Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4EllipticalCone.cc 67011 2013-01-29 16:17:41Z gcosmo $ >> 27 // 26 // Implementation of G4EllipticalCone class 28 // Implementation of G4EllipticalCone class 27 // 29 // 28 // This code implements an Elliptical Cone giv 30 // This code implements an Elliptical Cone given explicitly by the 29 // equation: 31 // equation: 30 // x^2/a^2 + y^2/b^2 = (z-h)^2 32 // x^2/a^2 + y^2/b^2 = (z-h)^2 31 // and specified by the parameters (a,b,h) and 33 // and specified by the parameters (a,b,h) and a cut parallel to the 32 // xy plane above z = 0. 34 // xy plane above z = 0. 33 // 35 // 34 // Author: Dionysios Anninos 36 // Author: Dionysios Anninos 35 // Revised: Evgueni Tcherniaev << 37 // 36 // ------------------------------------------- 38 // -------------------------------------------------------------------- 37 39 38 #if !(defined(G4GEOM_USE_UELLIPTICALCONE) && d << 39 << 40 #include "globals.hh" 40 #include "globals.hh" 41 41 42 #include "G4EllipticalCone.hh" 42 #include "G4EllipticalCone.hh" 43 43 44 #include "G4RandomTools.hh" << 45 #include "G4GeomTools.hh" << 46 #include "G4ClippablePolygon.hh" 44 #include "G4ClippablePolygon.hh" >> 45 #include "G4SolidExtentList.hh" 47 #include "G4VoxelLimits.hh" 46 #include "G4VoxelLimits.hh" 48 #include "G4AffineTransform.hh" 47 #include "G4AffineTransform.hh" 49 #include "G4BoundingEnvelope.hh" << 50 #include "G4GeometryTolerance.hh" 48 #include "G4GeometryTolerance.hh" 51 49 52 #include "meshdefs.hh" 50 #include "meshdefs.hh" 53 51 54 #include "Randomize.hh" 52 #include "Randomize.hh" 55 53 56 #include "G4VGraphicsScene.hh" 54 #include "G4VGraphicsScene.hh" >> 55 #include "G4Polyhedron.hh" >> 56 #include "G4NURBS.hh" >> 57 #include "G4NURBSbox.hh" 57 #include "G4VisExtent.hh" 58 #include "G4VisExtent.hh" 58 59 59 #include "G4AutoLock.hh" << 60 //#define G4SPECSDEBUG 1 60 << 61 namespace << 62 { << 63 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 64 } << 65 61 66 using namespace CLHEP; 62 using namespace CLHEP; 67 63 68 ////////////////////////////////////////////// << 64 ////////////////////////////////////////////////////////////////////// 69 // 65 // 70 // Constructor - check parameters 66 // Constructor - check parameters 71 << 67 // 72 G4EllipticalCone::G4EllipticalCone(const G4Str 68 G4EllipticalCone::G4EllipticalCone(const G4String& pName, 73 G4dou 69 G4double pxSemiAxis, 74 G4dou 70 G4double pySemiAxis, 75 G4dou 71 G4double pzMax, 76 G4dou 72 G4double pzTopCut) 77 : G4VSolid(pName), zTopCut(0.) << 73 : G4VSolid(pName), fpPolyhedron(0), fCubicVolume(0.), fSurfaceArea(0.), >> 74 zTopCut(0.) 78 { 75 { 79 halfCarTol = 0.5*kCarTolerance; << 76 >> 77 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 80 78 81 // Check Semi-Axis & Z-cut 79 // Check Semi-Axis & Z-cut 82 // 80 // 83 if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0. 81 if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0.) || (pzMax <= 0.) ) 84 { 82 { 85 std::ostringstream message; 83 std::ostringstream message; 86 message << "Invalid semi-axis or height f << 84 message << "Invalid semi-axis or height - " << GetName(); 87 << "\n X semi-axis, Y semi-axis << 88 << pxSemiAxis << ", " << pySemiAx << 89 G4Exception("G4EllipticalCone::G4Elliptic 85 G4Exception("G4EllipticalCone::G4EllipticalCone()", "GeomSolids0002", 90 FatalErrorInArgument, message 86 FatalErrorInArgument, message); 91 } << 87 } 92 << 93 if ( pzTopCut <= 0 ) 88 if ( pzTopCut <= 0 ) 94 { 89 { 95 std::ostringstream message; 90 std::ostringstream message; 96 message << "Invalid z-coordinate for cutt << 91 message << "Invalid z-coordinate for cutting plane - " << GetName(); 97 << "\n Z top cut = " << pzTopCu << 92 G4Exception("G4EllipticalCone::G4EllipticalCone()", "InvalidSetup", 98 G4Exception("G4EllipticalCone::G4Elliptic << 99 FatalErrorInArgument, message 93 FatalErrorInArgument, message); 100 } 94 } 101 95 102 SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax ) 96 SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax ); 103 SetZCut(pzTopCut); 97 SetZCut(pzTopCut); 104 } 98 } 105 99 106 ////////////////////////////////////////////// << 100 /////////////////////////////////////////////////////////////////////////////// 107 // 101 // 108 // Fake default constructor - sets only member 102 // Fake default constructor - sets only member data and allocates memory 109 // for usage restri 103 // for usage restricted to object persistency. 110 << 104 // 111 G4EllipticalCone::G4EllipticalCone( __void__& 105 G4EllipticalCone::G4EllipticalCone( __void__& a ) 112 : G4VSolid(a), halfCarTol(0.), << 106 : G4VSolid(a), fpPolyhedron(0), kRadTolerance(0.), fCubicVolume(0.), 113 xSemiAxis(0.), ySemiAxis(0.), zheight(0.), << 107 fSurfaceArea(0.), xSemiAxis(0.), ySemiAxis(0.), zheight(0.), 114 cosAxisMin(0.), invXX(0.), invYY(0.) << 108 semiAxisMax(0.), zTopCut(0.) 115 { 109 { 116 } 110 } 117 111 118 ////////////////////////////////////////////// << 112 /////////////////////////////////////////////////////////////////////////////// 119 // 113 // 120 // Destructor 114 // Destructor 121 << 115 // 122 G4EllipticalCone::~G4EllipticalCone() 116 G4EllipticalCone::~G4EllipticalCone() 123 { 117 { 124 delete fpPolyhedron; fpPolyhedron = nullptr; << 125 } 118 } 126 119 127 ////////////////////////////////////////////// << 120 /////////////////////////////////////////////////////////////////////////////// 128 // 121 // 129 // Copy constructor 122 // Copy constructor 130 << 123 // 131 G4EllipticalCone::G4EllipticalCone(const G4Ell 124 G4EllipticalCone::G4EllipticalCone(const G4EllipticalCone& rhs) 132 : G4VSolid(rhs), halfCarTol(rhs.halfCarTol), << 125 : G4VSolid(rhs), >> 126 fpPolyhedron(0), kRadTolerance(rhs.kRadTolerance), 133 fCubicVolume(rhs.fCubicVolume), fSurfaceAr 127 fCubicVolume(rhs.fCubicVolume), fSurfaceArea(rhs.fSurfaceArea), 134 xSemiAxis(rhs.xSemiAxis), ySemiAxis(rhs.yS << 128 xSemiAxis(rhs.xSemiAxis), ySemiAxis(rhs.ySemiAxis), zheight(rhs.zheight), 135 zheight(rhs.zheight), zTopCut(rhs.zTopCut) << 129 semiAxisMax(rhs.semiAxisMax), zTopCut(rhs.zTopCut) 136 cosAxisMin(rhs.cosAxisMin), invXX(rhs.invX << 137 { 130 { 138 } 131 } 139 132 140 ////////////////////////////////////////////// << 133 /////////////////////////////////////////////////////////////////////////////// 141 // 134 // 142 // Assignment operator 135 // Assignment operator 143 << 136 // 144 G4EllipticalCone& G4EllipticalCone::operator = 137 G4EllipticalCone& G4EllipticalCone::operator = (const G4EllipticalCone& rhs) 145 { 138 { 146 // Check assignment to self 139 // Check assignment to self 147 // 140 // 148 if (this == &rhs) { return *this; } 141 if (this == &rhs) { return *this; } 149 142 150 // Copy base class data 143 // Copy base class data 151 // 144 // 152 G4VSolid::operator=(rhs); 145 G4VSolid::operator=(rhs); 153 146 154 // Copy data 147 // Copy data 155 // 148 // 156 halfCarTol = rhs.halfCarTol; << 149 fpPolyhedron = 0; kRadTolerance = rhs.kRadTolerance; 157 fCubicVolume = rhs.fCubicVolume; fSurfaceAr 150 fCubicVolume = rhs.fCubicVolume; fSurfaceArea = rhs.fSurfaceArea; 158 xSemiAxis = rhs.xSemiAxis; ySemiAxis = rhs. 151 xSemiAxis = rhs.xSemiAxis; ySemiAxis = rhs.ySemiAxis; 159 zheight = rhs.zheight; zTopCut = rhs.zTopCu << 152 zheight = rhs.zheight; semiAxisMax = rhs.semiAxisMax; zTopCut = rhs.zTopCut; 160 cosAxisMin = rhs.cosAxisMin; invXX = rhs.in << 161 << 162 fRebuildPolyhedron = false; << 163 delete fpPolyhedron; fpPolyhedron = nullptr << 164 153 165 return *this; 154 return *this; 166 } 155 } 167 156 168 ////////////////////////////////////////////// << 157 /////////////////////////////////////////////////////////////////////////////// 169 // 158 // 170 // Get bounding box << 159 // Calculate extent under transform and specified limit 171 << 160 // 172 void G4EllipticalCone::BoundingLimits(G4ThreeV << 161 G4bool 173 G4ThreeV << 162 G4EllipticalCone::CalculateExtent( const EAxis axis, >> 163 const G4VoxelLimits &voxelLimit, >> 164 const G4AffineTransform &transform, >> 165 G4double &min, G4double &max ) const 174 { 166 { 175 G4double zcut = GetZTopCut(); << 167 G4SolidExtentList extentList( axis, voxelLimit ); 176 G4double height = GetZMax(); << 168 177 G4double xmax = GetSemiAxisX()*(height+zcu << 169 // 178 G4double ymax = GetSemiAxisY()*(height+zcu << 170 // We are going to divide up our elliptical face into small pieces 179 pMin.set(-xmax,-ymax,-zcut); << 171 // 180 pMax.set( xmax, ymax, zcut); << 172 181 << 173 // 182 // Check correctness of the bounding box << 174 // Choose phi size of our segment(s) based on constants as 183 // << 175 // defined in meshdefs.hh 184 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 176 // 185 { << 177 G4int numPhi = kMaxMeshSections; 186 std::ostringstream message; << 178 G4double sigPhi = twopi/numPhi; 187 message << "Bad bounding box (min >= max) << 179 188 << GetName() << " !" << 180 // 189 << "\npMin = " << pMin << 181 // We have to be careful to keep our segments completely outside 190 << "\npMax = " << pMax; << 182 // of the elliptical surface. To do so we imagine we have 191 G4Exception("G4EllipticalCone::BoundingLim << 183 // a simple (unit radius) circular cross section (as in G4Tubs) 192 JustWarning, message); << 184 // and then "stretch" the dimensions as necessary to fit the ellipse. 193 DumpInfo(); << 185 // 194 } << 186 G4double rFudge = 1.0/std::cos(0.5*sigPhi); 195 } << 187 G4double dxFudgeBot = xSemiAxis*2.*zheight*rFudge, >> 188 dyFudgeBot = ySemiAxis*2.*zheight*rFudge; >> 189 G4double dxFudgeTop = xSemiAxis*(zheight-zTopCut)*rFudge, >> 190 dyFudgeTop = ySemiAxis*(zheight-zTopCut)*rFudge; >> 191 >> 192 // >> 193 // As we work around the elliptical surface, we build >> 194 // a "phi" segment on the way, and keep track of two >> 195 // additional polygons for the two ends. >> 196 // >> 197 G4ClippablePolygon endPoly1, endPoly2, phiPoly; >> 198 >> 199 G4double phi = 0, >> 200 cosPhi = std::cos(phi), >> 201 sinPhi = std::sin(phi); >> 202 G4ThreeVector v0( dxFudgeTop*cosPhi, dyFudgeTop*sinPhi, +zTopCut ), >> 203 v1( dxFudgeBot*cosPhi, dyFudgeBot*sinPhi, -zTopCut ), >> 204 w0, w1; >> 205 transform.ApplyPointTransform( v0 ); >> 206 transform.ApplyPointTransform( v1 ); >> 207 do >> 208 { >> 209 phi += sigPhi; >> 210 if (numPhi == 1) phi = 0; // Try to avoid roundoff >> 211 cosPhi = std::cos(phi), >> 212 sinPhi = std::sin(phi); >> 213 >> 214 w0 = G4ThreeVector( dxFudgeTop*cosPhi, dyFudgeTop*sinPhi, +zTopCut ); >> 215 w1 = G4ThreeVector( dxFudgeBot*cosPhi, dyFudgeBot*sinPhi, -zTopCut ); >> 216 transform.ApplyPointTransform( w0 ); >> 217 transform.ApplyPointTransform( w1 ); >> 218 >> 219 // >> 220 // Add a point to our z ends >> 221 // >> 222 endPoly1.AddVertexInOrder( v0 ); >> 223 endPoly2.AddVertexInOrder( v1 ); >> 224 >> 225 // >> 226 // Build phi polygon >> 227 // >> 228 phiPoly.ClearAllVertices(); >> 229 >> 230 phiPoly.AddVertexInOrder( v0 ); >> 231 phiPoly.AddVertexInOrder( v1 ); >> 232 phiPoly.AddVertexInOrder( w1 ); >> 233 phiPoly.AddVertexInOrder( w0 ); >> 234 >> 235 if (phiPoly.PartialClip( voxelLimit, axis )) >> 236 { >> 237 // >> 238 // Get unit normal >> 239 // >> 240 phiPoly.SetNormal( (v1-v0).cross(w0-v0).unit() ); >> 241 >> 242 extentList.AddSurface( phiPoly ); >> 243 } 196 244 197 ////////////////////////////////////////////// << 245 // 198 // << 246 // Next vertex 199 // Calculate extent under transform and specif << 247 // >> 248 v0 = w0; >> 249 v1 = w1; >> 250 } while( --numPhi > 0 ); 200 251 201 G4bool << 252 // 202 G4EllipticalCone::CalculateExtent(const EAxis << 253 // Process the end pieces 203 const G4Voxe << 254 // 204 const G4Affi << 255 if (endPoly1.PartialClip( voxelLimit, axis )) 205 G4doub << 206 { << 207 G4ThreeVector bmin,bmax; << 208 G4bool exist; << 209 << 210 // Check bounding box (bbox) << 211 // << 212 BoundingLimits(bmin,bmax); << 213 G4BoundingEnvelope bbox(bmin,bmax); << 214 #ifdef G4BBOX_EXTENT << 215 return bbox.CalculateExtent(pAxis,pVoxelLimi << 216 #endif << 217 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 218 { 256 { 219 return exist = pMin < pMax; << 257 static const G4ThreeVector normal(0,0,+1); >> 258 endPoly1.SetNormal( transform.TransformAxis(normal) ); >> 259 extentList.AddSurface( endPoly1 ); 220 } 260 } 221 << 261 222 // Set bounding envelope (benv) and calculat << 262 if (endPoly2.PartialClip( voxelLimit, axis )) >> 263 { >> 264 static const G4ThreeVector normal(0,0,-1); >> 265 endPoly2.SetNormal( transform.TransformAxis(normal) ); >> 266 extentList.AddSurface( endPoly2 ); >> 267 } >> 268 223 // 269 // 224 static const G4int NSTEPS = 48; // number of << 270 // Return min/max value 225 static const G4double ang = twopi/NSTEPS; << 271 // 226 static const G4double sinHalf = std::sin(0.5 << 272 return extentList.GetExtent( min, max ); 227 static const G4double cosHalf = std::cos(0.5 << 228 static const G4double sinStep = 2.*sinHalf*c << 229 static const G4double cosStep = 1. - 2.*sinH << 230 G4double zcut = bmax.z(); << 231 G4double height = GetZMax(); << 232 G4double sxmin = GetSemiAxisX()*(height-zcu << 233 G4double symin = GetSemiAxisY()*(height-zcu << 234 G4double sxmax = bmax.x()/cosHalf; << 235 G4double symax = bmax.y()/cosHalf; << 236 << 237 G4double sinCur = sinHalf; << 238 G4double cosCur = cosHalf; << 239 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS << 240 for (G4int k=0; k<NSTEPS; ++k) << 241 { << 242 baseA[k].set(sxmax*cosCur,symax*sinCur,-zc << 243 baseB[k].set(sxmin*cosCur,symin*sinCur, zc << 244 << 245 G4double sinTmp = sinCur; << 246 sinCur = sinCur*cosStep + cosCur*sinStep; << 247 cosCur = cosCur*cosStep - sinTmp*sinStep; << 248 } << 249 << 250 std::vector<const G4ThreeVectorList *> polyg << 251 polygons[0] = &baseA; << 252 polygons[1] = &baseB; << 253 G4BoundingEnvelope benv(bmin,bmax,polygons); << 254 exist = benv.CalculateExtent(pAxis,pVoxelLim << 255 return exist; << 256 } 273 } 257 274 258 ////////////////////////////////////////////// << 275 //////////////////////////////////////////////////////////////////////// >> 276 // >> 277 // Return whether point inside/outside/on surface >> 278 // Split into radius, phi, theta checks >> 279 // Each check modifies `in', or returns as approprate 259 // 280 // 260 // Determine where is point: inside, outside o << 261 << 262 EInside G4EllipticalCone::Inside(const G4Three 281 EInside G4EllipticalCone::Inside(const G4ThreeVector& p) const 263 { 282 { 264 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 283 G4double rad2oo, // outside surface outer tolerance 265 G4double ds = (hp - zheight)*cosAxisMin; << 284 rad2oi; // outside surface inner tolerance 266 G4double dz = std::abs(p.z()) - zTopCut; << 285 267 G4double dist = std::max(ds,dz); << 286 EInside in; >> 287 >> 288 static const G4double halfRadTol = 0.5*kRadTolerance; >> 289 static const G4double halfCarTol = 0.5*kCarTolerance; >> 290 >> 291 // check this side of z cut first, because that's fast >> 292 // 268 293 269 if (dist > halfCarTol) return kOutside; << 294 if ( (p.z() < -zTopCut - halfCarTol) 270 return (dist > -halfCarTol) ? kSurface : kIn << 295 || (p.z() > zTopCut + halfCarTol ) ) >> 296 { >> 297 return in = kOutside; >> 298 } >> 299 >> 300 rad2oo= sqr(p.x()/( xSemiAxis + halfRadTol )) >> 301 + sqr(p.y()/( ySemiAxis + halfRadTol )); >> 302 >> 303 if ( rad2oo > sqr( zheight-p.z() ) ) >> 304 { >> 305 return in = kOutside; >> 306 } >> 307 >> 308 // rad2oi= sqr( p.x()*(1.0 + 0.5*kRadTolerance/(xSemiAxis*xSemiAxis)) ) >> 309 // + sqr( p.y()*(1.0 + 0.5*kRadTolerance/(ySemiAxis*ySemiAxis)) ); >> 310 rad2oi = sqr(p.x()/( xSemiAxis - halfRadTol )) >> 311 + sqr(p.y()/( ySemiAxis - halfRadTol )); >> 312 >> 313 if (rad2oi < sqr( zheight-p.z() ) ) >> 314 { >> 315 in = ( ( p.z() < -zTopCut + halfRadTol ) >> 316 || ( p.z() > zTopCut - halfRadTol ) ) ? kSurface : kInside; >> 317 } >> 318 else >> 319 { >> 320 in = kSurface; >> 321 } >> 322 >> 323 return in; 271 } 324 } 272 325 273 ////////////////////////////////////////////// 326 ///////////////////////////////////////////////////////////////////////// 274 // 327 // 275 // Return unit normal at surface closest to p << 328 // Return unit normal of surface closest to p not protected against p=0 276 << 329 // 277 G4ThreeVector G4EllipticalCone::SurfaceNormal( 330 G4ThreeVector G4EllipticalCone::SurfaceNormal( const G4ThreeVector& p) const 278 { 331 { 279 G4ThreeVector norm(0,0,0); << 280 G4int nsurf = 0; // number of surfaces wher << 281 332 282 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 333 G4double rx = sqr(p.x()/xSemiAxis), 283 G4double ds = (hp - zheight)*cosAxisMin; << 334 ry = sqr(p.y()/ySemiAxis); 284 if (std::abs(ds) <= halfCarTol) << 335 >> 336 G4double rds = std::sqrt(rx + ry); >> 337 >> 338 G4ThreeVector norm; >> 339 >> 340 if( (p.z() < -zTopCut) && ((rx+ry) < sqr(zTopCut + zheight)) ) 285 { 341 { 286 norm = G4ThreeVector(p.x()*invXX, p.y()*in << 342 return G4ThreeVector( 0., 0., -1. ); 287 G4double mag = norm.mag(); << 288 if (mag == 0) return {0,0,1}; // apex << 289 norm *= (1/mag); << 290 ++nsurf; << 291 } 343 } 292 G4double dz = std::abs(p.z()) - zTopCut; << 344 293 if (std::abs(dz) <= halfCarTol) << 345 if( (p.z() > (zheight > zTopCut ? zheight : zTopCut)) && >> 346 ((rx+ry) < sqr(zheight-zTopCut)) ) 294 { 347 { 295 norm += G4ThreeVector(0., 0.,(p.z() < 0) ? << 348 return G4ThreeVector( 0., 0., 1. ); 296 ++nsurf; << 297 } 349 } 298 350 299 if (nsurf == 1) return norm; << 351 if( p.z() > rds + 2.*zTopCut - zheight ) 300 else if (nsurf > 1) return norm.unit(); // << 301 else << 302 { 352 { 303 // Point is not on the surface << 353 if ( p.z() > zTopCut ) 304 // << 354 { 305 #ifdef G4CSGDEBUG << 355 if( p.x() == 0. ) 306 std::ostringstream message; << 356 { 307 G4long oldprc = message.precision(16); << 357 norm = G4ThreeVector( 0., p.y() < 0. ? -1. : 1., 1. ); 308 message << "Point p is not on surface (!?) << 358 return norm /= norm.mag(); 309 << GetName() << G4endl; << 359 } 310 message << "Position:\n"; << 360 if( p.y() == 0. ) 311 message << " p.x() = " << p.x()/mm << " << 361 { 312 message << " p.y() = " << p.y()/mm << " << 362 norm = G4ThreeVector( p.x() < 0. ? -1. : 1., 0., 1. ); 313 message << " p.z() = " << p.z()/mm << " << 363 return norm /= norm.mag(); 314 G4cout.precision(oldprc); << 364 } 315 G4Exception("G4EllipticalCone::SurfaceNorm << 365 316 JustWarning, message ); << 366 G4double k = std::fabs(p.x()/p.y()); 317 DumpInfo(); << 367 G4double c2 = sqr(zheight-zTopCut)/(1./sqr(xSemiAxis)+sqr(k/ySemiAxis)); 318 #endif << 368 G4double x = std::sqrt(c2); 319 return ApproxSurfaceNormal(p); << 369 G4double y = k*x; >> 370 >> 371 x /= sqr(xSemiAxis); >> 372 y /= sqr(ySemiAxis); >> 373 >> 374 norm = G4ThreeVector( p.x() < 0. ? -x : x, >> 375 p.y() < 0. ? -y : y, >> 376 - ( zheight - zTopCut ) ); >> 377 norm /= norm.mag(); >> 378 norm += G4ThreeVector( 0., 0., 1. ); >> 379 return norm /= norm.mag(); >> 380 } >> 381 >> 382 return G4ThreeVector( 0., 0., 1. ); 320 } 383 } 321 } << 384 >> 385 if( p.z() < rds - 2.*zTopCut - zheight ) >> 386 { >> 387 if( p.x() == 0. ) >> 388 { >> 389 norm = G4ThreeVector( 0., p.y() < 0. ? -1. : 1., -1. ); >> 390 return norm /= norm.mag(); >> 391 } >> 392 if( p.y() == 0. ) >> 393 { >> 394 norm = G4ThreeVector( p.x() < 0. ? -1. : 1., 0., -1. ); >> 395 return norm /= norm.mag(); >> 396 } >> 397 >> 398 G4double k = std::fabs(p.x()/p.y()); >> 399 G4double c2 = sqr(zheight+zTopCut)/(1./sqr(xSemiAxis)+sqr(k/ySemiAxis)); >> 400 G4double x = std::sqrt(c2); >> 401 G4double y = k*x; >> 402 >> 403 x /= sqr(xSemiAxis); >> 404 y /= sqr(ySemiAxis); >> 405 >> 406 norm = G4ThreeVector( p.x() < 0. ? -x : x, >> 407 p.y() < 0. ? -y : y, >> 408 - ( zheight - zTopCut ) ); >> 409 norm /= norm.mag(); >> 410 norm += G4ThreeVector( 0., 0., -1. ); >> 411 return norm /= norm.mag(); >> 412 } >> 413 >> 414 norm = G4ThreeVector(p.x()/sqr(xSemiAxis), p.y()/sqr(ySemiAxis), rds); >> 415 >> 416 G4double k = std::tan(pi/8.); >> 417 G4double c = -zTopCut - k*(zTopCut + zheight); 322 418 323 ////////////////////////////////////////////// << 419 if( p.z() < -k*rds + c ) 324 // << 420 return G4ThreeVector (0.,0.,-1.); 325 // Find surface nearest to point and return co << 421 326 // The algorithm is similar to the algorithm u << 422 return norm /= norm.mag(); 327 // This method normally should not be called. << 328 << 329 G4ThreeVector << 330 G4EllipticalCone::ApproxSurfaceNormal(const G4 << 331 { << 332 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 333 G4double ds = (hp - zheight)*cosAxisMin; << 334 G4double dz = std::abs(p.z()) - zTopCut; << 335 if (ds > dz && std::abs(hp - p.z()) > halfCa << 336 return G4ThreeVector(p.x()*invXX, p.y()*in << 337 else << 338 return { 0., 0., (G4double)((p.z() < 0) ? << 339 } 423 } 340 424 341 ////////////////////////////////////////////// << 425 ////////////////////////////////////////////////////////////////////////// 342 // 426 // 343 // Calculate distance to shape from outside, a 427 // Calculate distance to shape from outside, along normalised vector 344 // return kInfinity if no intersection, or int 428 // return kInfinity if no intersection, or intersection distance <= tolerance 345 << 429 // 346 G4double G4EllipticalCone::DistanceToIn( const 430 G4double G4EllipticalCone::DistanceToIn( const G4ThreeVector& p, 347 const 431 const G4ThreeVector& v ) const 348 { 432 { >> 433 static const G4double halfTol = 0.5*kCarTolerance; >> 434 349 G4double distMin = kInfinity; 435 G4double distMin = kInfinity; 350 436 351 // code from EllipticalTube 437 // code from EllipticalTube 352 438 353 G4double sigz = p.z()+zTopCut; 439 G4double sigz = p.z()+zTopCut; 354 440 355 // 441 // 356 // Check z = -dz planer surface 442 // Check z = -dz planer surface 357 // 443 // 358 444 359 if (sigz < halfCarTol) << 445 if (sigz < halfTol) 360 { 446 { 361 // 447 // 362 // We are "behind" the shape in z, and so 448 // We are "behind" the shape in z, and so can 363 // potentially hit the rear face. Correct 449 // potentially hit the rear face. Correct direction? 364 // 450 // 365 if (v.z() <= 0) 451 if (v.z() <= 0) 366 { 452 { 367 // 453 // 368 // As long as we are far enough away, we 454 // As long as we are far enough away, we know we 369 // can't intersect 455 // can't intersect 370 // 456 // 371 if (sigz < 0) return kInfinity; 457 if (sigz < 0) return kInfinity; 372 458 373 // 459 // 374 // Otherwise, we don't intersect unless 460 // Otherwise, we don't intersect unless we are 375 // on the surface of the ellipse 461 // on the surface of the ellipse 376 // 462 // 377 463 378 if ( sqr(p.x()/( xSemiAxis - halfCarTol << 464 if ( sqr(p.x()/( xSemiAxis - halfTol )) 379 + sqr(p.y()/( ySemiAxis - halfCarTol << 465 + sqr(p.y()/( ySemiAxis - halfTol )) <= sqr( zheight+zTopCut ) ) 380 return kInfinity; 466 return kInfinity; 381 467 382 } 468 } 383 else 469 else 384 { 470 { 385 // 471 // 386 // How far? 472 // How far? 387 // 473 // 388 G4double q = -sigz/v.z(); 474 G4double q = -sigz/v.z(); 389 475 390 // 476 // 391 // Where does that place us? 477 // Where does that place us? 392 // 478 // 393 G4double xi = p.x() + q*v.x(), 479 G4double xi = p.x() + q*v.x(), 394 yi = p.y() + q*v.y(); 480 yi = p.y() + q*v.y(); 395 481 396 // 482 // 397 // Is this on the surface (within ellips 483 // Is this on the surface (within ellipse)? 398 // 484 // 399 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi 485 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight + zTopCut ) ) 400 { 486 { 401 // 487 // 402 // Yup. Return q, unless we are on the 488 // Yup. Return q, unless we are on the surface 403 // 489 // 404 return (sigz < -halfCarTol) ? q : 0; << 490 return (sigz < -halfTol) ? q : 0; 405 } 491 } 406 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 492 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 407 + yi/(ySemiAxis*ySemiAxis)*v.y() 493 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0) 408 { 494 { 409 // 495 // 410 // Else, if we are traveling outwards, 496 // Else, if we are traveling outwards, we know 411 // we must miss 497 // we must miss 412 // 498 // 413 // return kInfinity; 499 // return kInfinity; 414 } 500 } 415 } 501 } 416 } 502 } 417 503 418 // 504 // 419 // Check z = +dz planer surface 505 // Check z = +dz planer surface 420 // 506 // 421 sigz = p.z() - zTopCut; 507 sigz = p.z() - zTopCut; 422 508 423 if (sigz > -halfCarTol) << 509 if (sigz > -halfTol) 424 { 510 { 425 if (v.z() >= 0) 511 if (v.z() >= 0) 426 { 512 { 427 513 428 if (sigz > 0) return kInfinity; 514 if (sigz > 0) return kInfinity; 429 515 430 if ( sqr(p.x()/( xSemiAxis - halfCarTol << 516 if ( sqr(p.x()/( xSemiAxis - halfTol )) 431 + sqr(p.y()/( ySemiAxis - halfCarTol << 517 + sqr(p.y()/( ySemiAxis - halfTol )) <= sqr( zheight-zTopCut ) ) 432 return kInfinity; 518 return kInfinity; 433 519 434 } 520 } 435 else { 521 else { 436 G4double q = -sigz/v.z(); 522 G4double q = -sigz/v.z(); 437 523 438 G4double xi = p.x() + q*v.x(), 524 G4double xi = p.x() + q*v.x(), 439 yi = p.y() + q*v.y(); 525 yi = p.y() + q*v.y(); 440 526 441 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi 527 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight - zTopCut ) ) 442 { 528 { 443 return (sigz > -halfCarTol) ? q : 0; << 529 return (sigz > -halfTol) ? q : 0; 444 } 530 } 445 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 531 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 446 + yi/(ySemiAxis*ySemiAxis)*v.y() 532 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0) 447 { 533 { 448 // return kInfinity; 534 // return kInfinity; 449 } 535 } 450 } 536 } 451 } 537 } 452 538 453 539 454 #if 0 540 #if 0 455 541 456 // check to see if Z plane is relevant 542 // check to see if Z plane is relevant 457 // 543 // 458 if (p.z() < -zTopCut - halfCarTol) << 544 if (p.z() < -zTopCut - 0.5*kCarTolerance) 459 { 545 { 460 if (v.z() <= 0.0) 546 if (v.z() <= 0.0) 461 return distMin; 547 return distMin; 462 548 463 G4double lambda = (-zTopCut - p.z())/v.z() 549 G4double lambda = (-zTopCut - p.z())/v.z(); 464 550 465 if ( sqr((lambda*v.x()+p.x())/xSemiAxis) + 551 if ( sqr((lambda*v.x()+p.x())/xSemiAxis) + 466 sqr((lambda*v.y()+p.y())/ySemiAxis) < 552 sqr((lambda*v.y()+p.y())/ySemiAxis) <= 467 sqr(zTopCut + zheight + halfCarTol) ) << 553 sqr(zTopCut + zheight + 0.5*kRadTolerance) ) 468 { 554 { 469 return distMin = std::fabs(lambda); 555 return distMin = std::fabs(lambda); 470 } 556 } 471 } 557 } 472 558 473 if (p.z() > zTopCut + halfCarTol) << 559 if (p.z() > zTopCut+0.5*kCarTolerance) 474 { 560 { 475 if (v.z() >= 0.0) 561 if (v.z() >= 0.0) 476 { return distMin; } 562 { return distMin; } 477 563 478 G4double lambda = (zTopCut - p.z()) / v.z 564 G4double lambda = (zTopCut - p.z()) / v.z(); 479 565 480 if ( sqr((lambda*v.x() + p.x())/xSemiAxis) 566 if ( sqr((lambda*v.x() + p.x())/xSemiAxis) + 481 sqr((lambda*v.y() + p.y())/ySemiAxis) 567 sqr((lambda*v.y() + p.y())/ySemiAxis) <= 482 sqr(zheight - zTopCut + halfCarTol) ) << 568 sqr(zheight - zTopCut + 0.5*kRadTolerance) ) 483 { 569 { 484 return distMin = std::fabs(lambda); 570 return distMin = std::fabs(lambda); 485 } 571 } 486 } 572 } 487 573 488 if (p.z() > zTopCut - halfCarTol << 574 if (p.z() > zTopCut - halfTol 489 && p.z() < zTopCut + halfCarTol ) << 575 && p.z() < zTopCut + halfTol ) 490 { 576 { 491 if (v.z() > 0.) 577 if (v.z() > 0.) 492 { return kInfinity; } 578 { return kInfinity; } 493 579 494 return distMin = 0.; 580 return distMin = 0.; 495 } 581 } 496 582 497 if (p.z() < -zTopCut + halfCarTol << 583 if (p.z() < -zTopCut + halfTol 498 && p.z() > -zTopCut - halfCarTol) << 584 && p.z() > -zTopCut - halfTol) 499 { 585 { 500 if (v.z() < 0.) 586 if (v.z() < 0.) 501 { return distMin = kInfinity; } 587 { return distMin = kInfinity; } 502 588 503 return distMin = 0.; 589 return distMin = 0.; 504 } 590 } 505 591 506 #endif 592 #endif 507 593 508 // if we are here then it either intersects 594 // if we are here then it either intersects or grazes the curved surface 509 // or it does not intersect at all 595 // or it does not intersect at all 510 // 596 // 511 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y( 597 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z()); 512 G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) + 598 G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) + 513 v.y()*p.y()/sqr(ySemiAxis) + 599 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z())); 514 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y( 600 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) - 515 sqr(zheight - p.z()); 601 sqr(zheight - p.z()); 516 602 517 G4double discr = B*B - 4.*A*C; 603 G4double discr = B*B - 4.*A*C; 518 604 519 // if the discriminant is negative it never 605 // if the discriminant is negative it never hits the curved object 520 // 606 // 521 if ( discr < -halfCarTol ) << 607 if ( discr < -halfTol ) 522 { return distMin; } 608 { return distMin; } 523 609 524 // case below is when it hits or grazes the 610 // case below is when it hits or grazes the surface 525 // 611 // 526 if ( (discr >= -halfCarTol ) && (discr < hal << 612 if ( (discr >= - halfTol ) && (discr < halfTol ) ) 527 { 613 { 528 return distMin = std::fabs(-B/(2.*A)); 614 return distMin = std::fabs(-B/(2.*A)); 529 } 615 } 530 616 531 G4double plus = (-B+std::sqrt(discr))/(2.*A 617 G4double plus = (-B+std::sqrt(discr))/(2.*A); 532 G4double minus = (-B-std::sqrt(discr))/(2.*A 618 G4double minus = (-B-std::sqrt(discr))/(2.*A); 533 619 534 // Special case::Point on Surface, Check nor 620 // Special case::Point on Surface, Check norm.dot(v) 535 621 536 if ( ( std::fabs(plus) < halfCarTol )||( std << 622 if ( ( std::fabs(plus) < halfTol )||( std::fabs(minus) < halfTol ) ) 537 { 623 { 538 G4ThreeVector truenorm(p.x()/(xSemiAxis*xS 624 G4ThreeVector truenorm(p.x()/(xSemiAxis*xSemiAxis), 539 p.y()/(ySemiAxis*yS 625 p.y()/(ySemiAxis*ySemiAxis), 540 -( p.z() - zheight 626 -( p.z() - zheight )); 541 if ( truenorm*v >= 0) // going outside t 627 if ( truenorm*v >= 0) // going outside the solid from surface 542 { 628 { 543 return kInfinity; 629 return kInfinity; 544 } 630 } 545 else 631 else 546 { 632 { 547 return 0; 633 return 0; 548 } 634 } 549 } 635 } 550 636 551 // G4double lambda = std::fabs(plus) < std:: 637 // G4double lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus; 552 G4double lambda = 0; 638 G4double lambda = 0; 553 639 554 if ( minus > halfCarTol && minus < distMin ) << 640 if ( minus > halfTol && minus < distMin ) 555 { 641 { 556 lambda = minus ; 642 lambda = minus ; 557 // check normal vector n * v < 0 643 // check normal vector n * v < 0 558 G4ThreeVector pin = p + lambda*v; 644 G4ThreeVector pin = p + lambda*v; 559 if(std::fabs(pin.z())< zTopCut + halfCarTo << 645 if(std::fabs(pin.z())<zTopCut+0.5*kCarTolerance) 560 { 646 { 561 G4ThreeVector truenorm(pin.x()/(xSemiAxi 647 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis), 562 pin.y()/(ySemiAxi 648 pin.y()/(ySemiAxis*ySemiAxis), 563 - ( pin.z() - zhe 649 - ( pin.z() - zheight )); 564 if ( truenorm*v < 0) 650 if ( truenorm*v < 0) 565 { // yes, going inside the solid 651 { // yes, going inside the solid 566 distMin = lambda; 652 distMin = lambda; 567 } 653 } 568 } 654 } 569 } 655 } 570 if ( plus > halfCarTol && plus < distMin ) << 656 if ( plus > halfTol && plus < distMin ) 571 { 657 { 572 lambda = plus ; 658 lambda = plus ; 573 // check normal vector n * v < 0 659 // check normal vector n * v < 0 574 G4ThreeVector pin = p + lambda*v; 660 G4ThreeVector pin = p + lambda*v; 575 if(std::fabs(pin.z()) < zTopCut + halfCarT << 661 if(std::fabs(pin.z())<zTopCut+0.5*kCarTolerance) 576 { 662 { 577 G4ThreeVector truenorm(pin.x()/(xSemiAxi 663 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis), 578 pin.y()/(ySemiAxi 664 pin.y()/(ySemiAxis*ySemiAxis), 579 - ( pin.z() - zhe 665 - ( pin.z() - zheight ) ); 580 if ( truenorm*v < 0) 666 if ( truenorm*v < 0) 581 { // yes, going inside the solid 667 { // yes, going inside the solid 582 distMin = lambda; 668 distMin = lambda; 583 } 669 } 584 } 670 } 585 } 671 } 586 if (distMin < halfCarTol) distMin=0.; << 672 if (distMin < halfTol) distMin=0.; 587 return distMin ; 673 return distMin ; 588 } 674 } 589 675 590 ////////////////////////////////////////////// << 676 ////////////////////////////////////////////////////////////////////////// 591 // 677 // 592 // Calculate distance (<= actual) to closest s 678 // Calculate distance (<= actual) to closest surface of shape from outside 593 // Return 0 if point inside 679 // Return 0 if point inside 594 << 680 // 595 G4double G4EllipticalCone::DistanceToIn(const 681 G4double G4EllipticalCone::DistanceToIn(const G4ThreeVector& p) const 596 { 682 { 597 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 683 G4double distR, distR2, distZ, maxDim; 598 G4double ds = (hp - zheight)*cosAxisMin; << 684 G4double distRad; 599 G4double dz = std::abs(p.z()) - zTopCut; << 685 600 G4double dist = std::max(ds,dz); << 686 // check if the point lies either below z=-zTopCut in bottom elliptical 601 return (dist > 0) ? dist : 0.; << 687 // region or on top within cut elliptical region >> 688 // >> 689 if( (p.z() <= -zTopCut) && (sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) >> 690 <= sqr(zTopCut + zheight + 0.5*kCarTolerance )) ) >> 691 { >> 692 //return distZ = std::fabs(zTopCut - p.z()); >> 693 return distZ = std::fabs(zTopCut + p.z()); >> 694 } >> 695 >> 696 if( (p.z() >= zTopCut) && (sqr(p.x()/xSemiAxis)+sqr(p.y()/ySemiAxis) >> 697 <= sqr(zheight - zTopCut + kCarTolerance/2.0 )) ) >> 698 { >> 699 return distZ = std::fabs(p.z() - zTopCut); >> 700 } >> 701 >> 702 // below we use the following approximation: we take the largest of the >> 703 // axes and find the shortest distance to the circular (cut) cone of that >> 704 // radius. >> 705 // >> 706 maxDim = xSemiAxis >= ySemiAxis ? xSemiAxis:ySemiAxis; >> 707 distRad = std::sqrt(p.x()*p.x()+p.y()*p.y()); >> 708 >> 709 if( p.z() > maxDim*distRad + zTopCut*(1.+maxDim)-sqr(maxDim)*zheight ) >> 710 { >> 711 distR2 = sqr(p.z() - zTopCut) + sqr(distRad - maxDim*(zheight - zTopCut)); >> 712 return std::sqrt( distR2 ); >> 713 } >> 714 >> 715 if( distRad > maxDim*( zheight - p.z() ) ) >> 716 { >> 717 if( p.z() > maxDim*distRad - (zTopCut*(1.+maxDim)+sqr(maxDim)*zheight) ) >> 718 { >> 719 G4double zVal = (p.z()-maxDim*(distRad-maxDim*zheight))/(1.+sqr(maxDim)); >> 720 G4double rVal = maxDim*(zheight - zVal); >> 721 return distR = std::sqrt(sqr(p.z() - zVal) + sqr(distRad - rVal)); >> 722 } >> 723 } >> 724 >> 725 if( distRad <= maxDim*(zheight - p.z()) ) >> 726 { >> 727 distR2 = sqr(distRad - maxDim*(zheight + zTopCut)) + sqr(p.z() + zTopCut); >> 728 return std::sqrt( distR2 ); >> 729 } >> 730 >> 731 return distR = 0; 602 } 732 } 603 733 604 ////////////////////////////////////////////// << 734 ///////////////////////////////////////////////////////////////////////// 605 // 735 // 606 // Calculate distance to surface of shape from 736 // Calculate distance to surface of shape from `inside', 607 // allowing for tolerance 737 // allowing for tolerance 608 << 738 // 609 G4double G4EllipticalCone::DistanceToOut(const 739 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p, 610 const 740 const G4ThreeVector& v, 611 const 741 const G4bool calcNorm, 612 << 742 G4bool *validNorm, 613 << 743 G4ThreeVector *n ) const 614 { 744 { 615 G4double distMin, lambda; 745 G4double distMin, lambda; 616 enum surface_e {kPlaneSurf, kCurvedSurf, kNo 746 enum surface_e {kPlaneSurf, kCurvedSurf, kNoSurf} surface; 617 747 618 distMin = kInfinity; 748 distMin = kInfinity; 619 surface = kNoSurf; 749 surface = kNoSurf; 620 750 621 if (v.z() < 0.0) 751 if (v.z() < 0.0) 622 { 752 { 623 lambda = (-p.z() - zTopCut)/v.z(); 753 lambda = (-p.z() - zTopCut)/v.z(); 624 754 625 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis 755 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) + 626 sqr((p.y() + lambda*v.y())/ySemiAxis 756 sqr((p.y() + lambda*v.y())/ySemiAxis)) < 627 sqr(zheight + zTopCut + halfCarTol) << 757 sqr(zheight + zTopCut + 0.5*kCarTolerance) ) 628 { 758 { 629 distMin = std::fabs(lambda); 759 distMin = std::fabs(lambda); 630 760 631 if (!calcNorm) { return distMin; } 761 if (!calcNorm) { return distMin; } 632 } 762 } 633 distMin = std::fabs(lambda); 763 distMin = std::fabs(lambda); 634 surface = kPlaneSurf; 764 surface = kPlaneSurf; 635 } 765 } 636 766 637 if (v.z() > 0.0) 767 if (v.z() > 0.0) 638 { 768 { 639 lambda = (zTopCut - p.z()) / v.z(); 769 lambda = (zTopCut - p.z()) / v.z(); 640 770 641 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis 771 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) 642 + sqr((p.y() + lambda*v.y())/ySemiAxis 772 + sqr((p.y() + lambda*v.y())/ySemiAxis) ) 643 < (sqr(zheight - zTopCut + halfCarTol)) << 773 < (sqr(zheight - zTopCut + 0.5*kCarTolerance)) ) 644 { 774 { 645 distMin = std::fabs(lambda); 775 distMin = std::fabs(lambda); 646 if (!calcNorm) { return distMin; } 776 if (!calcNorm) { return distMin; } 647 } 777 } 648 distMin = std::fabs(lambda); 778 distMin = std::fabs(lambda); 649 surface = kPlaneSurf; 779 surface = kPlaneSurf; 650 } 780 } 651 781 652 // if we are here then it either intersects 782 // if we are here then it either intersects or grazes the 653 // curved surface... 783 // curved surface... 654 // 784 // 655 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y( 785 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z()); 656 G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) 786 G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) + 657 v.y()*p.y()/sqr(ySemiAxis) 787 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z())); 658 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y( 788 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) 659 - sqr(zheight - p.z()); 789 - sqr(zheight - p.z()); 660 790 661 G4double discr = B*B - 4.*A*C; 791 G4double discr = B*B - 4.*A*C; 662 792 663 if ( discr >= - halfCarTol && discr < halfCa << 793 if ( discr >= - 0.5*kCarTolerance && discr < 0.5*kCarTolerance ) 664 { 794 { 665 if(!calcNorm) { return distMin = std::fabs 795 if(!calcNorm) { return distMin = std::fabs(-B/(2.*A)); } 666 } 796 } 667 797 668 else if ( discr > halfCarTol ) << 798 else if ( discr > 0.5*kCarTolerance ) 669 { 799 { 670 G4double plus = (-B+std::sqrt(discr))/(2. 800 G4double plus = (-B+std::sqrt(discr))/(2.*A); 671 G4double minus = (-B-std::sqrt(discr))/(2. 801 G4double minus = (-B-std::sqrt(discr))/(2.*A); 672 802 673 if ( plus > halfCarTol && minus > halfCarT << 803 if ( plus > 0.5*kCarTolerance && minus > 0.5*kCarTolerance ) 674 { 804 { 675 // take the shorter distance 805 // take the shorter distance 676 // 806 // 677 lambda = std::fabs(plus) < std::fabs(m 807 lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus; 678 } 808 } 679 else 809 else 680 { 810 { 681 // at least one solution is close to zer 811 // at least one solution is close to zero or negative 682 // so, take small positive solution or z 812 // so, take small positive solution or zero 683 // 813 // 684 lambda = plus > -halfCarTol ? plus : 0 << 814 lambda = plus > -0.5*kCarTolerance ? plus : 0; 685 } 815 } 686 816 687 if ( std::fabs(lambda) < distMin ) 817 if ( std::fabs(lambda) < distMin ) 688 { 818 { 689 if( std::fabs(lambda) > halfCarTol) << 819 if( std::fabs(lambda) > 0.5*kCarTolerance) 690 { 820 { 691 distMin = std::fabs(lambda); 821 distMin = std::fabs(lambda); 692 surface = kCurvedSurf; 822 surface = kCurvedSurf; 693 } 823 } 694 else // Point is On the Surface, Check 824 else // Point is On the Surface, Check Normal 695 { 825 { 696 G4ThreeVector truenorm(p.x()/(xSemiAxi 826 G4ThreeVector truenorm(p.x()/(xSemiAxis*xSemiAxis), 697 p.y()/(ySemiAxi 827 p.y()/(ySemiAxis*ySemiAxis), 698 -( p.z() - zhei 828 -( p.z() - zheight )); 699 if( truenorm.dot(v) > 0 ) 829 if( truenorm.dot(v) > 0 ) 700 { 830 { 701 distMin = 0.0; 831 distMin = 0.0; 702 surface = kCurvedSurf; 832 surface = kCurvedSurf; 703 } 833 } 704 } 834 } 705 } 835 } 706 } 836 } 707 837 708 // set normal if requested 838 // set normal if requested 709 // 839 // 710 if (calcNorm) 840 if (calcNorm) 711 { 841 { 712 if (surface == kNoSurf) 842 if (surface == kNoSurf) 713 { 843 { 714 *validNorm = false; 844 *validNorm = false; 715 } 845 } 716 else 846 else 717 { 847 { 718 *validNorm = true; 848 *validNorm = true; 719 switch (surface) 849 switch (surface) 720 { 850 { 721 case kPlaneSurf: 851 case kPlaneSurf: 722 { 852 { 723 *n = G4ThreeVector(0.,0.,(v.z() > 0. 853 *n = G4ThreeVector(0.,0.,(v.z() > 0.0 ? 1. : -1.)); 724 } 854 } 725 break; 855 break; 726 856 727 case kCurvedSurf: 857 case kCurvedSurf: 728 { 858 { 729 G4ThreeVector pexit = p + distMin*v; 859 G4ThreeVector pexit = p + distMin*v; 730 G4ThreeVector truenorm( pexit.x()/(x 860 G4ThreeVector truenorm( pexit.x()/(xSemiAxis*xSemiAxis), 731 pexit.y()/(y 861 pexit.y()/(ySemiAxis*ySemiAxis), 732 -( pexit.z() 862 -( pexit.z() - zheight ) ); 733 truenorm /= truenorm.mag(); 863 truenorm /= truenorm.mag(); 734 *n= truenorm; 864 *n= truenorm; 735 } 865 } 736 break; 866 break; 737 867 738 default: // Should never re 868 default: // Should never reach this case ... 739 DumpInfo(); 869 DumpInfo(); 740 std::ostringstream message; 870 std::ostringstream message; 741 G4long oldprc = message.precision(16 << 871 G4int oldprc = message.precision(16); 742 message << "Undefined side for valid 872 message << "Undefined side for valid surface normal to solid." 743 << G4endl 873 << G4endl 744 << "Position:" << G4endl 874 << "Position:" << G4endl 745 << " p.x() = " << p.x()/ 875 << " p.x() = " << p.x()/mm << " mm" << G4endl 746 << " p.y() = " << p.y()/ 876 << " p.y() = " << p.y()/mm << " mm" << G4endl 747 << " p.z() = " << p.z()/ 877 << " p.z() = " << p.z()/mm << " mm" << G4endl 748 << "Direction:" << G4endl 878 << "Direction:" << G4endl 749 << " v.x() = " << v.x() 879 << " v.x() = " << v.x() << G4endl 750 << " v.y() = " << v.y() 880 << " v.y() = " << v.y() << G4endl 751 << " v.z() = " << v.z() 881 << " v.z() = " << v.z() << G4endl 752 << "Proposed distance :" << 882 << "Proposed distance :" << G4endl 753 << " distMin = " << dis 883 << " distMin = " << distMin/mm << " mm"; 754 message.precision(oldprc); 884 message.precision(oldprc); 755 G4Exception("G4EllipticalCone::Dista 885 G4Exception("G4EllipticalCone::DistanceToOut(p,v,..)", 756 "GeomSolids1002", JustWa 886 "GeomSolids1002", JustWarning, message); 757 break; 887 break; 758 } 888 } 759 } 889 } 760 } 890 } 761 891 762 if (distMin < halfCarTol) { distMin=0; } << 892 if (distMin<0.5*kCarTolerance) { distMin=0; } 763 893 764 return distMin; 894 return distMin; 765 } 895 } 766 896 767 ////////////////////////////////////////////// 897 ///////////////////////////////////////////////////////////////////////// 768 // 898 // 769 // Calculate distance (<=actual) to closest su 899 // Calculate distance (<=actual) to closest surface of shape from inside 770 << 900 // 771 G4double G4EllipticalCone::DistanceToOut(const 901 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p) const 772 { 902 { >> 903 G4double rds,roo,roo1, distR, distZ, distMin=0.; >> 904 G4double minAxis = xSemiAxis < ySemiAxis ? xSemiAxis : ySemiAxis; >> 905 773 #ifdef G4SPECSDEBUG 906 #ifdef G4SPECSDEBUG 774 if( Inside(p) == kOutside ) 907 if( Inside(p) == kOutside ) 775 { 908 { >> 909 DumpInfo(); 776 std::ostringstream message; 910 std::ostringstream message; 777 G4long oldprc = message.precision(16); << 911 G4int oldprc = message.precision(16); 778 message << "Point p is outside (!?) of so << 912 message << "Point p is outside !?" << G4endl 779 << "Position:\n" << 913 << "Position:" << G4endl 780 << " p.x() = " << p.x()/mm << << 914 << " p.x() = " << p.x()/mm << " mm" << G4endl 781 << " p.y() = " << p.y()/mm << << 915 << " p.y() = " << p.y()/mm << " mm" << G4endl 782 << " p.z() = " << p.z()/mm << << 916 << " p.z() = " << p.z()/mm << " mm"; 783 message.precision(oldprc) ; 917 message.precision(oldprc) ; 784 G4Exception("G4Ellipsoid::DistanceToOut(p 918 G4Exception("G4Ellipsoid::DistanceToOut(p)", "GeomSolids1002", 785 JustWarning, message); 919 JustWarning, message); 786 DumpInfo(); << 787 } 920 } 788 #endif 921 #endif 789 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 922 790 G4double ds = (zheight - hp)*cosAxisMin; << 923 // since we have made the above warning, below we are working assuming p 791 G4double dz = zTopCut - std::abs(p.z()); << 924 // is inside check how close it is to the circular cone with radius equal 792 G4double dist = std::min(ds,dz); << 925 // to the smaller of the axes 793 return (dist > 0) ? dist : 0.; << 926 // >> 927 if( sqr(p.x()/minAxis)+sqr(p.y()/minAxis) < sqr(zheight - p.z()) ) >> 928 { >> 929 rds = std::sqrt(sqr(p.x()) + sqr(p.y())); >> 930 roo = minAxis*(zheight-p.z()); // radius of cone at z= p.z() >> 931 roo1 = minAxis*(zheight-zTopCut); // radius of cone at z=+zTopCut >> 932 >> 933 distZ=zTopCut - std::fabs(p.z()) ; >> 934 distR=(roo-rds)/(std::sqrt(1+sqr(minAxis))); >> 935 >> 936 if(rds>roo1) >> 937 { >> 938 distMin=(zTopCut-p.z())*(roo-rds)/(roo-roo1); >> 939 distMin=std::min(distMin,distR); >> 940 } >> 941 distMin=std::min(distR,distZ); >> 942 } >> 943 >> 944 return distMin; 794 } 945 } 795 946 796 ////////////////////////////////////////////// << 947 ////////////////////////////////////////////////////////////////////////// 797 // 948 // 798 // GetEntityType 949 // GetEntityType 799 << 950 // 800 G4GeometryType G4EllipticalCone::GetEntityType 951 G4GeometryType G4EllipticalCone::GetEntityType() const 801 { 952 { 802 return {"G4EllipticalCone"}; << 953 return G4String("G4EllipticalCone"); 803 } 954 } 804 955 805 ////////////////////////////////////////////// << 956 ////////////////////////////////////////////////////////////////////////// 806 // 957 // 807 // Make a clone of the object 958 // Make a clone of the object 808 << 959 // 809 G4VSolid* G4EllipticalCone::Clone() const 960 G4VSolid* G4EllipticalCone::Clone() const 810 { 961 { 811 return new G4EllipticalCone(*this); 962 return new G4EllipticalCone(*this); 812 } 963 } 813 964 814 ////////////////////////////////////////////// << 965 ////////////////////////////////////////////////////////////////////////// 815 // 966 // 816 // Stream object contents to an output stream 967 // Stream object contents to an output stream 817 << 968 // 818 std::ostream& G4EllipticalCone::StreamInfo( st 969 std::ostream& G4EllipticalCone::StreamInfo( std::ostream& os ) const 819 { 970 { 820 G4long oldprc = os.precision(16); << 971 G4int oldprc = os.precision(16); 821 os << "------------------------------------- 972 os << "-----------------------------------------------------------\n" 822 << " *** Dump for solid - " << GetName 973 << " *** Dump for solid - " << GetName() << " ***\n" 823 << " ================================= 974 << " ===================================================\n" 824 << " Solid type: G4EllipticalCone\n" 975 << " Solid type: G4EllipticalCone\n" 825 << " Parameters: \n" 976 << " Parameters: \n" 826 977 827 << " semi-axis x: " << xSemiAxis/mm << 978 << " semi-axis x: " << xSemiAxis/mm << " mm \n" 828 << " semi-axis y: " << ySemiAxis/mm << 979 << " semi-axis y: " << ySemiAxis/mm << " mm \n" 829 << " height z: " << zheight/mm << " 980 << " height z: " << zheight/mm << " mm \n" 830 << " half length in z: " << zTopCut/m 981 << " half length in z: " << zTopCut/mm << " mm \n" 831 << "------------------------------------- 982 << "-----------------------------------------------------------\n"; 832 os.precision(oldprc); 983 os.precision(oldprc); 833 984 834 return os; 985 return os; 835 } 986 } 836 987 837 ////////////////////////////////////////////// 988 ///////////////////////////////////////////////////////////////////////// 838 // 989 // 839 // Return random point on the surface of the s << 990 // GetPointOnSurface 840 << 991 // >> 992 // returns quasi-uniformly distributed point on surface of elliptical cone >> 993 // 841 G4ThreeVector G4EllipticalCone::GetPointOnSurf 994 G4ThreeVector G4EllipticalCone::GetPointOnSurface() const 842 { 995 { 843 G4double x0 = xSemiAxis*zheight; // x semi a << 844 G4double y0 = ySemiAxis*zheight; // y semi a << 845 G4double s0 = G4GeomTools::EllipticConeLater << 846 G4double kmin = (zTopCut >= zheight ) ? 0. : << 847 G4double kmax = (zTopCut >= zheight ) ? 2. : << 848 << 849 // Set areas (base at -Z, side surface, base << 850 // << 851 G4double szmin = pi*x0*y0*kmax*kmax; << 852 G4double szmax = pi*x0*y0*kmin*kmin; << 853 G4double sside = s0*(kmax*kmax - kmin*kmin) << 854 G4double ssurf[3] = { szmin, sside, szmax }; << 855 for (auto i=1; i<3; ++i) { ssurf[i] += ssurf << 856 996 857 // Select surface << 997 G4double phi, sinphi, cosphi, aOne, aTwo, aThree, 858 // << 998 chose, zRand, rRand1, rRand2; 859 G4double select = ssurf[2]*G4UniformRand(); << 999 860 G4int k = 2; << 1000 G4double rOne = std::sqrt(sqr(xSemiAxis) 861 if (select <= ssurf[1]) k = 1; << 1001 + sqr(ySemiAxis))*(zheight - zTopCut); 862 if (select <= ssurf[0]) k = 0; << 1002 G4double rTwo = std::sqrt(sqr(xSemiAxis) >> 1003 + sqr(ySemiAxis))*(zheight + zTopCut); >> 1004 >> 1005 aOne = pi*(rOne + rTwo)*std::sqrt(sqr(rOne - rTwo)+sqr(2.*zTopCut)); >> 1006 aTwo = pi*xSemiAxis*ySemiAxis*sqr(zheight+zTopCut); >> 1007 aThree = pi*xSemiAxis*ySemiAxis*sqr(zheight-zTopCut); >> 1008 >> 1009 phi = RandFlat::shoot(0.,twopi); >> 1010 cosphi = std::cos(phi); >> 1011 sinphi = std::sin(phi); >> 1012 >> 1013 if(zTopCut >= zheight) aThree = 0.; 863 1014 864 // Pick random point on selected surface << 1015 chose = RandFlat::shoot(0.,aOne+aTwo+aThree); 865 // << 1016 if((chose>=0.) && (chose<aOne)) 866 G4ThreeVector p; << 867 switch(k) << 868 { 1017 { 869 case 0: // base at -Z, uniform distributio << 1018 zRand = RandFlat::shoot(-zTopCut,zTopCut); 870 { << 1019 return G4ThreeVector(xSemiAxis*(zheight-zRand)*cosphi, 871 G4double zh = zheight + zTopCut; << 1020 ySemiAxis*(zheight-zRand)*sinphi,zRand); 872 G4TwoVector rho = G4RandomPointInEllipse << 1021 } 873 p.set(rho.x(),rho.y(),-zTopCut); << 1022 else if((chose>=aOne) && (chose<aOne+aTwo)) 874 break; << 1023 { 875 } << 1024 do 876 case 1: // side surface, uniform distribut << 877 { 1025 { 878 G4double zh = G4RandomRadiusInRing(zheig << 1026 rRand1 = RandFlat::shoot(0.,1.) ; 879 G4double a = x0; << 1027 rRand2 = RandFlat::shoot(0.,1.) ; 880 G4double b = y0; << 1028 } while ( rRand2 >= rRand1 ) ; 881 1029 882 G4double hh = zheight*zheight; << 1030 // rRand2 = RandFlat::shoot(0.,std::sqrt(1.-sqr(rRand1))); 883 G4double aa = a*a; << 1031 return G4ThreeVector(rRand1*xSemiAxis*(zheight+zTopCut)*cosphi, 884 G4double bb = b*b; << 1032 rRand1*ySemiAxis*(zheight+zTopCut)*sinphi, -zTopCut); 885 G4double R = std::max(a,b); << 886 G4double mu_max = R*std::sqrt(hh + R*R); << 887 1033 888 G4double x,y; << 889 for (auto i=0; i<1000; ++i) << 890 { << 891 G4double phi = CLHEP::twopi*G4UniformRand(); << 892 x = std::cos(phi); << 893 y = std::sin(phi); << 894 G4double xx = x*x; << 895 G4double yy = y*y; << 896 G4double E = hh + aa*xx + bb*yy; << 897 G4double F = (aa-bb)*x*y; << 898 G4double G = aa*yy + bb*xx; << 899 G4double mu = std::sqrt(E*G - F*F); << 900 if (mu_max*G4UniformRand() <= mu) brea << 901 } << 902 p.set(zh*xSemiAxis*x,zh*ySemiAxis*y,zhei << 903 break; << 904 } << 905 case 2: // base at +Z, uniform distributio << 906 { << 907 G4double zh = zheight - zTopCut; << 908 G4TwoVector rho = G4RandomPointInEllipse << 909 p.set(rho.x(),rho.y(),zTopCut); << 910 break; << 911 } << 912 } 1034 } 913 return p; << 1035 // else 914 } << 1036 // 915 << 916 ////////////////////////////////////////////// << 917 // << 918 // Get cubic volume << 919 1037 920 G4double G4EllipticalCone::GetCubicVolume() << 1038 do 921 { << 922 if (fCubicVolume == 0.0) << 923 { 1039 { 924 G4double x0 = xSemiAxis*zheight; // x semi << 1040 rRand1 = RandFlat::shoot(0.,1.) ; 925 G4double y0 = ySemiAxis*zheight; // y semi << 1041 rRand2 = RandFlat::shoot(0.,1.) ; 926 G4double v0 = CLHEP::pi*x0*y0*zheight/3.; << 1042 } while ( rRand2 >= rRand1 ) ; 927 G4double kmin = (zTopCut >= zheight ) ? 0. << 928 G4double kmax = (zTopCut >= zheight ) ? 2. << 929 fCubicVolume = (kmax - kmin)*(kmax*kmax + << 930 } << 931 return fCubicVolume; << 932 } << 933 1043 934 ////////////////////////////////////////////// << 1044 return G4ThreeVector(rRand1*xSemiAxis*(zheight-zTopCut)*cosphi, 935 // << 1045 rRand1*ySemiAxis*(zheight-zTopCut)*sinphi, zTopCut); 936 // Get surface area << 937 << 938 G4double G4EllipticalCone::GetSurfaceArea() << 939 { << 940 if (fSurfaceArea == 0.0) << 941 { << 942 G4double x0 = xSemiAxis*zheight; // x semi << 943 G4double y0 = ySemiAxis*zheight; // y semi << 944 G4double s0 = G4GeomTools::EllipticConeLat << 945 G4double kmin = (zTopCut >= zheight ) ? 0. << 946 G4double kmax = (zTopCut >= zheight ) ? 2. << 947 fSurfaceArea = (kmax - kmin)*(kmax + kmin) << 948 + CLHEP::pi*x0*y0*(kmin*kmin << 949 } << 950 return fSurfaceArea; << 951 } 1046 } 952 1047 953 ////////////////////////////////////////////// << 954 // 1048 // 955 // Methods for visualisation 1049 // Methods for visualisation >> 1050 // 956 1051 957 void G4EllipticalCone::DescribeYourselfTo (G4V 1052 void G4EllipticalCone::DescribeYourselfTo (G4VGraphicsScene& scene) const 958 { 1053 { 959 scene.AddSolid(*this); 1054 scene.AddSolid(*this); 960 } 1055 } 961 1056 962 G4VisExtent G4EllipticalCone::GetExtent() cons 1057 G4VisExtent G4EllipticalCone::GetExtent() const 963 { 1058 { 964 // Define the sides of the box into which th 1059 // Define the sides of the box into which the solid instance would fit. 965 // 1060 // 966 G4ThreeVector pmin,pmax; << 1061 G4double maxDim; 967 BoundingLimits(pmin,pmax); << 1062 maxDim = xSemiAxis > ySemiAxis ? xSemiAxis : ySemiAxis; 968 return { pmin.x(), pmax.x(), pmin.y(), pmax. << 1063 maxDim = maxDim > zTopCut ? maxDim : zTopCut; >> 1064 >> 1065 return G4VisExtent (-maxDim, maxDim, >> 1066 -maxDim, maxDim, >> 1067 -maxDim, maxDim); >> 1068 } >> 1069 >> 1070 G4NURBS* G4EllipticalCone::CreateNURBS () const >> 1071 { >> 1072 // Box for now!!! >> 1073 // >> 1074 return new G4NURBSbox(xSemiAxis, ySemiAxis,zheight); 969 } 1075 } 970 1076 971 G4Polyhedron* G4EllipticalCone::CreatePolyhedr 1077 G4Polyhedron* G4EllipticalCone::CreatePolyhedron () const 972 { 1078 { 973 return new G4PolyhedronEllipticalCone(xSemiA 1079 return new G4PolyhedronEllipticalCone(xSemiAxis, ySemiAxis, zheight, zTopCut); 974 } 1080 } 975 1081 976 G4Polyhedron* G4EllipticalCone::GetPolyhedron 1082 G4Polyhedron* G4EllipticalCone::GetPolyhedron () const 977 { 1083 { 978 if ( (fpPolyhedron == nullptr) << 1084 if ( (!fpPolyhedron) 979 || fRebuildPolyhedron << 980 || (fpPolyhedron->GetNumberOfRotationSteps 1085 || (fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 981 fpPolyhedron->GetNumberOfRotationSteps 1086 fpPolyhedron->GetNumberOfRotationSteps()) ) 982 { 1087 { 983 G4AutoLock l(&polyhedronMutex); << 984 delete fpPolyhedron; 1088 delete fpPolyhedron; 985 fpPolyhedron = CreatePolyhedron(); 1089 fpPolyhedron = CreatePolyhedron(); 986 fRebuildPolyhedron = false; << 987 l.unlock(); << 988 } 1090 } 989 return fpPolyhedron; 1091 return fpPolyhedron; 990 } 1092 } 991 << 992 #endif // !defined(G4GEOM_USE_UELLIPTICALCONE) << 993 1093