Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4EllipticalCone.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/specific/src/G4EllipticalCone.cc (Version 11.3.0) and /geometry/solids/specific/src/G4EllipticalCone.cc (Version 9.1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 // $Id: G4EllipticalCone.cc,v 1.15 2007/08/21 12:58:36 gcosmo Exp $
                                                   >>  27 // GEANT4 tag $Name: geant4-09-01 $
                                                   >>  28 //
 26 // Implementation of G4EllipticalCone class        29 // Implementation of G4EllipticalCone class
 27 //                                                 30 //
 28 // This code implements an Elliptical Cone giv     31 // This code implements an Elliptical Cone given explicitly by the
 29 // equation:                                       32 // equation:
 30 //   x^2/a^2 + y^2/b^2 = (z-h)^2                   33 //   x^2/a^2 + y^2/b^2 = (z-h)^2
 31 // and specified by the parameters (a,b,h) and     34 // and specified by the parameters (a,b,h) and a cut parallel to the
 32 // xy plane above z = 0.                           35 // xy plane above z = 0.
 33 //                                                 36 //
 34 // Author: Dionysios Anninos                       37 // Author: Dionysios Anninos
 35 // Revised: Evgueni Tcherniaev                 <<  38 //
 36 // -------------------------------------------     39 // --------------------------------------------------------------------
 37                                                    40 
 38 #if !(defined(G4GEOM_USE_UELLIPTICALCONE) && d << 
 39                                                << 
 40 #include "globals.hh"                              41 #include "globals.hh"
 41                                                    42 
 42 #include "G4EllipticalCone.hh"                     43 #include "G4EllipticalCone.hh"
 43                                                    44 
 44 #include "G4RandomTools.hh"                    << 
 45 #include "G4GeomTools.hh"                      << 
 46 #include "G4ClippablePolygon.hh"                   45 #include "G4ClippablePolygon.hh"
                                                   >>  46 #include "G4SolidExtentList.hh"
 47 #include "G4VoxelLimits.hh"                        47 #include "G4VoxelLimits.hh"
 48 #include "G4AffineTransform.hh"                    48 #include "G4AffineTransform.hh"
 49 #include "G4BoundingEnvelope.hh"               << 
 50 #include "G4GeometryTolerance.hh"                  49 #include "G4GeometryTolerance.hh"
 51                                                    50 
 52 #include "meshdefs.hh"                             51 #include "meshdefs.hh"
 53                                                    52 
 54 #include "Randomize.hh"                            53 #include "Randomize.hh"
 55                                                    54 
 56 #include "G4VGraphicsScene.hh"                     55 #include "G4VGraphicsScene.hh"
                                                   >>  56 #include "G4Polyhedron.hh"
                                                   >>  57 #include "G4NURBS.hh"
                                                   >>  58 #include "G4NURBSbox.hh"
 57 #include "G4VisExtent.hh"                          59 #include "G4VisExtent.hh"
 58                                                    60 
 59 #include "G4AutoLock.hh"                       <<  61 //#define G4SPECSDEBUG 1    
 60                                                << 
 61 namespace                                      << 
 62 {                                              << 
 63   G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE << 
 64 }                                              << 
 65                                                    62 
 66 using namespace CLHEP;                             63 using namespace CLHEP;
 67                                                    64 
 68 ////////////////////////////////////////////// <<  65 //////////////////////////////////////////////////////////////////////
 69 //                                                 66 //
 70 // Constructor - check parameters                  67 // Constructor - check parameters
 71                                                <<  68 //
 72 G4EllipticalCone::G4EllipticalCone(const G4Str     69 G4EllipticalCone::G4EllipticalCone(const G4String& pName,
 73                                          G4dou     70                                          G4double  pxSemiAxis,
 74                                          G4dou     71                                          G4double  pySemiAxis,
 75                                          G4dou     72                                          G4double  pzMax,
 76                                          G4dou     73                                          G4double  pzTopCut)
 77   : G4VSolid(pName), zTopCut(0.)               <<  74   : G4VSolid(pName), fpPolyhedron(0), fCubicVolume(0.), fSurfaceArea(0.),
                                                   >>  75     zTopCut(0.)
 78 {                                                  76 {
 79   halfCarTol = 0.5*kCarTolerance;              << 
 80                                                    77 
 81   // Check Semi-Axis & Z-cut                   <<  78   kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance();
                                                   >>  79 
                                                   >>  80   // Check Semi-Axis
 82   //                                               81   //
 83   if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0. <<  82   if ( (pxSemiAxis > 0.) && (pySemiAxis > 0.) && (pzMax > 0.) )
 84   {                                                83   {
 85      std::ostringstream message;               <<  84      SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax );
 86      message << "Invalid semi-axis or height f <<  85   }
 87              << "\n   X semi-axis, Y semi-axis <<  86   else
 88              << pxSemiAxis << ", " << pySemiAx << 
 89      G4Exception("G4EllipticalCone::G4Elliptic << 
 90                  FatalErrorInArgument, message << 
 91    }                                           << 
 92                                                << 
 93   if ( pzTopCut <= 0 )                         << 
 94   {                                                87   {
 95      std::ostringstream message;               <<  88      G4cerr << "ERROR - G4EllipticalCone::G4EllipticalCone(): "
 96      message << "Invalid z-coordinate for cutt <<  89             << GetName() << G4endl
 97              << "\n   Z top cut = " << pzTopCu <<  90             << "        Invalid semi-axis or height!" << G4endl;
 98      G4Exception("G4EllipticalCone::G4Elliptic <<  91      G4Exception("G4EllipticalCone::G4EllipticalCone()", "InvalidSetup",
 99                  FatalErrorInArgument, message <<  92                  FatalException, "Invalid semi-axis or height.");
100   }                                                93   }
101                                                    94 
102   SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax ) <<  95   if ( pzTopCut > 0 )
103   SetZCut(pzTopCut);                           <<  96   {
                                                   >>  97      SetZCut(pzTopCut);
                                                   >>  98   }
                                                   >>  99   else
                                                   >> 100   {
                                                   >> 101      G4cerr << "ERROR - G4EllipticalCone::G4EllipticalCone(): "
                                                   >> 102             << GetName() << G4endl
                                                   >> 103             << "        Invalid z-coordinate for cutting plane !" << G4endl;
                                                   >> 104      G4Exception("G4EllipticalCone::G4EllipticalCone()", "InvalidSetup",
                                                   >> 105                  FatalException, "Invalid z-coordinate for cutting plane.");
                                                   >> 106   }
104 }                                                 107 }
105                                                   108 
106 ////////////////////////////////////////////// << 109 ///////////////////////////////////////////////////////////////////////////////
107 //                                                110 //
108 // Fake default constructor - sets only member    111 // Fake default constructor - sets only member data and allocates memory
109 //                            for usage restri    112 //                            for usage restricted to object persistency.
110                                                << 113 //
111 G4EllipticalCone::G4EllipticalCone( __void__&     114 G4EllipticalCone::G4EllipticalCone( __void__& a )
112   : G4VSolid(a), halfCarTol(0.),               << 115   : G4VSolid(a), fpPolyhedron(0), fCubicVolume(0.), fSurfaceArea(0.),
113     xSemiAxis(0.), ySemiAxis(0.), zheight(0.), << 116     zTopCut(0.)
114     cosAxisMin(0.), invXX(0.), invYY(0.)       << 
115 {                                                 117 {
116 }                                                 118 }
117                                                   119 
118 ////////////////////////////////////////////// << 120 ///////////////////////////////////////////////////////////////////////////////
119 //                                                121 //
120 // Destructor                                     122 // Destructor
121                                                << 123 //
122 G4EllipticalCone::~G4EllipticalCone()             124 G4EllipticalCone::~G4EllipticalCone()
123 {                                                 125 {
124   delete fpPolyhedron; fpPolyhedron = nullptr; << 
125 }                                                 126 }
126                                                   127 
127 ////////////////////////////////////////////// << 128 ///////////////////////////////////////////////////////////////////////////////
128 //                                                129 //
129 // Copy constructor                            << 130 // Calculate extent under transform and specified limit
130                                                << 
131 G4EllipticalCone::G4EllipticalCone(const G4Ell << 
132   : G4VSolid(rhs), halfCarTol(rhs.halfCarTol), << 
133     fCubicVolume(rhs.fCubicVolume), fSurfaceAr << 
134     xSemiAxis(rhs.xSemiAxis), ySemiAxis(rhs.yS << 
135     zheight(rhs.zheight), zTopCut(rhs.zTopCut) << 
136     cosAxisMin(rhs.cosAxisMin), invXX(rhs.invX << 
137 {                                              << 
138 }                                              << 
139                                                << 
140 ////////////////////////////////////////////// << 
141 //                                                131 //
142 // Assignment operator                         << 132 G4bool
143                                                << 133 G4EllipticalCone::CalculateExtent( const EAxis axis,
144 G4EllipticalCone& G4EllipticalCone::operator = << 134                                    const G4VoxelLimits &voxelLimit,
                                                   >> 135                                    const G4AffineTransform &transform,
                                                   >> 136                                          G4double &min, G4double &max ) const
145 {                                                 137 {
146    // Check assignment to self                 << 138   G4SolidExtentList  extentList( axis, voxelLimit );
147    //                                          << 139   
148    if (this == &rhs)  { return *this; }        << 140   //
149                                                << 141   // We are going to divide up our elliptical face into small pieces
150    // Copy base class data                     << 142   //
151    //                                          << 143   
152    G4VSolid::operator=(rhs);                   << 144   //
153                                                << 145   // Choose phi size of our segment(s) based on constants as
154    // Copy data                                << 146   // defined in meshdefs.hh
155    //                                          << 147   //
156    halfCarTol = rhs.halfCarTol;                << 148   G4int numPhi = kMaxMeshSections;
157    fCubicVolume = rhs.fCubicVolume; fSurfaceAr << 149   G4double sigPhi = twopi/numPhi;
158    xSemiAxis = rhs.xSemiAxis; ySemiAxis = rhs. << 150   
159    zheight = rhs.zheight; zTopCut = rhs.zTopCu << 151   //
160    cosAxisMin = rhs.cosAxisMin; invXX = rhs.in << 152   // We have to be careful to keep our segments completely outside
                                                   >> 153   // of the elliptical surface. To do so we imagine we have
                                                   >> 154   // a simple (unit radius) circular cross section (as in G4Tubs) 
                                                   >> 155   // and then "stretch" the dimensions as necessary to fit the ellipse.
                                                   >> 156   //
                                                   >> 157   G4double rFudge = 1.0/std::cos(0.5*sigPhi);
                                                   >> 158   G4double dxFudgeBot = xSemiAxis*2.*zheight*rFudge,
                                                   >> 159            dyFudgeBot = ySemiAxis*2.*zheight*rFudge;
                                                   >> 160   G4double dxFudgeTop = xSemiAxis*(zheight-zTopCut)*rFudge,
                                                   >> 161            dyFudgeTop = ySemiAxis*(zheight-zTopCut)*rFudge;
                                                   >> 162   
                                                   >> 163   //
                                                   >> 164   // As we work around the elliptical surface, we build
                                                   >> 165   // a "phi" segment on the way, and keep track of two
                                                   >> 166   // additional polygons for the two ends.
                                                   >> 167   //
                                                   >> 168   G4ClippablePolygon endPoly1, endPoly2, phiPoly;
                                                   >> 169   
                                                   >> 170   G4double phi = 0, 
                                                   >> 171            cosPhi = std::cos(phi),
                                                   >> 172            sinPhi = std::sin(phi);
                                                   >> 173   G4ThreeVector v0( dxFudgeTop*cosPhi, dyFudgeTop*sinPhi, +zTopCut ),
                                                   >> 174                 v1( dxFudgeBot*cosPhi, dyFudgeBot*sinPhi, -zTopCut ),
                                                   >> 175                 w0, w1;
                                                   >> 176   transform.ApplyPointTransform( v0 );
                                                   >> 177   transform.ApplyPointTransform( v1 );
                                                   >> 178   do
                                                   >> 179   {
                                                   >> 180     phi += sigPhi;
                                                   >> 181     if (numPhi == 1) phi = 0;  // Try to avoid roundoff
                                                   >> 182     cosPhi = std::cos(phi), 
                                                   >> 183     sinPhi = std::sin(phi);
                                                   >> 184     
                                                   >> 185     w0 = G4ThreeVector( dxFudgeTop*cosPhi, dyFudgeTop*sinPhi, +zTopCut );
                                                   >> 186     w1 = G4ThreeVector( dxFudgeBot*cosPhi, dyFudgeBot*sinPhi, -zTopCut );
                                                   >> 187     transform.ApplyPointTransform( w0 );
                                                   >> 188     transform.ApplyPointTransform( w1 );
                                                   >> 189     
                                                   >> 190     //
                                                   >> 191     // Add a point to our z ends
                                                   >> 192     //
                                                   >> 193     endPoly1.AddVertexInOrder( v0 );
                                                   >> 194     endPoly2.AddVertexInOrder( v1 );
                                                   >> 195     
                                                   >> 196     //
                                                   >> 197     // Build phi polygon
                                                   >> 198     //
                                                   >> 199     phiPoly.ClearAllVertices();
                                                   >> 200     
                                                   >> 201     phiPoly.AddVertexInOrder( v0 );
                                                   >> 202     phiPoly.AddVertexInOrder( v1 );
                                                   >> 203     phiPoly.AddVertexInOrder( w1 );
                                                   >> 204     phiPoly.AddVertexInOrder( w0 );
                                                   >> 205     
                                                   >> 206     if (phiPoly.PartialClip( voxelLimit, axis ))
                                                   >> 207     {
                                                   >> 208       //
                                                   >> 209       // Get unit normal
                                                   >> 210       //
                                                   >> 211       phiPoly.SetNormal( (v1-v0).cross(w0-v0).unit() );
                                                   >> 212       
                                                   >> 213       extentList.AddSurface( phiPoly );
                                                   >> 214     }
161                                                   215 
162    fRebuildPolyhedron = false;                 << 216     //
163    delete fpPolyhedron; fpPolyhedron = nullptr << 217     // Next vertex
                                                   >> 218     //    
                                                   >> 219     v0 = w0;
                                                   >> 220     v1 = w1;
                                                   >> 221   } while( --numPhi > 0 );
164                                                   222 
165    return *this;                               << 223   //
                                                   >> 224   // Process the end pieces
                                                   >> 225   //
                                                   >> 226   if (endPoly1.PartialClip( voxelLimit, axis ))
                                                   >> 227   {
                                                   >> 228     static const G4ThreeVector normal(0,0,+1);
                                                   >> 229     endPoly1.SetNormal( transform.TransformAxis(normal) );
                                                   >> 230     extentList.AddSurface( endPoly1 );
                                                   >> 231   }
                                                   >> 232   
                                                   >> 233   if (endPoly2.PartialClip( voxelLimit, axis ))
                                                   >> 234   {
                                                   >> 235     static const G4ThreeVector normal(0,0,-1);
                                                   >> 236     endPoly2.SetNormal( transform.TransformAxis(normal) );
                                                   >> 237     extentList.AddSurface( endPoly2 );
                                                   >> 238   }
                                                   >> 239   
                                                   >> 240   //
                                                   >> 241   // Return min/max value
                                                   >> 242   //
                                                   >> 243   return extentList.GetExtent( min, max );
166 }                                                 244 }
167                                                   245 
168 ////////////////////////////////////////////// << 246 ////////////////////////////////////////////////////////////////////////
169 //                                                247 //
170 // Get bounding box                            << 248 // Return whether point inside/outside/on surface
171                                                << 249 // Split into radius, phi, theta checks
172 void G4EllipticalCone::BoundingLimits(G4ThreeV << 250 // Each check modifies `in', or returns as approprate
173                                       G4ThreeV << 251 //
                                                   >> 252 EInside G4EllipticalCone::Inside(const G4ThreeVector& p) const
174 {                                                 253 {
175   G4double zcut   = GetZTopCut();              << 254   G4double rad2oo,  // outside surface outer tolerance
176   G4double height = GetZMax();                 << 255            rad2oi;  // outside surface inner tolerance
177   G4double xmax   = GetSemiAxisX()*(height+zcu << 256   
178   G4double ymax   = GetSemiAxisY()*(height+zcu << 257   EInside in;
179   pMin.set(-xmax,-ymax,-zcut);                 << 
180   pMax.set( xmax, ymax, zcut);                 << 
181                                                << 
182   // Check correctness of the bounding box     << 
183   //                                           << 
184   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
185   {                                            << 
186     std::ostringstream message;                << 
187     message << "Bad bounding box (min >= max)  << 
188             << GetName() << " !"               << 
189             << "\npMin = " << pMin             << 
190             << "\npMax = " << pMax;            << 
191     G4Exception("G4EllipticalCone::BoundingLim << 
192                 JustWarning, message);         << 
193     DumpInfo();                                << 
194   }                                            << 
195 }                                              << 
196                                                   258 
197 ////////////////////////////////////////////// << 259   // check this side of z cut first, because that's fast
198 //                                             << 260   //
199 // Calculate extent under transform and specif << 
200                                                   261 
201 G4bool                                         << 262   if ( (p.z() < -zTopCut - 0.5*kCarTolerance)
202 G4EllipticalCone::CalculateExtent(const EAxis  << 263     || (p.z() > zTopCut + 0.5*kCarTolerance ) )
203                                   const G4Voxe << 
204                                   const G4Affi << 
205                                         G4doub << 
206 {                                              << 
207   G4ThreeVector bmin,bmax;                     << 
208   G4bool exist;                                << 
209                                                << 
210   // Check bounding box (bbox)                 << 
211   //                                           << 
212   BoundingLimits(bmin,bmax);                   << 
213   G4BoundingEnvelope bbox(bmin,bmax);          << 
214 #ifdef G4BBOX_EXTENT                           << 
215   return bbox.CalculateExtent(pAxis,pVoxelLimi << 
216 #endif                                         << 
217   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 
218   {                                               264   {
219     return exist = pMin < pMax;                << 265     return in = kOutside; 
220   }                                               266   }
221                                                   267 
222   // Set bounding envelope (benv) and calculat << 268   rad2oo= sqr(p.x()/( xSemiAxis + 0.5*kRadTolerance ))
223   //                                           << 269         + sqr(p.y()/( ySemiAxis + 0.5*kRadTolerance ));
224   static const G4int NSTEPS = 48; // number of << 
225   static const G4double ang = twopi/NSTEPS;    << 
226   static const G4double sinHalf = std::sin(0.5 << 
227   static const G4double cosHalf = std::cos(0.5 << 
228   static const G4double sinStep = 2.*sinHalf*c << 
229   static const G4double cosStep = 1. - 2.*sinH << 
230   G4double zcut   = bmax.z();                  << 
231   G4double height = GetZMax();                 << 
232   G4double sxmin  = GetSemiAxisX()*(height-zcu << 
233   G4double symin  = GetSemiAxisY()*(height-zcu << 
234   G4double sxmax  = bmax.x()/cosHalf;          << 
235   G4double symax  = bmax.y()/cosHalf;          << 
236                                                << 
237   G4double sinCur = sinHalf;                   << 
238   G4double cosCur = cosHalf;                   << 
239   G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS << 
240   for (G4int k=0; k<NSTEPS; ++k)               << 
241   {                                            << 
242     baseA[k].set(sxmax*cosCur,symax*sinCur,-zc << 
243     baseB[k].set(sxmin*cosCur,symin*sinCur, zc << 
244                                                << 
245     G4double sinTmp = sinCur;                  << 
246     sinCur = sinCur*cosStep + cosCur*sinStep;  << 
247     cosCur = cosCur*cosStep - sinTmp*sinStep;  << 
248   }                                            << 
249                                                << 
250   std::vector<const G4ThreeVectorList *> polyg << 
251   polygons[0] = &baseA;                        << 
252   polygons[1] = &baseB;                        << 
253   G4BoundingEnvelope benv(bmin,bmax,polygons); << 
254   exist = benv.CalculateExtent(pAxis,pVoxelLim << 
255   return exist;                                << 
256 }                                              << 
257                                                   270 
258 ////////////////////////////////////////////// << 271   if ( rad2oo > sqr( zheight-p.z() ) )
259 //                                             << 272   {
260 // Determine where is point: inside, outside o << 273     return in = kOutside; 
                                                   >> 274   }
261                                                   275 
262 EInside G4EllipticalCone::Inside(const G4Three << 276   //  rad2oi= sqr( p.x()*(1.0 + 0.5*kRadTolerance/(xSemiAxis*xSemiAxis)) )
263 {                                              << 277   //      + sqr( p.y()*(1.0 + 0.5*kRadTolerance/(ySemiAxis*ySemiAxis)) );
264   G4double hp = std::sqrt(p.x()*p.x()*invXX +  << 278   rad2oi = sqr(p.x()/( xSemiAxis - 0.5*kRadTolerance ))
265   G4double ds = (hp - zheight)*cosAxisMin;     << 279         + sqr(p.y()/( ySemiAxis - 0.5*kRadTolerance ));
266   G4double dz = std::abs(p.z()) - zTopCut;     << 280      
267   G4double dist = std::max(ds,dz);             << 281   if (rad2oi < sqr( zheight-p.z() ) )
                                                   >> 282   {
                                                   >> 283     in = ( ( p.z() < -zTopCut + 0.5*kRadTolerance )
                                                   >> 284         || ( p.z() >  zTopCut - 0.5*kRadTolerance ) ) ? kSurface : kInside;
                                                   >> 285   }
                                                   >> 286   else 
                                                   >> 287   {
                                                   >> 288     in = kSurface;
                                                   >> 289   }
268                                                   290 
269   if (dist > halfCarTol) return kOutside;      << 291   return in;
270   return (dist > -halfCarTol) ? kSurface : kIn << 
271 }                                                 292 }
272                                                   293 
273 //////////////////////////////////////////////    294 /////////////////////////////////////////////////////////////////////////
274 //                                                295 //
275 // Return unit normal at surface closest to p  << 296 // Return unit normal of surface closest to p not protected against p=0
276                                                << 297 //
277 G4ThreeVector G4EllipticalCone::SurfaceNormal(    298 G4ThreeVector G4EllipticalCone::SurfaceNormal( const G4ThreeVector& p) const
278 {                                                 299 {
279   G4ThreeVector norm(0,0,0);                   << 
280   G4int nsurf = 0;  // number of surfaces wher << 
281                                                   300 
282   G4double hp = std::sqrt(p.x()*p.x()*invXX +  << 301   G4double rx = sqr(p.x()/xSemiAxis), 
283   G4double ds = (hp - zheight)*cosAxisMin;     << 302            ry = sqr(p.y()/ySemiAxis);
284   if (std::abs(ds) <= halfCarTol)              << 303 
                                                   >> 304   G4double rad = std::sqrt(rx + ry); 
                                                   >> 305 
                                                   >> 306   G4ThreeVector norm;
                                                   >> 307 
                                                   >> 308   if( (p.z() < -zTopCut) && ((rx+ry) < sqr(zTopCut + zheight)) )
285   {                                               309   {
286     norm = G4ThreeVector(p.x()*invXX, p.y()*in << 310     return G4ThreeVector( 0., 0., -1. ); 
287     G4double mag = norm.mag();                 << 
288     if (mag == 0) return {0,0,1}; // apex      << 
289     norm *= (1/mag);                           << 
290     ++nsurf;                                   << 
291   }                                               311   }
292   G4double dz = std::abs(p.z()) - zTopCut;     << 312 
293   if (std::abs(dz) <= halfCarTol)              << 313   if( (p.z() > (zheight > zTopCut ? zheight : zTopCut)) &&
                                                   >> 314       ((rx+ry) < sqr(zheight-zTopCut)) )
294   {                                               315   {
295     norm += G4ThreeVector(0., 0.,(p.z() < 0) ? << 316     return G4ThreeVector( 0., 0., 1. );
296     ++nsurf;                                   << 
297   }                                               317   }
298                                                   318 
299   if      (nsurf == 1) return norm;            << 319   if( p.z() > rad + 2.*zTopCut - zheight ) 
300   else if (nsurf >  1) return norm.unit(); //  << 
301   else                                         << 
302   {                                               320   {
303     // Point is not on the surface             << 321     if ( p.z() > zTopCut )
304     //                                         << 322     {
305 #ifdef G4CSGDEBUG                              << 323       if( p.x() == 0. ) 
306     std::ostringstream message;                << 324       {
307     G4long oldprc = message.precision(16);     << 325         norm = G4ThreeVector( 0., p.y() < 0. ? -1. : 1., 1. ); 
308     message << "Point p is not on surface (!?) << 326         return norm /= norm.mag();
309             << GetName() << G4endl;            << 327       } 
310     message << "Position:\n";                  << 328       if( p.y() == 0. )
311     message << "   p.x() = " << p.x()/mm << "  << 329       {
312     message << "   p.y() = " << p.y()/mm << "  << 330         norm = G4ThreeVector( p.x() < 0. ? -1. : 1., 0., 1. ); 
313     message << "   p.z() = " << p.z()/mm << "  << 331         return norm /= norm.mag();
314     G4cout.precision(oldprc);                  << 332       } 
315     G4Exception("G4EllipticalCone::SurfaceNorm << 333       
316                 JustWarning, message );        << 334       G4double m =  std::fabs(p.x()/p.y());
317     DumpInfo();                                << 335       G4double c2 = sqr(zheight-zTopCut)/(1./sqr(xSemiAxis)+sqr(m/ySemiAxis));
318 #endif                                         << 336       G4double x  = std::sqrt(c2);
319     return ApproxSurfaceNormal(p);             << 337       G4double y  = m*x;
                                                   >> 338         
                                                   >> 339       x /= sqr(xSemiAxis);
                                                   >> 340       y /= sqr(ySemiAxis);
                                                   >> 341       
                                                   >> 342       norm = G4ThreeVector( p.x() < 0. ? -x : x, 
                                                   >> 343                             p.y() < 0. ? -y : y,
                                                   >> 344                             zheight - zTopCut );
                                                   >> 345       norm /= norm.mag();
                                                   >> 346       norm += G4ThreeVector( 0., 0., 1. );
                                                   >> 347       return norm /= norm.mag();      
                                                   >> 348     }
                                                   >> 349     
                                                   >> 350     return G4ThreeVector( 0., 0., 1. );    
320   }                                               351   }
321 }                                              << 352   
                                                   >> 353   if( p.z() < rad - 2.*zTopCut - zheight )
                                                   >> 354   {
                                                   >> 355     if( p.x() == 0. ) 
                                                   >> 356     {
                                                   >> 357       norm = G4ThreeVector( 0., p.y() < 0. ? -1. : 1., -1. ); 
                                                   >> 358       return norm /= norm.mag();
                                                   >> 359     } 
                                                   >> 360     if( p.y() == 0. )
                                                   >> 361     {
                                                   >> 362       norm = G4ThreeVector( p.x() < 0. ? -1. : 1., 0., -1. ); 
                                                   >> 363       return norm /= norm.mag();
                                                   >> 364     } 
                                                   >> 365     
                                                   >> 366     G4double m =  std::fabs(p.x()/p.y());
                                                   >> 367     G4double c2 = sqr(zheight+zTopCut)/(1./sqr(xSemiAxis)+sqr(m/ySemiAxis));
                                                   >> 368     G4double x  = std::sqrt(c2);
                                                   >> 369     G4double y  = m*x;
                                                   >> 370     
                                                   >> 371     x /= sqr(xSemiAxis);
                                                   >> 372     y /= sqr(ySemiAxis);
                                                   >> 373     
                                                   >> 374     norm = G4ThreeVector( p.x() < 0. ? -x : x, 
                                                   >> 375                           p.y() < 0. ? -y : y,
                                                   >> 376                           zheight - zTopCut );
                                                   >> 377     norm /= norm.mag();
                                                   >> 378     norm += G4ThreeVector( 0., 0., -1. );
                                                   >> 379     return norm /= norm.mag();      
                                                   >> 380   }
                                                   >> 381     
                                                   >> 382   norm  = G4ThreeVector(p.x()/sqr(xSemiAxis), p.y()/sqr(ySemiAxis), rad);
                                                   >> 383    
                                                   >> 384   G4double m = std::tan(pi/8.);
                                                   >> 385   G4double c = -zTopCut - m*(zTopCut + zheight);
322                                                   386 
323 ////////////////////////////////////////////// << 387   if( p.z() < -m*rad + c )
324 //                                             << 388     return G4ThreeVector (0.,0.,-1.);
325 // Find surface nearest to point and return co << 389 
326 // The algorithm is similar to the algorithm u << 390   return norm /= norm.mag();
327 // This method normally should not be called.  << 
328                                                << 
329 G4ThreeVector                                  << 
330 G4EllipticalCone::ApproxSurfaceNormal(const G4 << 
331 {                                              << 
332   G4double hp = std::sqrt(p.x()*p.x()*invXX +  << 
333   G4double ds = (hp - zheight)*cosAxisMin;     << 
334   G4double dz = std::abs(p.z()) - zTopCut;     << 
335   if (ds > dz && std::abs(hp - p.z()) > halfCa << 
336     return G4ThreeVector(p.x()*invXX, p.y()*in << 
337   else                                         << 
338     return { 0., 0., (G4double)((p.z() < 0) ?  << 
339 }                                                 391 }
340                                                   392 
341 ////////////////////////////////////////////// << 393 //////////////////////////////////////////////////////////////////////////
342 //                                                394 //
343 // Calculate distance to shape from outside, a    395 // Calculate distance to shape from outside, along normalised vector
344 // return kInfinity if no intersection, or int    396 // return kInfinity if no intersection, or intersection distance <= tolerance
345                                                << 397 //
346 G4double G4EllipticalCone::DistanceToIn( const    398 G4double G4EllipticalCone::DistanceToIn( const G4ThreeVector& p,
347                                          const    399                                          const G4ThreeVector& v  ) const
348 {                                                 400 {
                                                   >> 401 
                                                   >> 402   static const G4double halfTol = 0.5*kCarTolerance;
                                                   >> 403 
349   G4double distMin = kInfinity;                   404   G4double distMin = kInfinity;
350                                                   405 
351   // code from EllipticalTube                     406   // code from EllipticalTube
352                                                   407 
353   G4double sigz = p.z()+zTopCut;                  408   G4double sigz = p.z()+zTopCut;
354                                                   409 
355   //                                              410   //
356   // Check z = -dz planer surface                 411   // Check z = -dz planer surface
357   //                                              412   //
358                                                   413 
359   if (sigz < halfCarTol)                       << 414   if (sigz < halfTol)
360   {                                               415   {
361     //                                            416     //
362     // We are "behind" the shape in z, and so     417     // We are "behind" the shape in z, and so can
363     // potentially hit the rear face. Correct     418     // potentially hit the rear face. Correct direction?
364     //                                            419     //
365     if (v.z() <= 0)                               420     if (v.z() <= 0)
366     {                                             421     {
367       //                                          422       //
368       // As long as we are far enough away, we    423       // As long as we are far enough away, we know we
369       // can't intersect                          424       // can't intersect
370       //                                          425       //
371       if (sigz < 0) return kInfinity;             426       if (sigz < 0) return kInfinity;
372                                                   427       
373       //                                          428       //
374       // Otherwise, we don't intersect unless     429       // Otherwise, we don't intersect unless we are
375       // on the surface of the ellipse            430       // on the surface of the ellipse
376       //                                          431       //
377                                                   432 
378       if ( sqr(p.x()/( xSemiAxis - halfCarTol  << 433       if ( sqr(p.x()/( xSemiAxis - halfTol ))
379          + sqr(p.y()/( ySemiAxis - halfCarTol  << 434          + sqr(p.y()/( ySemiAxis - halfTol )) <= sqr( zheight+zTopCut ) )
380         return kInfinity;                         435         return kInfinity;
381                                                   436 
382     }                                             437     }
383     else                                          438     else
384     {                                             439     {
385       //                                          440       //
386       // How far?                                 441       // How far?
387       //                                          442       //
388       G4double q = -sigz/v.z();                << 443       G4double s = -sigz/v.z();
389                                                   444       
390       //                                          445       //
391       // Where does that place us?                446       // Where does that place us?
392       //                                          447       //
393       G4double xi = p.x() + q*v.x(),           << 448       G4double xi = p.x() + s*v.x(),
394                yi = p.y() + q*v.y();           << 449                yi = p.y() + s*v.y();
395                                                   450       
396       //                                          451       //
397       // Is this on the surface (within ellips    452       // Is this on the surface (within ellipse)?
398       //                                          453       //
399       if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi    454       if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight + zTopCut ) )
400       {                                           455       {
401         //                                        456         //
402         // Yup. Return q, unless we are on the << 457         // Yup. Return s, unless we are on the surface
403         //                                        458         //
404         return (sigz < -halfCarTol) ? q : 0;   << 459         return (sigz < -halfTol) ? s : 0;
405       }                                           460       }
406       else if (xi/(xSemiAxis*xSemiAxis)*v.x()     461       else if (xi/(xSemiAxis*xSemiAxis)*v.x()
407              + yi/(ySemiAxis*ySemiAxis)*v.y()     462              + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0)
408       {                                           463       {
409         //                                        464         //
410         // Else, if we are traveling outwards,    465         // Else, if we are traveling outwards, we know
411         // we must miss                           466         // we must miss
412         //                                        467         //
413         //        return kInfinity;               468         //        return kInfinity;
414       }                                           469       }
415     }                                             470     }
416   }                                               471   }
417                                                   472 
418   //                                              473   //
419   // Check z = +dz planer surface                 474   // Check z = +dz planer surface
420   //                                              475   //
                                                   >> 476 
421   sigz = p.z() - zTopCut;                         477   sigz = p.z() - zTopCut;
422                                                   478   
423   if (sigz > -halfCarTol)                      << 479   if (sigz > -halfTol)
424   {                                               480   {
425     if (v.z() >= 0)                               481     if (v.z() >= 0)
426     {                                             482     {
427                                                   483 
428       if (sigz > 0) return kInfinity;             484       if (sigz > 0) return kInfinity;
429                                                   485 
430       if ( sqr(p.x()/( xSemiAxis - halfCarTol  << 486       if ( sqr(p.x()/( xSemiAxis - halfTol ))
431          + sqr(p.y()/( ySemiAxis - halfCarTol  << 487          + sqr(p.y()/( ySemiAxis - halfTol )) <= sqr( zheight-zTopCut ) )
432         return kInfinity;                         488         return kInfinity;
433                                                   489 
434     }                                             490     }
435     else {                                        491     else {
436       G4double q = -sigz/v.z();                << 492       G4double s = -sigz/v.z();
437                                                   493 
438       G4double xi = p.x() + q*v.x(),           << 494       G4double xi = p.x() + s*v.x(),
439                yi = p.y() + q*v.y();           << 495                yi = p.y() + s*v.y();
440                                                   496 
441       if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi    497       if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight - zTopCut ) )
442       {                                           498       {
443         return (sigz > -halfCarTol) ? q : 0;   << 499         return (sigz > -halfTol) ? s : 0;
444       }                                           500       }
445       else if (xi/(xSemiAxis*xSemiAxis)*v.x()     501       else if (xi/(xSemiAxis*xSemiAxis)*v.x()
446              + yi/(ySemiAxis*ySemiAxis)*v.y()     502              + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0)
447       {                                           503       {
448         //        return kInfinity;               504         //        return kInfinity;
449       }                                           505       }
450     }                                             506     }
451   }                                               507   }
452                                                   508 
453                                                   509 
454 #if 0                                             510 #if 0
455                                                   511 
456   // check to see if Z plane is relevant          512   // check to see if Z plane is relevant
457   //                                              513   //
458   if (p.z() < -zTopCut - halfCarTol)           << 514   if (p.z() < -zTopCut - 0.5*kCarTolerance)
459   {                                               515   {
460     if (v.z() <= 0.0)                             516     if (v.z() <= 0.0)
461       return distMin;                             517       return distMin; 
462                                                   518 
463     G4double lambda = (-zTopCut - p.z())/v.z()    519     G4double lambda = (-zTopCut - p.z())/v.z();
464                                                   520     
465     if ( sqr((lambda*v.x()+p.x())/xSemiAxis) +    521     if ( sqr((lambda*v.x()+p.x())/xSemiAxis) + 
466          sqr((lambda*v.y()+p.y())/ySemiAxis) <    522          sqr((lambda*v.y()+p.y())/ySemiAxis) <=
467          sqr(zTopCut + zheight + halfCarTol) ) << 523          sqr(zTopCut + zheight + 0.5*kRadTolerance) ) 
468     {                                             524     { 
469       return distMin = std::fabs(lambda);         525       return distMin = std::fabs(lambda);    
470     }                                             526     }
471   }                                               527   }
472                                                   528 
473   if (p.z() > zTopCut + halfCarTol)            << 529   if (p.z() > zTopCut+0.5*kCarTolerance) 
474   {                                               530   {
475     if (v.z() >= 0.0)                             531     if (v.z() >= 0.0)
476       { return distMin; }                         532       { return distMin; }
477                                                   533 
478     G4double lambda  = (zTopCut - p.z()) / v.z    534     G4double lambda  = (zTopCut - p.z()) / v.z();
479                                                   535 
480     if ( sqr((lambda*v.x() + p.x())/xSemiAxis)    536     if ( sqr((lambda*v.x() + p.x())/xSemiAxis) + 
481          sqr((lambda*v.y() + p.y())/ySemiAxis)    537          sqr((lambda*v.y() + p.y())/ySemiAxis) <=
482          sqr(zheight - zTopCut + halfCarTol) ) << 538          sqr(zheight - zTopCut + 0.5*kRadTolerance) )
483       {                                           539       {
484         return distMin = std::fabs(lambda);       540         return distMin = std::fabs(lambda);
485       }                                           541       }
486   }                                               542   }
487                                                   543   
488   if (p.z() > zTopCut - halfCarTol             << 544   if (p.z() > zTopCut - 0.5*kCarTolerance
489    && p.z() < zTopCut + halfCarTol )           << 545    && p.z() < zTopCut + 0.5*kCarTolerance )
490   {                                               546   {
491     if (v.z() > 0.)                               547     if (v.z() > 0.) 
492       { return kInfinity; }                       548       { return kInfinity; }
493                                                   549 
494     return distMin = 0.;                          550     return distMin = 0.;
495   }                                               551   }
496                                                   552   
497   if (p.z() < -zTopCut + halfCarTol            << 553   if (p.z() < -zTopCut + 0.5*kCarTolerance
498    && p.z() > -zTopCut - halfCarTol)           << 554    && p.z() > -zTopCut - 0.5*kCarTolerance)
499   {                                               555   {
500     if (v.z() < 0.)                               556     if (v.z() < 0.)
501       { return distMin = kInfinity; }             557       { return distMin = kInfinity; }
502                                                   558     
503     return distMin = 0.;                          559     return distMin = 0.;
504   }                                               560   }
505                                                   561   
506 #endif                                            562 #endif
507                                                   563 
508   // if we are here then it either intersects     564   // if we are here then it either intersects or grazes the curved surface 
509   // or it does not intersect at all              565   // or it does not intersect at all
510   //                                              566   //
                                                   >> 567 
511   G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y(    568   G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z());
512   G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) +    569   G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) + 
513                   v.y()*p.y()/sqr(ySemiAxis) +    570                   v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z()));
514   G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y(    571   G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) - 
515                sqr(zheight - p.z());              572                sqr(zheight - p.z());
516                                                   573  
517   G4double discr = B*B - 4.*A*C;                  574   G4double discr = B*B - 4.*A*C;
518                                                   575    
519   // if the discriminant is negative it never     576   // if the discriminant is negative it never hits the curved object
520   //                                              577   //
521   if ( discr < -halfCarTol )                   << 578   if ( discr < -0.5*kCarTolerance )
522     { return distMin; }                           579     { return distMin; }
523                                                   580   
524   // case below is when it hits or grazes the  << 581   //case below is when it hits or grazes the surface
525   //                                              582   //
526   if ( (discr >= -halfCarTol ) && (discr < hal << 583   if ( (discr >= - 0.5*kCarTolerance ) && (discr < 0.5*kCarTolerance ) )
527   {                                               584   {
528     return distMin = std::fabs(-B/(2.*A));        585     return distMin = std::fabs(-B/(2.*A)); 
529   }                                               586   }
530                                                   587   
531   G4double plus  = (-B+std::sqrt(discr))/(2.*A    588   G4double plus  = (-B+std::sqrt(discr))/(2.*A);
532   G4double minus = (-B-std::sqrt(discr))/(2.*A    589   G4double minus = (-B-std::sqrt(discr))/(2.*A);
533                                                << 590   //  G4double lambda   = std::fabs(plus) < std::fabs(minus) ? plus : minus;
534   // Special case::Point on Surface, Check nor << 
535                                                << 
536   if ( ( std::fabs(plus) < halfCarTol )||( std << 
537   {                                            << 
538     G4ThreeVector truenorm(p.x()/(xSemiAxis*xS << 
539                            p.y()/(ySemiAxis*yS << 
540                            -( p.z() - zheight  << 
541     if ( truenorm*v >= 0)  //  going outside t << 
542     {                                          << 
543       return kInfinity;                        << 
544     }                                          << 
545     else                                       << 
546     {                                          << 
547       return 0;                                << 
548     }                                          << 
549   }                                            << 
550                                                   591 
551   // G4double lambda = std::fabs(plus) < std:: << 
552   G4double lambda = 0;                            592   G4double lambda = 0;
553                                                   593 
554   if ( minus > halfCarTol && minus < distMin ) << 594   if ( minus > halfTol && minus < distMin ) 
555   {                                               595   {
556     lambda = minus ;                              596     lambda = minus ;
557     // check normal vector   n * v < 0            597     // check normal vector   n * v < 0
558     G4ThreeVector pin = p + lambda*v;             598     G4ThreeVector pin = p + lambda*v;
559     if(std::fabs(pin.z())< zTopCut + halfCarTo << 599 
560     {                                          << 600     G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis),
561       G4ThreeVector truenorm(pin.x()/(xSemiAxi << 601                            pin.y()/(ySemiAxis*ySemiAxis),
562                              pin.y()/(ySemiAxi << 602                            - ( pin.z() - zheight ));
563                              - ( pin.z() - zhe << 603     if ( truenorm*v < 0)
564       if ( truenorm*v < 0)                     << 604     {   // yes, going inside the solid
565       {   // yes, going inside the solid       << 605       distMin = lambda;
566         distMin = lambda;                      << 
567       }                                        << 
568     }                                             606     }
569   }                                               607   }
570   if ( plus > halfCarTol  && plus < distMin )  << 608     
                                                   >> 609   if ( plus > halfTol  && plus < distMin )
571   {                                               610   {
572     lambda = plus ;                               611     lambda = plus ;
573     // check normal vector   n * v < 0            612     // check normal vector   n * v < 0
574     G4ThreeVector pin = p + lambda*v;             613     G4ThreeVector pin = p + lambda*v;
575     if(std::fabs(pin.z()) < zTopCut + halfCarT << 614 
576     {                                          << 615     G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis),
577       G4ThreeVector truenorm(pin.x()/(xSemiAxi << 616                            pin.y()/(ySemiAxis*ySemiAxis),
578                              pin.y()/(ySemiAxi << 617                            - ( pin.z() - zheight ) );
579                              - ( pin.z() - zhe << 618     if ( truenorm*v < 0)
580       if ( truenorm*v < 0)                     << 619     {   // yes, going inside the solid
581       {   // yes, going inside the solid       << 620       distMin = lambda;
582         distMin = lambda;                      << 
583       }                                        << 
584     }                                             621     }
585   }                                               622   }
586   if (distMin < halfCarTol) distMin=0.;        << 623 
                                                   >> 624 #ifdef G4SPECSDEBUG    
                                                   >> 625 //  G4cout << "DToIn: plus,minus, lambda = " << plus
                                                   >> 626 //         << ", " << minus << ", " << lambda << G4endl ;
                                                   >> 627 //  G4cout << "DToIn: distMin = " << distMin << G4endl ;
                                                   >> 628 #endif
                                                   >> 629 
                                                   >> 630     
587   return distMin ;                                631   return distMin ;
588 }                                                 632 }
589                                                   633 
590 ////////////////////////////////////////////// << 634 //////////////////////////////////////////////////////////////////////////
591 //                                                635 //
592 // Calculate distance (<= actual) to closest s    636 // Calculate distance (<= actual) to closest surface of shape from outside
593 // Return 0 if point inside                       637 // Return 0 if point inside
594                                                << 638 //
595 G4double G4EllipticalCone::DistanceToIn(const     639 G4double G4EllipticalCone::DistanceToIn(const G4ThreeVector& p) const
596 {                                                 640 {
597   G4double hp = std::sqrt(p.x()*p.x()*invXX +  << 641   G4double distR, distR2, distZ, maxDim;
598   G4double ds = (hp - zheight)*cosAxisMin;     << 642   G4double distRad;  
599   G4double dz = std::abs(p.z()) - zTopCut;     << 643 
600   G4double dist = std::max(ds,dz);             << 644   // check if the point lies either below z=-zTopCut in bottom elliptical
601   return (dist > 0) ? dist : 0.;               << 645   // region or on top within cut elliptical region
                                                   >> 646   //
                                                   >> 647   if( (p.z() <= -zTopCut) && (sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis)
                                                   >> 648                            <= sqr(zTopCut + zheight + 0.5*kCarTolerance )) )
                                                   >> 649   {  
                                                   >> 650     //return distZ = std::fabs(zTopCut - p.z());
                                                   >> 651      return distZ = std::fabs(zTopCut + p.z());
                                                   >> 652   } 
                                                   >> 653   
                                                   >> 654   if( (p.z() >= zTopCut) && (sqr(p.x()/xSemiAxis)+sqr(p.y()/ySemiAxis)
                                                   >> 655                           <= sqr(zheight - zTopCut + kCarTolerance/2.0 )) )
                                                   >> 656   {
                                                   >> 657     return distZ = std::fabs(p.z() - zTopCut);
                                                   >> 658   } 
                                                   >> 659   
                                                   >> 660   // below we use the following approximation: we take the largest of the
                                                   >> 661   // axes and find the shortest distance to the circular (cut) cone of that
                                                   >> 662   // radius.  
                                                   >> 663   //
                                                   >> 664   maxDim = xSemiAxis >= ySemiAxis ? xSemiAxis:ySemiAxis;
                                                   >> 665   distRad = std::sqrt(p.x()*p.x()+p.y()*p.y());
                                                   >> 666 
                                                   >> 667   if( p.z() > maxDim*distRad + zTopCut*(1.+maxDim)-sqr(maxDim)*zheight )
                                                   >> 668   {
                                                   >> 669     distR2 = sqr(p.z() - zTopCut) + sqr(distRad - maxDim*(zheight - zTopCut));
                                                   >> 670     return std::sqrt( distR2 );
                                                   >> 671   } 
                                                   >> 672 
                                                   >> 673   if( distRad > maxDim*( zheight - p.z() ) )
                                                   >> 674   {
                                                   >> 675     if( p.z() > maxDim*distRad - (zTopCut*(1.+maxDim)+sqr(maxDim)*zheight) )
                                                   >> 676     {
                                                   >> 677       G4double zVal = (p.z()-maxDim*(distRad-maxDim*zheight))/(1.+sqr(maxDim));
                                                   >> 678       G4double rVal = maxDim*(zheight - zVal);
                                                   >> 679       return distR  = std::sqrt(sqr(p.z() - zVal) + sqr(distRad - rVal));
                                                   >> 680     }
                                                   >> 681   }
                                                   >> 682 
                                                   >> 683   if( distRad <= maxDim*(zheight - p.z()) )
                                                   >> 684   {
                                                   >> 685     distR2 = sqr(distRad - maxDim*(zheight + zTopCut)) + sqr(p.z() + zTopCut);
                                                   >> 686     return std::sqrt( distR2 );    
                                                   >> 687   }   
                                                   >> 688   
                                                   >> 689   return distR = 0;
602 }                                                 690 }
603                                                   691 
604 ////////////////////////////////////////////// << 692 /////////////////////////////////////////////////////////////////////////
605 //                                                693 //
606 // Calculate distance to surface of shape from    694 // Calculate distance to surface of shape from `inside',
607 // allowing for tolerance                         695 // allowing for tolerance
608                                                << 696 //
609 G4double G4EllipticalCone::DistanceToOut(const    697 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p,
610                                          const    698                                          const G4ThreeVector& v,
611                                          const    699                                          const G4bool calcNorm,
612                                                << 700                                                G4bool *validNorm,
613                                                << 701                                                G4ThreeVector *n  ) const
614 {                                                 702 {
615   G4double distMin, lambda;                       703   G4double distMin, lambda;
616   enum surface_e {kPlaneSurf, kCurvedSurf, kNo    704   enum surface_e {kPlaneSurf, kCurvedSurf, kNoSurf} surface;
617                                                   705   
618   distMin = kInfinity;                            706   distMin = kInfinity;
619   surface = kNoSurf;                              707   surface = kNoSurf;
620                                                   708 
                                                   >> 709   #ifdef G4SPECSDEBUG    
                                                   >> 710   G4cout << "DToOut: vz < 0" << G4endl ;
                                                   >> 711   #endif
                                                   >> 712 
621   if (v.z() < 0.0)                                713   if (v.z() < 0.0)
622   {                                               714   {
623     lambda = (-p.z() - zTopCut)/v.z();            715     lambda = (-p.z() - zTopCut)/v.z();
624                                                   716 
625     if ( (sqr((p.x() + lambda*v.x())/xSemiAxis    717     if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) + 
626           sqr((p.y() + lambda*v.y())/ySemiAxis    718           sqr((p.y() + lambda*v.y())/ySemiAxis)) < 
627           sqr(zheight + zTopCut + halfCarTol)  << 719           sqr(zheight + zTopCut + 0.5*kCarTolerance) )
628     {                                             720     {
629       distMin = std::fabs(lambda);                721       distMin = std::fabs(lambda);
630                                                   722 
631       if (!calcNorm) { return distMin; }          723       if (!calcNorm) { return distMin; }
632     }                                             724     } 
633     distMin = std::fabs(lambda);                  725     distMin = std::fabs(lambda);
634     surface = kPlaneSurf;                         726     surface = kPlaneSurf;
635   }                                               727   }
636                                                   728 
                                                   >> 729   #ifdef G4SPECSDEBUG    
                                                   >> 730   G4cout << "DToOut: vz > 0" << G4endl ;
                                                   >> 731   #endif
                                                   >> 732 
637   if (v.z() > 0.0)                                733   if (v.z() > 0.0)
638   {                                               734   {
639     lambda = (zTopCut - p.z()) / v.z();           735     lambda = (zTopCut - p.z()) / v.z();
640                                                   736 
641     if ( (sqr((p.x() + lambda*v.x())/xSemiAxis    737     if ( (sqr((p.x() + lambda*v.x())/xSemiAxis)
642         + sqr((p.y() + lambda*v.y())/ySemiAxis    738         + sqr((p.y() + lambda*v.y())/ySemiAxis) )
643        < (sqr(zheight - zTopCut + halfCarTol)) << 739        < (sqr(zheight - zTopCut + 0.5*kCarTolerance)) )
644     {                                             740     {
645       distMin = std::fabs(lambda);                741       distMin = std::fabs(lambda);
646       if (!calcNorm) { return distMin; }          742       if (!calcNorm) { return distMin; }
647     }                                             743     }
648     distMin = std::fabs(lambda);                  744     distMin = std::fabs(lambda);
649     surface = kPlaneSurf;                         745     surface = kPlaneSurf;
650   }                                               746   }
651                                                   747   
652   // if we are here then it either intersects     748   // if we are here then it either intersects or grazes the 
653   // curved surface...                            749   // curved surface...
654   //                                              750   //
655   G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y(    751   G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z());
656   G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis)     752   G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) +  
657                    v.y()*p.y()/sqr(ySemiAxis)     753                    v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z()));
658   G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y(    754   G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis)
659              - sqr(zheight - p.z());              755              - sqr(zheight - p.z());
660                                                   756  
661   G4double discr = B*B - 4.*A*C;                  757   G4double discr = B*B - 4.*A*C;
662                                                   758   
663   if ( discr >= - halfCarTol && discr < halfCa << 759   if ( discr >= - 0.5*kCarTolerance && discr < 0.5*kCarTolerance )
664   {                                               760   { 
665     if(!calcNorm) { return distMin = std::fabs    761     if(!calcNorm) { return distMin = std::fabs(-B/(2.*A)); }
666   }                                               762   }
667                                                   763 
668   else if ( discr > halfCarTol )               << 764   else if ( discr > 0.5*kCarTolerance )
669   {                                               765   {
670     G4double plus  = (-B+std::sqrt(discr))/(2.    766     G4double plus  = (-B+std::sqrt(discr))/(2.*A);
671     G4double minus = (-B-std::sqrt(discr))/(2.    767     G4double minus = (-B-std::sqrt(discr))/(2.*A);
672                                                   768 
673     if ( plus > halfCarTol && minus > halfCarT << 769     if ( plus > 0.5*kCarTolerance && minus > 0.5*kCarTolerance )
674     {                                             770     {
675       // take the shorter distance                771       // take the shorter distance
676       //                                          772       //
677       lambda   = std::fabs(plus) < std::fabs(m    773       lambda   = std::fabs(plus) < std::fabs(minus) ? plus : minus;
678     }                                             774     }
679     else                                          775     else
680     {                                             776     {
681       // at least one solution is close to zer    777       // at least one solution is close to zero or negative
682       // so, take small positive solution or z    778       // so, take small positive solution or zero 
683       //                                          779       //
684       lambda   = plus > -halfCarTol ? plus : 0 << 780       lambda   = plus > -0.5*kCarTolerance ? plus : 0;
685     }                                             781     }
686                                                   782 
687     if ( std::fabs(lambda) < distMin )            783     if ( std::fabs(lambda) < distMin )
688     {                                             784     {
689       if( std::fabs(lambda) > halfCarTol)      << 785       distMin  = std::fabs(lambda);
690       {                                        << 786       surface  = kCurvedSurf;
691         distMin  = std::fabs(lambda);          << 
692         surface  = kCurvedSurf;                << 
693       }                                        << 
694       else  // Point is On the Surface, Check  << 
695       {                                        << 
696         G4ThreeVector truenorm(p.x()/(xSemiAxi << 
697                                p.y()/(ySemiAxi << 
698                                -( p.z() - zhei << 
699         if( truenorm.dot(v) > 0 )              << 
700         {                                      << 
701           distMin  = 0.0;                      << 
702           surface  = kCurvedSurf;              << 
703         }                                      << 
704       }                                        << 
705     }                                             787     }
706   }                                               788   }
707                                                   789 
708   // set normal if requested                      790   // set normal if requested
709   //                                              791   //
710   if (calcNorm)                                   792   if (calcNorm)
711   {                                               793   {
712     if (surface == kNoSurf)                       794     if (surface == kNoSurf)
713     {                                             795     {
714       *validNorm = false;                         796       *validNorm = false;
715     }                                             797     }
716     else                                          798     else
717     {                                             799     {
718       *validNorm = true;                          800       *validNorm = true;
719       switch (surface)                            801       switch (surface)
720       {                                           802       {
721         case kPlaneSurf:                          803         case kPlaneSurf:
722         {                                         804         {
723           *n = G4ThreeVector(0.,0.,(v.z() > 0.    805           *n = G4ThreeVector(0.,0.,(v.z() > 0.0 ? 1. : -1.));
724         }                                         806         }
725         break;                                    807         break;
726                                                   808 
727         case kCurvedSurf:                         809         case kCurvedSurf:
728         {                                         810         {
729           G4ThreeVector pexit = p + distMin*v;    811           G4ThreeVector pexit = p + distMin*v;
730           G4ThreeVector truenorm( pexit.x()/(x << 812           G4ThreeVector truenorm(pexit.x()/(xSemiAxis*xSemiAxis),
731                                   pexit.y()/(y << 813                                  pexit.y()/(ySemiAxis*ySemiAxis),
732                                   -( pexit.z() << 814                                  pexit.z() - zheight );
733           truenorm /= truenorm.mag();             815           truenorm /= truenorm.mag();
734           *n= truenorm;                           816           *n= truenorm;
735         }                                         817         } 
736         break;                                    818         break;
737                                                   819 
738         default:            // Should never re << 820         default:
                                                   >> 821           G4cout.precision(16);
                                                   >> 822           G4cout << G4endl;
739           DumpInfo();                             823           DumpInfo();
740           std::ostringstream message;          << 824           G4cout << "Position:"  << G4endl << G4endl;
741           G4long oldprc = message.precision(16 << 825           G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl;
742           message << "Undefined side for valid << 826           G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl;
743                   << G4endl                    << 827           G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl;
744                   << "Position:"  << G4endl    << 828           G4cout << "Direction:" << G4endl << G4endl;
745                   << "   p.x() = "   << p.x()/ << 829           G4cout << "v.x() = "   << v.x() << G4endl;
746                   << "   p.y() = "   << p.y()/ << 830           G4cout << "v.y() = "   << v.y() << G4endl;
747                   << "   p.z() = "   << p.z()/ << 831           G4cout << "v.z() = "   << v.z() << G4endl << G4endl;
748                   << "Direction:" << G4endl    << 832           G4cout << "Proposed distance :" << G4endl << G4endl;
749                   << "   v.x() = "   << v.x()  << 833           G4cout << "distMin = "    << distMin/mm << " mm" << G4endl << G4endl;
750                   << "   v.y() = "   << v.y()  << 
751                   << "   v.z() = "   << v.z()  << 
752                   << "Proposed distance :" <<  << 
753                   << "   distMin = "    << dis << 
754           message.precision(oldprc);           << 
755           G4Exception("G4EllipticalCone::Dista    834           G4Exception("G4EllipticalCone::DistanceToOut(p,v,..)",
756                       "GeomSolids1002", JustWa << 835                       "Notification", JustWarning,
                                                   >> 836                       "Undefined side for valid surface normal to solid.");
757           break;                                  837           break;
758       }                                           838       }
759     }                                             839     }
760   }                                               840   }
761                                                   841 
762   if (distMin < halfCarTol) { distMin=0; }     << 
763                                                << 
764   return distMin;                                 842   return distMin;
765 }                                                 843 }
766                                                   844 
767 //////////////////////////////////////////////    845 /////////////////////////////////////////////////////////////////////////
768 //                                                846 //
769 // Calculate distance (<=actual) to closest su    847 // Calculate distance (<=actual) to closest surface of shape from inside
770                                                << 848 //
771 G4double G4EllipticalCone::DistanceToOut(const    849 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p) const
772 {                                                 850 {
                                                   >> 851   G4double rad,roo,roo1, distR, distZ, distMin=0.;
                                                   >> 852   G4double minAxis = xSemiAxis < ySemiAxis ? xSemiAxis : ySemiAxis;
                                                   >> 853 
773 #ifdef G4SPECSDEBUG                               854 #ifdef G4SPECSDEBUG
774   if( Inside(p) == kOutside )                     855   if( Inside(p) == kOutside )
775   {                                               856   {
776      std::ostringstream message;               << 857      G4cout.precision(16) ;
777      G4long oldprc = message.precision(16);    << 858      G4cout << G4endl ;
778      message << "Point p is outside (!?) of so << 
779              << "Position:\n"                  << 
780              << "   p.x() = "  << p.x()/mm <<  << 
781              << "   p.y() = "  << p.y()/mm <<  << 
782              << "   p.z() = "  << p.z()/mm <<  << 
783      message.precision(oldprc) ;               << 
784      G4Exception("G4Ellipsoid::DistanceToOut(p << 
785                  JustWarning, message);        << 
786      DumpInfo();                                  859      DumpInfo();
                                                   >> 860      G4cout << "Position:"  << G4endl << G4endl ;
                                                   >> 861      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
                                                   >> 862      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
                                                   >> 863      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
                                                   >> 864      G4Exception("G4Ellipsoid::DistanceToOut(p)", "Notification", JustWarning, 
                                                   >> 865                  "Point p is outside !?" );
787   }                                               866   }
788 #endif                                            867 #endif
789   G4double hp = std::sqrt(p.x()*p.x()*invXX +  << 868     
790   G4double ds = (zheight - hp)*cosAxisMin;     << 869   // since we have made the above warning, below we are working assuming p
791   G4double dz = zTopCut - std::abs(p.z());     << 870   // is inside check how close it is to the circular cone with radius equal
792   G4double dist = std::min(ds,dz);             << 871   // to the smaller of the axes
793   return (dist > 0) ? dist : 0.;               << 872   //
794 }                                              << 873   if( sqr(p.x()/minAxis)+sqr(p.y()/minAxis) < sqr(zheight - p.z()) )
                                                   >> 874   {
                                                   >> 875     rad     = std::sqrt(sqr(p.x()) + sqr(p.y()));
                                                   >> 876     roo     = minAxis*(zheight-p.z()); // radius of cone at z= p.z()
                                                   >> 877     roo1    = minAxis*(zheight-zTopCut); // radius of cone at z=+zTopCut
795                                                   878 
796 ////////////////////////////////////////////// << 879     distZ=zTopCut - std::fabs(p.z()) ;
797 //                                             << 880     distR=(roo-rad)/(std::sqrt(1+sqr(minAxis)));
798 // GetEntityType                               << 
799                                                   881 
800 G4GeometryType G4EllipticalCone::GetEntityType << 882     if(rad>roo1)
801 {                                              << 883     {
802   return {"G4EllipticalCone"};                 << 884       distMin=(zTopCut-p.z())*(roo-rad)/(roo-roo1);
                                                   >> 885       distMin=std::min(distMin,distR);
                                                   >> 886     }      
                                                   >> 887     distMin=std::min(distR,distZ);
                                                   >> 888   }
                                                   >> 889 
                                                   >> 890   return distMin;
803 }                                                 891 }
804                                                   892 
805 ////////////////////////////////////////////// << 893 //////////////////////////////////////////////////////////////////////////
806 //                                                894 //
807 // Make a clone of the object                  << 895 // GetEntityType
808                                                << 896 //
809 G4VSolid* G4EllipticalCone::Clone() const      << 897 G4GeometryType G4EllipticalCone::GetEntityType() const
810 {                                                 898 {
811   return new G4EllipticalCone(*this);          << 899   return G4String("G4EllipticalCone");
812 }                                                 900 }
813                                                   901 
814 ////////////////////////////////////////////// << 902 //////////////////////////////////////////////////////////////////////////
815 //                                                903 //
816 // Stream object contents to an output stream     904 // Stream object contents to an output stream
817                                                << 905 //
818 std::ostream& G4EllipticalCone::StreamInfo( st    906 std::ostream& G4EllipticalCone::StreamInfo( std::ostream& os ) const
819 {                                                 907 {
820   G4long oldprc = os.precision(16);            << 
821   os << "-------------------------------------    908   os << "-----------------------------------------------------------\n"
822      << "    *** Dump for solid - " << GetName    909      << "    *** Dump for solid - " << GetName() << " ***\n"
823      << "    =================================    910      << "    ===================================================\n"
824      << " Solid type: G4EllipticalCone\n"         911      << " Solid type: G4EllipticalCone\n"
825      << " Parameters: \n"                         912      << " Parameters: \n"
826                                                   913 
827      << "    semi-axis x: " << xSemiAxis/mm <<    914      << "    semi-axis x: " << xSemiAxis/mm << " mm \n"
828      << "    semi-axis y: " << ySemiAxis/mm <<    915      << "    semi-axis y: " << ySemiAxis/mm << " mm \n"
829      << "    height    z: " << zheight/mm << "    916      << "    height    z: " << zheight/mm << " mm \n"
830      << "    half length in  z: " << zTopCut/m    917      << "    half length in  z: " << zTopCut/mm << " mm \n"
831      << "-------------------------------------    918      << "-----------------------------------------------------------\n";
832   os.precision(oldprc);                        << 
833                                                   919 
834   return os;                                      920   return os;
835 }                                                 921 }
836                                                   922 
837 //////////////////////////////////////////////    923 /////////////////////////////////////////////////////////////////////////
838 //                                                924 //
839 // Return random point on the surface of the s << 925 // GetPointOnSurface
840                                                << 926 //
                                                   >> 927 // returns quasi-uniformly distributed point on surface of elliptical cone
                                                   >> 928 //
841 G4ThreeVector G4EllipticalCone::GetPointOnSurf    929 G4ThreeVector G4EllipticalCone::GetPointOnSurface() const
842 {                                                 930 {
843   G4double x0 = xSemiAxis*zheight; // x semi a << 
844   G4double y0 = ySemiAxis*zheight; // y semi a << 
845   G4double s0 = G4GeomTools::EllipticConeLater << 
846   G4double kmin = (zTopCut >= zheight ) ? 0. : << 
847   G4double kmax = (zTopCut >= zheight ) ? 2. : << 
848                                                << 
849   // Set areas (base at -Z, side surface, base << 
850   //                                           << 
851   G4double szmin =  pi*x0*y0*kmax*kmax;        << 
852   G4double szmax =  pi*x0*y0*kmin*kmin;        << 
853   G4double sside =  s0*(kmax*kmax - kmin*kmin) << 
854   G4double ssurf[3] = { szmin, sside, szmax }; << 
855   for (auto i=1; i<3; ++i) { ssurf[i] += ssurf << 
856                                                   931 
857   // Select surface                            << 932   G4double phi, sinphi, cosphi, aOne, aTwo, aThree,
858   //                                           << 933            chose, zRand, rRand1, rRand2;
859   G4double select = ssurf[2]*G4UniformRand();  << 934   
860   G4int k = 2;                                 << 935   G4double rOne = std::sqrt(sqr(xSemiAxis)
861   if (select <= ssurf[1]) k = 1;               << 936                 + sqr(ySemiAxis))*(zheight - zTopCut);
862   if (select <= ssurf[0]) k = 0;               << 937   G4double rTwo = std::sqrt(sqr(xSemiAxis)
                                                   >> 938                 + sqr(ySemiAxis))*(zheight + zTopCut);
                                                   >> 939   
                                                   >> 940   aOne   = pi*(rOne + rTwo)*std::sqrt(sqr(rOne - rTwo)+sqr(2.*zTopCut));
                                                   >> 941   aTwo   = pi*xSemiAxis*ySemiAxis*sqr(zheight+zTopCut);
                                                   >> 942   aThree = pi*xSemiAxis*ySemiAxis*sqr(zheight-zTopCut);  
                                                   >> 943 
                                                   >> 944   phi = RandFlat::shoot(0.,twopi);
                                                   >> 945   cosphi = std::cos(phi);
                                                   >> 946   sinphi = std::sin(phi);
                                                   >> 947   
                                                   >> 948   if(zTopCut >= zheight) aThree = 0.;
863                                                   949 
864   // Pick random point on selected surface     << 950   chose = RandFlat::shoot(0.,aOne+aTwo+aThree);
865   //                                           << 951   if((chose>=0.) && (chose<aOne))
866   G4ThreeVector p;                             << 
867   switch(k)                                    << 
868   {                                               952   {
869     case 0: // base at -Z, uniform distributio << 953     zRand = RandFlat::shoot(-zTopCut,zTopCut);
870     {                                          << 954     return G4ThreeVector(xSemiAxis*(zheight-zRand)*cosphi,
871       G4double zh = zheight + zTopCut;         << 955                          ySemiAxis*(zheight-zRand)*sinphi,zRand);    
872       G4TwoVector rho = G4RandomPointInEllipse << 956   }
873       p.set(rho.x(),rho.y(),-zTopCut);         << 957   else if((chose>=aOne) && (chose<aOne+aTwo))
874       break;                                   << 958   {
875     }                                          << 959     do
876     case 1: // side surface, uniform distribut << 
877     {                                             960     {
878       G4double zh = G4RandomRadiusInRing(zheig << 961       rRand1 = RandFlat::shoot(0.,1.) ;
879       G4double a = x0;                         << 962       rRand2 = RandFlat::shoot(0.,1.) ;
880       G4double b = y0;                         << 963     } while ( rRand2 >= rRand1  ) ;
881                                                   964 
882       G4double hh = zheight*zheight;           << 965     //    rRand2 = RandFlat::shoot(0.,std::sqrt(1.-sqr(rRand1)));
883       G4double aa = a*a;                       << 966     return G4ThreeVector(rRand1*xSemiAxis*(zheight+zTopCut)*cosphi,
884       G4double bb = b*b;                       << 967                          rRand1*ySemiAxis*(zheight+zTopCut)*sinphi, -zTopCut);
885       G4double R  = std::max(a,b);             << 
886       G4double mu_max = R*std::sqrt(hh + R*R); << 
887                                                   968 
888       G4double x,y;                            << 
889       for (auto i=0; i<1000; ++i)              << 
890       {                                        << 
891   G4double phi = CLHEP::twopi*G4UniformRand(); << 
892         x = std::cos(phi);                     << 
893         y = std::sin(phi);                     << 
894         G4double xx = x*x;                     << 
895         G4double yy = y*y;                     << 
896         G4double E = hh + aa*xx + bb*yy;       << 
897         G4double F = (aa-bb)*x*y;              << 
898         G4double G = aa*yy + bb*xx;            << 
899         G4double mu = std::sqrt(E*G - F*F);    << 
900         if (mu_max*G4UniformRand() <= mu) brea << 
901       }                                        << 
902       p.set(zh*xSemiAxis*x,zh*ySemiAxis*y,zhei << 
903       break;                                   << 
904     }                                          << 
905     case 2: // base at +Z, uniform distributio << 
906     {                                          << 
907       G4double zh = zheight - zTopCut;         << 
908       G4TwoVector rho = G4RandomPointInEllipse << 
909       p.set(rho.x(),rho.y(),zTopCut);          << 
910       break;                                   << 
911     }                                          << 
912   }                                               969   }
913   return p;                                    << 970   // else
914 }                                              << 971   //
915                                                << 
916 ////////////////////////////////////////////// << 
917 //                                             << 
918 // Get cubic volume                            << 
919                                                   972 
920 G4double G4EllipticalCone::GetCubicVolume()    << 973   do
921 {                                              << 
922   if (fCubicVolume == 0.0)                     << 
923   {                                               974   {
924     G4double x0 = xSemiAxis*zheight; // x semi << 975     rRand1 = RandFlat::shoot(0.,1.) ;
925     G4double y0 = ySemiAxis*zheight; // y semi << 976     rRand2 = RandFlat::shoot(0.,1.) ;
926     G4double v0 = CLHEP::pi*x0*y0*zheight/3.;  << 977   } while ( rRand2 >= rRand1  ) ;
927     G4double kmin = (zTopCut >= zheight ) ? 0. << 
928     G4double kmax = (zTopCut >= zheight ) ? 2. << 
929     fCubicVolume = (kmax - kmin)*(kmax*kmax +  << 
930   }                                            << 
931   return fCubicVolume;                         << 
932 }                                              << 
933                                                << 
934 ////////////////////////////////////////////// << 
935 //                                             << 
936 // Get surface area                            << 
937                                                   978 
938 G4double G4EllipticalCone::GetSurfaceArea()    << 979   return G4ThreeVector(rRand1*xSemiAxis*(zheight-zTopCut)*cosphi,
939 {                                              << 980                        rRand1*ySemiAxis*(zheight-zTopCut)*sinphi, zTopCut);
940   if (fSurfaceArea == 0.0)                     << 
941   {                                            << 
942     G4double x0 = xSemiAxis*zheight; // x semi << 
943     G4double y0 = ySemiAxis*zheight; // y semi << 
944     G4double s0 = G4GeomTools::EllipticConeLat << 
945     G4double kmin = (zTopCut >= zheight ) ? 0. << 
946     G4double kmax = (zTopCut >= zheight ) ? 2. << 
947     fSurfaceArea = (kmax - kmin)*(kmax + kmin) << 
948                  + CLHEP::pi*x0*y0*(kmin*kmin  << 
949   }                                            << 
950   return fSurfaceArea;                         << 
951 }                                                 981 }
952                                                   982 
953 ////////////////////////////////////////////// << 
954 //                                                983 //
955 // Methods for visualisation                      984 // Methods for visualisation
                                                   >> 985 //
956                                                   986 
957 void G4EllipticalCone::DescribeYourselfTo (G4V    987 void G4EllipticalCone::DescribeYourselfTo (G4VGraphicsScene& scene) const
958 {                                                 988 {
959   scene.AddSolid(*this);                          989   scene.AddSolid(*this);
960 }                                                 990 }
961                                                   991 
962 G4VisExtent G4EllipticalCone::GetExtent() cons    992 G4VisExtent G4EllipticalCone::GetExtent() const
963 {                                                 993 {
964   // Define the sides of the box into which th    994   // Define the sides of the box into which the solid instance would fit.
965   //                                              995   //
966   G4ThreeVector pmin,pmax;                     << 996   G4double maxDim;
967   BoundingLimits(pmin,pmax);                   << 997   maxDim = xSemiAxis > ySemiAxis ? xSemiAxis : ySemiAxis;
968   return { pmin.x(), pmax.x(), pmin.y(), pmax. << 998   maxDim = maxDim > zTopCut ? maxDim : zTopCut;
                                                   >> 999   
                                                   >> 1000   return G4VisExtent (-maxDim, maxDim,
                                                   >> 1001                       -maxDim, maxDim,
                                                   >> 1002                       -maxDim, maxDim);
                                                   >> 1003 }
                                                   >> 1004 
                                                   >> 1005 G4NURBS* G4EllipticalCone::CreateNURBS () const
                                                   >> 1006 {
                                                   >> 1007   // Box for now!!!
                                                   >> 1008   //
                                                   >> 1009   return new G4NURBSbox(xSemiAxis, ySemiAxis,zheight);
969 }                                                 1010 }
970                                                   1011 
971 G4Polyhedron* G4EllipticalCone::CreatePolyhedr    1012 G4Polyhedron* G4EllipticalCone::CreatePolyhedron () const
972 {                                                 1013 {
973   return new G4PolyhedronEllipticalCone(xSemiA    1014   return new G4PolyhedronEllipticalCone(xSemiAxis, ySemiAxis, zheight, zTopCut);
974 }                                                 1015 }
975                                                   1016 
976 G4Polyhedron* G4EllipticalCone::GetPolyhedron     1017 G4Polyhedron* G4EllipticalCone::GetPolyhedron () const
977 {                                                 1018 {
978   if ( (fpPolyhedron == nullptr)               << 1019   if ( (!fpPolyhedron)
979     || fRebuildPolyhedron                      << 
980     || (fpPolyhedron->GetNumberOfRotationSteps    1020     || (fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
981         fpPolyhedron->GetNumberOfRotationSteps    1021         fpPolyhedron->GetNumberOfRotationSteps()) )
982     {                                             1022     {
983       G4AutoLock l(&polyhedronMutex);          << 
984       delete fpPolyhedron;                        1023       delete fpPolyhedron;
985       fpPolyhedron = CreatePolyhedron();          1024       fpPolyhedron = CreatePolyhedron();
986       fRebuildPolyhedron = false;              << 
987       l.unlock();                              << 
988     }                                             1025     }
989   return fpPolyhedron;                            1026   return fpPolyhedron;
990 }                                                 1027 }
991                                                << 
992 #endif // !defined(G4GEOM_USE_UELLIPTICALCONE) << 
993                                                   1028