo(pseudoScene << 1917 // Now we have a map of vertices by mater << 1918 // Also a map of name and colour by mater << 1919 << 1920 // Fill the permanent (static) map of sur << 1921 G4int nTetsTotal = 0, nFacetsTotal = 0; << 1922 for (const auto& entry: nameAndVisAttsByM << 1923 G4int nTets = 0; << 1924 const auto& material = entry.first; << 1925 const auto& nameAndVisAtts = nameAndVis << 1926 const auto& name = nameAndVisAtts.fName << 1927 const auto& visAtts = nameAndVisAtts.fV << 1928 // Transfer vertices into a vector read << 1929 std::vector<G4ThreeVector> verticesForP << 1930 const auto& range = verticesByMaterial. << 1931 for (auto vByMat = range.first; vByMat << 1932 const std::vector<G4ThreeVector>& ver << 1933 for (const auto& vertex: vertices) << 1934 verticesForPolyhedron.push_back(ver << 1935 ++nTets; << 1936 } << 1937 // The polyhedron will be in local coor << 1938 // Add an empty place-holder to the map << 1939 auto& polyhedron = surfacesByMaterial[m << 1940 // Replace with the desired polyhedron << 1941 polyhedron = G4PolyhedronTetMesh(vertic << 1942 polyhedron.SetVisAttributes(visAtts); << 1943 polyhedron.SetInfo(name); << 1944 << 1945 if (print) { << 1946 G4cout << 1947 << std::setw(30) << std::left << name << 1948 << ": " << std::setw(7) << nTets << " << 1949 << " (" << std::setw(7) << 4*nTets << << 1950 << ": reduced to " << std::setw(7) << << 1951 << std::setw(2) << std::fixed << std: << 1952 << "%): colour " << std::fixed << std << 1953 << visAtts.GetColour() << std::defaul << 1954 << G4endl; << 1955 } << 1956 << 1957 nTetsTotal += nTets; << 1958 nFacetsTotal += polyhedron.GetNoFacets( << 1959 } << 1960 << 1961 if (print) { << 1962 G4cout << "Total number of tetrahedra: << 1963 << ": reduced to " << nFacetsTotal << " << 1964 << std::setw(2) << std::fixed << std::s << 1965 << G4endl; << 1966 } << 1967 } << 1968 << 1969 // Some subsequent expressions apply only t << 1970 auto pPVModel = dynamic_cast<G4PhysicalVolu << 1971 << 1972 G4String parameterisationName; << 1973 if (pPVModel) { << 1974 parameterisationName = pPVModel->GetFullP << 1975 } << 1976 << 1977 // Draw the surfaces by material << 1978 // Now we transform to world coordinates << 1979 BeginPrimitives (mesh.GetTransform()); << 1980 for (const auto& entry: surfacesByMaterial) << 1981 const auto& poly = entry.second; << 1982 // The current "leaf" node in the PVPath << 1983 // been converted into polyhedra by mater << 1984 // its name to that of the material (whos << 1985 // so that its appearance in the scene tr << 1986 // an appropriate name and its visibility << 1987 if (pPVModel) { << 1988 const auto& fullPVPath = pPVModel->GetF << 1989 auto leafPV = fullPVPath.back().GetPhys << 1990 leafPV->SetName(poly.GetInfo()); << 1991 } << 1992 AddPrimitive(poly); << 1993 } << 1994 EndPrimitives (); << 1995 << 1996 // Restore parameterisation name << 1997 if (pPVModel) { << 1998 pPVModel->GetFullPVPath().back().GetPhysi << 1999 } << 2000 << 2001 firstPrint = false; << 2002 return; << 2003 } << 2004 << 2005 G4ThreeVector << 2006 G4VSceneHandler::GetPointInBox(const G4ThreeV << 2007 G4double halfX << 2008 G4double halfY << 2009 G4double halfZ << 2010 { << 2011 G4double x = pos.getX() + (2.*G4QuickRand() << 2012 G4double y = pos.getY() + (2.*G4QuickRand() << 2013 G4double z = pos.getZ() + (2.*G4QuickRand() << 2014 return G4ThreeVector(x, y, z); << 2015 } << 2016 << 2017 G4ThreeVector << 2018 G4VSceneHandler::GetPointInTet(const std::vec << 2019 { << 2020 G4double p = G4QuickRand(); << 2021 G4double q = G4QuickRand(); << 2022 G4double r = G4QuickRand(); << 2023 if (p + q > 1.) << 2024 { << 2025 p = 1. - p; << 2026 q = 1. - q; << 2027 } << 2028 if (q + r > 1.) << 2029 { << 2030 G4double tmp = r; << 2031 r = 1. - p - q; << 2032 q = 1. - tmp; << 2033 } << 2034 else if (p + q + r > 1.) << 2035 { << 2036 G4double tmp = r; << 2037 r = p + q + r - 1.; << 2038 p = 1. - q - tmp; << 2039 } << 2040 G4double a = 1. - p - q - r; << 2041 return vertices[0]*a + vertices[1]*p + vert << 2042 } 961 } 2043 962