Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4Torus implementation 27 // 28 // 30.10.96 V.Grichine: first implementation with G4Tubs elements in Fs 29 // 26.05.00 V.Grichine: added new fuctions developed by O.Cremonesi 30 // 31.08.00 E.Medernach: numerical computation of roots with bounding volume 31 // 11.01.01 E.Medernach: Use G4PolynomialSolver to find roots 32 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal 33 // 25.08.05 O.Link: new methods for DistanceToIn/Out using JTPolynomialSolver 34 // 28.10.16 E.Tcherniaev: new CalculateExtent(); removed CreateRotatedVertices() 35 // 16.12.16 H.Burkhardt: use radius differences and hypot to improve precision 36 // -------------------------------------------------------------------- 37 38 #include "G4Torus.hh" 39 40 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4GEOM_USE_SYS_USOLIDS)) 41 42 #include "G4GeomTools.hh" 43 #include "G4VoxelLimits.hh" 44 #include "G4AffineTransform.hh" 45 #include "G4BoundingEnvelope.hh" 46 #include "G4GeometryTolerance.hh" 47 #include "G4JTPolynomialSolver.hh" 48 49 #include "G4VPVParameterisation.hh" 50 51 #include "meshdefs.hh" 52 53 #include "Randomize.hh" 54 55 #include "G4VGraphicsScene.hh" 56 #include "G4Polyhedron.hh" 57 58 using namespace CLHEP; 59 60 /////////////////////////////////////////////////////////////// 61 // 62 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 63 // - note if pdphi>2PI then reset to 2PI 64 65 G4Torus::G4Torus( const G4String& pName, 66 G4double pRmin, 67 G4double pRmax, 68 G4double pRtor, 69 G4double pSPhi, 70 G4double pDPhi ) 71 : G4CSGSolid(pName) 72 { 73 SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi); 74 } 75 76 //////////////////////////////////////////////////////////////////////////// 77 // 78 // 79 80 void 81 G4Torus::SetAllParameters( G4double pRmin, 82 G4double pRmax, 83 G4double pRtor, 84 G4double pSPhi, 85 G4double pDPhi ) 86 { 87 const G4double fEpsilon = 4.e-11; // relative tolerance of radii 88 89 fCubicVolume = 0.; 90 fSurfaceArea = 0.; 91 fRebuildPolyhedron = true; 92 93 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 94 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 95 96 halfCarTolerance = 0.5*kCarTolerance; 97 halfAngTolerance = 0.5*kAngTolerance; 98 99 if ( pRtor >= pRmax+1.e3*kCarTolerance ) // Check swept radius, as in G4Cons 100 { 101 fRtor = pRtor ; 102 } 103 else 104 { 105 std::ostringstream message; 106 message << "Invalid swept radius for Solid: " << GetName() << G4endl 107 << " pRtor = " << pRtor << ", pRmax = " << pRmax; 108 G4Exception("G4Torus::SetAllParameters()", 109 "GeomSolids0002", FatalException, message); 110 } 111 112 // Check radii, as in G4Cons 113 // 114 if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 ) 115 { 116 if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; } 117 else { fRmin = 0.0 ; } 118 fRmax = pRmax ; 119 } 120 else 121 { 122 std::ostringstream message; 123 message << "Invalid values of radii for Solid: " << GetName() << G4endl 124 << " pRmin = " << pRmin << ", pRmax = " << pRmax; 125 G4Exception("G4Torus::SetAllParameters()", 126 "GeomSolids0002", FatalException, message); 127 } 128 129 // Relative tolerances 130 // 131 fRminTolerance = (fRmin) != 0.0 132 ? 0.5*std::max( kRadTolerance, fEpsilon*(fRtor-fRmin )) : 0; 133 fRmaxTolerance = 0.5*std::max( kRadTolerance, fEpsilon*(fRtor+fRmax) ); 134 135 // Check angles 136 // 137 if ( pDPhi >= twopi ) { fDPhi = twopi ; } 138 else 139 { 140 if (pDPhi > 0) { fDPhi = pDPhi ; } 141 else 142 { 143 std::ostringstream message; 144 message << "Invalid Z delta-Phi for Solid: " << GetName() << G4endl 145 << " pDPhi = " << pDPhi; 146 G4Exception("G4Torus::SetAllParameters()", 147 "GeomSolids0002", FatalException, message); 148 } 149 } 150 151 // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0 152 // 153 fSPhi = pSPhi; 154 155 if (fSPhi < 0) { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; } 156 else { fSPhi = std::fmod(fSPhi,twopi) ; } 157 158 if (fSPhi+fDPhi > twopi) { fSPhi-=twopi ; } 159 } 160 161 /////////////////////////////////////////////////////////////////////// 162 // 163 // Fake default constructor - sets only member data and allocates memory 164 // for usage restricted to object persistency. 165 // 166 G4Torus::G4Torus( __void__& a ) 167 : G4CSGSolid(a) 168 { 169 } 170 171 ////////////////////////////////////////////////////////////////////// 172 // 173 // Destructor 174 175 G4Torus::~G4Torus() = default; 176 177 ////////////////////////////////////////////////////////////////////////// 178 // 179 // Copy constructor 180 181 G4Torus::G4Torus(const G4Torus&) = default; 182 183 ////////////////////////////////////////////////////////////////////////// 184 // 185 // Assignment operator 186 187 G4Torus& G4Torus::operator = (const G4Torus& rhs) 188 { 189 // Check assignment to self 190 // 191 if (this == &rhs) { return *this; } 192 193 // Copy base class data 194 // 195 G4CSGSolid::operator=(rhs); 196 197 // Copy data 198 // 199 fRmin = rhs.fRmin; fRmax = rhs.fRmax; 200 fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 201 fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance; 202 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 203 halfCarTolerance = rhs.halfCarTolerance; 204 halfAngTolerance = rhs.halfAngTolerance; 205 206 return *this; 207 } 208 209 ////////////////////////////////////////////////////////////////////// 210 // 211 // Dispatch to parameterisation for replication mechanism dimension 212 // computation & modification. 213 214 void G4Torus::ComputeDimensions( G4VPVParameterisation* p, 215 const G4int n, 216 const G4VPhysicalVolume* pRep ) 217 { 218 p->ComputeDimensions(*this,n,pRep); 219 } 220 221 222 223 //////////////////////////////////////////////////////////////////////////////// 224 // 225 // Calculate the real roots to torus surface. 226 // Returns negative solutions as well. 227 228 void G4Torus::TorusRootsJT( const G4ThreeVector& p, 229 const G4ThreeVector& v, 230 G4double r, 231 std::vector<G4double>& roots ) const 232 { 233 234 G4int i, num ; 235 G4double c[5], srd[4], si[4] ; 236 237 G4double Rtor2 = fRtor*fRtor, r2 = r*r ; 238 239 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ; 240 G4double pRad2 = p.x()*p.x() + p.y()*p.y() + p.z()*p.z() ; 241 242 G4double d=pRad2 - Rtor2; 243 c[0] = 1.0 ; 244 c[1] = 4*pDotV ; 245 c[2] = 2*( (d + 2*pDotV*pDotV - r2) + 2*Rtor2*v.z()*v.z()); 246 c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z()) ; 247 c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r2); 248 249 G4JTPolynomialSolver torusEq; 250 251 num = torusEq.FindRoots( c, 4, srd, si ); 252 253 for ( i = 0; i < num; ++i ) 254 { 255 if( si[i] == 0. ) { roots.push_back(srd[i]) ; } // store real roots 256 } 257 258 std::sort(roots.begin() , roots.end() ) ; // sorting with < 259 } 260 261 ////////////////////////////////////////////////////////////////////////////// 262 // 263 // Interface for DistanceToIn and DistanceToOut. 264 // Calls TorusRootsJT and returns the smalles possible distance to 265 // the surface. 266 // Attention: Difference in DistanceToIn/Out for points p on the surface. 267 268 G4double G4Torus::SolveNumericJT( const G4ThreeVector& p, 269 const G4ThreeVector& v, 270 G4double r, 271 G4bool IsDistanceToIn ) const 272 { 273 G4double bigdist = 10*mm ; 274 G4double tmin = kInfinity ; 275 G4double t, scal ; 276 277 // calculate the distances to the intersections with the Torus 278 // from a given point p and direction v. 279 // 280 std::vector<G4double> roots ; 281 std::vector<G4double> rootsrefined ; 282 TorusRootsJT(p,v,r,roots) ; 283 284 G4ThreeVector ptmp ; 285 286 // determine the smallest non-negative solution 287 // 288 for ( std::size_t k = 0 ; k<roots.size() ; ++k ) 289 { 290 t = roots[k] ; 291 292 if ( t < -halfCarTolerance ) { continue ; } // skip negative roots 293 294 if ( t > bigdist && t<kInfinity ) // problem with big distances 295 { 296 ptmp = p + t*v ; 297 TorusRootsJT(ptmp,v,r,rootsrefined) ; 298 if ( rootsrefined.size()==roots.size() ) 299 { 300 t = t + rootsrefined[k] ; 301 } 302 } 303 304 ptmp = p + t*v ; // calculate the position of the proposed intersection 305 306 G4double theta = std::atan2(ptmp.y(),ptmp.x()); 307 308 if ( fSPhi >= 0 ) 309 { 310 if ( theta < - halfAngTolerance ) { theta += twopi; } 311 if ( (std::fabs(theta) < halfAngTolerance) 312 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 313 { 314 theta += twopi ; // 0 <= theta < 2pi 315 } 316 } 317 if ((fSPhi <= -pi )&&(theta>halfAngTolerance)) { theta = theta-twopi; } 318 319 // We have to verify if this root is inside the region between 320 // fSPhi and fSPhi + fDPhi 321 // 322 if ( (theta - fSPhi >= - halfAngTolerance) 323 && (theta - (fSPhi + fDPhi) <= halfAngTolerance) ) 324 { 325 // check if P is on the surface, and called from DistanceToIn 326 // DistanceToIn has to return 0.0 if particle is going inside the solid 327 328 if ( IsDistanceToIn ) 329 { 330 if (std::fabs(t) < halfCarTolerance ) 331 { 332 // compute scalar product at position p : v.n 333 // ( n taken from SurfaceNormal, not normalized ) 334 335 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())), 336 p.y()*(1-fRtor/std::hypot(p.x(),p.y())), 337 p.z() ); 338 339 // change sign in case of inner radius 340 // 341 if ( r == GetRmin() ) { scal = -scal ; } 342 if ( scal < 0 ) { return 0.0 ; } 343 } 344 } 345 346 // check if P is on the surface, and called from DistanceToOut 347 // DistanceToIn has to return 0.0 if particle is leaving the solid 348 349 if ( !IsDistanceToIn ) 350 { 351 if (std::fabs(t) < halfCarTolerance ) 352 { 353 // compute scalar product at position p : v.n 354 // 355 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())), 356 p.y()*(1-fRtor/std::hypot(p.x(),p.y())), 357 p.z() ); 358 359 // change sign in case of inner radius 360 // 361 if ( r == GetRmin() ) { scal = -scal ; } 362 if ( scal > 0 ) { return 0.0 ; } 363 } 364 } 365 366 // check if distance is larger than 1/2 kCarTolerance 367 // 368 if( t > halfCarTolerance ) 369 { 370 tmin = t ; 371 return tmin ; 372 } 373 } 374 } 375 376 return tmin; 377 } 378 379 ///////////////////////////////////////////////////////////////////////////// 380 // 381 // Get bounding box 382 383 void G4Torus::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 384 { 385 G4double rmax = GetRmax(); 386 G4double rtor = GetRtor(); 387 G4double rint = rtor - rmax; 388 G4double rext = rtor + rmax; 389 G4double dz = rmax; 390 391 // Find bounding box 392 // 393 if (GetDPhi() >= twopi) 394 { 395 pMin.set(-rext,-rext,-dz); 396 pMax.set( rext, rext, dz); 397 } 398 else 399 { 400 G4TwoVector vmin,vmax; 401 G4GeomTools::DiskExtent(rint,rext, 402 GetSinStartPhi(),GetCosStartPhi(), 403 GetSinEndPhi(),GetCosEndPhi(), 404 vmin,vmax); 405 pMin.set(vmin.x(),vmin.y(),-dz); 406 pMax.set(vmax.x(),vmax.y(), dz); 407 } 408 409 // Check correctness of the bounding box 410 // 411 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 412 { 413 std::ostringstream message; 414 message << "Bad bounding box (min >= max) for solid: " 415 << GetName() << " !" 416 << "\npMin = " << pMin 417 << "\npMax = " << pMax; 418 G4Exception("G4Torus::BoundingLimits()", "GeomMgt0001", 419 JustWarning, message); 420 DumpInfo(); 421 } 422 } 423 424 ///////////////////////////////////////////////////////////////////////////// 425 // 426 // Calculate extent under transform and specified limit 427 428 G4bool G4Torus::CalculateExtent( const EAxis pAxis, 429 const G4VoxelLimits& pVoxelLimit, 430 const G4AffineTransform& pTransform, 431 G4double& pMin, G4double& pMax) const 432 { 433 G4ThreeVector bmin, bmax; 434 G4bool exist; 435 436 // Get bounding box 437 BoundingLimits(bmin,bmax); 438 439 // Check bounding box 440 G4BoundingEnvelope bbox(bmin,bmax); 441 #ifdef G4BBOX_EXTENT 442 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 443 #endif 444 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 445 { 446 return exist = pMin < pMax; 447 } 448 449 // Get parameters of the solid 450 G4double rmin = GetRmin(); 451 G4double rmax = GetRmax(); 452 G4double rtor = GetRtor(); 453 G4double dphi = GetDPhi(); 454 G4double sinStart = GetSinStartPhi(); 455 G4double cosStart = GetCosStartPhi(); 456 G4double sinEnd = GetSinEndPhi(); 457 G4double cosEnd = GetCosEndPhi(); 458 G4double rint = rtor - rmax; 459 G4double rext = rtor + rmax; 460 461 // Find bounding envelope and calculate extent 462 // 463 static const G4int NPHI = 24; // number of steps for whole torus 464 static const G4int NDISK = 16; // number of steps for disk 465 static const G4double sinHalfDisk = std::sin(pi/NDISK); 466 static const G4double cosHalfDisk = std::cos(pi/NDISK); 467 static const G4double sinStepDisk = 2.*sinHalfDisk*cosHalfDisk; 468 static const G4double cosStepDisk = 1. - 2.*sinHalfDisk*sinHalfDisk; 469 470 G4double astep = (360/NPHI)*deg; // max angle for one slice in phi 471 G4int kphi = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1; 472 G4double ang = dphi/kphi; 473 474 G4double sinHalf = std::sin(0.5*ang); 475 G4double cosHalf = std::cos(0.5*ang); 476 G4double sinStep = 2.*sinHalf*cosHalf; 477 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 478 479 // define vectors for bounding envelope 480 G4ThreeVectorList pols[NDISK+1]; 481 for (auto & pol : pols) pol.resize(4); 482 483 std::vector<const G4ThreeVectorList *> polygons; 484 polygons.resize(NDISK+1); 485 for (G4int k=0; k<NDISK+1; ++k) polygons[k] = &pols[k]; 486 487 // set internal and external reference circles 488 G4TwoVector rzmin[NDISK]; 489 G4TwoVector rzmax[NDISK]; 490 491 if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+rmin*sinHalfDisk)) rmin = 0; 492 rmax /= cosHalfDisk; 493 G4double sinCurDisk = sinHalfDisk; 494 G4double cosCurDisk = cosHalfDisk; 495 for (G4int k=0; k<NDISK; ++k) 496 { 497 G4double rmincur = rtor + rmin*cosCurDisk; 498 if (cosCurDisk < 0 && rmin > 0) rmincur /= cosHalf; 499 rzmin[k].set(rmincur,rmin*sinCurDisk); 500 501 G4double rmaxcur = rtor + rmax*cosCurDisk; 502 if (cosCurDisk > 0) rmaxcur /= cosHalf; 503 rzmax[k].set(rmaxcur,rmax*sinCurDisk); 504 505 G4double sinTmpDisk = sinCurDisk; 506 sinCurDisk = sinCurDisk*cosStepDisk + cosCurDisk*sinStepDisk; 507 cosCurDisk = cosCurDisk*cosStepDisk - sinTmpDisk*sinStepDisk; 508 } 509 510 // Loop along slices in Phi. The extent is calculated as cumulative 511 // extent of the slices 512 pMin = kInfinity; 513 pMax = -kInfinity; 514 G4double eminlim = pVoxelLimit.GetMinExtent(pAxis); 515 G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis); 516 G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = 0, cosCur2 = 0; 517 for (G4int i=0; i<kphi+1; ++i) 518 { 519 if (i == 0) 520 { 521 sinCur1 = sinStart; 522 cosCur1 = cosStart; 523 sinCur2 = sinCur1*cosHalf + cosCur1*sinHalf; 524 cosCur2 = cosCur1*cosHalf - sinCur1*sinHalf; 525 } 526 else 527 { 528 sinCur1 = sinCur2; 529 cosCur1 = cosCur2; 530 sinCur2 = (i == kphi) ? sinEnd : sinCur1*cosStep + cosCur1*sinStep; 531 cosCur2 = (i == kphi) ? cosEnd : cosCur1*cosStep - sinCur1*sinStep; 532 } 533 for (G4int k=0; k<NDISK; ++k) 534 { 535 G4double r1 = rzmin[k].x(), r2 = rzmax[k].x(); 536 G4double z1 = rzmin[k].y(), z2 = rzmax[k].y(); 537 pols[k][0].set(r1*cosCur1,r1*sinCur1,z1); 538 pols[k][1].set(r2*cosCur1,r2*sinCur1,z2); 539 pols[k][2].set(r2*cosCur2,r2*sinCur2,z2); 540 pols[k][3].set(r1*cosCur2,r1*sinCur2,z1); 541 } 542 pols[NDISK] = pols[0]; 543 544 // get bounding box of current slice 545 G4TwoVector vmin,vmax; 546 G4GeomTools:: 547 DiskExtent(rint,rext,sinCur1,cosCur1,sinCur2,cosCur2,vmin,vmax); 548 bmin.setX(vmin.x()); bmin.setY(vmin.y()); 549 bmax.setX(vmax.x()); bmax.setY(vmax.y()); 550 551 // set bounding envelope for current slice and adjust extent 552 G4double emin,emax; 553 G4BoundingEnvelope benv(bmin,bmax,polygons); 554 if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue; 555 if (emin < pMin) pMin = emin; 556 if (emax > pMax) pMax = emax; 557 if (eminlim > pMin && emaxlim < pMax) break; // max possible extent 558 } 559 return (pMin < pMax); 560 } 561 562 ////////////////////////////////////////////////////////////////////////////// 563 // 564 // Return whether point inside/outside/on surface 565 566 EInside G4Torus::Inside( const G4ThreeVector& p ) const 567 { 568 G4double r, pt2, pPhi, tolRMin, tolRMax ; 569 570 EInside in = kOutside ; 571 572 // General precals 573 // 574 r = std::hypot(p.x(),p.y()); 575 pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor); 576 577 if (fRmin != 0.0) tolRMin = fRmin + fRminTolerance ; 578 else tolRMin = 0 ; 579 580 tolRMax = fRmax - fRmaxTolerance; 581 582 if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax ) 583 { 584 if ( fDPhi == twopi || pt2 == 0 ) // on torus swept axis 585 { 586 in = kInside ; 587 } 588 else 589 { 590 // Try inner tolerant phi boundaries (=>inside) 591 // if not inside, try outer tolerant phi boundaries 592 593 pPhi = std::atan2(p.y(),p.x()) ; 594 595 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi 596 if ( fSPhi >= 0 ) 597 { 598 if ( (std::fabs(pPhi) < halfAngTolerance) 599 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 600 { 601 pPhi += twopi ; // 0 <= pPhi < 2pi 602 } 603 if ( (pPhi >= fSPhi + halfAngTolerance) 604 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) ) 605 { 606 in = kInside ; 607 } 608 else if ( (pPhi >= fSPhi - halfAngTolerance) 609 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 610 { 611 in = kSurface ; 612 } 613 } 614 else // fSPhi < 0 615 { 616 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 617 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 618 else 619 { 620 in = kSurface ; 621 } 622 } 623 } 624 } 625 else // Try generous boundaries 626 { 627 tolRMin = fRmin - fRminTolerance ; 628 tolRMax = fRmax + fRmaxTolerance ; 629 630 if (tolRMin < 0 ) { tolRMin = 0 ; } 631 632 if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) ) 633 { 634 if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis 635 { 636 in = kSurface ; 637 } 638 else // Try outer tolerant phi boundaries only 639 { 640 pPhi = std::atan2(p.y(),p.x()) ; 641 642 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi 643 if ( fSPhi >= 0 ) 644 { 645 if ( (std::fabs(pPhi) < halfAngTolerance) 646 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 647 { 648 pPhi += twopi ; // 0 <= pPhi < 2pi 649 } 650 if ( (pPhi >= fSPhi - halfAngTolerance) 651 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 652 { 653 in = kSurface; 654 } 655 } 656 else // fSPhi < 0 657 { 658 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 659 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 660 else 661 { 662 in = kSurface ; 663 } 664 } 665 } 666 } 667 } 668 return in ; 669 } 670 671 ///////////////////////////////////////////////////////////////////////////// 672 // 673 // Return unit normal of surface closest to p 674 // - note if point on z axis, ignore phi divided sides 675 // - unsafe if point close to z axis a rmin=0 - no explicit checks 676 677 G4ThreeVector G4Torus::SurfaceNormal( const G4ThreeVector& p ) const 678 { 679 G4int noSurfaces = 0; 680 G4double rho, pt, pPhi; 681 G4double distRMin = kInfinity; 682 G4double distSPhi = kInfinity, distEPhi = kInfinity; 683 684 // To cope with precision loss 685 // 686 const G4double delta = std::max(10.0*kCarTolerance, 687 1.0e-8*(fRtor+fRmax)); 688 const G4double dAngle = 10.0*kAngTolerance; 689 690 G4ThreeVector nR, nPs, nPe; 691 G4ThreeVector norm, sumnorm(0.,0.,0.); 692 693 rho = std::hypot(p.x(),p.y()); 694 pt = std::hypot(p.z(),rho-fRtor); 695 696 G4double distRMax = std::fabs(pt - fRmax); 697 if(fRmin != 0.0) distRMin = std::fabs(pt - fRmin); 698 699 if( rho > delta && pt != 0.0 ) 700 { 701 G4double redFactor= (rho-fRtor)/rho; 702 nR = G4ThreeVector( p.x()*redFactor, // p.x()*(1.-fRtor/rho), 703 p.y()*redFactor, // p.y()*(1.-fRtor/rho), 704 p.z() ); 705 nR *= 1.0/pt; 706 } 707 708 if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z) 709 { 710 if ( rho != 0.0 ) 711 { 712 pPhi = std::atan2(p.y(),p.x()); 713 714 if(pPhi < fSPhi-delta) { pPhi += twopi; } 715 else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; } 716 717 distSPhi = std::fabs( pPhi - fSPhi ); 718 distEPhi = std::fabs(pPhi-fSPhi-fDPhi); 719 } 720 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 721 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 722 } 723 if( distRMax <= delta ) 724 { 725 ++noSurfaces; 726 sumnorm += nR; 727 } 728 else if( (fRmin != 0.0) && (distRMin <= delta) ) // Must not be on both Outer and Inner 729 { 730 ++noSurfaces; 731 sumnorm -= nR; 732 } 733 734 // To be on one of the 'phi' surfaces, 735 // it must be within the 'tube' - with tolerance 736 737 if( (fDPhi < twopi) && (fRmin-delta <= pt) && (pt <= (fRmax+delta)) ) 738 { 739 if (distSPhi <= dAngle) 740 { 741 ++noSurfaces; 742 sumnorm += nPs; 743 } 744 if (distEPhi <= dAngle) 745 { 746 ++noSurfaces; 747 sumnorm += nPe; 748 } 749 } 750 if ( noSurfaces == 0 ) 751 { 752 #ifdef G4CSGDEBUG 753 G4ExceptionDescription ed; 754 ed.precision(16); 755 756 EInside inIt= Inside( p ); 757 758 if( inIt != kSurface ) 759 { 760 ed << " ERROR> Surface Normal was called for Torus," 761 << " with point not on surface." << G4endl; 762 } 763 else 764 { 765 ed << " ERROR> Surface Normal has not found a surface, " 766 << " despite the point being on the surface. " <<G4endl; 767 } 768 769 if( inIt != kInside) 770 { 771 ed << " Safety (Dist To In) = " << DistanceToIn(p) << G4endl; 772 } 773 if( inIt != kOutside) 774 { 775 ed << " Safety (Dist to Out) = " << DistanceToOut(p) << G4endl; 776 } 777 ed << " Coordinates of point : " << p << G4endl; 778 ed << " Parameters of solid : " << G4endl << *this << G4endl; 779 780 if( inIt == kSurface ) 781 { 782 G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002", 783 JustWarning, ed, 784 "Failing to find normal, even though point is on surface!"); 785 } 786 else 787 { 788 static const char* NameInside[3]= { "Inside", "Surface", "Outside" }; 789 ed << " The point is " << NameInside[inIt] << " the solid. "<< G4endl; 790 G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002", 791 JustWarning, ed, "Point p is not on surface !?" ); 792 } 793 #endif 794 norm = ApproxSurfaceNormal(p); 795 } 796 else if ( noSurfaces == 1 ) { norm = sumnorm; } 797 else { norm = sumnorm.unit(); } 798 799 return norm ; 800 } 801 802 ////////////////////////////////////////////////////////////////////////////// 803 // 804 // Algorithm for SurfaceNormal() following the original specification 805 // for points not on the surface 806 807 G4ThreeVector G4Torus::ApproxSurfaceNormal( const G4ThreeVector& p ) const 808 { 809 ENorm side ; 810 G4ThreeVector norm; 811 G4double rho,pt,phi; 812 G4double distRMin,distRMax,distSPhi,distEPhi,distMin; 813 814 rho = std::hypot(p.x(),p.y()); 815 pt = std::hypot(p.z(),rho-fRtor); 816 817 #ifdef G4CSGDEBUG 818 G4cout << " G4Torus::ApproximateSurfaceNormal called for point " << p 819 << G4endl; 820 #endif 821 822 distRMax = std::fabs(pt - fRmax) ; 823 824 if(fRmin != 0.0) // First minimum radius 825 { 826 distRMin = std::fabs(pt - fRmin) ; 827 828 if (distRMin < distRMax) 829 { 830 distMin = distRMin ; 831 side = kNRMin ; 832 } 833 else 834 { 835 distMin = distRMax ; 836 side = kNRMax ; 837 } 838 } 839 else 840 { 841 distMin = distRMax ; 842 side = kNRMax ; 843 } 844 if ( (fDPhi < twopi) && (rho != 0.0) ) 845 { 846 phi = std::atan2(p.y(),p.x()) ; // Protected against (0,0,z) (above rho!=0) 847 848 if (phi < 0) { phi += twopi ; } 849 850 if (fSPhi < 0 ) { distSPhi = std::fabs(phi-(fSPhi+twopi))*rho ; } 851 else { distSPhi = std::fabs(phi-fSPhi)*rho ; } 852 853 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 854 855 if (distSPhi < distEPhi) // Find new minimum 856 { 857 if (distSPhi<distMin) side = kNSPhi ; 858 } 859 else 860 { 861 if (distEPhi < distMin) { side = kNEPhi ; } 862 } 863 } 864 switch (side) 865 { 866 case kNRMin: // Inner radius 867 norm = G4ThreeVector( -p.x()*(1-fRtor/rho)/pt, 868 -p.y()*(1-fRtor/rho)/pt, 869 -p.z()/pt ) ; 870 break ; 871 case kNRMax: // Outer radius 872 norm = G4ThreeVector( p.x()*(1-fRtor/rho)/pt, 873 p.y()*(1-fRtor/rho)/pt, 874 p.z()/pt ) ; 875 break; 876 case kNSPhi: 877 norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ; 878 break; 879 case kNEPhi: 880 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ; 881 break; 882 default: // Should never reach this case ... 883 DumpInfo(); 884 G4Exception("G4Torus::ApproxSurfaceNormal()", 885 "GeomSolids1002", JustWarning, 886 "Undefined side for valid surface normal to solid."); 887 break ; 888 } 889 return norm ; 890 } 891 892 /////////////////////////////////////////////////////////////////////// 893 // 894 // Calculate distance to shape from outside, along normalised vector 895 // - return kInfinity if no intersection, or intersection distance <= tolerance 896 // 897 // - Compute the intersection with the z planes 898 // - if at valid r, phi, return 899 // 900 // -> If point is outer outer radius, compute intersection with rmax 901 // - if at valid phi,z return 902 // 903 // -> Compute intersection with inner radius, taking largest +ve root 904 // - if valid (phi), save intersction 905 // 906 // -> If phi segmented, compute intersections with phi half planes 907 // - return smallest of valid phi intersections and 908 // inner radius intersection 909 // 910 // NOTE: 911 // - Precalculations for phi trigonometry are Done `just in time' 912 // - `if valid' implies tolerant checking of intersection points 913 914 G4double G4Torus::DistanceToIn( const G4ThreeVector& p, 915 const G4ThreeVector& v ) const 916 { 917 // Get bounding box of full torus 918 // 919 G4double boxDx = fRtor + fRmax; 920 G4double boxDy = boxDx; 921 G4double boxDz = fRmax; 922 G4double boxMax = boxDx; 923 G4double boxMin = boxDz; 924 925 // Check if point is traveling away 926 // 927 G4double distX = std::abs(p.x()) - boxDx; 928 G4double distY = std::abs(p.y()) - boxDy; 929 G4double distZ = std::abs(p.z()) - boxDz; 930 if (distX >= -halfCarTolerance && p.x()*v.x() >= 0) return kInfinity; 931 if (distY >= -halfCarTolerance && p.y()*v.y() >= 0) return kInfinity; 932 if (distZ >= -halfCarTolerance && p.z()*v.z() >= 0) return kInfinity; 933 934 // Calculate safety distance to bounding box 935 // If point is too far, move it closer and calculate distance 936 // 937 G4double Dmax = 32*boxMax; 938 G4double safe = std::max(std::max(distX,distY),distZ); 939 if (safe > Dmax) 940 { 941 G4double dist = safe - 1.e-8*safe - boxMin; // stay outside after the move 942 dist += DistanceToIn(p + dist*v, v); 943 return (dist >= kInfinity) ? kInfinity : dist; 944 } 945 946 // Find intersection with torus 947 // 948 G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value 949 950 G4double sd[4] ; 951 952 // Precalculated trig for phi intersections - used by r,z intersections to 953 // check validity 954 955 G4bool seg; // true if segmented 956 G4double hDPhi; // half dphi 957 G4double cPhi,sinCPhi=0.,cosCPhi=0.; // central phi 958 959 G4double tolORMin2; // `generous' radii squared 960 G4double tolORMax2; 961 962 G4double Dist,xi,yi,zi,rhoi,it2; // Intersection point variables 963 964 G4double Comp; 965 G4double cosSPhi,sinSPhi; // Trig for phi start intersect 966 G4double ePhi,cosEPhi,sinEPhi; // for phi end intersect 967 968 // Set phi divided flag and precalcs 969 // 970 if ( fDPhi < twopi ) 971 { 972 seg = true ; 973 hDPhi = 0.5*fDPhi ; // half delta phi 974 cPhi = fSPhi + hDPhi ; 975 sinCPhi = std::sin(cPhi) ; 976 cosCPhi = std::cos(cPhi) ; 977 } 978 else 979 { 980 seg = false ; 981 } 982 983 if (fRmin > fRminTolerance) // Calculate tolerant rmin and rmax 984 { 985 tolORMin2 = (fRmin - fRminTolerance)*(fRmin - fRminTolerance) ; 986 } 987 else 988 { 989 tolORMin2 = 0 ; 990 } 991 tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax + fRmaxTolerance) ; 992 993 // Intersection with Rmax (possible return) and Rmin (must also check phi) 994 995 snxt = SolveNumericJT(p,v,fRmax,true); 996 997 if (fRmin != 0.0) // Possible Rmin intersection 998 { 999 sd[0] = SolveNumericJT(p,v,fRmin,true); 1000 if ( sd[0] < snxt ) { snxt = sd[0] ; } 1001 } 1002 1003 // 1004 // Phi segment intersection 1005 // 1006 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1007 // 1008 // o NOTE: Large duplication of code between sphi & ephi checks 1009 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1010 // intersection check <=0 -> >=0 1011 // -> use some form of loop Construct ? 1012 1013 if (seg) 1014 { 1015 sinSPhi = std::sin(fSPhi) ; // First phi surface ('S'tarting phi) 1016 cosSPhi = std::cos(fSPhi) ; 1017 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; // Component in outwards 1018 // normal direction 1019 if (Comp < 0 ) 1020 { 1021 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1022 1023 if (Dist < halfCarTolerance) 1024 { 1025 sphi = Dist/Comp ; 1026 if (sphi < snxt) 1027 { 1028 if ( sphi < 0 ) { sphi = 0 ; } 1029 1030 xi = p.x() + sphi*v.x() ; 1031 yi = p.y() + sphi*v.y() ; 1032 zi = p.z() + sphi*v.z() ; 1033 rhoi = std::hypot(xi,yi); 1034 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor); 1035 1036 if ( it2 >= tolORMin2 && it2 <= tolORMax2 ) 1037 { 1038 // r intersection is good - check intersecting 1039 // with correct half-plane 1040 // 1041 if ((yi*cosCPhi-xi*sinCPhi)<=0) { snxt=sphi; } 1042 } 1043 } 1044 } 1045 } 1046 ePhi=fSPhi+fDPhi; // Second phi surface ('E'nding phi) 1047 sinEPhi=std::sin(ePhi); 1048 cosEPhi=std::cos(ePhi); 1049 Comp=-(v.x()*sinEPhi-v.y()*cosEPhi); 1050 1051 if ( Comp < 0 ) // Component in outwards normal dirn 1052 { 1053 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1054 1055 if (Dist < halfCarTolerance ) 1056 { 1057 sphi = Dist/Comp ; 1058 1059 if (sphi < snxt ) 1060 { 1061 if (sphi < 0 ) { sphi = 0 ; } 1062 1063 xi = p.x() + sphi*v.x() ; 1064 yi = p.y() + sphi*v.y() ; 1065 zi = p.z() + sphi*v.z() ; 1066 rhoi = std::hypot(xi,yi); 1067 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor); 1068 1069 if (it2 >= tolORMin2 && it2 <= tolORMax2) 1070 { 1071 // z and r intersections good - check intersecting 1072 // with correct half-plane 1073 // 1074 if ((yi*cosCPhi-xi*sinCPhi)>=0) { snxt=sphi; } 1075 } 1076 } 1077 } 1078 } 1079 } 1080 if(snxt < halfCarTolerance) { snxt = 0.0 ; } 1081 1082 return snxt ; 1083 } 1084 1085 ///////////////////////////////////////////////////////////////////////////// 1086 // 1087 // Calculate distance (<= actual) to closest surface of shape from outside 1088 // - Calculate distance to z, radial planes 1089 // - Only to phi planes if outside phi extent 1090 // - Return 0 if point inside 1091 1092 G4double G4Torus::DistanceToIn( const G4ThreeVector& p ) const 1093 { 1094 G4double safe=0.0, safe1, safe2 ; 1095 G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ; 1096 G4double rho, pt ; 1097 1098 rho = std::hypot(p.x(),p.y()); 1099 pt = std::hypot(p.z(),rho-fRtor); 1100 safe1 = fRmin - pt ; 1101 safe2 = pt - fRmax ; 1102 1103 if (safe1 > safe2) { safe = safe1; } 1104 else { safe = safe2; } 1105 1106 if ( fDPhi < twopi && (rho != 0.0) ) 1107 { 1108 phiC = fSPhi + fDPhi*0.5 ; 1109 cosPhiC = std::cos(phiC) ; 1110 sinPhiC = std::sin(phiC) ; 1111 cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ; 1112 1113 if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point 1114 { // Point lies outside phi range 1115 if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 ) 1116 { 1117 safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1118 } 1119 else 1120 { 1121 ePhi = fSPhi + fDPhi ; 1122 safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1123 } 1124 if (safePhi > safe) { safe = safePhi ; } 1125 } 1126 } 1127 if (safe < 0 ) { safe = 0 ; } 1128 return safe; 1129 } 1130 1131 /////////////////////////////////////////////////////////////////////////// 1132 // 1133 // Calculate distance to surface of shape from `inside', allowing for tolerance 1134 // - Only Calc rmax intersection if no valid rmin intersection 1135 // 1136 1137 G4double G4Torus::DistanceToOut( const G4ThreeVector& p, 1138 const G4ThreeVector& v, 1139 const G4bool calcNorm, 1140 G4bool* validNorm, 1141 G4ThreeVector* n ) const 1142 { 1143 ESide side = kNull, sidephi = kNull ; 1144 G4double snxt = kInfinity, sphi, sd[4] ; 1145 1146 // Vars for phi intersection 1147 // 1148 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi; 1149 G4double cPhi, sinCPhi, cosCPhi ; 1150 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ; 1151 1152 // Radial Intersections Defenitions & General Precals 1153 1154 //////////////////////// new calculation ////////////////////// 1155 1156 #if 1 1157 1158 // This is the version with the calculation of CalcNorm = true 1159 // To be done: Check the precision of this calculation. 1160 // If you want return always validNorm = false, then take the version below 1161 1162 1163 G4double rho = std::hypot(p.x(),p.y()); 1164 G4double pt = hypot(p.z(),rho-fRtor); 1165 1166 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ; 1167 1168 G4double tolRMax = fRmax - fRmaxTolerance ; 1169 1170 G4double vDotNmax = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ; 1171 G4double pDotxyNmax = (1 - fRtor/rho) ; 1172 1173 if( (pt*pt > tolRMax*tolRMax) && (vDotNmax >= 0) ) 1174 { 1175 // On tolerant boundary & heading outwards (or perpendicular to) outer 1176 // radial surface -> leaving immediately with *n for really convex part 1177 // only 1178 1179 if ( calcNorm && (pDotxyNmax >= -2.*fRmaxTolerance) ) 1180 { 1181 *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt, 1182 p.y()*(1 - fRtor/rho)/pt, 1183 p.z()/pt ) ; 1184 *validNorm = true ; 1185 } 1186 1187 return snxt = 0 ; // Leaving by Rmax immediately 1188 } 1189 1190 snxt = SolveNumericJT(p,v,fRmax,false); 1191 side = kRMax ; 1192 1193 // rmin 1194 1195 if ( fRmin != 0.0 ) 1196 { 1197 G4double tolRMin = fRmin + fRminTolerance ; 1198 1199 if ( (pt*pt < tolRMin*tolRMin) && (vDotNmax < 0) ) 1200 { 1201 if (calcNorm) { *validNorm = false ; } // Concave surface of the torus 1202 return snxt = 0 ; // Leaving by Rmin immediately 1203 } 1204 1205 sd[0] = SolveNumericJT(p,v,fRmin,false); 1206 if ( sd[0] < snxt ) 1207 { 1208 snxt = sd[0] ; 1209 side = kRMin ; 1210 } 1211 } 1212 1213 #else 1214 1215 // this is the "conservative" version which return always validnorm = false 1216 // NOTE: using this version the unit test testG4Torus will break 1217 1218 snxt = SolveNumericJT(p,v,fRmax,false); 1219 side = kRMax ; 1220 1221 if ( fRmin ) 1222 { 1223 sd[0] = SolveNumericJT(p,v,fRmin,false); 1224 if ( sd[0] < snxt ) 1225 { 1226 snxt = sd[0] ; 1227 side = kRMin ; 1228 } 1229 } 1230 1231 if ( calcNorm && (snxt == 0.0) ) 1232 { 1233 *validNorm = false ; // Leaving solid, but possible re-intersection 1234 return snxt ; 1235 } 1236 1237 #endif 1238 1239 if (fDPhi < twopi) // Phi Intersections 1240 { 1241 sinSPhi = std::sin(fSPhi) ; 1242 cosSPhi = std::cos(fSPhi) ; 1243 ePhi = fSPhi + fDPhi ; 1244 sinEPhi = std::sin(ePhi) ; 1245 cosEPhi = std::cos(ePhi) ; 1246 cPhi = fSPhi + fDPhi*0.5 ; 1247 sinCPhi = std::sin(cPhi) ; 1248 cosCPhi = std::cos(cPhi) ; 1249 1250 // angle calculation with correction 1251 // of difference in domain of atan2 and Sphi 1252 // 1253 vphi = std::atan2(v.y(),v.x()) ; 1254 1255 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1256 else if ( vphi > ePhi + halfAngTolerance ) { vphi -= twopi; } 1257 1258 if ( (p.x() != 0.0) || (p.y() != 0.0) ) // Check if on z axis (rho not needed later) 1259 { 1260 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside 1261 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1262 1263 // Comp -ve when in direction of outwards normal 1264 // 1265 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1266 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1267 sidephi = kNull ; 1268 1269 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1270 && (pDistE <= halfCarTolerance) ) ) 1271 || ( (fDPhi > pi) && ((pDistS <= halfCarTolerance) 1272 || (pDistE <= halfCarTolerance) ) ) ) 1273 { 1274 // Inside both phi *full* planes 1275 1276 if ( compS < 0 ) 1277 { 1278 sphi = pDistS/compS ; 1279 1280 if (sphi >= -halfCarTolerance) 1281 { 1282 xi = p.x() + sphi*v.x() ; 1283 yi = p.y() + sphi*v.y() ; 1284 1285 // Check intersecting with correct half-plane 1286 // (if not -> no intersect) 1287 // 1288 if ( (std::fabs(xi)<=kCarTolerance) 1289 && (std::fabs(yi)<=kCarTolerance) ) 1290 { 1291 sidephi = kSPhi; 1292 if ( ((fSPhi-halfAngTolerance)<=vphi) 1293 && ((ePhi+halfAngTolerance)>=vphi) ) 1294 { 1295 sphi = kInfinity; 1296 } 1297 } 1298 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1299 { 1300 sphi = kInfinity ; 1301 } 1302 else 1303 { 1304 sidephi = kSPhi ; 1305 } 1306 } 1307 else 1308 { 1309 sphi = kInfinity ; 1310 } 1311 } 1312 else 1313 { 1314 sphi = kInfinity ; 1315 } 1316 1317 if ( compE < 0 ) 1318 { 1319 sphi2 = pDistE/compE ; 1320 1321 // Only check further if < starting phi intersection 1322 // 1323 if ( (sphi2 > -kCarTolerance) && (sphi2 < sphi) ) 1324 { 1325 xi = p.x() + sphi2*v.x() ; 1326 yi = p.y() + sphi2*v.y() ; 1327 1328 if ( (std::fabs(xi)<=kCarTolerance) 1329 && (std::fabs(yi)<=kCarTolerance) ) 1330 { 1331 // Leaving via ending phi 1332 // 1333 if( (fSPhi-halfAngTolerance > vphi) 1334 || (ePhi+halfAngTolerance < vphi) ) 1335 { 1336 sidephi = kEPhi ; 1337 sphi = sphi2; 1338 } 1339 } 1340 else // Check intersecting with correct half-plane 1341 { 1342 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1343 { 1344 // Leaving via ending phi 1345 // 1346 sidephi = kEPhi ; 1347 sphi = sphi2; 1348 1349 } 1350 } 1351 } 1352 } 1353 } 1354 else 1355 { 1356 sphi = kInfinity ; 1357 } 1358 } 1359 else 1360 { 1361 // On z axis + travel not || to z axis -> if phi of vector direction 1362 // within phi of shape, Step limited by rmax, else Step =0 1363 1364 vphi = std::atan2(v.y(),v.x()); 1365 1366 if ( ( fSPhi-halfAngTolerance <= vphi ) && 1367 ( vphi <= ( ePhi+halfAngTolerance ) ) ) 1368 { 1369 sphi = kInfinity; 1370 } 1371 else 1372 { 1373 sidephi = kSPhi ; // arbitrary 1374 sphi=0; 1375 } 1376 } 1377 1378 // Order intersections 1379 1380 if (sphi<snxt) 1381 { 1382 snxt=sphi; 1383 side=sidephi; 1384 } 1385 } 1386 1387 G4double rhoi,it,iDotxyNmax ; 1388 // Note: by numerical computation we know where the ray hits the torus 1389 // So I propose to return the side where the ray hits 1390 1391 if (calcNorm) 1392 { 1393 switch(side) 1394 { 1395 case kRMax: // n is unit vector 1396 xi = p.x() + snxt*v.x() ; 1397 yi = p.y() + snxt*v.y() ; 1398 zi = p.z() + snxt*v.z() ; 1399 rhoi = std::hypot(xi,yi); 1400 it = hypot(zi,rhoi-fRtor); 1401 1402 iDotxyNmax = (1-fRtor/rhoi) ; 1403 if(iDotxyNmax >= -2.*fRmaxTolerance) // really convex part of Rmax 1404 { 1405 *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it, 1406 yi*(1-fRtor/rhoi)/it, 1407 zi/it ) ; 1408 *validNorm = true ; 1409 } 1410 else 1411 { 1412 *validNorm = false ; // concave-convex part of Rmax 1413 } 1414 break ; 1415 1416 case kRMin: 1417 *validNorm = false ; // Rmin is concave or concave-convex 1418 break; 1419 1420 case kSPhi: 1421 if (fDPhi <= pi ) 1422 { 1423 *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 1424 *validNorm=true; 1425 } 1426 else 1427 { 1428 *validNorm = false ; 1429 } 1430 break ; 1431 1432 case kEPhi: 1433 if (fDPhi <= pi) 1434 { 1435 *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 1436 *validNorm=true; 1437 } 1438 else 1439 { 1440 *validNorm = false ; 1441 } 1442 break; 1443 1444 default: 1445 1446 // It seems we go here from time to time ... 1447 1448 G4cout << G4endl; 1449 DumpInfo(); 1450 std::ostringstream message; 1451 G4long oldprc = message.precision(16); 1452 message << "Undefined side for valid surface normal to solid." 1453 << G4endl 1454 << "Position:" << G4endl << G4endl 1455 << "p.x() = " << p.x()/mm << " mm" << G4endl 1456 << "p.y() = " << p.y()/mm << " mm" << G4endl 1457 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1458 << "Direction:" << G4endl << G4endl 1459 << "v.x() = " << v.x() << G4endl 1460 << "v.y() = " << v.y() << G4endl 1461 << "v.z() = " << v.z() << G4endl << G4endl 1462 << "Proposed distance :" << G4endl << G4endl 1463 << "snxt = " << snxt/mm << " mm" << G4endl; 1464 message.precision(oldprc); 1465 G4Exception("G4Torus::DistanceToOut(p,v,..)", 1466 "GeomSolids1002",JustWarning, message); 1467 break; 1468 } 1469 } 1470 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1471 1472 return snxt; 1473 } 1474 1475 ///////////////////////////////////////////////////////////////////////// 1476 // 1477 // Calculate distance (<=actual) to closest surface of shape from inside 1478 1479 G4double G4Torus::DistanceToOut( const G4ThreeVector& p ) const 1480 { 1481 G4double safe=0.0,safeR1,safeR2; 1482 G4double rho,pt ; 1483 G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi; 1484 1485 rho = std::hypot(p.x(),p.y()); 1486 pt = std::hypot(p.z(),rho-fRtor); 1487 1488 #ifdef G4CSGDEBUG 1489 if( Inside(p) == kOutside ) 1490 { 1491 G4long oldprc = G4cout.precision(16) ; 1492 G4cout << G4endl ; 1493 DumpInfo(); 1494 G4cout << "Position:" << G4endl << G4endl ; 1495 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1496 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1497 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1498 G4cout.precision(oldprc); 1499 G4Exception("G4Torus::DistanceToOut(p)", "GeomSolids1002", 1500 JustWarning, "Point p is outside !?" ); 1501 } 1502 #endif 1503 1504 if (fRmin != 0.0) 1505 { 1506 safeR1 = pt - fRmin ; 1507 safeR2 = fRmax - pt ; 1508 1509 if (safeR1 < safeR2) { safe = safeR1 ; } 1510 else { safe = safeR2 ; } 1511 } 1512 else 1513 { 1514 safe = fRmax - pt ; 1515 } 1516 1517 // Check if phi divided, Calc distances closest phi plane 1518 // 1519 if (fDPhi < twopi) // Above/below central phi of Torus? 1520 { 1521 phiC = fSPhi + fDPhi*0.5 ; 1522 cosPhiC = std::cos(phiC) ; 1523 sinPhiC = std::sin(phiC) ; 1524 1525 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0) 1526 { 1527 safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1528 } 1529 else 1530 { 1531 ePhi = fSPhi + fDPhi ; 1532 safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1533 } 1534 if (safePhi < safe) { safe = safePhi ; } 1535 } 1536 if (safe < 0) { safe = 0 ; } 1537 return safe ; 1538 } 1539 1540 ////////////////////////////////////////////////////////////////////////// 1541 // 1542 // Stream object contents to an output stream 1543 1544 G4GeometryType G4Torus::GetEntityType() const 1545 { 1546 return {"G4Torus"}; 1547 } 1548 1549 ////////////////////////////////////////////////////////////////////////// 1550 // 1551 // Make a clone of the object 1552 // 1553 G4VSolid* G4Torus::Clone() const 1554 { 1555 return new G4Torus(*this); 1556 } 1557 1558 ////////////////////////////////////////////////////////////////////////// 1559 // 1560 // Stream object contents to an output stream 1561 1562 std::ostream& G4Torus::StreamInfo( std::ostream& os ) const 1563 { 1564 G4long oldprc = os.precision(16); 1565 os << "-----------------------------------------------------------\n" 1566 << " *** Dump for solid - " << GetName() << " ***\n" 1567 << " ===================================================\n" 1568 << " Solid type: G4Torus\n" 1569 << " Parameters: \n" 1570 << " inner radius: " << fRmin/mm << " mm \n" 1571 << " outer radius: " << fRmax/mm << " mm \n" 1572 << " swept radius: " << fRtor/mm << " mm \n" 1573 << " starting phi: " << fSPhi/degree << " degrees \n" 1574 << " delta phi : " << fDPhi/degree << " degrees \n" 1575 << "-----------------------------------------------------------\n"; 1576 os.precision(oldprc); 1577 1578 return os; 1579 } 1580 1581 //////////////////////////////////////////////////////////////////////////// 1582 // 1583 // GetPointOnSurface 1584 1585 G4ThreeVector G4Torus::GetPointOnSurface() const 1586 { 1587 G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand; 1588 1589 phi = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi); 1590 theta = G4RandFlat::shoot(0.,twopi); 1591 1592 cosu = std::cos(phi); sinu = std::sin(phi); 1593 cosv = std::cos(theta); sinv = std::sin(theta); 1594 1595 // compute the areas 1596 1597 aOut = (fDPhi)*twopi*fRtor*fRmax; 1598 aIn = (fDPhi)*twopi*fRtor*fRmin; 1599 aSide = pi*(fRmax*fRmax-fRmin*fRmin); 1600 1601 if ((fSPhi == 0) && (fDPhi == twopi)){ aSide = 0; } 1602 chose = G4RandFlat::shoot(0.,aOut + aIn + 2.*aSide); 1603 1604 if(chose < aOut) 1605 { 1606 return { (fRtor+fRmax*cosv)*cosu, (fRtor+fRmax*cosv)*sinu, fRmax*sinv }; 1607 } 1608 else if( (chose >= aOut) && (chose < aOut + aIn) ) 1609 { 1610 return { (fRtor+fRmin*cosv)*cosu, (fRtor+fRmin*cosv)*sinu, fRmin*sinv }; 1611 } 1612 else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) ) 1613 { 1614 rRand = GetRadiusInRing(fRmin,fRmax); 1615 return { (fRtor+rRand*cosv)*std::cos(fSPhi), 1616 (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv }; 1617 } 1618 else 1619 { 1620 rRand = GetRadiusInRing(fRmin,fRmax); 1621 return { (fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi), 1622 (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi), rRand*sinv }; 1623 } 1624 } 1625 1626 /////////////////////////////////////////////////////////////////////// 1627 // 1628 // Visualisation Functions 1629 1630 void G4Torus::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1631 { 1632 scene.AddSolid (*this); 1633 } 1634 1635 G4Polyhedron* G4Torus::CreatePolyhedron () const 1636 { 1637 return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi); 1638 } 1639 1640 #endif // !defined(G4GEOM_USE_TORUS) || !defined(G4GEOM_USE_SYS_USOLIDS) 1641