Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // $Id: G4EllipticalCone.cc,v 1.16.4.1 2010/09/08 15:54:58 gcosmo Exp $ >> 27 // GEANT4 tag $Name: geant4-09-03-patch-02 $ >> 28 // 26 // Implementation of G4EllipticalCone class 29 // Implementation of G4EllipticalCone class 27 // 30 // 28 // This code implements an Elliptical Cone giv 31 // This code implements an Elliptical Cone given explicitly by the 29 // equation: 32 // equation: 30 // x^2/a^2 + y^2/b^2 = (z-h)^2 33 // x^2/a^2 + y^2/b^2 = (z-h)^2 31 // and specified by the parameters (a,b,h) and 34 // and specified by the parameters (a,b,h) and a cut parallel to the 32 // xy plane above z = 0. 35 // xy plane above z = 0. 33 // 36 // 34 // Author: Dionysios Anninos 37 // Author: Dionysios Anninos 35 // Revised: Evgueni Tcherniaev << 38 // 36 // ------------------------------------------- 39 // -------------------------------------------------------------------- 37 40 38 #if !(defined(G4GEOM_USE_UELLIPTICALCONE) && d << 39 << 40 #include "globals.hh" 41 #include "globals.hh" 41 42 42 #include "G4EllipticalCone.hh" 43 #include "G4EllipticalCone.hh" 43 44 44 #include "G4RandomTools.hh" << 45 #include "G4GeomTools.hh" << 46 #include "G4ClippablePolygon.hh" 45 #include "G4ClippablePolygon.hh" >> 46 #include "G4SolidExtentList.hh" 47 #include "G4VoxelLimits.hh" 47 #include "G4VoxelLimits.hh" 48 #include "G4AffineTransform.hh" 48 #include "G4AffineTransform.hh" 49 #include "G4BoundingEnvelope.hh" << 50 #include "G4GeometryTolerance.hh" 49 #include "G4GeometryTolerance.hh" 51 50 52 #include "meshdefs.hh" 51 #include "meshdefs.hh" 53 52 54 #include "Randomize.hh" 53 #include "Randomize.hh" 55 54 56 #include "G4VGraphicsScene.hh" 55 #include "G4VGraphicsScene.hh" >> 56 #include "G4Polyhedron.hh" >> 57 #include "G4NURBS.hh" >> 58 #include "G4NURBSbox.hh" 57 #include "G4VisExtent.hh" 59 #include "G4VisExtent.hh" 58 60 59 #include "G4AutoLock.hh" << 61 //#define G4SPECSDEBUG 1 60 << 61 namespace << 62 { << 63 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 64 } << 65 62 66 using namespace CLHEP; 63 using namespace CLHEP; 67 64 68 ////////////////////////////////////////////// << 65 ////////////////////////////////////////////////////////////////////// 69 // 66 // 70 // Constructor - check parameters 67 // Constructor - check parameters 71 << 68 // 72 G4EllipticalCone::G4EllipticalCone(const G4Str 69 G4EllipticalCone::G4EllipticalCone(const G4String& pName, 73 G4dou 70 G4double pxSemiAxis, 74 G4dou 71 G4double pySemiAxis, 75 G4dou 72 G4double pzMax, 76 G4dou 73 G4double pzTopCut) 77 : G4VSolid(pName), zTopCut(0.) << 74 : G4VSolid(pName), fpPolyhedron(0), fCubicVolume(0.), fSurfaceArea(0.), >> 75 zTopCut(0.) 78 { 76 { 79 halfCarTol = 0.5*kCarTolerance; << 77 >> 78 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 80 79 81 // Check Semi-Axis & Z-cut 80 // Check Semi-Axis & Z-cut 82 // 81 // 83 if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0. 82 if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0.) || (pzMax <= 0.) ) 84 { 83 { 85 std::ostringstream message; << 84 G4cerr << "ERROR - G4EllipticalCone::G4EllipticalCone(): " 86 message << "Invalid semi-axis or height f << 85 << GetName() << G4endl 87 << "\n X semi-axis, Y semi-axis << 86 << " Invalid semi-axis or height!" << G4endl; 88 << pxSemiAxis << ", " << pySemiAx << 87 G4Exception("G4EllipticalCone::G4EllipticalCone()", "InvalidSetup", 89 G4Exception("G4EllipticalCone::G4Elliptic << 88 FatalException, "Invalid semi-axis or height."); 90 FatalErrorInArgument, message << 89 } 91 } << 92 << 93 if ( pzTopCut <= 0 ) 90 if ( pzTopCut <= 0 ) 94 { 91 { 95 std::ostringstream message; << 92 G4cerr << "ERROR - G4EllipticalCone::G4EllipticalCone(): " 96 message << "Invalid z-coordinate for cutt << 93 << GetName() << G4endl 97 << "\n Z top cut = " << pzTopCu << 94 << " Invalid z-coordinate for cutting plane !" << G4endl; 98 G4Exception("G4EllipticalCone::G4Elliptic << 95 G4Exception("G4EllipticalCone::G4EllipticalCone()", "InvalidSetup", 99 FatalErrorInArgument, message << 96 FatalException, "Invalid z-coordinate for cutting plane."); 100 } 97 } 101 98 102 SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax ) 99 SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax ); 103 SetZCut(pzTopCut); 100 SetZCut(pzTopCut); 104 } 101 } 105 102 106 ////////////////////////////////////////////// << 103 /////////////////////////////////////////////////////////////////////////////// 107 // 104 // 108 // Fake default constructor - sets only member 105 // Fake default constructor - sets only member data and allocates memory 109 // for usage restri 106 // for usage restricted to object persistency. 110 << 107 // 111 G4EllipticalCone::G4EllipticalCone( __void__& 108 G4EllipticalCone::G4EllipticalCone( __void__& a ) 112 : G4VSolid(a), halfCarTol(0.), << 109 : G4VSolid(a), fpPolyhedron(0), kRadTolerance(0.), fCubicVolume(0.), 113 xSemiAxis(0.), ySemiAxis(0.), zheight(0.), << 110 fSurfaceArea(0.), xSemiAxis(0.), ySemiAxis(0.), zheight(0.), 114 cosAxisMin(0.), invXX(0.), invYY(0.) << 111 semiAxisMax(0.), zTopCut(0.) 115 { 112 { 116 } 113 } 117 114 118 ////////////////////////////////////////////// << 115 /////////////////////////////////////////////////////////////////////////////// 119 // 116 // 120 // Destructor 117 // Destructor 121 << 118 // 122 G4EllipticalCone::~G4EllipticalCone() 119 G4EllipticalCone::~G4EllipticalCone() 123 { 120 { 124 delete fpPolyhedron; fpPolyhedron = nullptr; << 125 } 121 } 126 122 127 ////////////////////////////////////////////// << 123 /////////////////////////////////////////////////////////////////////////////// 128 // 124 // 129 // Copy constructor << 125 // Calculate extent under transform and specified limit 130 << 131 G4EllipticalCone::G4EllipticalCone(const G4Ell << 132 : G4VSolid(rhs), halfCarTol(rhs.halfCarTol), << 133 fCubicVolume(rhs.fCubicVolume), fSurfaceAr << 134 xSemiAxis(rhs.xSemiAxis), ySemiAxis(rhs.yS << 135 zheight(rhs.zheight), zTopCut(rhs.zTopCut) << 136 cosAxisMin(rhs.cosAxisMin), invXX(rhs.invX << 137 { << 138 } << 139 << 140 ////////////////////////////////////////////// << 141 // 126 // 142 // Assignment operator << 127 G4bool 143 << 128 G4EllipticalCone::CalculateExtent( const EAxis axis, 144 G4EllipticalCone& G4EllipticalCone::operator = << 129 const G4VoxelLimits &voxelLimit, >> 130 const G4AffineTransform &transform, >> 131 G4double &min, G4double &max ) const 145 { 132 { 146 // Check assignment to self << 133 G4SolidExtentList extentList( axis, voxelLimit ); 147 // << 134 148 if (this == &rhs) { return *this; } << 135 // 149 << 136 // We are going to divide up our elliptical face into small pieces 150 // Copy base class data << 137 // 151 // << 138 152 G4VSolid::operator=(rhs); << 139 // 153 << 140 // Choose phi size of our segment(s) based on constants as 154 // Copy data << 141 // defined in meshdefs.hh 155 // << 142 // 156 halfCarTol = rhs.halfCarTol; << 143 G4int numPhi = kMaxMeshSections; 157 fCubicVolume = rhs.fCubicVolume; fSurfaceAr << 144 G4double sigPhi = twopi/numPhi; 158 xSemiAxis = rhs.xSemiAxis; ySemiAxis = rhs. << 145 159 zheight = rhs.zheight; zTopCut = rhs.zTopCu << 146 // 160 cosAxisMin = rhs.cosAxisMin; invXX = rhs.in << 147 // We have to be careful to keep our segments completely outside >> 148 // of the elliptical surface. To do so we imagine we have >> 149 // a simple (unit radius) circular cross section (as in G4Tubs) >> 150 // and then "stretch" the dimensions as necessary to fit the ellipse. >> 151 // >> 152 G4double rFudge = 1.0/std::cos(0.5*sigPhi); >> 153 G4double dxFudgeBot = xSemiAxis*2.*zheight*rFudge, >> 154 dyFudgeBot = ySemiAxis*2.*zheight*rFudge; >> 155 G4double dxFudgeTop = xSemiAxis*(zheight-zTopCut)*rFudge, >> 156 dyFudgeTop = ySemiAxis*(zheight-zTopCut)*rFudge; >> 157 >> 158 // >> 159 // As we work around the elliptical surface, we build >> 160 // a "phi" segment on the way, and keep track of two >> 161 // additional polygons for the two ends. >> 162 // >> 163 G4ClippablePolygon endPoly1, endPoly2, phiPoly; >> 164 >> 165 G4double phi = 0, >> 166 cosPhi = std::cos(phi), >> 167 sinPhi = std::sin(phi); >> 168 G4ThreeVector v0( dxFudgeTop*cosPhi, dyFudgeTop*sinPhi, +zTopCut ), >> 169 v1( dxFudgeBot*cosPhi, dyFudgeBot*sinPhi, -zTopCut ), >> 170 w0, w1; >> 171 transform.ApplyPointTransform( v0 ); >> 172 transform.ApplyPointTransform( v1 ); >> 173 do >> 174 { >> 175 phi += sigPhi; >> 176 if (numPhi == 1) phi = 0; // Try to avoid roundoff >> 177 cosPhi = std::cos(phi), >> 178 sinPhi = std::sin(phi); >> 179 >> 180 w0 = G4ThreeVector( dxFudgeTop*cosPhi, dyFudgeTop*sinPhi, +zTopCut ); >> 181 w1 = G4ThreeVector( dxFudgeBot*cosPhi, dyFudgeBot*sinPhi, -zTopCut ); >> 182 transform.ApplyPointTransform( w0 ); >> 183 transform.ApplyPointTransform( w1 ); >> 184 >> 185 // >> 186 // Add a point to our z ends >> 187 // >> 188 endPoly1.AddVertexInOrder( v0 ); >> 189 endPoly2.AddVertexInOrder( v1 ); >> 190 >> 191 // >> 192 // Build phi polygon >> 193 // >> 194 phiPoly.ClearAllVertices(); >> 195 >> 196 phiPoly.AddVertexInOrder( v0 ); >> 197 phiPoly.AddVertexInOrder( v1 ); >> 198 phiPoly.AddVertexInOrder( w1 ); >> 199 phiPoly.AddVertexInOrder( w0 ); >> 200 >> 201 if (phiPoly.PartialClip( voxelLimit, axis )) >> 202 { >> 203 // >> 204 // Get unit normal >> 205 // >> 206 phiPoly.SetNormal( (v1-v0).cross(w0-v0).unit() ); >> 207 >> 208 extentList.AddSurface( phiPoly ); >> 209 } 161 210 162 fRebuildPolyhedron = false; << 211 // 163 delete fpPolyhedron; fpPolyhedron = nullptr << 212 // Next vertex >> 213 // >> 214 v0 = w0; >> 215 v1 = w1; >> 216 } while( --numPhi > 0 ); 164 217 165 return *this; << 218 // >> 219 // Process the end pieces >> 220 // >> 221 if (endPoly1.PartialClip( voxelLimit, axis )) >> 222 { >> 223 static const G4ThreeVector normal(0,0,+1); >> 224 endPoly1.SetNormal( transform.TransformAxis(normal) ); >> 225 extentList.AddSurface( endPoly1 ); >> 226 } >> 227 >> 228 if (endPoly2.PartialClip( voxelLimit, axis )) >> 229 { >> 230 static const G4ThreeVector normal(0,0,-1); >> 231 endPoly2.SetNormal( transform.TransformAxis(normal) ); >> 232 extentList.AddSurface( endPoly2 ); >> 233 } >> 234 >> 235 // >> 236 // Return min/max value >> 237 // >> 238 return extentList.GetExtent( min, max ); 166 } 239 } 167 240 168 ////////////////////////////////////////////// << 241 //////////////////////////////////////////////////////////////////////// 169 // 242 // 170 // Get bounding box << 243 // Return whether point inside/outside/on surface 171 << 244 // Split into radius, phi, theta checks 172 void G4EllipticalCone::BoundingLimits(G4ThreeV << 245 // Each check modifies `in', or returns as approprate 173 G4ThreeV << 246 // >> 247 EInside G4EllipticalCone::Inside(const G4ThreeVector& p) const 174 { 248 { 175 G4double zcut = GetZTopCut(); << 249 G4double rad2oo, // outside surface outer tolerance 176 G4double height = GetZMax(); << 250 rad2oi; // outside surface inner tolerance 177 G4double xmax = GetSemiAxisX()*(height+zcu << 251 178 G4double ymax = GetSemiAxisY()*(height+zcu << 252 EInside in; 179 pMin.set(-xmax,-ymax,-zcut); << 180 pMax.set( xmax, ymax, zcut); << 181 << 182 // Check correctness of the bounding box << 183 // << 184 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 185 { << 186 std::ostringstream message; << 187 message << "Bad bounding box (min >= max) << 188 << GetName() << " !" << 189 << "\npMin = " << pMin << 190 << "\npMax = " << pMax; << 191 G4Exception("G4EllipticalCone::BoundingLim << 192 JustWarning, message); << 193 DumpInfo(); << 194 } << 195 } << 196 253 197 ////////////////////////////////////////////// << 254 static const G4double halfRadTol = 0.5*kRadTolerance; 198 // << 255 static const G4double halfCarTol = 0.5*kCarTolerance; 199 // Calculate extent under transform and specif << 200 256 201 G4bool << 257 // check this side of z cut first, because that's fast 202 G4EllipticalCone::CalculateExtent(const EAxis << 258 // 203 const G4Voxe << 259 204 const G4Affi << 260 if ( (p.z() < -zTopCut - halfCarTol) 205 G4doub << 261 || (p.z() > zTopCut + halfCarTol ) ) 206 { << 207 G4ThreeVector bmin,bmax; << 208 G4bool exist; << 209 << 210 // Check bounding box (bbox) << 211 // << 212 BoundingLimits(bmin,bmax); << 213 G4BoundingEnvelope bbox(bmin,bmax); << 214 #ifdef G4BBOX_EXTENT << 215 return bbox.CalculateExtent(pAxis,pVoxelLimi << 216 #endif << 217 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 218 { 262 { 219 return exist = pMin < pMax; << 263 return in = kOutside; 220 } 264 } 221 265 222 // Set bounding envelope (benv) and calculat << 266 rad2oo= sqr(p.x()/( xSemiAxis + halfRadTol )) 223 // << 267 + sqr(p.y()/( ySemiAxis + halfRadTol )); 224 static const G4int NSTEPS = 48; // number of << 225 static const G4double ang = twopi/NSTEPS; << 226 static const G4double sinHalf = std::sin(0.5 << 227 static const G4double cosHalf = std::cos(0.5 << 228 static const G4double sinStep = 2.*sinHalf*c << 229 static const G4double cosStep = 1. - 2.*sinH << 230 G4double zcut = bmax.z(); << 231 G4double height = GetZMax(); << 232 G4double sxmin = GetSemiAxisX()*(height-zcu << 233 G4double symin = GetSemiAxisY()*(height-zcu << 234 G4double sxmax = bmax.x()/cosHalf; << 235 G4double symax = bmax.y()/cosHalf; << 236 << 237 G4double sinCur = sinHalf; << 238 G4double cosCur = cosHalf; << 239 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS << 240 for (G4int k=0; k<NSTEPS; ++k) << 241 { << 242 baseA[k].set(sxmax*cosCur,symax*sinCur,-zc << 243 baseB[k].set(sxmin*cosCur,symin*sinCur, zc << 244 << 245 G4double sinTmp = sinCur; << 246 sinCur = sinCur*cosStep + cosCur*sinStep; << 247 cosCur = cosCur*cosStep - sinTmp*sinStep; << 248 } << 249 << 250 std::vector<const G4ThreeVectorList *> polyg << 251 polygons[0] = &baseA; << 252 polygons[1] = &baseB; << 253 G4BoundingEnvelope benv(bmin,bmax,polygons); << 254 exist = benv.CalculateExtent(pAxis,pVoxelLim << 255 return exist; << 256 } << 257 268 258 ////////////////////////////////////////////// << 269 if ( rad2oo > sqr( zheight-p.z() ) ) 259 // << 270 { 260 // Determine where is point: inside, outside o << 271 return in = kOutside; >> 272 } 261 273 262 EInside G4EllipticalCone::Inside(const G4Three << 274 // rad2oi= sqr( p.x()*(1.0 + 0.5*kRadTolerance/(xSemiAxis*xSemiAxis)) ) 263 { << 275 // + sqr( p.y()*(1.0 + 0.5*kRadTolerance/(ySemiAxis*ySemiAxis)) ); 264 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 276 rad2oi = sqr(p.x()/( xSemiAxis - halfRadTol )) 265 G4double ds = (hp - zheight)*cosAxisMin; << 277 + sqr(p.y()/( ySemiAxis - halfRadTol )); 266 G4double dz = std::abs(p.z()) - zTopCut; << 278 267 G4double dist = std::max(ds,dz); << 279 if (rad2oi < sqr( zheight-p.z() ) ) >> 280 { >> 281 in = ( ( p.z() < -zTopCut + halfRadTol ) >> 282 || ( p.z() > zTopCut - halfRadTol ) ) ? kSurface : kInside; >> 283 } >> 284 else >> 285 { >> 286 in = kSurface; >> 287 } 268 288 269 if (dist > halfCarTol) return kOutside; << 289 return in; 270 return (dist > -halfCarTol) ? kSurface : kIn << 271 } 290 } 272 291 273 ////////////////////////////////////////////// 292 ///////////////////////////////////////////////////////////////////////// 274 // 293 // 275 // Return unit normal at surface closest to p << 294 // Return unit normal of surface closest to p not protected against p=0 276 << 295 // 277 G4ThreeVector G4EllipticalCone::SurfaceNormal( 296 G4ThreeVector G4EllipticalCone::SurfaceNormal( const G4ThreeVector& p) const 278 { 297 { 279 G4ThreeVector norm(0,0,0); << 280 G4int nsurf = 0; // number of surfaces wher << 281 298 282 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 299 G4double rx = sqr(p.x()/xSemiAxis), 283 G4double ds = (hp - zheight)*cosAxisMin; << 300 ry = sqr(p.y()/ySemiAxis); 284 if (std::abs(ds) <= halfCarTol) << 301 >> 302 G4double rad = std::sqrt(rx + ry); >> 303 >> 304 G4ThreeVector norm; >> 305 >> 306 if( (p.z() < -zTopCut) && ((rx+ry) < sqr(zTopCut + zheight)) ) 285 { 307 { 286 norm = G4ThreeVector(p.x()*invXX, p.y()*in << 308 return G4ThreeVector( 0., 0., -1. ); 287 G4double mag = norm.mag(); << 288 if (mag == 0) return {0,0,1}; // apex << 289 norm *= (1/mag); << 290 ++nsurf; << 291 } 309 } 292 G4double dz = std::abs(p.z()) - zTopCut; << 310 293 if (std::abs(dz) <= halfCarTol) << 311 if( (p.z() > (zheight > zTopCut ? zheight : zTopCut)) && >> 312 ((rx+ry) < sqr(zheight-zTopCut)) ) 294 { 313 { 295 norm += G4ThreeVector(0., 0.,(p.z() < 0) ? << 314 return G4ThreeVector( 0., 0., 1. ); 296 ++nsurf; << 297 } 315 } 298 316 299 if (nsurf == 1) return norm; << 317 if( p.z() > rad + 2.*zTopCut - zheight ) 300 else if (nsurf > 1) return norm.unit(); // << 301 else << 302 { 318 { 303 // Point is not on the surface << 319 if ( p.z() > zTopCut ) 304 // << 320 { 305 #ifdef G4CSGDEBUG << 321 if( p.x() == 0. ) 306 std::ostringstream message; << 322 { 307 G4long oldprc = message.precision(16); << 323 norm = G4ThreeVector( 0., p.y() < 0. ? -1. : 1., 1. ); 308 message << "Point p is not on surface (!?) << 324 return norm /= norm.mag(); 309 << GetName() << G4endl; << 325 } 310 message << "Position:\n"; << 326 if( p.y() == 0. ) 311 message << " p.x() = " << p.x()/mm << " << 327 { 312 message << " p.y() = " << p.y()/mm << " << 328 norm = G4ThreeVector( p.x() < 0. ? -1. : 1., 0., 1. ); 313 message << " p.z() = " << p.z()/mm << " << 329 return norm /= norm.mag(); 314 G4cout.precision(oldprc); << 330 } 315 G4Exception("G4EllipticalCone::SurfaceNorm << 331 316 JustWarning, message ); << 332 G4double m = std::fabs(p.x()/p.y()); 317 DumpInfo(); << 333 G4double c2 = sqr(zheight-zTopCut)/(1./sqr(xSemiAxis)+sqr(m/ySemiAxis)); 318 #endif << 334 G4double x = std::sqrt(c2); 319 return ApproxSurfaceNormal(p); << 335 G4double y = m*x; >> 336 >> 337 x /= sqr(xSemiAxis); >> 338 y /= sqr(ySemiAxis); >> 339 >> 340 norm = G4ThreeVector( p.x() < 0. ? -x : x, >> 341 p.y() < 0. ? -y : y, >> 342 zheight - zTopCut ); >> 343 norm /= norm.mag(); >> 344 norm += G4ThreeVector( 0., 0., 1. ); >> 345 return norm /= norm.mag(); >> 346 } >> 347 >> 348 return G4ThreeVector( 0., 0., 1. ); 320 } 349 } 321 } << 350 >> 351 if( p.z() < rad - 2.*zTopCut - zheight ) >> 352 { >> 353 if( p.x() == 0. ) >> 354 { >> 355 norm = G4ThreeVector( 0., p.y() < 0. ? -1. : 1., -1. ); >> 356 return norm /= norm.mag(); >> 357 } >> 358 if( p.y() == 0. ) >> 359 { >> 360 norm = G4ThreeVector( p.x() < 0. ? -1. : 1., 0., -1. ); >> 361 return norm /= norm.mag(); >> 362 } >> 363 >> 364 G4double m = std::fabs(p.x()/p.y()); >> 365 G4double c2 = sqr(zheight+zTopCut)/(1./sqr(xSemiAxis)+sqr(m/ySemiAxis)); >> 366 G4double x = std::sqrt(c2); >> 367 G4double y = m*x; >> 368 >> 369 x /= sqr(xSemiAxis); >> 370 y /= sqr(ySemiAxis); >> 371 >> 372 norm = G4ThreeVector( p.x() < 0. ? -x : x, >> 373 p.y() < 0. ? -y : y, >> 374 zheight - zTopCut ); >> 375 norm /= norm.mag(); >> 376 norm += G4ThreeVector( 0., 0., -1. ); >> 377 return norm /= norm.mag(); >> 378 } >> 379 >> 380 norm = G4ThreeVector(p.x()/sqr(xSemiAxis), p.y()/sqr(ySemiAxis), rad); >> 381 >> 382 G4double m = std::tan(pi/8.); >> 383 G4double c = -zTopCut - m*(zTopCut + zheight); 322 384 323 ////////////////////////////////////////////// << 385 if( p.z() < -m*rad + c ) 324 // << 386 return G4ThreeVector (0.,0.,-1.); 325 // Find surface nearest to point and return co << 387 326 // The algorithm is similar to the algorithm u << 388 return norm /= norm.mag(); 327 // This method normally should not be called. << 328 << 329 G4ThreeVector << 330 G4EllipticalCone::ApproxSurfaceNormal(const G4 << 331 { << 332 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 333 G4double ds = (hp - zheight)*cosAxisMin; << 334 G4double dz = std::abs(p.z()) - zTopCut; << 335 if (ds > dz && std::abs(hp - p.z()) > halfCa << 336 return G4ThreeVector(p.x()*invXX, p.y()*in << 337 else << 338 return { 0., 0., (G4double)((p.z() < 0) ? << 339 } 389 } 340 390 341 ////////////////////////////////////////////// << 391 ////////////////////////////////////////////////////////////////////////// 342 // 392 // 343 // Calculate distance to shape from outside, a 393 // Calculate distance to shape from outside, along normalised vector 344 // return kInfinity if no intersection, or int 394 // return kInfinity if no intersection, or intersection distance <= tolerance 345 << 395 // 346 G4double G4EllipticalCone::DistanceToIn( const 396 G4double G4EllipticalCone::DistanceToIn( const G4ThreeVector& p, 347 const 397 const G4ThreeVector& v ) const 348 { 398 { >> 399 >> 400 static const G4double halfTol = 0.5*kCarTolerance; >> 401 349 G4double distMin = kInfinity; 402 G4double distMin = kInfinity; 350 403 351 // code from EllipticalTube 404 // code from EllipticalTube 352 405 353 G4double sigz = p.z()+zTopCut; 406 G4double sigz = p.z()+zTopCut; 354 407 355 // 408 // 356 // Check z = -dz planer surface 409 // Check z = -dz planer surface 357 // 410 // 358 411 359 if (sigz < halfCarTol) << 412 if (sigz < halfTol) 360 { 413 { 361 // 414 // 362 // We are "behind" the shape in z, and so 415 // We are "behind" the shape in z, and so can 363 // potentially hit the rear face. Correct 416 // potentially hit the rear face. Correct direction? 364 // 417 // 365 if (v.z() <= 0) 418 if (v.z() <= 0) 366 { 419 { 367 // 420 // 368 // As long as we are far enough away, we 421 // As long as we are far enough away, we know we 369 // can't intersect 422 // can't intersect 370 // 423 // 371 if (sigz < 0) return kInfinity; 424 if (sigz < 0) return kInfinity; 372 425 373 // 426 // 374 // Otherwise, we don't intersect unless 427 // Otherwise, we don't intersect unless we are 375 // on the surface of the ellipse 428 // on the surface of the ellipse 376 // 429 // 377 430 378 if ( sqr(p.x()/( xSemiAxis - halfCarTol << 431 if ( sqr(p.x()/( xSemiAxis - halfTol )) 379 + sqr(p.y()/( ySemiAxis - halfCarTol << 432 + sqr(p.y()/( ySemiAxis - halfTol )) <= sqr( zheight+zTopCut ) ) 380 return kInfinity; 433 return kInfinity; 381 434 382 } 435 } 383 else 436 else 384 { 437 { 385 // 438 // 386 // How far? 439 // How far? 387 // 440 // 388 G4double q = -sigz/v.z(); << 441 G4double s = -sigz/v.z(); 389 442 390 // 443 // 391 // Where does that place us? 444 // Where does that place us? 392 // 445 // 393 G4double xi = p.x() + q*v.x(), << 446 G4double xi = p.x() + s*v.x(), 394 yi = p.y() + q*v.y(); << 447 yi = p.y() + s*v.y(); 395 448 396 // 449 // 397 // Is this on the surface (within ellips 450 // Is this on the surface (within ellipse)? 398 // 451 // 399 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi 452 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight + zTopCut ) ) 400 { 453 { 401 // 454 // 402 // Yup. Return q, unless we are on the << 455 // Yup. Return s, unless we are on the surface 403 // 456 // 404 return (sigz < -halfCarTol) ? q : 0; << 457 return (sigz < -halfTol) ? s : 0; 405 } 458 } 406 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 459 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 407 + yi/(ySemiAxis*ySemiAxis)*v.y() 460 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0) 408 { 461 { 409 // 462 // 410 // Else, if we are traveling outwards, 463 // Else, if we are traveling outwards, we know 411 // we must miss 464 // we must miss 412 // 465 // 413 // return kInfinity; 466 // return kInfinity; 414 } 467 } 415 } 468 } 416 } 469 } 417 470 418 // 471 // 419 // Check z = +dz planer surface 472 // Check z = +dz planer surface 420 // 473 // >> 474 421 sigz = p.z() - zTopCut; 475 sigz = p.z() - zTopCut; 422 476 423 if (sigz > -halfCarTol) << 477 if (sigz > -halfTol) 424 { 478 { 425 if (v.z() >= 0) 479 if (v.z() >= 0) 426 { 480 { 427 481 428 if (sigz > 0) return kInfinity; 482 if (sigz > 0) return kInfinity; 429 483 430 if ( sqr(p.x()/( xSemiAxis - halfCarTol << 484 if ( sqr(p.x()/( xSemiAxis - halfTol )) 431 + sqr(p.y()/( ySemiAxis - halfCarTol << 485 + sqr(p.y()/( ySemiAxis - halfTol )) <= sqr( zheight-zTopCut ) ) 432 return kInfinity; 486 return kInfinity; 433 487 434 } 488 } 435 else { 489 else { 436 G4double q = -sigz/v.z(); << 490 G4double s = -sigz/v.z(); 437 491 438 G4double xi = p.x() + q*v.x(), << 492 G4double xi = p.x() + s*v.x(), 439 yi = p.y() + q*v.y(); << 493 yi = p.y() + s*v.y(); 440 494 441 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi 495 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight - zTopCut ) ) 442 { 496 { 443 return (sigz > -halfCarTol) ? q : 0; << 497 return (sigz > -halfTol) ? s : 0; 444 } 498 } 445 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 499 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 446 + yi/(ySemiAxis*ySemiAxis)*v.y() 500 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0) 447 { 501 { 448 // return kInfinity; 502 // return kInfinity; 449 } 503 } 450 } 504 } 451 } 505 } 452 506 453 507 454 #if 0 508 #if 0 455 509 456 // check to see if Z plane is relevant 510 // check to see if Z plane is relevant 457 // 511 // 458 if (p.z() < -zTopCut - halfCarTol) << 512 if (p.z() < -zTopCut - 0.5*kCarTolerance) 459 { 513 { 460 if (v.z() <= 0.0) 514 if (v.z() <= 0.0) 461 return distMin; 515 return distMin; 462 516 463 G4double lambda = (-zTopCut - p.z())/v.z() 517 G4double lambda = (-zTopCut - p.z())/v.z(); 464 518 465 if ( sqr((lambda*v.x()+p.x())/xSemiAxis) + 519 if ( sqr((lambda*v.x()+p.x())/xSemiAxis) + 466 sqr((lambda*v.y()+p.y())/ySemiAxis) < 520 sqr((lambda*v.y()+p.y())/ySemiAxis) <= 467 sqr(zTopCut + zheight + halfCarTol) ) << 521 sqr(zTopCut + zheight + 0.5*kRadTolerance) ) 468 { 522 { 469 return distMin = std::fabs(lambda); 523 return distMin = std::fabs(lambda); 470 } 524 } 471 } 525 } 472 526 473 if (p.z() > zTopCut + halfCarTol) << 527 if (p.z() > zTopCut+0.5*kCarTolerance) 474 { 528 { 475 if (v.z() >= 0.0) 529 if (v.z() >= 0.0) 476 { return distMin; } 530 { return distMin; } 477 531 478 G4double lambda = (zTopCut - p.z()) / v.z 532 G4double lambda = (zTopCut - p.z()) / v.z(); 479 533 480 if ( sqr((lambda*v.x() + p.x())/xSemiAxis) 534 if ( sqr((lambda*v.x() + p.x())/xSemiAxis) + 481 sqr((lambda*v.y() + p.y())/ySemiAxis) 535 sqr((lambda*v.y() + p.y())/ySemiAxis) <= 482 sqr(zheight - zTopCut + halfCarTol) ) << 536 sqr(zheight - zTopCut + 0.5*kRadTolerance) ) 483 { 537 { 484 return distMin = std::fabs(lambda); 538 return distMin = std::fabs(lambda); 485 } 539 } 486 } 540 } 487 541 488 if (p.z() > zTopCut - halfCarTol << 542 if (p.z() > zTopCut - halfTol 489 && p.z() < zTopCut + halfCarTol ) << 543 && p.z() < zTopCut + halfTol ) 490 { 544 { 491 if (v.z() > 0.) 545 if (v.z() > 0.) 492 { return kInfinity; } 546 { return kInfinity; } 493 547 494 return distMin = 0.; 548 return distMin = 0.; 495 } 549 } 496 550 497 if (p.z() < -zTopCut + halfCarTol << 551 if (p.z() < -zTopCut + halfTol 498 && p.z() > -zTopCut - halfCarTol) << 552 && p.z() > -zTopCut - halfTol) 499 { 553 { 500 if (v.z() < 0.) 554 if (v.z() < 0.) 501 { return distMin = kInfinity; } 555 { return distMin = kInfinity; } 502 556 503 return distMin = 0.; 557 return distMin = 0.; 504 } 558 } 505 559 506 #endif 560 #endif 507 561 508 // if we are here then it either intersects 562 // if we are here then it either intersects or grazes the curved surface 509 // or it does not intersect at all 563 // or it does not intersect at all 510 // 564 // >> 565 511 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y( 566 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z()); 512 G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) + 567 G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) + 513 v.y()*p.y()/sqr(ySemiAxis) + 568 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z())); 514 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y( 569 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) - 515 sqr(zheight - p.z()); 570 sqr(zheight - p.z()); 516 571 517 G4double discr = B*B - 4.*A*C; 572 G4double discr = B*B - 4.*A*C; 518 573 519 // if the discriminant is negative it never 574 // if the discriminant is negative it never hits the curved object 520 // 575 // 521 if ( discr < -halfCarTol ) << 576 if ( discr < -halfTol ) 522 { return distMin; } 577 { return distMin; } 523 578 524 // case below is when it hits or grazes the << 579 //case below is when it hits or grazes the surface 525 // 580 // 526 if ( (discr >= -halfCarTol ) && (discr < hal << 581 if ( (discr >= - halfTol ) && (discr < halfTol ) ) 527 { 582 { 528 return distMin = std::fabs(-B/(2.*A)); 583 return distMin = std::fabs(-B/(2.*A)); 529 } 584 } 530 585 531 G4double plus = (-B+std::sqrt(discr))/(2.*A 586 G4double plus = (-B+std::sqrt(discr))/(2.*A); 532 G4double minus = (-B-std::sqrt(discr))/(2.*A 587 G4double minus = (-B-std::sqrt(discr))/(2.*A); 533 << 588 // G4double lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus; 534 // Special case::Point on Surface, Check nor << 535 589 536 if ( ( std::fabs(plus) < halfCarTol )||( std << 537 { << 538 G4ThreeVector truenorm(p.x()/(xSemiAxis*xS << 539 p.y()/(ySemiAxis*yS << 540 -( p.z() - zheight << 541 if ( truenorm*v >= 0) // going outside t << 542 { << 543 return kInfinity; << 544 } << 545 else << 546 { << 547 return 0; << 548 } << 549 } << 550 << 551 // G4double lambda = std::fabs(plus) < std:: << 552 G4double lambda = 0; 590 G4double lambda = 0; 553 591 554 if ( minus > halfCarTol && minus < distMin ) << 592 if ( minus > halfTol && minus < distMin ) 555 { 593 { 556 lambda = minus ; 594 lambda = minus ; 557 // check normal vector n * v < 0 595 // check normal vector n * v < 0 558 G4ThreeVector pin = p + lambda*v; 596 G4ThreeVector pin = p + lambda*v; 559 if(std::fabs(pin.z())< zTopCut + halfCarTo << 597 560 { << 598 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis), 561 G4ThreeVector truenorm(pin.x()/(xSemiAxi << 599 pin.y()/(ySemiAxis*ySemiAxis), 562 pin.y()/(ySemiAxi << 600 - ( pin.z() - zheight )); 563 - ( pin.z() - zhe << 601 if ( truenorm*v < 0) 564 if ( truenorm*v < 0) << 602 { // yes, going inside the solid 565 { // yes, going inside the solid << 603 distMin = lambda; 566 distMin = lambda; << 567 } << 568 } 604 } 569 } 605 } 570 if ( plus > halfCarTol && plus < distMin ) << 606 >> 607 if ( plus > halfTol && plus < distMin ) 571 { 608 { 572 lambda = plus ; 609 lambda = plus ; 573 // check normal vector n * v < 0 610 // check normal vector n * v < 0 574 G4ThreeVector pin = p + lambda*v; 611 G4ThreeVector pin = p + lambda*v; 575 if(std::fabs(pin.z()) < zTopCut + halfCarT << 612 576 { << 613 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis), 577 G4ThreeVector truenorm(pin.x()/(xSemiAxi << 614 pin.y()/(ySemiAxis*ySemiAxis), 578 pin.y()/(ySemiAxi << 615 - ( pin.z() - zheight ) ); 579 - ( pin.z() - zhe << 616 if ( truenorm*v < 0) 580 if ( truenorm*v < 0) << 617 { // yes, going inside the solid 581 { // yes, going inside the solid << 618 distMin = lambda; 582 distMin = lambda; << 583 } << 584 } 619 } 585 } 620 } 586 if (distMin < halfCarTol) distMin=0.; << 621 587 return distMin ; 622 return distMin ; 588 } 623 } 589 624 590 ////////////////////////////////////////////// << 625 ////////////////////////////////////////////////////////////////////////// 591 // 626 // 592 // Calculate distance (<= actual) to closest s 627 // Calculate distance (<= actual) to closest surface of shape from outside 593 // Return 0 if point inside 628 // Return 0 if point inside 594 << 629 // 595 G4double G4EllipticalCone::DistanceToIn(const 630 G4double G4EllipticalCone::DistanceToIn(const G4ThreeVector& p) const 596 { 631 { 597 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 632 G4double distR, distR2, distZ, maxDim; 598 G4double ds = (hp - zheight)*cosAxisMin; << 633 G4double distRad; 599 G4double dz = std::abs(p.z()) - zTopCut; << 634 600 G4double dist = std::max(ds,dz); << 635 // check if the point lies either below z=-zTopCut in bottom elliptical 601 return (dist > 0) ? dist : 0.; << 636 // region or on top within cut elliptical region >> 637 // >> 638 if( (p.z() <= -zTopCut) && (sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) >> 639 <= sqr(zTopCut + zheight + 0.5*kCarTolerance )) ) >> 640 { >> 641 //return distZ = std::fabs(zTopCut - p.z()); >> 642 return distZ = std::fabs(zTopCut + p.z()); >> 643 } >> 644 >> 645 if( (p.z() >= zTopCut) && (sqr(p.x()/xSemiAxis)+sqr(p.y()/ySemiAxis) >> 646 <= sqr(zheight - zTopCut + kCarTolerance/2.0 )) ) >> 647 { >> 648 return distZ = std::fabs(p.z() - zTopCut); >> 649 } >> 650 >> 651 // below we use the following approximation: we take the largest of the >> 652 // axes and find the shortest distance to the circular (cut) cone of that >> 653 // radius. >> 654 // >> 655 maxDim = xSemiAxis >= ySemiAxis ? xSemiAxis:ySemiAxis; >> 656 distRad = std::sqrt(p.x()*p.x()+p.y()*p.y()); >> 657 >> 658 if( p.z() > maxDim*distRad + zTopCut*(1.+maxDim)-sqr(maxDim)*zheight ) >> 659 { >> 660 distR2 = sqr(p.z() - zTopCut) + sqr(distRad - maxDim*(zheight - zTopCut)); >> 661 return std::sqrt( distR2 ); >> 662 } >> 663 >> 664 if( distRad > maxDim*( zheight - p.z() ) ) >> 665 { >> 666 if( p.z() > maxDim*distRad - (zTopCut*(1.+maxDim)+sqr(maxDim)*zheight) ) >> 667 { >> 668 G4double zVal = (p.z()-maxDim*(distRad-maxDim*zheight))/(1.+sqr(maxDim)); >> 669 G4double rVal = maxDim*(zheight - zVal); >> 670 return distR = std::sqrt(sqr(p.z() - zVal) + sqr(distRad - rVal)); >> 671 } >> 672 } >> 673 >> 674 if( distRad <= maxDim*(zheight - p.z()) ) >> 675 { >> 676 distR2 = sqr(distRad - maxDim*(zheight + zTopCut)) + sqr(p.z() + zTopCut); >> 677 return std::sqrt( distR2 ); >> 678 } >> 679 >> 680 return distR = 0; 602 } 681 } 603 682 604 ////////////////////////////////////////////// << 683 ///////////////////////////////////////////////////////////////////////// 605 // 684 // 606 // Calculate distance to surface of shape from 685 // Calculate distance to surface of shape from `inside', 607 // allowing for tolerance 686 // allowing for tolerance 608 << 687 // 609 G4double G4EllipticalCone::DistanceToOut(const 688 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p, 610 const 689 const G4ThreeVector& v, 611 const 690 const G4bool calcNorm, 612 << 691 G4bool *validNorm, 613 << 692 G4ThreeVector *n ) const 614 { 693 { 615 G4double distMin, lambda; 694 G4double distMin, lambda; 616 enum surface_e {kPlaneSurf, kCurvedSurf, kNo 695 enum surface_e {kPlaneSurf, kCurvedSurf, kNoSurf} surface; 617 696 618 distMin = kInfinity; 697 distMin = kInfinity; 619 surface = kNoSurf; 698 surface = kNoSurf; 620 699 621 if (v.z() < 0.0) 700 if (v.z() < 0.0) 622 { 701 { 623 lambda = (-p.z() - zTopCut)/v.z(); 702 lambda = (-p.z() - zTopCut)/v.z(); 624 703 625 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis 704 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) + 626 sqr((p.y() + lambda*v.y())/ySemiAxis 705 sqr((p.y() + lambda*v.y())/ySemiAxis)) < 627 sqr(zheight + zTopCut + halfCarTol) << 706 sqr(zheight + zTopCut + 0.5*kCarTolerance) ) 628 { 707 { 629 distMin = std::fabs(lambda); 708 distMin = std::fabs(lambda); 630 709 631 if (!calcNorm) { return distMin; } 710 if (!calcNorm) { return distMin; } 632 } 711 } 633 distMin = std::fabs(lambda); 712 distMin = std::fabs(lambda); 634 surface = kPlaneSurf; 713 surface = kPlaneSurf; 635 } 714 } 636 715 637 if (v.z() > 0.0) 716 if (v.z() > 0.0) 638 { 717 { 639 lambda = (zTopCut - p.z()) / v.z(); 718 lambda = (zTopCut - p.z()) / v.z(); 640 719 641 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis 720 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) 642 + sqr((p.y() + lambda*v.y())/ySemiAxis 721 + sqr((p.y() + lambda*v.y())/ySemiAxis) ) 643 < (sqr(zheight - zTopCut + halfCarTol)) << 722 < (sqr(zheight - zTopCut + 0.5*kCarTolerance)) ) 644 { 723 { 645 distMin = std::fabs(lambda); 724 distMin = std::fabs(lambda); 646 if (!calcNorm) { return distMin; } 725 if (!calcNorm) { return distMin; } 647 } 726 } 648 distMin = std::fabs(lambda); 727 distMin = std::fabs(lambda); 649 surface = kPlaneSurf; 728 surface = kPlaneSurf; 650 } 729 } 651 730 652 // if we are here then it either intersects 731 // if we are here then it either intersects or grazes the 653 // curved surface... 732 // curved surface... 654 // 733 // 655 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y( 734 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z()); 656 G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) 735 G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) + 657 v.y()*p.y()/sqr(ySemiAxis) 736 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z())); 658 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y( 737 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) 659 - sqr(zheight - p.z()); 738 - sqr(zheight - p.z()); 660 739 661 G4double discr = B*B - 4.*A*C; 740 G4double discr = B*B - 4.*A*C; 662 741 663 if ( discr >= - halfCarTol && discr < halfCa << 742 if ( discr >= - 0.5*kCarTolerance && discr < 0.5*kCarTolerance ) 664 { 743 { 665 if(!calcNorm) { return distMin = std::fabs 744 if(!calcNorm) { return distMin = std::fabs(-B/(2.*A)); } 666 } 745 } 667 746 668 else if ( discr > halfCarTol ) << 747 else if ( discr > 0.5*kCarTolerance ) 669 { 748 { 670 G4double plus = (-B+std::sqrt(discr))/(2. 749 G4double plus = (-B+std::sqrt(discr))/(2.*A); 671 G4double minus = (-B-std::sqrt(discr))/(2. 750 G4double minus = (-B-std::sqrt(discr))/(2.*A); 672 751 673 if ( plus > halfCarTol && minus > halfCarT << 752 if ( plus > 0.5*kCarTolerance && minus > 0.5*kCarTolerance ) 674 { 753 { 675 // take the shorter distance 754 // take the shorter distance 676 // 755 // 677 lambda = std::fabs(plus) < std::fabs(m 756 lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus; 678 } 757 } 679 else 758 else 680 { 759 { 681 // at least one solution is close to zer 760 // at least one solution is close to zero or negative 682 // so, take small positive solution or z 761 // so, take small positive solution or zero 683 // 762 // 684 lambda = plus > -halfCarTol ? plus : 0 << 763 lambda = plus > -0.5*kCarTolerance ? plus : 0; 685 } 764 } 686 765 687 if ( std::fabs(lambda) < distMin ) 766 if ( std::fabs(lambda) < distMin ) 688 { 767 { 689 if( std::fabs(lambda) > halfCarTol) << 768 distMin = std::fabs(lambda); 690 { << 769 surface = kCurvedSurf; 691 distMin = std::fabs(lambda); << 692 surface = kCurvedSurf; << 693 } << 694 else // Point is On the Surface, Check << 695 { << 696 G4ThreeVector truenorm(p.x()/(xSemiAxi << 697 p.y()/(ySemiAxi << 698 -( p.z() - zhei << 699 if( truenorm.dot(v) > 0 ) << 700 { << 701 distMin = 0.0; << 702 surface = kCurvedSurf; << 703 } << 704 } << 705 } 770 } 706 } 771 } 707 772 708 // set normal if requested 773 // set normal if requested 709 // 774 // 710 if (calcNorm) 775 if (calcNorm) 711 { 776 { 712 if (surface == kNoSurf) 777 if (surface == kNoSurf) 713 { 778 { 714 *validNorm = false; 779 *validNorm = false; 715 } 780 } 716 else 781 else 717 { 782 { 718 *validNorm = true; 783 *validNorm = true; 719 switch (surface) 784 switch (surface) 720 { 785 { 721 case kPlaneSurf: 786 case kPlaneSurf: 722 { 787 { 723 *n = G4ThreeVector(0.,0.,(v.z() > 0. 788 *n = G4ThreeVector(0.,0.,(v.z() > 0.0 ? 1. : -1.)); 724 } 789 } 725 break; 790 break; 726 791 727 case kCurvedSurf: 792 case kCurvedSurf: 728 { 793 { 729 G4ThreeVector pexit = p + distMin*v; 794 G4ThreeVector pexit = p + distMin*v; 730 G4ThreeVector truenorm( pexit.x()/(x << 795 G4ThreeVector truenorm(pexit.x()/(xSemiAxis*xSemiAxis), 731 pexit.y()/(y << 796 pexit.y()/(ySemiAxis*ySemiAxis), 732 -( pexit.z() << 797 pexit.z() - zheight ); 733 truenorm /= truenorm.mag(); 798 truenorm /= truenorm.mag(); 734 *n= truenorm; 799 *n= truenorm; 735 } 800 } 736 break; 801 break; 737 802 738 default: // Should never re 803 default: // Should never reach this case ... >> 804 G4int oldprc = G4cout.precision(16); >> 805 G4cout << G4endl; 739 DumpInfo(); 806 DumpInfo(); 740 std::ostringstream message; << 807 G4cout << "Position:" << G4endl << G4endl; 741 G4long oldprc = message.precision(16 << 808 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 742 message << "Undefined side for valid << 809 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 743 << G4endl << 810 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 744 << "Position:" << G4endl << 811 G4cout << "Direction:" << G4endl << G4endl; 745 << " p.x() = " << p.x()/ << 812 G4cout << "v.x() = " << v.x() << G4endl; 746 << " p.y() = " << p.y()/ << 813 G4cout << "v.y() = " << v.y() << G4endl; 747 << " p.z() = " << p.z()/ << 814 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 748 << "Direction:" << G4endl << 815 G4cout << "Proposed distance :" << G4endl << G4endl; 749 << " v.x() = " << v.x() << 816 G4cout << "distMin = " << distMin/mm << " mm" << G4endl << G4endl; 750 << " v.y() = " << v.y() << 817 G4cout.precision(oldprc); 751 << " v.z() = " << v.z() << 752 << "Proposed distance :" << << 753 << " distMin = " << dis << 754 message.precision(oldprc); << 755 G4Exception("G4EllipticalCone::Dista 818 G4Exception("G4EllipticalCone::DistanceToOut(p,v,..)", 756 "GeomSolids1002", JustWa << 819 "Notification", JustWarning, >> 820 "Undefined side for valid surface normal to solid."); 757 break; 821 break; 758 } 822 } 759 } 823 } 760 } 824 } 761 825 762 if (distMin < halfCarTol) { distMin=0; } << 763 << 764 return distMin; 826 return distMin; 765 } 827 } 766 828 767 ////////////////////////////////////////////// 829 ///////////////////////////////////////////////////////////////////////// 768 // 830 // 769 // Calculate distance (<=actual) to closest su 831 // Calculate distance (<=actual) to closest surface of shape from inside 770 << 832 // 771 G4double G4EllipticalCone::DistanceToOut(const 833 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p) const 772 { 834 { >> 835 G4double rad,roo,roo1, distR, distZ, distMin=0.; >> 836 G4double minAxis = xSemiAxis < ySemiAxis ? xSemiAxis : ySemiAxis; >> 837 773 #ifdef G4SPECSDEBUG 838 #ifdef G4SPECSDEBUG 774 if( Inside(p) == kOutside ) 839 if( Inside(p) == kOutside ) 775 { 840 { 776 std::ostringstream message; << 841 G4cout.precision(16) ; 777 G4long oldprc = message.precision(16); << 842 G4cout << G4endl ; 778 message << "Point p is outside (!?) of so << 779 << "Position:\n" << 780 << " p.x() = " << p.x()/mm << << 781 << " p.y() = " << p.y()/mm << << 782 << " p.z() = " << p.z()/mm << << 783 message.precision(oldprc) ; << 784 G4Exception("G4Ellipsoid::DistanceToOut(p << 785 JustWarning, message); << 786 DumpInfo(); 843 DumpInfo(); >> 844 G4cout << "Position:" << G4endl << G4endl ; >> 845 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; >> 846 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; >> 847 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; >> 848 G4cout.precision(6) ; >> 849 G4Exception("G4Ellipsoid::DistanceToOut(p)", "Notification", JustWarning, >> 850 "Point p is outside !?" ); 787 } 851 } 788 #endif 852 #endif 789 G4double hp = std::sqrt(p.x()*p.x()*invXX + << 853 790 G4double ds = (zheight - hp)*cosAxisMin; << 854 // since we have made the above warning, below we are working assuming p 791 G4double dz = zTopCut - std::abs(p.z()); << 855 // is inside check how close it is to the circular cone with radius equal 792 G4double dist = std::min(ds,dz); << 856 // to the smaller of the axes 793 return (dist > 0) ? dist : 0.; << 857 // 794 } << 858 if( sqr(p.x()/minAxis)+sqr(p.y()/minAxis) < sqr(zheight - p.z()) ) >> 859 { >> 860 rad = std::sqrt(sqr(p.x()) + sqr(p.y())); >> 861 roo = minAxis*(zheight-p.z()); // radius of cone at z= p.z() >> 862 roo1 = minAxis*(zheight-zTopCut); // radius of cone at z=+zTopCut 795 863 796 ////////////////////////////////////////////// << 864 distZ=zTopCut - std::fabs(p.z()) ; 797 // << 865 distR=(roo-rad)/(std::sqrt(1+sqr(minAxis))); 798 // GetEntityType << 799 866 800 G4GeometryType G4EllipticalCone::GetEntityType << 867 if(rad>roo1) 801 { << 868 { 802 return {"G4EllipticalCone"}; << 869 distMin=(zTopCut-p.z())*(roo-rad)/(roo-roo1); >> 870 distMin=std::min(distMin,distR); >> 871 } >> 872 distMin=std::min(distR,distZ); >> 873 } >> 874 >> 875 return distMin; 803 } 876 } 804 877 805 ////////////////////////////////////////////// << 878 ////////////////////////////////////////////////////////////////////////// 806 // 879 // 807 // Make a clone of the object << 880 // GetEntityType 808 << 881 // 809 G4VSolid* G4EllipticalCone::Clone() const << 882 G4GeometryType G4EllipticalCone::GetEntityType() const 810 { 883 { 811 return new G4EllipticalCone(*this); << 884 return G4String("G4EllipticalCone"); 812 } 885 } 813 886 814 ////////////////////////////////////////////// << 887 ////////////////////////////////////////////////////////////////////////// 815 // 888 // 816 // Stream object contents to an output stream 889 // Stream object contents to an output stream 817 << 890 // 818 std::ostream& G4EllipticalCone::StreamInfo( st 891 std::ostream& G4EllipticalCone::StreamInfo( std::ostream& os ) const 819 { 892 { 820 G4long oldprc = os.precision(16); << 821 os << "------------------------------------- 893 os << "-----------------------------------------------------------\n" 822 << " *** Dump for solid - " << GetName 894 << " *** Dump for solid - " << GetName() << " ***\n" 823 << " ================================= 895 << " ===================================================\n" 824 << " Solid type: G4EllipticalCone\n" 896 << " Solid type: G4EllipticalCone\n" 825 << " Parameters: \n" 897 << " Parameters: \n" 826 898 827 << " semi-axis x: " << xSemiAxis/mm << 899 << " semi-axis x: " << xSemiAxis/mm << " mm \n" 828 << " semi-axis y: " << ySemiAxis/mm << 900 << " semi-axis y: " << ySemiAxis/mm << " mm \n" 829 << " height z: " << zheight/mm << " 901 << " height z: " << zheight/mm << " mm \n" 830 << " half length in z: " << zTopCut/m 902 << " half length in z: " << zTopCut/mm << " mm \n" 831 << "------------------------------------- 903 << "-----------------------------------------------------------\n"; 832 os.precision(oldprc); << 833 904 834 return os; 905 return os; 835 } 906 } 836 907 837 ////////////////////////////////////////////// 908 ///////////////////////////////////////////////////////////////////////// 838 // 909 // 839 // Return random point on the surface of the s << 910 // GetPointOnSurface 840 << 911 // >> 912 // returns quasi-uniformly distributed point on surface of elliptical cone >> 913 // 841 G4ThreeVector G4EllipticalCone::GetPointOnSurf 914 G4ThreeVector G4EllipticalCone::GetPointOnSurface() const 842 { 915 { 843 G4double x0 = xSemiAxis*zheight; // x semi a << 844 G4double y0 = ySemiAxis*zheight; // y semi a << 845 G4double s0 = G4GeomTools::EllipticConeLater << 846 G4double kmin = (zTopCut >= zheight ) ? 0. : << 847 G4double kmax = (zTopCut >= zheight ) ? 2. : << 848 916 849 // Set areas (base at -Z, side surface, base << 917 G4double phi, sinphi, cosphi, aOne, aTwo, aThree, 850 // << 918 chose, zRand, rRand1, rRand2; 851 G4double szmin = pi*x0*y0*kmax*kmax; << 919 852 G4double szmax = pi*x0*y0*kmin*kmin; << 920 G4double rOne = std::sqrt(sqr(xSemiAxis) 853 G4double sside = s0*(kmax*kmax - kmin*kmin) << 921 + sqr(ySemiAxis))*(zheight - zTopCut); 854 G4double ssurf[3] = { szmin, sside, szmax }; << 922 G4double rTwo = std::sqrt(sqr(xSemiAxis) 855 for (auto i=1; i<3; ++i) { ssurf[i] += ssurf << 923 + sqr(ySemiAxis))*(zheight + zTopCut); 856 << 924 857 // Select surface << 925 aOne = pi*(rOne + rTwo)*std::sqrt(sqr(rOne - rTwo)+sqr(2.*zTopCut)); 858 // << 926 aTwo = pi*xSemiAxis*ySemiAxis*sqr(zheight+zTopCut); 859 G4double select = ssurf[2]*G4UniformRand(); << 927 aThree = pi*xSemiAxis*ySemiAxis*sqr(zheight-zTopCut); 860 G4int k = 2; << 928 861 if (select <= ssurf[1]) k = 1; << 929 phi = RandFlat::shoot(0.,twopi); 862 if (select <= ssurf[0]) k = 0; << 930 cosphi = std::cos(phi); >> 931 sinphi = std::sin(phi); >> 932 >> 933 if(zTopCut >= zheight) aThree = 0.; 863 934 864 // Pick random point on selected surface << 935 chose = RandFlat::shoot(0.,aOne+aTwo+aThree); 865 // << 936 if((chose>=0.) && (chose<aOne)) 866 G4ThreeVector p; << 867 switch(k) << 868 { 937 { 869 case 0: // base at -Z, uniform distributio << 938 zRand = RandFlat::shoot(-zTopCut,zTopCut); 870 { << 939 return G4ThreeVector(xSemiAxis*(zheight-zRand)*cosphi, 871 G4double zh = zheight + zTopCut; << 940 ySemiAxis*(zheight-zRand)*sinphi,zRand); 872 G4TwoVector rho = G4RandomPointInEllipse << 941 } 873 p.set(rho.x(),rho.y(),-zTopCut); << 942 else if((chose>=aOne) && (chose<aOne+aTwo)) 874 break; << 943 { 875 } << 944 do 876 case 1: // side surface, uniform distribut << 877 { 945 { 878 G4double zh = G4RandomRadiusInRing(zheig << 946 rRand1 = RandFlat::shoot(0.,1.) ; 879 G4double a = x0; << 947 rRand2 = RandFlat::shoot(0.,1.) ; 880 G4double b = y0; << 948 } while ( rRand2 >= rRand1 ) ; 881 949 882 G4double hh = zheight*zheight; << 950 // rRand2 = RandFlat::shoot(0.,std::sqrt(1.-sqr(rRand1))); 883 G4double aa = a*a; << 951 return G4ThreeVector(rRand1*xSemiAxis*(zheight+zTopCut)*cosphi, 884 G4double bb = b*b; << 952 rRand1*ySemiAxis*(zheight+zTopCut)*sinphi, -zTopCut); 885 G4double R = std::max(a,b); << 886 G4double mu_max = R*std::sqrt(hh + R*R); << 887 953 888 G4double x,y; << 889 for (auto i=0; i<1000; ++i) << 890 { << 891 G4double phi = CLHEP::twopi*G4UniformRand(); << 892 x = std::cos(phi); << 893 y = std::sin(phi); << 894 G4double xx = x*x; << 895 G4double yy = y*y; << 896 G4double E = hh + aa*xx + bb*yy; << 897 G4double F = (aa-bb)*x*y; << 898 G4double G = aa*yy + bb*xx; << 899 G4double mu = std::sqrt(E*G - F*F); << 900 if (mu_max*G4UniformRand() <= mu) brea << 901 } << 902 p.set(zh*xSemiAxis*x,zh*ySemiAxis*y,zhei << 903 break; << 904 } << 905 case 2: // base at +Z, uniform distributio << 906 { << 907 G4double zh = zheight - zTopCut; << 908 G4TwoVector rho = G4RandomPointInEllipse << 909 p.set(rho.x(),rho.y(),zTopCut); << 910 break; << 911 } << 912 } 954 } 913 return p; << 955 // else 914 } << 956 // 915 << 916 ////////////////////////////////////////////// << 917 // << 918 // Get cubic volume << 919 957 920 G4double G4EllipticalCone::GetCubicVolume() << 958 do 921 { << 922 if (fCubicVolume == 0.0) << 923 { 959 { 924 G4double x0 = xSemiAxis*zheight; // x semi << 960 rRand1 = RandFlat::shoot(0.,1.) ; 925 G4double y0 = ySemiAxis*zheight; // y semi << 961 rRand2 = RandFlat::shoot(0.,1.) ; 926 G4double v0 = CLHEP::pi*x0*y0*zheight/3.; << 962 } while ( rRand2 >= rRand1 ) ; 927 G4double kmin = (zTopCut >= zheight ) ? 0. << 928 G4double kmax = (zTopCut >= zheight ) ? 2. << 929 fCubicVolume = (kmax - kmin)*(kmax*kmax + << 930 } << 931 return fCubicVolume; << 932 } << 933 << 934 ////////////////////////////////////////////// << 935 // << 936 // Get surface area << 937 963 938 G4double G4EllipticalCone::GetSurfaceArea() << 964 return G4ThreeVector(rRand1*xSemiAxis*(zheight-zTopCut)*cosphi, 939 { << 965 rRand1*ySemiAxis*(zheight-zTopCut)*sinphi, zTopCut); 940 if (fSurfaceArea == 0.0) << 941 { << 942 G4double x0 = xSemiAxis*zheight; // x semi << 943 G4double y0 = ySemiAxis*zheight; // y semi << 944 G4double s0 = G4GeomTools::EllipticConeLat << 945 G4double kmin = (zTopCut >= zheight ) ? 0. << 946 G4double kmax = (zTopCut >= zheight ) ? 2. << 947 fSurfaceArea = (kmax - kmin)*(kmax + kmin) << 948 + CLHEP::pi*x0*y0*(kmin*kmin << 949 } << 950 return fSurfaceArea; << 951 } 966 } 952 967 953 ////////////////////////////////////////////// << 954 // 968 // 955 // Methods for visualisation 969 // Methods for visualisation >> 970 // 956 971 957 void G4EllipticalCone::DescribeYourselfTo (G4V 972 void G4EllipticalCone::DescribeYourselfTo (G4VGraphicsScene& scene) const 958 { 973 { 959 scene.AddSolid(*this); 974 scene.AddSolid(*this); 960 } 975 } 961 976 962 G4VisExtent G4EllipticalCone::GetExtent() cons 977 G4VisExtent G4EllipticalCone::GetExtent() const 963 { 978 { 964 // Define the sides of the box into which th 979 // Define the sides of the box into which the solid instance would fit. 965 // 980 // 966 G4ThreeVector pmin,pmax; << 981 G4double maxDim; 967 BoundingLimits(pmin,pmax); << 982 maxDim = xSemiAxis > ySemiAxis ? xSemiAxis : ySemiAxis; 968 return { pmin.x(), pmax.x(), pmin.y(), pmax. << 983 maxDim = maxDim > zTopCut ? maxDim : zTopCut; >> 984 >> 985 return G4VisExtent (-maxDim, maxDim, >> 986 -maxDim, maxDim, >> 987 -maxDim, maxDim); >> 988 } >> 989 >> 990 G4NURBS* G4EllipticalCone::CreateNURBS () const >> 991 { >> 992 // Box for now!!! >> 993 // >> 994 return new G4NURBSbox(xSemiAxis, ySemiAxis,zheight); 969 } 995 } 970 996 971 G4Polyhedron* G4EllipticalCone::CreatePolyhedr 997 G4Polyhedron* G4EllipticalCone::CreatePolyhedron () const 972 { 998 { 973 return new G4PolyhedronEllipticalCone(xSemiA 999 return new G4PolyhedronEllipticalCone(xSemiAxis, ySemiAxis, zheight, zTopCut); 974 } 1000 } 975 1001 976 G4Polyhedron* G4EllipticalCone::GetPolyhedron 1002 G4Polyhedron* G4EllipticalCone::GetPolyhedron () const 977 { 1003 { 978 if ( (fpPolyhedron == nullptr) << 1004 if ( (!fpPolyhedron) 979 || fRebuildPolyhedron << 980 || (fpPolyhedron->GetNumberOfRotationSteps 1005 || (fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 981 fpPolyhedron->GetNumberOfRotationSteps 1006 fpPolyhedron->GetNumberOfRotationSteps()) ) 982 { 1007 { 983 G4AutoLock l(&polyhedronMutex); << 984 delete fpPolyhedron; 1008 delete fpPolyhedron; 985 fpPolyhedron = CreatePolyhedron(); 1009 fpPolyhedron = CreatePolyhedron(); 986 fRebuildPolyhedron = false; << 987 l.unlock(); << 988 } 1010 } 989 return fpPolyhedron; 1011 return fpPolyhedron; 990 } 1012 } 991 << 992 #endif // !defined(G4GEOM_USE_UELLIPTICALCONE) << 993 1013