Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4EllipticalCone class 26 // Implementation of G4EllipticalCone class 27 // 27 // 28 // This code implements an Elliptical Cone giv 28 // This code implements an Elliptical Cone given explicitly by the 29 // equation: 29 // equation: 30 // x^2/a^2 + y^2/b^2 = (z-h)^2 30 // x^2/a^2 + y^2/b^2 = (z-h)^2 31 // and specified by the parameters (a,b,h) and 31 // and specified by the parameters (a,b,h) and a cut parallel to the 32 // xy plane above z = 0. 32 // xy plane above z = 0. 33 // 33 // 34 // Author: Dionysios Anninos 34 // Author: Dionysios Anninos 35 // Revised: Evgueni Tcherniaev 35 // Revised: Evgueni Tcherniaev 36 // ------------------------------------------- 36 // -------------------------------------------------------------------- 37 37 38 #if !(defined(G4GEOM_USE_UELLIPTICALCONE) && d 38 #if !(defined(G4GEOM_USE_UELLIPTICALCONE) && defined(G4GEOM_USE_SYS_USOLIDS)) 39 39 40 #include "globals.hh" 40 #include "globals.hh" 41 41 42 #include "G4EllipticalCone.hh" 42 #include "G4EllipticalCone.hh" 43 43 44 #include "G4RandomTools.hh" 44 #include "G4RandomTools.hh" 45 #include "G4GeomTools.hh" 45 #include "G4GeomTools.hh" 46 #include "G4ClippablePolygon.hh" 46 #include "G4ClippablePolygon.hh" 47 #include "G4VoxelLimits.hh" 47 #include "G4VoxelLimits.hh" 48 #include "G4AffineTransform.hh" 48 #include "G4AffineTransform.hh" 49 #include "G4BoundingEnvelope.hh" 49 #include "G4BoundingEnvelope.hh" 50 #include "G4GeometryTolerance.hh" 50 #include "G4GeometryTolerance.hh" 51 51 52 #include "meshdefs.hh" 52 #include "meshdefs.hh" 53 53 54 #include "Randomize.hh" 54 #include "Randomize.hh" 55 55 56 #include "G4VGraphicsScene.hh" 56 #include "G4VGraphicsScene.hh" 57 #include "G4VisExtent.hh" 57 #include "G4VisExtent.hh" 58 58 59 #include "G4AutoLock.hh" 59 #include "G4AutoLock.hh" 60 60 61 namespace 61 namespace 62 { 62 { 63 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZE 63 G4Mutex polyhedronMutex = G4MUTEX_INITIALIZER; 64 } 64 } 65 65 66 using namespace CLHEP; 66 using namespace CLHEP; 67 67 68 ////////////////////////////////////////////// 68 ///////////////////////////////////////////////////////////////////////// 69 // 69 // 70 // Constructor - check parameters 70 // Constructor - check parameters 71 71 72 G4EllipticalCone::G4EllipticalCone(const G4Str 72 G4EllipticalCone::G4EllipticalCone(const G4String& pName, 73 G4dou 73 G4double pxSemiAxis, 74 G4dou 74 G4double pySemiAxis, 75 G4dou 75 G4double pzMax, 76 G4dou 76 G4double pzTopCut) 77 : G4VSolid(pName), zTopCut(0.) 77 : G4VSolid(pName), zTopCut(0.) 78 { 78 { 79 halfCarTol = 0.5*kCarTolerance; 79 halfCarTol = 0.5*kCarTolerance; 80 80 81 // Check Semi-Axis & Z-cut 81 // Check Semi-Axis & Z-cut 82 // 82 // 83 if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0. 83 if ( (pxSemiAxis <= 0.) || (pySemiAxis <= 0.) || (pzMax <= 0.) ) 84 { 84 { 85 std::ostringstream message; 85 std::ostringstream message; 86 message << "Invalid semi-axis or height f 86 message << "Invalid semi-axis or height for solid: " << GetName() 87 << "\n X semi-axis, Y semi-axis 87 << "\n X semi-axis, Y semi-axis, height = " 88 << pxSemiAxis << ", " << pySemiAx 88 << pxSemiAxis << ", " << pySemiAxis << ", " << pzMax; 89 G4Exception("G4EllipticalCone::G4Elliptic 89 G4Exception("G4EllipticalCone::G4EllipticalCone()", "GeomSolids0002", 90 FatalErrorInArgument, message 90 FatalErrorInArgument, message); 91 } 91 } 92 92 93 if ( pzTopCut <= 0 ) 93 if ( pzTopCut <= 0 ) 94 { 94 { 95 std::ostringstream message; 95 std::ostringstream message; 96 message << "Invalid z-coordinate for cutt 96 message << "Invalid z-coordinate for cutting plane for solid: " << GetName() 97 << "\n Z top cut = " << pzTopCu 97 << "\n Z top cut = " << pzTopCut; 98 G4Exception("G4EllipticalCone::G4Elliptic 98 G4Exception("G4EllipticalCone::G4EllipticalCone()", "GeomSolids0002", 99 FatalErrorInArgument, message 99 FatalErrorInArgument, message); 100 } 100 } 101 101 102 SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax ) 102 SetSemiAxis( pxSemiAxis, pySemiAxis, pzMax ); 103 SetZCut(pzTopCut); 103 SetZCut(pzTopCut); 104 } 104 } 105 105 106 ////////////////////////////////////////////// 106 ///////////////////////////////////////////////////////////////////////// 107 // 107 // 108 // Fake default constructor - sets only member 108 // Fake default constructor - sets only member data and allocates memory 109 // for usage restri 109 // for usage restricted to object persistency. 110 110 111 G4EllipticalCone::G4EllipticalCone( __void__& 111 G4EllipticalCone::G4EllipticalCone( __void__& a ) 112 : G4VSolid(a), halfCarTol(0.), 112 : G4VSolid(a), halfCarTol(0.), 113 xSemiAxis(0.), ySemiAxis(0.), zheight(0.), 113 xSemiAxis(0.), ySemiAxis(0.), zheight(0.), zTopCut(0.), 114 cosAxisMin(0.), invXX(0.), invYY(0.) 114 cosAxisMin(0.), invXX(0.), invYY(0.) 115 { 115 { 116 } 116 } 117 117 118 ////////////////////////////////////////////// 118 ///////////////////////////////////////////////////////////////////////// 119 // 119 // 120 // Destructor 120 // Destructor 121 121 122 G4EllipticalCone::~G4EllipticalCone() 122 G4EllipticalCone::~G4EllipticalCone() 123 { 123 { 124 delete fpPolyhedron; fpPolyhedron = nullptr; 124 delete fpPolyhedron; fpPolyhedron = nullptr; 125 } 125 } 126 126 127 ////////////////////////////////////////////// 127 ///////////////////////////////////////////////////////////////////////// 128 // 128 // 129 // Copy constructor 129 // Copy constructor 130 130 131 G4EllipticalCone::G4EllipticalCone(const G4Ell 131 G4EllipticalCone::G4EllipticalCone(const G4EllipticalCone& rhs) 132 : G4VSolid(rhs), halfCarTol(rhs.halfCarTol), 132 : G4VSolid(rhs), halfCarTol(rhs.halfCarTol), 133 fCubicVolume(rhs.fCubicVolume), fSurfaceAr 133 fCubicVolume(rhs.fCubicVolume), fSurfaceArea(rhs.fSurfaceArea), 134 xSemiAxis(rhs.xSemiAxis), ySemiAxis(rhs.yS 134 xSemiAxis(rhs.xSemiAxis), ySemiAxis(rhs.ySemiAxis), 135 zheight(rhs.zheight), zTopCut(rhs.zTopCut) 135 zheight(rhs.zheight), zTopCut(rhs.zTopCut), 136 cosAxisMin(rhs.cosAxisMin), invXX(rhs.invX 136 cosAxisMin(rhs.cosAxisMin), invXX(rhs.invXX), invYY(rhs.invYY) 137 { 137 { 138 } 138 } 139 139 140 ////////////////////////////////////////////// 140 ///////////////////////////////////////////////////////////////////////// 141 // 141 // 142 // Assignment operator 142 // Assignment operator 143 143 144 G4EllipticalCone& G4EllipticalCone::operator = 144 G4EllipticalCone& G4EllipticalCone::operator = (const G4EllipticalCone& rhs) 145 { 145 { 146 // Check assignment to self 146 // Check assignment to self 147 // 147 // 148 if (this == &rhs) { return *this; } 148 if (this == &rhs) { return *this; } 149 149 150 // Copy base class data 150 // Copy base class data 151 // 151 // 152 G4VSolid::operator=(rhs); 152 G4VSolid::operator=(rhs); 153 153 154 // Copy data 154 // Copy data 155 // 155 // 156 halfCarTol = rhs.halfCarTol; 156 halfCarTol = rhs.halfCarTol; 157 fCubicVolume = rhs.fCubicVolume; fSurfaceAr 157 fCubicVolume = rhs.fCubicVolume; fSurfaceArea = rhs.fSurfaceArea; 158 xSemiAxis = rhs.xSemiAxis; ySemiAxis = rhs. 158 xSemiAxis = rhs.xSemiAxis; ySemiAxis = rhs.ySemiAxis; 159 zheight = rhs.zheight; zTopCut = rhs.zTopCu 159 zheight = rhs.zheight; zTopCut = rhs.zTopCut; 160 cosAxisMin = rhs.cosAxisMin; invXX = rhs.in 160 cosAxisMin = rhs.cosAxisMin; invXX = rhs.invXX; invYY = rhs.invYY; 161 161 162 fRebuildPolyhedron = false; 162 fRebuildPolyhedron = false; 163 delete fpPolyhedron; fpPolyhedron = nullptr 163 delete fpPolyhedron; fpPolyhedron = nullptr; 164 164 165 return *this; 165 return *this; 166 } 166 } 167 167 168 ////////////////////////////////////////////// 168 ///////////////////////////////////////////////////////////////////////// 169 // 169 // 170 // Get bounding box 170 // Get bounding box 171 171 172 void G4EllipticalCone::BoundingLimits(G4ThreeV 172 void G4EllipticalCone::BoundingLimits(G4ThreeVector& pMin, 173 G4ThreeV 173 G4ThreeVector& pMax) const 174 { 174 { 175 G4double zcut = GetZTopCut(); 175 G4double zcut = GetZTopCut(); 176 G4double height = GetZMax(); 176 G4double height = GetZMax(); 177 G4double xmax = GetSemiAxisX()*(height+zcu 177 G4double xmax = GetSemiAxisX()*(height+zcut); 178 G4double ymax = GetSemiAxisY()*(height+zcu 178 G4double ymax = GetSemiAxisY()*(height+zcut); 179 pMin.set(-xmax,-ymax,-zcut); 179 pMin.set(-xmax,-ymax,-zcut); 180 pMax.set( xmax, ymax, zcut); 180 pMax.set( xmax, ymax, zcut); 181 181 182 // Check correctness of the bounding box 182 // Check correctness of the bounding box 183 // 183 // 184 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 184 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 185 { 185 { 186 std::ostringstream message; 186 std::ostringstream message; 187 message << "Bad bounding box (min >= max) 187 message << "Bad bounding box (min >= max) for solid: " 188 << GetName() << " !" 188 << GetName() << " !" 189 << "\npMin = " << pMin 189 << "\npMin = " << pMin 190 << "\npMax = " << pMax; 190 << "\npMax = " << pMax; 191 G4Exception("G4EllipticalCone::BoundingLim 191 G4Exception("G4EllipticalCone::BoundingLimits()", "GeomMgt0001", 192 JustWarning, message); 192 JustWarning, message); 193 DumpInfo(); 193 DumpInfo(); 194 } 194 } 195 } 195 } 196 196 197 ////////////////////////////////////////////// 197 ///////////////////////////////////////////////////////////////////////// 198 // 198 // 199 // Calculate extent under transform and specif 199 // Calculate extent under transform and specified limit 200 200 201 G4bool 201 G4bool 202 G4EllipticalCone::CalculateExtent(const EAxis 202 G4EllipticalCone::CalculateExtent(const EAxis pAxis, 203 const G4Voxe 203 const G4VoxelLimits& pVoxelLimit, 204 const G4Affi 204 const G4AffineTransform& pTransform, 205 G4doub 205 G4double& pMin, G4double& pMax) const 206 { 206 { 207 G4ThreeVector bmin,bmax; 207 G4ThreeVector bmin,bmax; 208 G4bool exist; 208 G4bool exist; 209 209 210 // Check bounding box (bbox) 210 // Check bounding box (bbox) 211 // 211 // 212 BoundingLimits(bmin,bmax); 212 BoundingLimits(bmin,bmax); 213 G4BoundingEnvelope bbox(bmin,bmax); 213 G4BoundingEnvelope bbox(bmin,bmax); 214 #ifdef G4BBOX_EXTENT 214 #ifdef G4BBOX_EXTENT 215 return bbox.CalculateExtent(pAxis,pVoxelLimi 215 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 216 #endif 216 #endif 217 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 217 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 218 { 218 { 219 return exist = pMin < pMax; << 219 return exist = (pMin < pMax) ? true : false; 220 } 220 } 221 221 222 // Set bounding envelope (benv) and calculat 222 // Set bounding envelope (benv) and calculate extent 223 // 223 // 224 static const G4int NSTEPS = 48; // number of 224 static const G4int NSTEPS = 48; // number of steps for whole circle 225 static const G4double ang = twopi/NSTEPS; 225 static const G4double ang = twopi/NSTEPS; 226 static const G4double sinHalf = std::sin(0.5 226 static const G4double sinHalf = std::sin(0.5*ang); 227 static const G4double cosHalf = std::cos(0.5 227 static const G4double cosHalf = std::cos(0.5*ang); 228 static const G4double sinStep = 2.*sinHalf*c 228 static const G4double sinStep = 2.*sinHalf*cosHalf; 229 static const G4double cosStep = 1. - 2.*sinH 229 static const G4double cosStep = 1. - 2.*sinHalf*sinHalf; 230 G4double zcut = bmax.z(); 230 G4double zcut = bmax.z(); 231 G4double height = GetZMax(); 231 G4double height = GetZMax(); 232 G4double sxmin = GetSemiAxisX()*(height-zcu 232 G4double sxmin = GetSemiAxisX()*(height-zcut)/cosHalf; 233 G4double symin = GetSemiAxisY()*(height-zcu 233 G4double symin = GetSemiAxisY()*(height-zcut)/cosHalf; 234 G4double sxmax = bmax.x()/cosHalf; 234 G4double sxmax = bmax.x()/cosHalf; 235 G4double symax = bmax.y()/cosHalf; 235 G4double symax = bmax.y()/cosHalf; 236 236 237 G4double sinCur = sinHalf; 237 G4double sinCur = sinHalf; 238 G4double cosCur = cosHalf; 238 G4double cosCur = cosHalf; 239 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS 239 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS); 240 for (G4int k=0; k<NSTEPS; ++k) 240 for (G4int k=0; k<NSTEPS; ++k) 241 { 241 { 242 baseA[k].set(sxmax*cosCur,symax*sinCur,-zc 242 baseA[k].set(sxmax*cosCur,symax*sinCur,-zcut); 243 baseB[k].set(sxmin*cosCur,symin*sinCur, zc 243 baseB[k].set(sxmin*cosCur,symin*sinCur, zcut); 244 244 245 G4double sinTmp = sinCur; 245 G4double sinTmp = sinCur; 246 sinCur = sinCur*cosStep + cosCur*sinStep; 246 sinCur = sinCur*cosStep + cosCur*sinStep; 247 cosCur = cosCur*cosStep - sinTmp*sinStep; 247 cosCur = cosCur*cosStep - sinTmp*sinStep; 248 } 248 } 249 249 250 std::vector<const G4ThreeVectorList *> polyg 250 std::vector<const G4ThreeVectorList *> polygons(2); 251 polygons[0] = &baseA; 251 polygons[0] = &baseA; 252 polygons[1] = &baseB; 252 polygons[1] = &baseB; 253 G4BoundingEnvelope benv(bmin,bmax,polygons); 253 G4BoundingEnvelope benv(bmin,bmax,polygons); 254 exist = benv.CalculateExtent(pAxis,pVoxelLim 254 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 255 return exist; 255 return exist; 256 } 256 } 257 257 258 ////////////////////////////////////////////// 258 ///////////////////////////////////////////////////////////////////////// 259 // 259 // 260 // Determine where is point: inside, outside o 260 // Determine where is point: inside, outside or on surface 261 261 262 EInside G4EllipticalCone::Inside(const G4Three 262 EInside G4EllipticalCone::Inside(const G4ThreeVector& p) const 263 { 263 { 264 G4double hp = std::sqrt(p.x()*p.x()*invXX + 264 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z(); 265 G4double ds = (hp - zheight)*cosAxisMin; 265 G4double ds = (hp - zheight)*cosAxisMin; 266 G4double dz = std::abs(p.z()) - zTopCut; 266 G4double dz = std::abs(p.z()) - zTopCut; 267 G4double dist = std::max(ds,dz); 267 G4double dist = std::max(ds,dz); 268 268 269 if (dist > halfCarTol) return kOutside; 269 if (dist > halfCarTol) return kOutside; 270 return (dist > -halfCarTol) ? kSurface : kIn 270 return (dist > -halfCarTol) ? kSurface : kInside; 271 } 271 } 272 272 273 ////////////////////////////////////////////// 273 ///////////////////////////////////////////////////////////////////////// 274 // 274 // 275 // Return unit normal at surface closest to p 275 // Return unit normal at surface closest to p 276 276 277 G4ThreeVector G4EllipticalCone::SurfaceNormal( 277 G4ThreeVector G4EllipticalCone::SurfaceNormal( const G4ThreeVector& p) const 278 { 278 { 279 G4ThreeVector norm(0,0,0); 279 G4ThreeVector norm(0,0,0); 280 G4int nsurf = 0; // number of surfaces wher 280 G4int nsurf = 0; // number of surfaces where p is placed 281 281 282 G4double hp = std::sqrt(p.x()*p.x()*invXX + 282 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z(); 283 G4double ds = (hp - zheight)*cosAxisMin; 283 G4double ds = (hp - zheight)*cosAxisMin; 284 if (std::abs(ds) <= halfCarTol) 284 if (std::abs(ds) <= halfCarTol) 285 { 285 { 286 norm = G4ThreeVector(p.x()*invXX, p.y()*in 286 norm = G4ThreeVector(p.x()*invXX, p.y()*invYY, hp - p.z()); 287 G4double mag = norm.mag(); 287 G4double mag = norm.mag(); 288 if (mag == 0) return {0,0,1}; // apex << 288 if (mag == 0) return G4ThreeVector(0,0,1); // apex 289 norm *= (1/mag); 289 norm *= (1/mag); 290 ++nsurf; 290 ++nsurf; 291 } 291 } 292 G4double dz = std::abs(p.z()) - zTopCut; 292 G4double dz = std::abs(p.z()) - zTopCut; 293 if (std::abs(dz) <= halfCarTol) 293 if (std::abs(dz) <= halfCarTol) 294 { 294 { 295 norm += G4ThreeVector(0., 0.,(p.z() < 0) ? 295 norm += G4ThreeVector(0., 0.,(p.z() < 0) ? -1. : 1.); 296 ++nsurf; 296 ++nsurf; 297 } 297 } 298 298 299 if (nsurf == 1) return norm; 299 if (nsurf == 1) return norm; 300 else if (nsurf > 1) return norm.unit(); // 300 else if (nsurf > 1) return norm.unit(); // elliptic edge 301 else 301 else 302 { 302 { 303 // Point is not on the surface 303 // Point is not on the surface 304 // 304 // 305 #ifdef G4CSGDEBUG 305 #ifdef G4CSGDEBUG 306 std::ostringstream message; 306 std::ostringstream message; 307 G4long oldprc = message.precision(16); << 307 G4int oldprc = message.precision(16); 308 message << "Point p is not on surface (!?) 308 message << "Point p is not on surface (!?) of solid: " 309 << GetName() << G4endl; 309 << GetName() << G4endl; 310 message << "Position:\n"; 310 message << "Position:\n"; 311 message << " p.x() = " << p.x()/mm << " 311 message << " p.x() = " << p.x()/mm << " mm\n"; 312 message << " p.y() = " << p.y()/mm << " 312 message << " p.y() = " << p.y()/mm << " mm\n"; 313 message << " p.z() = " << p.z()/mm << " 313 message << " p.z() = " << p.z()/mm << " mm"; 314 G4cout.precision(oldprc); 314 G4cout.precision(oldprc); 315 G4Exception("G4EllipticalCone::SurfaceNorm 315 G4Exception("G4EllipticalCone::SurfaceNormal(p)", "GeomSolids1002", 316 JustWarning, message ); 316 JustWarning, message ); 317 DumpInfo(); 317 DumpInfo(); 318 #endif 318 #endif 319 return ApproxSurfaceNormal(p); 319 return ApproxSurfaceNormal(p); 320 } 320 } 321 } 321 } 322 322 323 ////////////////////////////////////////////// 323 ///////////////////////////////////////////////////////////////////////// 324 // 324 // 325 // Find surface nearest to point and return co 325 // Find surface nearest to point and return corresponding normal. 326 // The algorithm is similar to the algorithm u 326 // The algorithm is similar to the algorithm used in Inside(). 327 // This method normally should not be called. 327 // This method normally should not be called. 328 328 329 G4ThreeVector 329 G4ThreeVector 330 G4EllipticalCone::ApproxSurfaceNormal(const G4 330 G4EllipticalCone::ApproxSurfaceNormal(const G4ThreeVector& p) const 331 { 331 { 332 G4double hp = std::sqrt(p.x()*p.x()*invXX + 332 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z(); 333 G4double ds = (hp - zheight)*cosAxisMin; 333 G4double ds = (hp - zheight)*cosAxisMin; 334 G4double dz = std::abs(p.z()) - zTopCut; 334 G4double dz = std::abs(p.z()) - zTopCut; 335 if (ds > dz && std::abs(hp - p.z()) > halfCa 335 if (ds > dz && std::abs(hp - p.z()) > halfCarTol) 336 return G4ThreeVector(p.x()*invXX, p.y()*in 336 return G4ThreeVector(p.x()*invXX, p.y()*invYY, hp - p.z()).unit(); 337 else 337 else 338 return { 0., 0., (G4double)((p.z() < 0) ? << 338 return G4ThreeVector(0., 0.,(p.z() < 0) ? -1. : 1.); 339 } 339 } 340 340 341 ////////////////////////////////////////////// 341 //////////////////////////////////////////////////////////////////////// 342 // 342 // 343 // Calculate distance to shape from outside, a 343 // Calculate distance to shape from outside, along normalised vector 344 // return kInfinity if no intersection, or int 344 // return kInfinity if no intersection, or intersection distance <= tolerance 345 345 346 G4double G4EllipticalCone::DistanceToIn( const 346 G4double G4EllipticalCone::DistanceToIn( const G4ThreeVector& p, 347 const 347 const G4ThreeVector& v ) const 348 { 348 { 349 G4double distMin = kInfinity; 349 G4double distMin = kInfinity; 350 350 351 // code from EllipticalTube 351 // code from EllipticalTube 352 352 353 G4double sigz = p.z()+zTopCut; 353 G4double sigz = p.z()+zTopCut; 354 354 355 // 355 // 356 // Check z = -dz planer surface 356 // Check z = -dz planer surface 357 // 357 // 358 358 359 if (sigz < halfCarTol) 359 if (sigz < halfCarTol) 360 { 360 { 361 // 361 // 362 // We are "behind" the shape in z, and so 362 // We are "behind" the shape in z, and so can 363 // potentially hit the rear face. Correct 363 // potentially hit the rear face. Correct direction? 364 // 364 // 365 if (v.z() <= 0) 365 if (v.z() <= 0) 366 { 366 { 367 // 367 // 368 // As long as we are far enough away, we 368 // As long as we are far enough away, we know we 369 // can't intersect 369 // can't intersect 370 // 370 // 371 if (sigz < 0) return kInfinity; 371 if (sigz < 0) return kInfinity; 372 372 373 // 373 // 374 // Otherwise, we don't intersect unless 374 // Otherwise, we don't intersect unless we are 375 // on the surface of the ellipse 375 // on the surface of the ellipse 376 // 376 // 377 377 378 if ( sqr(p.x()/( xSemiAxis - halfCarTol 378 if ( sqr(p.x()/( xSemiAxis - halfCarTol )) 379 + sqr(p.y()/( ySemiAxis - halfCarTol 379 + sqr(p.y()/( ySemiAxis - halfCarTol )) <= sqr( zheight + zTopCut ) ) 380 return kInfinity; 380 return kInfinity; 381 381 382 } 382 } 383 else 383 else 384 { 384 { 385 // 385 // 386 // How far? 386 // How far? 387 // 387 // 388 G4double q = -sigz/v.z(); 388 G4double q = -sigz/v.z(); 389 389 390 // 390 // 391 // Where does that place us? 391 // Where does that place us? 392 // 392 // 393 G4double xi = p.x() + q*v.x(), 393 G4double xi = p.x() + q*v.x(), 394 yi = p.y() + q*v.y(); 394 yi = p.y() + q*v.y(); 395 395 396 // 396 // 397 // Is this on the surface (within ellips 397 // Is this on the surface (within ellipse)? 398 // 398 // 399 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi 399 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight + zTopCut ) ) 400 { 400 { 401 // 401 // 402 // Yup. Return q, unless we are on the 402 // Yup. Return q, unless we are on the surface 403 // 403 // 404 return (sigz < -halfCarTol) ? q : 0; 404 return (sigz < -halfCarTol) ? q : 0; 405 } 405 } 406 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 406 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 407 + yi/(ySemiAxis*ySemiAxis)*v.y() 407 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0) 408 { 408 { 409 // 409 // 410 // Else, if we are traveling outwards, 410 // Else, if we are traveling outwards, we know 411 // we must miss 411 // we must miss 412 // 412 // 413 // return kInfinity; 413 // return kInfinity; 414 } 414 } 415 } 415 } 416 } 416 } 417 417 418 // 418 // 419 // Check z = +dz planer surface 419 // Check z = +dz planer surface 420 // 420 // 421 sigz = p.z() - zTopCut; 421 sigz = p.z() - zTopCut; 422 422 423 if (sigz > -halfCarTol) 423 if (sigz > -halfCarTol) 424 { 424 { 425 if (v.z() >= 0) 425 if (v.z() >= 0) 426 { 426 { 427 427 428 if (sigz > 0) return kInfinity; 428 if (sigz > 0) return kInfinity; 429 429 430 if ( sqr(p.x()/( xSemiAxis - halfCarTol 430 if ( sqr(p.x()/( xSemiAxis - halfCarTol )) 431 + sqr(p.y()/( ySemiAxis - halfCarTol 431 + sqr(p.y()/( ySemiAxis - halfCarTol )) <= sqr( zheight-zTopCut ) ) 432 return kInfinity; 432 return kInfinity; 433 433 434 } 434 } 435 else { 435 else { 436 G4double q = -sigz/v.z(); 436 G4double q = -sigz/v.z(); 437 437 438 G4double xi = p.x() + q*v.x(), 438 G4double xi = p.x() + q*v.x(), 439 yi = p.y() + q*v.y(); 439 yi = p.y() + q*v.y(); 440 440 441 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxi 441 if ( sqr(xi/xSemiAxis) + sqr(yi/ySemiAxis) <= sqr( zheight - zTopCut ) ) 442 { 442 { 443 return (sigz > -halfCarTol) ? q : 0; 443 return (sigz > -halfCarTol) ? q : 0; 444 } 444 } 445 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 445 else if (xi/(xSemiAxis*xSemiAxis)*v.x() 446 + yi/(ySemiAxis*ySemiAxis)*v.y() 446 + yi/(ySemiAxis*ySemiAxis)*v.y() >= 0) 447 { 447 { 448 // return kInfinity; 448 // return kInfinity; 449 } 449 } 450 } 450 } 451 } 451 } 452 452 453 453 454 #if 0 454 #if 0 455 455 456 // check to see if Z plane is relevant 456 // check to see if Z plane is relevant 457 // 457 // 458 if (p.z() < -zTopCut - halfCarTol) 458 if (p.z() < -zTopCut - halfCarTol) 459 { 459 { 460 if (v.z() <= 0.0) 460 if (v.z() <= 0.0) 461 return distMin; 461 return distMin; 462 462 463 G4double lambda = (-zTopCut - p.z())/v.z() 463 G4double lambda = (-zTopCut - p.z())/v.z(); 464 464 465 if ( sqr((lambda*v.x()+p.x())/xSemiAxis) + 465 if ( sqr((lambda*v.x()+p.x())/xSemiAxis) + 466 sqr((lambda*v.y()+p.y())/ySemiAxis) < 466 sqr((lambda*v.y()+p.y())/ySemiAxis) <= 467 sqr(zTopCut + zheight + halfCarTol) ) 467 sqr(zTopCut + zheight + halfCarTol) ) 468 { 468 { 469 return distMin = std::fabs(lambda); 469 return distMin = std::fabs(lambda); 470 } 470 } 471 } 471 } 472 472 473 if (p.z() > zTopCut + halfCarTol) 473 if (p.z() > zTopCut + halfCarTol) 474 { 474 { 475 if (v.z() >= 0.0) 475 if (v.z() >= 0.0) 476 { return distMin; } 476 { return distMin; } 477 477 478 G4double lambda = (zTopCut - p.z()) / v.z 478 G4double lambda = (zTopCut - p.z()) / v.z(); 479 479 480 if ( sqr((lambda*v.x() + p.x())/xSemiAxis) 480 if ( sqr((lambda*v.x() + p.x())/xSemiAxis) + 481 sqr((lambda*v.y() + p.y())/ySemiAxis) 481 sqr((lambda*v.y() + p.y())/ySemiAxis) <= 482 sqr(zheight - zTopCut + halfCarTol) ) 482 sqr(zheight - zTopCut + halfCarTol) ) 483 { 483 { 484 return distMin = std::fabs(lambda); 484 return distMin = std::fabs(lambda); 485 } 485 } 486 } 486 } 487 487 488 if (p.z() > zTopCut - halfCarTol 488 if (p.z() > zTopCut - halfCarTol 489 && p.z() < zTopCut + halfCarTol ) 489 && p.z() < zTopCut + halfCarTol ) 490 { 490 { 491 if (v.z() > 0.) 491 if (v.z() > 0.) 492 { return kInfinity; } 492 { return kInfinity; } 493 493 494 return distMin = 0.; 494 return distMin = 0.; 495 } 495 } 496 496 497 if (p.z() < -zTopCut + halfCarTol 497 if (p.z() < -zTopCut + halfCarTol 498 && p.z() > -zTopCut - halfCarTol) 498 && p.z() > -zTopCut - halfCarTol) 499 { 499 { 500 if (v.z() < 0.) 500 if (v.z() < 0.) 501 { return distMin = kInfinity; } 501 { return distMin = kInfinity; } 502 502 503 return distMin = 0.; 503 return distMin = 0.; 504 } 504 } 505 505 506 #endif 506 #endif 507 507 508 // if we are here then it either intersects 508 // if we are here then it either intersects or grazes the curved surface 509 // or it does not intersect at all 509 // or it does not intersect at all 510 // 510 // 511 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y( 511 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z()); 512 G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) + 512 G4double B = 2*(v.x()*p.x()/sqr(xSemiAxis) + 513 v.y()*p.y()/sqr(ySemiAxis) + 513 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z())); 514 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y( 514 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) - 515 sqr(zheight - p.z()); 515 sqr(zheight - p.z()); 516 516 517 G4double discr = B*B - 4.*A*C; 517 G4double discr = B*B - 4.*A*C; 518 518 519 // if the discriminant is negative it never 519 // if the discriminant is negative it never hits the curved object 520 // 520 // 521 if ( discr < -halfCarTol ) 521 if ( discr < -halfCarTol ) 522 { return distMin; } 522 { return distMin; } 523 523 524 // case below is when it hits or grazes the 524 // case below is when it hits or grazes the surface 525 // 525 // 526 if ( (discr >= -halfCarTol ) && (discr < hal 526 if ( (discr >= -halfCarTol ) && (discr < halfCarTol ) ) 527 { 527 { 528 return distMin = std::fabs(-B/(2.*A)); 528 return distMin = std::fabs(-B/(2.*A)); 529 } 529 } 530 530 531 G4double plus = (-B+std::sqrt(discr))/(2.*A 531 G4double plus = (-B+std::sqrt(discr))/(2.*A); 532 G4double minus = (-B-std::sqrt(discr))/(2.*A 532 G4double minus = (-B-std::sqrt(discr))/(2.*A); 533 533 534 // Special case::Point on Surface, Check nor 534 // Special case::Point on Surface, Check norm.dot(v) 535 535 536 if ( ( std::fabs(plus) < halfCarTol )||( std 536 if ( ( std::fabs(plus) < halfCarTol )||( std::fabs(minus) < halfCarTol ) ) 537 { 537 { 538 G4ThreeVector truenorm(p.x()/(xSemiAxis*xS 538 G4ThreeVector truenorm(p.x()/(xSemiAxis*xSemiAxis), 539 p.y()/(ySemiAxis*yS 539 p.y()/(ySemiAxis*ySemiAxis), 540 -( p.z() - zheight 540 -( p.z() - zheight )); 541 if ( truenorm*v >= 0) // going outside t 541 if ( truenorm*v >= 0) // going outside the solid from surface 542 { 542 { 543 return kInfinity; 543 return kInfinity; 544 } 544 } 545 else 545 else 546 { 546 { 547 return 0; 547 return 0; 548 } 548 } 549 } 549 } 550 550 551 // G4double lambda = std::fabs(plus) < std:: 551 // G4double lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus; 552 G4double lambda = 0; 552 G4double lambda = 0; 553 553 554 if ( minus > halfCarTol && minus < distMin ) 554 if ( minus > halfCarTol && minus < distMin ) 555 { 555 { 556 lambda = minus ; 556 lambda = minus ; 557 // check normal vector n * v < 0 557 // check normal vector n * v < 0 558 G4ThreeVector pin = p + lambda*v; 558 G4ThreeVector pin = p + lambda*v; 559 if(std::fabs(pin.z())< zTopCut + halfCarTo 559 if(std::fabs(pin.z())< zTopCut + halfCarTol) 560 { 560 { 561 G4ThreeVector truenorm(pin.x()/(xSemiAxi 561 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis), 562 pin.y()/(ySemiAxi 562 pin.y()/(ySemiAxis*ySemiAxis), 563 - ( pin.z() - zhe 563 - ( pin.z() - zheight )); 564 if ( truenorm*v < 0) 564 if ( truenorm*v < 0) 565 { // yes, going inside the solid 565 { // yes, going inside the solid 566 distMin = lambda; 566 distMin = lambda; 567 } 567 } 568 } 568 } 569 } 569 } 570 if ( plus > halfCarTol && plus < distMin ) 570 if ( plus > halfCarTol && plus < distMin ) 571 { 571 { 572 lambda = plus ; 572 lambda = plus ; 573 // check normal vector n * v < 0 573 // check normal vector n * v < 0 574 G4ThreeVector pin = p + lambda*v; 574 G4ThreeVector pin = p + lambda*v; 575 if(std::fabs(pin.z()) < zTopCut + halfCarT 575 if(std::fabs(pin.z()) < zTopCut + halfCarTol) 576 { 576 { 577 G4ThreeVector truenorm(pin.x()/(xSemiAxi 577 G4ThreeVector truenorm(pin.x()/(xSemiAxis*xSemiAxis), 578 pin.y()/(ySemiAxi 578 pin.y()/(ySemiAxis*ySemiAxis), 579 - ( pin.z() - zhe 579 - ( pin.z() - zheight ) ); 580 if ( truenorm*v < 0) 580 if ( truenorm*v < 0) 581 { // yes, going inside the solid 581 { // yes, going inside the solid 582 distMin = lambda; 582 distMin = lambda; 583 } 583 } 584 } 584 } 585 } 585 } 586 if (distMin < halfCarTol) distMin=0.; 586 if (distMin < halfCarTol) distMin=0.; 587 return distMin ; 587 return distMin ; 588 } 588 } 589 589 590 ////////////////////////////////////////////// 590 ///////////////////////////////////////////////////////////////////////// 591 // 591 // 592 // Calculate distance (<= actual) to closest s 592 // Calculate distance (<= actual) to closest surface of shape from outside 593 // Return 0 if point inside 593 // Return 0 if point inside 594 594 595 G4double G4EllipticalCone::DistanceToIn(const 595 G4double G4EllipticalCone::DistanceToIn(const G4ThreeVector& p) const 596 { 596 { 597 G4double hp = std::sqrt(p.x()*p.x()*invXX + 597 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z(); 598 G4double ds = (hp - zheight)*cosAxisMin; 598 G4double ds = (hp - zheight)*cosAxisMin; 599 G4double dz = std::abs(p.z()) - zTopCut; 599 G4double dz = std::abs(p.z()) - zTopCut; 600 G4double dist = std::max(ds,dz); 600 G4double dist = std::max(ds,dz); 601 return (dist > 0) ? dist : 0.; 601 return (dist > 0) ? dist : 0.; 602 } 602 } 603 603 604 ////////////////////////////////////////////// 604 //////////////////////////////////////////////////////////////////////// 605 // 605 // 606 // Calculate distance to surface of shape from 606 // Calculate distance to surface of shape from `inside', 607 // allowing for tolerance 607 // allowing for tolerance 608 608 609 G4double G4EllipticalCone::DistanceToOut(const 609 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p, 610 const 610 const G4ThreeVector& v, 611 const 611 const G4bool calcNorm, 612 612 G4bool* validNorm, 613 613 G4ThreeVector* n ) const 614 { 614 { 615 G4double distMin, lambda; 615 G4double distMin, lambda; 616 enum surface_e {kPlaneSurf, kCurvedSurf, kNo 616 enum surface_e {kPlaneSurf, kCurvedSurf, kNoSurf} surface; 617 617 618 distMin = kInfinity; 618 distMin = kInfinity; 619 surface = kNoSurf; 619 surface = kNoSurf; 620 620 621 if (v.z() < 0.0) 621 if (v.z() < 0.0) 622 { 622 { 623 lambda = (-p.z() - zTopCut)/v.z(); 623 lambda = (-p.z() - zTopCut)/v.z(); 624 624 625 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis 625 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) + 626 sqr((p.y() + lambda*v.y())/ySemiAxis 626 sqr((p.y() + lambda*v.y())/ySemiAxis)) < 627 sqr(zheight + zTopCut + halfCarTol) 627 sqr(zheight + zTopCut + halfCarTol) ) 628 { 628 { 629 distMin = std::fabs(lambda); 629 distMin = std::fabs(lambda); 630 630 631 if (!calcNorm) { return distMin; } 631 if (!calcNorm) { return distMin; } 632 } 632 } 633 distMin = std::fabs(lambda); 633 distMin = std::fabs(lambda); 634 surface = kPlaneSurf; 634 surface = kPlaneSurf; 635 } 635 } 636 636 637 if (v.z() > 0.0) 637 if (v.z() > 0.0) 638 { 638 { 639 lambda = (zTopCut - p.z()) / v.z(); 639 lambda = (zTopCut - p.z()) / v.z(); 640 640 641 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis 641 if ( (sqr((p.x() + lambda*v.x())/xSemiAxis) 642 + sqr((p.y() + lambda*v.y())/ySemiAxis 642 + sqr((p.y() + lambda*v.y())/ySemiAxis) ) 643 < (sqr(zheight - zTopCut + halfCarTol)) 643 < (sqr(zheight - zTopCut + halfCarTol)) ) 644 { 644 { 645 distMin = std::fabs(lambda); 645 distMin = std::fabs(lambda); 646 if (!calcNorm) { return distMin; } 646 if (!calcNorm) { return distMin; } 647 } 647 } 648 distMin = std::fabs(lambda); 648 distMin = std::fabs(lambda); 649 surface = kPlaneSurf; 649 surface = kPlaneSurf; 650 } 650 } 651 651 652 // if we are here then it either intersects 652 // if we are here then it either intersects or grazes the 653 // curved surface... 653 // curved surface... 654 // 654 // 655 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y( 655 G4double A = sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) - sqr(v.z()); 656 G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) 656 G4double B = 2.*(v.x()*p.x()/sqr(xSemiAxis) + 657 v.y()*p.y()/sqr(ySemiAxis) 657 v.y()*p.y()/sqr(ySemiAxis) + v.z()*(zheight-p.z())); 658 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y( 658 G4double C = sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) 659 - sqr(zheight - p.z()); 659 - sqr(zheight - p.z()); 660 660 661 G4double discr = B*B - 4.*A*C; 661 G4double discr = B*B - 4.*A*C; 662 662 663 if ( discr >= - halfCarTol && discr < halfCa 663 if ( discr >= - halfCarTol && discr < halfCarTol ) 664 { 664 { 665 if(!calcNorm) { return distMin = std::fabs 665 if(!calcNorm) { return distMin = std::fabs(-B/(2.*A)); } 666 } 666 } 667 667 668 else if ( discr > halfCarTol ) 668 else if ( discr > halfCarTol ) 669 { 669 { 670 G4double plus = (-B+std::sqrt(discr))/(2. 670 G4double plus = (-B+std::sqrt(discr))/(2.*A); 671 G4double minus = (-B-std::sqrt(discr))/(2. 671 G4double minus = (-B-std::sqrt(discr))/(2.*A); 672 672 673 if ( plus > halfCarTol && minus > halfCarT 673 if ( plus > halfCarTol && minus > halfCarTol ) 674 { 674 { 675 // take the shorter distance 675 // take the shorter distance 676 // 676 // 677 lambda = std::fabs(plus) < std::fabs(m 677 lambda = std::fabs(plus) < std::fabs(minus) ? plus : minus; 678 } 678 } 679 else 679 else 680 { 680 { 681 // at least one solution is close to zer 681 // at least one solution is close to zero or negative 682 // so, take small positive solution or z 682 // so, take small positive solution or zero 683 // 683 // 684 lambda = plus > -halfCarTol ? plus : 0 684 lambda = plus > -halfCarTol ? plus : 0; 685 } 685 } 686 686 687 if ( std::fabs(lambda) < distMin ) 687 if ( std::fabs(lambda) < distMin ) 688 { 688 { 689 if( std::fabs(lambda) > halfCarTol) 689 if( std::fabs(lambda) > halfCarTol) 690 { 690 { 691 distMin = std::fabs(lambda); 691 distMin = std::fabs(lambda); 692 surface = kCurvedSurf; 692 surface = kCurvedSurf; 693 } 693 } 694 else // Point is On the Surface, Check 694 else // Point is On the Surface, Check Normal 695 { 695 { 696 G4ThreeVector truenorm(p.x()/(xSemiAxi 696 G4ThreeVector truenorm(p.x()/(xSemiAxis*xSemiAxis), 697 p.y()/(ySemiAxi 697 p.y()/(ySemiAxis*ySemiAxis), 698 -( p.z() - zhei 698 -( p.z() - zheight )); 699 if( truenorm.dot(v) > 0 ) 699 if( truenorm.dot(v) > 0 ) 700 { 700 { 701 distMin = 0.0; 701 distMin = 0.0; 702 surface = kCurvedSurf; 702 surface = kCurvedSurf; 703 } 703 } 704 } 704 } 705 } 705 } 706 } 706 } 707 707 708 // set normal if requested 708 // set normal if requested 709 // 709 // 710 if (calcNorm) 710 if (calcNorm) 711 { 711 { 712 if (surface == kNoSurf) 712 if (surface == kNoSurf) 713 { 713 { 714 *validNorm = false; 714 *validNorm = false; 715 } 715 } 716 else 716 else 717 { 717 { 718 *validNorm = true; 718 *validNorm = true; 719 switch (surface) 719 switch (surface) 720 { 720 { 721 case kPlaneSurf: 721 case kPlaneSurf: 722 { 722 { 723 *n = G4ThreeVector(0.,0.,(v.z() > 0. 723 *n = G4ThreeVector(0.,0.,(v.z() > 0.0 ? 1. : -1.)); 724 } 724 } 725 break; 725 break; 726 726 727 case kCurvedSurf: 727 case kCurvedSurf: 728 { 728 { 729 G4ThreeVector pexit = p + distMin*v; 729 G4ThreeVector pexit = p + distMin*v; 730 G4ThreeVector truenorm( pexit.x()/(x 730 G4ThreeVector truenorm( pexit.x()/(xSemiAxis*xSemiAxis), 731 pexit.y()/(y 731 pexit.y()/(ySemiAxis*ySemiAxis), 732 -( pexit.z() 732 -( pexit.z() - zheight ) ); 733 truenorm /= truenorm.mag(); 733 truenorm /= truenorm.mag(); 734 *n= truenorm; 734 *n= truenorm; 735 } 735 } 736 break; 736 break; 737 737 738 default: // Should never re 738 default: // Should never reach this case ... 739 DumpInfo(); 739 DumpInfo(); 740 std::ostringstream message; 740 std::ostringstream message; 741 G4long oldprc = message.precision(16 << 741 G4int oldprc = message.precision(16); 742 message << "Undefined side for valid 742 message << "Undefined side for valid surface normal to solid." 743 << G4endl 743 << G4endl 744 << "Position:" << G4endl 744 << "Position:" << G4endl 745 << " p.x() = " << p.x()/ 745 << " p.x() = " << p.x()/mm << " mm" << G4endl 746 << " p.y() = " << p.y()/ 746 << " p.y() = " << p.y()/mm << " mm" << G4endl 747 << " p.z() = " << p.z()/ 747 << " p.z() = " << p.z()/mm << " mm" << G4endl 748 << "Direction:" << G4endl 748 << "Direction:" << G4endl 749 << " v.x() = " << v.x() 749 << " v.x() = " << v.x() << G4endl 750 << " v.y() = " << v.y() 750 << " v.y() = " << v.y() << G4endl 751 << " v.z() = " << v.z() 751 << " v.z() = " << v.z() << G4endl 752 << "Proposed distance :" << 752 << "Proposed distance :" << G4endl 753 << " distMin = " << dis 753 << " distMin = " << distMin/mm << " mm"; 754 message.precision(oldprc); 754 message.precision(oldprc); 755 G4Exception("G4EllipticalCone::Dista 755 G4Exception("G4EllipticalCone::DistanceToOut(p,v,..)", 756 "GeomSolids1002", JustWa 756 "GeomSolids1002", JustWarning, message); 757 break; 757 break; 758 } 758 } 759 } 759 } 760 } 760 } 761 761 762 if (distMin < halfCarTol) { distMin=0; } 762 if (distMin < halfCarTol) { distMin=0; } 763 763 764 return distMin; 764 return distMin; 765 } 765 } 766 766 767 ////////////////////////////////////////////// 767 ///////////////////////////////////////////////////////////////////////// 768 // 768 // 769 // Calculate distance (<=actual) to closest su 769 // Calculate distance (<=actual) to closest surface of shape from inside 770 770 771 G4double G4EllipticalCone::DistanceToOut(const 771 G4double G4EllipticalCone::DistanceToOut(const G4ThreeVector& p) const 772 { 772 { 773 #ifdef G4SPECSDEBUG 773 #ifdef G4SPECSDEBUG 774 if( Inside(p) == kOutside ) 774 if( Inside(p) == kOutside ) 775 { 775 { 776 std::ostringstream message; 776 std::ostringstream message; 777 G4long oldprc = message.precision(16); << 777 G4int oldprc = message.precision(16); 778 message << "Point p is outside (!?) of so 778 message << "Point p is outside (!?) of solid: " << GetName() << "\n" 779 << "Position:\n" 779 << "Position:\n" 780 << " p.x() = " << p.x()/mm << 780 << " p.x() = " << p.x()/mm << " mm\n" 781 << " p.y() = " << p.y()/mm << 781 << " p.y() = " << p.y()/mm << " mm\n" 782 << " p.z() = " << p.z()/mm << 782 << " p.z() = " << p.z()/mm << " mm"; 783 message.precision(oldprc) ; 783 message.precision(oldprc) ; 784 G4Exception("G4Ellipsoid::DistanceToOut(p 784 G4Exception("G4Ellipsoid::DistanceToOut(p)", "GeomSolids1002", 785 JustWarning, message); 785 JustWarning, message); 786 DumpInfo(); 786 DumpInfo(); 787 } 787 } 788 #endif 788 #endif 789 G4double hp = std::sqrt(p.x()*p.x()*invXX + 789 G4double hp = std::sqrt(p.x()*p.x()*invXX + p.y()*p.y()*invYY) + p.z(); 790 G4double ds = (zheight - hp)*cosAxisMin; 790 G4double ds = (zheight - hp)*cosAxisMin; 791 G4double dz = zTopCut - std::abs(p.z()); 791 G4double dz = zTopCut - std::abs(p.z()); 792 G4double dist = std::min(ds,dz); 792 G4double dist = std::min(ds,dz); 793 return (dist > 0) ? dist : 0.; 793 return (dist > 0) ? dist : 0.; 794 } 794 } 795 795 796 ////////////////////////////////////////////// 796 ///////////////////////////////////////////////////////////////////////// 797 // 797 // 798 // GetEntityType 798 // GetEntityType 799 799 800 G4GeometryType G4EllipticalCone::GetEntityType 800 G4GeometryType G4EllipticalCone::GetEntityType() const 801 { 801 { 802 return {"G4EllipticalCone"}; << 802 return G4String("G4EllipticalCone"); 803 } 803 } 804 804 805 ////////////////////////////////////////////// 805 ///////////////////////////////////////////////////////////////////////// 806 // 806 // 807 // Make a clone of the object 807 // Make a clone of the object 808 808 809 G4VSolid* G4EllipticalCone::Clone() const 809 G4VSolid* G4EllipticalCone::Clone() const 810 { 810 { 811 return new G4EllipticalCone(*this); 811 return new G4EllipticalCone(*this); 812 } 812 } 813 813 814 ////////////////////////////////////////////// 814 ///////////////////////////////////////////////////////////////////////// 815 // 815 // 816 // Stream object contents to an output stream 816 // Stream object contents to an output stream 817 817 818 std::ostream& G4EllipticalCone::StreamInfo( st 818 std::ostream& G4EllipticalCone::StreamInfo( std::ostream& os ) const 819 { 819 { 820 G4long oldprc = os.precision(16); << 820 G4int oldprc = os.precision(16); 821 os << "------------------------------------- 821 os << "-----------------------------------------------------------\n" 822 << " *** Dump for solid - " << GetName 822 << " *** Dump for solid - " << GetName() << " ***\n" 823 << " ================================= 823 << " ===================================================\n" 824 << " Solid type: G4EllipticalCone\n" 824 << " Solid type: G4EllipticalCone\n" 825 << " Parameters: \n" 825 << " Parameters: \n" 826 826 827 << " semi-axis x: " << xSemiAxis/mm << 827 << " semi-axis x: " << xSemiAxis/mm << " mm \n" 828 << " semi-axis y: " << ySemiAxis/mm << 828 << " semi-axis y: " << ySemiAxis/mm << " mm \n" 829 << " height z: " << zheight/mm << " 829 << " height z: " << zheight/mm << " mm \n" 830 << " half length in z: " << zTopCut/m 830 << " half length in z: " << zTopCut/mm << " mm \n" 831 << "------------------------------------- 831 << "-----------------------------------------------------------\n"; 832 os.precision(oldprc); 832 os.precision(oldprc); 833 833 834 return os; 834 return os; 835 } 835 } 836 836 837 ////////////////////////////////////////////// 837 ///////////////////////////////////////////////////////////////////////// 838 // 838 // 839 // Return random point on the surface of the s 839 // Return random point on the surface of the solid 840 840 841 G4ThreeVector G4EllipticalCone::GetPointOnSurf 841 G4ThreeVector G4EllipticalCone::GetPointOnSurface() const 842 { 842 { 843 G4double x0 = xSemiAxis*zheight; // x semi a 843 G4double x0 = xSemiAxis*zheight; // x semi axis at z=0 844 G4double y0 = ySemiAxis*zheight; // y semi a 844 G4double y0 = ySemiAxis*zheight; // y semi axis at z=0 845 G4double s0 = G4GeomTools::EllipticConeLater 845 G4double s0 = G4GeomTools::EllipticConeLateralArea(x0,y0,zheight); 846 G4double kmin = (zTopCut >= zheight ) ? 0. : 846 G4double kmin = (zTopCut >= zheight ) ? 0. : (zheight - zTopCut)/zheight; 847 G4double kmax = (zTopCut >= zheight ) ? 2. : 847 G4double kmax = (zTopCut >= zheight ) ? 2. : (zheight + zTopCut)/zheight; 848 848 849 // Set areas (base at -Z, side surface, base 849 // Set areas (base at -Z, side surface, base at +Z) 850 // 850 // 851 G4double szmin = pi*x0*y0*kmax*kmax; 851 G4double szmin = pi*x0*y0*kmax*kmax; 852 G4double szmax = pi*x0*y0*kmin*kmin; 852 G4double szmax = pi*x0*y0*kmin*kmin; 853 G4double sside = s0*(kmax*kmax - kmin*kmin) 853 G4double sside = s0*(kmax*kmax - kmin*kmin); 854 G4double ssurf[3] = { szmin, sside, szmax }; 854 G4double ssurf[3] = { szmin, sside, szmax }; 855 for (auto i=1; i<3; ++i) { ssurf[i] += ssurf 855 for (auto i=1; i<3; ++i) { ssurf[i] += ssurf[i-1]; } 856 856 857 // Select surface 857 // Select surface 858 // 858 // 859 G4double select = ssurf[2]*G4UniformRand(); 859 G4double select = ssurf[2]*G4UniformRand(); 860 G4int k = 2; 860 G4int k = 2; 861 if (select <= ssurf[1]) k = 1; 861 if (select <= ssurf[1]) k = 1; 862 if (select <= ssurf[0]) k = 0; 862 if (select <= ssurf[0]) k = 0; 863 863 864 // Pick random point on selected surface 864 // Pick random point on selected surface 865 // 865 // 866 G4ThreeVector p; 866 G4ThreeVector p; 867 switch(k) 867 switch(k) 868 { 868 { 869 case 0: // base at -Z, uniform distributio 869 case 0: // base at -Z, uniform distribution, rejection sampling 870 { 870 { 871 G4double zh = zheight + zTopCut; 871 G4double zh = zheight + zTopCut; 872 G4TwoVector rho = G4RandomPointInEllipse 872 G4TwoVector rho = G4RandomPointInEllipse(zh*xSemiAxis,zh*ySemiAxis); 873 p.set(rho.x(),rho.y(),-zTopCut); 873 p.set(rho.x(),rho.y(),-zTopCut); 874 break; 874 break; 875 } 875 } 876 case 1: // side surface, uniform distribut 876 case 1: // side surface, uniform distribution, rejection sampling 877 { 877 { 878 G4double zh = G4RandomRadiusInRing(zheig 878 G4double zh = G4RandomRadiusInRing(zheight-zTopCut, zheight+zTopCut); 879 G4double a = x0; 879 G4double a = x0; 880 G4double b = y0; 880 G4double b = y0; 881 881 882 G4double hh = zheight*zheight; 882 G4double hh = zheight*zheight; 883 G4double aa = a*a; 883 G4double aa = a*a; 884 G4double bb = b*b; 884 G4double bb = b*b; 885 G4double R = std::max(a,b); 885 G4double R = std::max(a,b); 886 G4double mu_max = R*std::sqrt(hh + R*R); 886 G4double mu_max = R*std::sqrt(hh + R*R); 887 887 888 G4double x,y; 888 G4double x,y; 889 for (auto i=0; i<1000; ++i) 889 for (auto i=0; i<1000; ++i) 890 { 890 { 891 G4double phi = CLHEP::twopi*G4UniformRand(); 891 G4double phi = CLHEP::twopi*G4UniformRand(); 892 x = std::cos(phi); 892 x = std::cos(phi); 893 y = std::sin(phi); 893 y = std::sin(phi); 894 G4double xx = x*x; 894 G4double xx = x*x; 895 G4double yy = y*y; 895 G4double yy = y*y; 896 G4double E = hh + aa*xx + bb*yy; 896 G4double E = hh + aa*xx + bb*yy; 897 G4double F = (aa-bb)*x*y; 897 G4double F = (aa-bb)*x*y; 898 G4double G = aa*yy + bb*xx; 898 G4double G = aa*yy + bb*xx; 899 G4double mu = std::sqrt(E*G - F*F); 899 G4double mu = std::sqrt(E*G - F*F); 900 if (mu_max*G4UniformRand() <= mu) brea 900 if (mu_max*G4UniformRand() <= mu) break; 901 } 901 } 902 p.set(zh*xSemiAxis*x,zh*ySemiAxis*y,zhei 902 p.set(zh*xSemiAxis*x,zh*ySemiAxis*y,zheight-zh); 903 break; 903 break; 904 } 904 } 905 case 2: // base at +Z, uniform distributio 905 case 2: // base at +Z, uniform distribution, rejection sampling 906 { 906 { 907 G4double zh = zheight - zTopCut; 907 G4double zh = zheight - zTopCut; 908 G4TwoVector rho = G4RandomPointInEllipse 908 G4TwoVector rho = G4RandomPointInEllipse(zh*xSemiAxis,zh*ySemiAxis); 909 p.set(rho.x(),rho.y(),zTopCut); 909 p.set(rho.x(),rho.y(),zTopCut); 910 break; 910 break; 911 } 911 } 912 } 912 } 913 return p; 913 return p; 914 } 914 } 915 915 916 ////////////////////////////////////////////// 916 ///////////////////////////////////////////////////////////////////////// 917 // 917 // 918 // Get cubic volume 918 // Get cubic volume 919 919 920 G4double G4EllipticalCone::GetCubicVolume() 920 G4double G4EllipticalCone::GetCubicVolume() 921 { 921 { 922 if (fCubicVolume == 0.0) 922 if (fCubicVolume == 0.0) 923 { 923 { 924 G4double x0 = xSemiAxis*zheight; // x semi 924 G4double x0 = xSemiAxis*zheight; // x semi axis at z=0 925 G4double y0 = ySemiAxis*zheight; // y semi 925 G4double y0 = ySemiAxis*zheight; // y semi axis at z=0 926 G4double v0 = CLHEP::pi*x0*y0*zheight/3.; 926 G4double v0 = CLHEP::pi*x0*y0*zheight/3.; 927 G4double kmin = (zTopCut >= zheight ) ? 0. 927 G4double kmin = (zTopCut >= zheight ) ? 0. : (zheight - zTopCut)/zheight; 928 G4double kmax = (zTopCut >= zheight ) ? 2. 928 G4double kmax = (zTopCut >= zheight ) ? 2. : (zheight + zTopCut)/zheight; 929 fCubicVolume = (kmax - kmin)*(kmax*kmax + 929 fCubicVolume = (kmax - kmin)*(kmax*kmax + kmax*kmin + kmin*kmin)*v0; 930 } 930 } 931 return fCubicVolume; 931 return fCubicVolume; 932 } 932 } 933 933 934 ////////////////////////////////////////////// 934 ///////////////////////////////////////////////////////////////////////// 935 // 935 // 936 // Get surface area 936 // Get surface area 937 937 938 G4double G4EllipticalCone::GetSurfaceArea() 938 G4double G4EllipticalCone::GetSurfaceArea() 939 { 939 { 940 if (fSurfaceArea == 0.0) 940 if (fSurfaceArea == 0.0) 941 { 941 { 942 G4double x0 = xSemiAxis*zheight; // x semi 942 G4double x0 = xSemiAxis*zheight; // x semi axis at z=0 943 G4double y0 = ySemiAxis*zheight; // y semi 943 G4double y0 = ySemiAxis*zheight; // y semi axis at z=0 944 G4double s0 = G4GeomTools::EllipticConeLat 944 G4double s0 = G4GeomTools::EllipticConeLateralArea(x0,y0,zheight); 945 G4double kmin = (zTopCut >= zheight ) ? 0. 945 G4double kmin = (zTopCut >= zheight ) ? 0. : (zheight - zTopCut)/zheight; 946 G4double kmax = (zTopCut >= zheight ) ? 2. 946 G4double kmax = (zTopCut >= zheight ) ? 2. : (zheight + zTopCut)/zheight; 947 fSurfaceArea = (kmax - kmin)*(kmax + kmin) 947 fSurfaceArea = (kmax - kmin)*(kmax + kmin)*s0 948 + CLHEP::pi*x0*y0*(kmin*kmin 948 + CLHEP::pi*x0*y0*(kmin*kmin + kmax*kmax); 949 } 949 } 950 return fSurfaceArea; 950 return fSurfaceArea; 951 } 951 } 952 952 953 ////////////////////////////////////////////// 953 ///////////////////////////////////////////////////////////////////////// 954 // 954 // 955 // Methods for visualisation 955 // Methods for visualisation 956 956 957 void G4EllipticalCone::DescribeYourselfTo (G4V 957 void G4EllipticalCone::DescribeYourselfTo (G4VGraphicsScene& scene) const 958 { 958 { 959 scene.AddSolid(*this); 959 scene.AddSolid(*this); 960 } 960 } 961 961 962 G4VisExtent G4EllipticalCone::GetExtent() cons 962 G4VisExtent G4EllipticalCone::GetExtent() const 963 { 963 { 964 // Define the sides of the box into which th 964 // Define the sides of the box into which the solid instance would fit. 965 // 965 // 966 G4ThreeVector pmin,pmax; 966 G4ThreeVector pmin,pmax; 967 BoundingLimits(pmin,pmax); 967 BoundingLimits(pmin,pmax); 968 return { pmin.x(), pmax.x(), pmin.y(), pmax. << 968 return G4VisExtent(pmin.x(),pmax.x(), >> 969 pmin.y(),pmax.y(), >> 970 pmin.z(),pmax.z()); 969 } 971 } 970 972 971 G4Polyhedron* G4EllipticalCone::CreatePolyhedr 973 G4Polyhedron* G4EllipticalCone::CreatePolyhedron () const 972 { 974 { 973 return new G4PolyhedronEllipticalCone(xSemiA 975 return new G4PolyhedronEllipticalCone(xSemiAxis, ySemiAxis, zheight, zTopCut); 974 } 976 } 975 977 976 G4Polyhedron* G4EllipticalCone::GetPolyhedron 978 G4Polyhedron* G4EllipticalCone::GetPolyhedron () const 977 { 979 { 978 if ( (fpPolyhedron == nullptr) 980 if ( (fpPolyhedron == nullptr) 979 || fRebuildPolyhedron 981 || fRebuildPolyhedron 980 || (fpPolyhedron->GetNumberOfRotationSteps 982 || (fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != 981 fpPolyhedron->GetNumberOfRotationSteps 983 fpPolyhedron->GetNumberOfRotationSteps()) ) 982 { 984 { 983 G4AutoLock l(&polyhedronMutex); 985 G4AutoLock l(&polyhedronMutex); 984 delete fpPolyhedron; 986 delete fpPolyhedron; 985 fpPolyhedron = CreatePolyhedron(); 987 fpPolyhedron = CreatePolyhedron(); 986 fRebuildPolyhedron = false; 988 fRebuildPolyhedron = false; 987 l.unlock(); 989 l.unlock(); 988 } 990 } 989 return fpPolyhedron; 991 return fpPolyhedron; 990 } 992 } 991 993 992 #endif // !defined(G4GEOM_USE_UELLIPTICALCONE) 994 #endif // !defined(G4GEOM_USE_UELLIPTICALCONE) || !defined(G4GEOM_USE_SYS_USOLIDS) 993 995