Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // class G4AffineTransform 27 // 28 // Class description: 29 // 30 // A class for geometric affine transformations [see, eg. Foley & Van Dam] 31 // Supports efficient arbitrary rotation & transformation of vectors and the 32 // computation of compound & inverse transformations. A `rotation flag' is 33 // maintained internally for greater computational efficiency for transforms 34 // that do not involve rotation. 35 // 36 // Interfaces to the CLHEP classes G4ThreeVector & G4RotationMatrix 37 // 38 // For member function descriptions, see comments by declarations. For 39 // additional clarification, also check the `const' declarations for 40 // functions & their parameters. 41 // 42 // Member data: 43 // 44 // G4double rxx,rxy,rxz; 45 // G4double ryx,ryy,ryz; A 3x3 rotation matrix - net rotation 46 // G4double rzx,rzy,rzz; 47 // G4double tx,ty,tz; Net translation 48 49 // 06.08.1996 Paul R C Kent: 50 // - initial version 51 // 19.09.1996 E.Tcherniaev: 52 // - direct access to the protected members of the G4RotationMatrix class 53 // replaced by access via public access functions 54 // - conversion of the rotation matrix to angle & axis used to get 55 // a possibility to remove "friend" from the G4RotationMatrix class 56 // 06.05.2018 E.Tcherniaev: 57 // - optimised InverseProduct 58 // - added methods for inverse transformation: InverseTrasformPoint, 59 // InverseTransformAxis, InverseNetRotation, InverseNetTranslation 60 // -------------------------------------------------------------------- 61 #ifndef G4AFFINETRANSFORM_HH 62 #define G4AFFINETRANSFORM_HH 63 64 #include "G4Types.hh" 65 #include "G4ThreeVector.hh" 66 #include "G4RotationMatrix.hh" 67 #include "G4Transform3D.hh" 68 69 class G4AffineTransform 70 { 71 public: 72 73 inline G4AffineTransform(); 74 75 public: // with description 76 77 inline G4AffineTransform(const G4ThreeVector& tlate); 78 // Translation only: under t'form translate point at origin by tlate 79 80 inline G4AffineTransform(const G4RotationMatrix& rot); 81 // Rotation only: under t'form rotate by rot 82 83 inline G4AffineTransform(const G4RotationMatrix& rot, 84 const G4ThreeVector& tlate); 85 // Under t'form: rotate by rot then translate by tlate 86 87 inline G4AffineTransform(const G4RotationMatrix* rot, 88 const G4ThreeVector& tlate); 89 // Optionally rotate by *rot then translate by tlate - rot may be null 90 91 inline G4AffineTransform(const G4AffineTransform& rhs) = default; 92 inline G4AffineTransform(G4AffineTransform&& rhs) = default; 93 // Copy and move constructors 94 95 inline G4AffineTransform& operator=(const G4AffineTransform& rhs); 96 inline G4AffineTransform& operator=(G4AffineTransform&& rhs) = default; 97 // Assignment & Move operators 98 99 inline ~G4AffineTransform() = default; 100 // Destructor 101 102 inline G4AffineTransform operator * (const G4AffineTransform& tf) const; 103 // Compound Transforms: 104 // tf2=tf2*tf1 equivalent to tf2*=tf1 105 // Returns compound transformation of self*tf 106 107 inline G4AffineTransform& operator *= (const G4AffineTransform& tf); 108 // (Modifying) Multiplies self by tf; Returns self reference 109 // ie. A=AB for a*=b 110 111 inline G4AffineTransform& Product(const G4AffineTransform& tf1, 112 const G4AffineTransform& tf2); 113 // 'Products' for avoiding (potential) temporaries: 114 // c.Product(a,b) equivalent to c=a*b 115 // c.InverseProduct(a*b,b ) equivalent to c=a 116 // (Modifying) Sets self=tf1*tf2; Returns self reference 117 118 inline G4AffineTransform& InverseProduct(const G4AffineTransform& tf1, 119 const G4AffineTransform& tf2); 120 // (Modifying) Sets self=tf1*(tf2^-1); Returns self reference 121 122 inline G4ThreeVector TransformPoint(const G4ThreeVector& vec) const; 123 // Transform the specified point: returns vec*rot+tlate 124 125 inline G4ThreeVector InverseTransformPoint(const G4ThreeVector& vec) const; 126 // Transform the specified point using inverse transformation 127 128 inline G4ThreeVector TransformAxis(const G4ThreeVector& axis) const; 129 // Transform the specified axis: returns vec*rot 130 131 inline G4ThreeVector InverseTransformAxis(const G4ThreeVector& axis) const; 132 // Transform the specified axis using inverse transfromation 133 134 inline void ApplyPointTransform(G4ThreeVector& vec) const; 135 // Transform the specified point (in place): sets vec=vec*rot+tlate 136 137 inline void ApplyAxisTransform(G4ThreeVector& axis) const; 138 // Transform the specified axis (in place): sets axis=axis*rot; 139 140 inline G4AffineTransform Inverse() const; 141 // Return inverse of current transform 142 143 inline G4AffineTransform& Invert(); 144 // (Modifying) Sets self=inverse of self; Returns self reference 145 146 inline G4AffineTransform& operator +=(const G4ThreeVector& tlate); 147 inline G4AffineTransform& operator -=(const G4ThreeVector& tlate); 148 // (Modifying) Adjust net translation by given vector; 149 // Returns self reference 150 151 inline G4bool operator == (const G4AffineTransform& tf) const; 152 inline G4bool operator != (const G4AffineTransform& tf) const; 153 154 inline G4double operator [] (const G4int n) const; 155 156 inline G4bool IsRotated() const; 157 // True if transform includes rotation 158 159 inline G4bool IsTranslated() const; 160 // True if transform includes translation 161 162 inline G4RotationMatrix NetRotation() const; 163 164 inline G4RotationMatrix InverseNetRotation() const; 165 166 inline G4ThreeVector NetTranslation() const; 167 168 inline G4ThreeVector InverseNetTranslation() const; 169 170 inline void SetNetRotation(const G4RotationMatrix& rot); 171 172 inline void SetNetTranslation(const G4ThreeVector& tlate); 173 174 inline operator G4Transform3D () const; 175 // Conversion operator (cast) to G4Transform3D 176 177 private: 178 179 inline G4AffineTransform( 180 const G4double prxx, const G4double prxy, const G4double prxz, 181 const G4double pryx, const G4double pryy, const G4double pryz, 182 const G4double przx, const G4double przy, const G4double przz, 183 const G4double ptx, const G4double pty, const G4double ptz); 184 185 G4double rxx,rxy,rxz; 186 G4double ryx,ryy,ryz; 187 G4double rzx,rzy,rzz; 188 G4double tx,ty,tz; 189 }; 190 191 std::ostream& operator << (std::ostream& os, const G4AffineTransform& transf); 192 193 #include "G4AffineTransform.icc" 194 195 #endif 196