Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // 28 // 29 // --------------------------------------------------------------------------- 30 // GEANT 4 class header file 31 // --------------------------------------------------------------------------- 32 // Class description: 33 // 34 // Utility functions 35 36 // History: 37 // 38 // 24.08.17 - E.Tcherniaev, added G4RandomRadiusInRing, G4RandomPointInEllipse 39 // G4RandomPointOnEllipse, G4RandomPointOnEllipsoid 40 // 07.11.08 - P.Gumplinger, based on implementation in G4OpBoundaryProcess 41 // 42 // --------------------------------------------------------------------------- 43 44 #ifndef G4RANDOMTOOLS_HH 45 #define G4RANDOMTOOLS_HH 46 47 #include <CLHEP/Units/PhysicalConstants.h> 48 49 #include "G4RandomDirection.hh" 50 #include "G4ThreeVector.hh" 51 #include "G4TwoVector.hh" 52 #include "Randomize.hh" 53 #include "globals.hh" 54 55 // --------------------------------------------------------------------------- 56 // Returns a random lambertian unit vector (rejection sampling) 57 // 58 inline G4ThreeVector G4LambertianRand(const G4ThreeVector& normal) 59 { 60 G4ThreeVector vect; 61 G4double ndotv; 62 G4int count = 0; 63 const G4int max_trials = 1024; 64 65 do 66 { 67 ++count; 68 vect = G4RandomDirection(); 69 ndotv = normal * vect; 70 71 if(ndotv < 0.0) 72 { 73 vect = -vect; 74 ndotv = -ndotv; 75 } 76 77 } while(!(G4UniformRand() < ndotv) && (count < max_trials)); 78 79 return vect; 80 } 81 82 // --------------------------------------------------------------------------- 83 // Chooses a random vector within a plane given by the unit normal 84 // 85 inline G4ThreeVector G4PlaneVectorRand(const G4ThreeVector& normal) 86 { 87 G4ThreeVector vec1 = normal.orthogonal(); 88 G4ThreeVector vec2 = vec1.cross(normal); 89 90 G4double phi = CLHEP::twopi * G4UniformRand(); 91 G4double cosphi = std::cos(phi); 92 G4double sinphi = std::sin(phi); 93 94 return cosphi * vec1 + sinphi * vec2; 95 } 96 97 // --------------------------------------------------------------------------- 98 // Returns a random radius in annular ring 99 // 100 inline G4double G4RandomRadiusInRing(G4double rmin, G4double rmax) 101 { 102 if(rmin == rmax) 103 { 104 return rmin; 105 } 106 G4double k = G4UniformRand(); 107 return (rmin <= 0) ? rmax * std::sqrt(k) 108 : std::sqrt(k * rmax * rmax + (1. - k) * rmin * rmin); 109 } 110 111 // --------------------------------------------------------------------------- 112 // Returns a random point in ellipse (x/a)^2 + (y/b)^2 = 1 113 // (rejection sampling) 114 // 115 inline G4TwoVector G4RandomPointInEllipse(G4double a, G4double b) 116 { 117 G4double aa = (a * a == 0) ? 0 : 1 / (a * a); 118 G4double bb = (b * b == 0) ? 0 : 1 / (b * b); 119 for(G4int i = 0; i < 1000; ++i) 120 { 121 G4double x = a * (2 * G4UniformRand() - 1); 122 G4double y = b * (2 * G4UniformRand() - 1); 123 if(x * x * aa + y * y * bb <= 1) 124 return G4TwoVector(x, y); 125 } 126 return G4TwoVector(0, 0); 127 } 128 129 // --------------------------------------------------------------------------- 130 // Returns a random point on ellipse (x/a)^2 + (y/b)^2 = 1 131 // (rejection sampling) 132 // 133 inline G4TwoVector G4RandomPointOnEllipse(G4double a, G4double b) 134 { 135 G4double A = std::abs(a); 136 G4double B = std::abs(b); 137 G4double mu_max = std::max(A, B); 138 139 G4double x, y; 140 for(G4int i = 0; i < 1000; ++i) 141 { 142 G4double phi = CLHEP::twopi * G4UniformRand(); 143 x = std::cos(phi); 144 y = std::sin(phi); 145 G4double mu = std::sqrt((B * x) * (B * x) + (A * y) * (A * y)); 146 if(mu_max * G4UniformRand() <= mu) 147 break; 148 } 149 return G4TwoVector(A * x, B * y); 150 } 151 152 // --------------------------------------------------------------------------- 153 // Returns a random point on ellipsoid (x/a)^2 + (y/b)^2 + (z/c)^2 = 1 154 // (rejection sampling) 155 // 156 inline G4ThreeVector G4RandomPointOnEllipsoid(G4double a, G4double b, 157 G4double c) 158 { 159 G4double A = std::abs(a); 160 G4double B = std::abs(b); 161 G4double C = std::abs(c); 162 G4double mu_max = std::max(std::max(A * B, A * C), B * C); 163 164 G4ThreeVector p; 165 for(G4int i = 0; i < 1000; ++i) 166 { 167 p = G4RandomDirection(); 168 G4double xbc = p.x() * B * C; 169 G4double yac = p.y() * A * C; 170 G4double zab = p.z() * A * B; 171 G4double mu = std::sqrt(xbc * xbc + yac * yac + zab * zab); 172 if(mu_max * G4UniformRand() <= mu) 173 break; 174 } 175 return G4ThreeVector(A * p.x(), B * p.y(), C * p.z()); 176 } 177 178 #endif /* G4RANDOMTOOLS_HH */ 179