Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/global/HEPNumerics/include/G4JTPolynomialSolver.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4JTPolynomialSolver
 27 //
 28 // Class description:
 29 //
 30 // G4JTPolynomialSolver implements the Jenkins-Traub algorithm
 31 // for real polynomial root finding.
 32 // The solver returns -1, if the leading coefficient is zero,
 33 // the number of roots found, otherwise.
 34 //
 35 // ----------------------------- INPUT --------------------------------
 36 //
 37 //    op     - double precision vector of coefficients in order of
 38 //             decreasing powers
 39 //    degree - integer degree of polynomial
 40 //
 41 // ----------------------------- OUTPUT -------------------------------
 42 //
 43 //    zeror,zeroi - double precision vectors of the
 44 //                  real and imaginary parts of the zeros
 45 //
 46 // ---------------------------- EXAMPLE -------------------------------
 47 //
 48 //    G4JTPolynomialSolver trapEq ;
 49 //    G4double coef[8] ;
 50 //    G4double zr[7] , zi[7] ;
 51 //    G4int num = trapEq.FindRoots(coef,7,zr,zi);
 52 //
 53 // Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond).
 54 
 55 // Author: Oliver Link, 15.02.2005
 56 //         Translated to C++ and adapted to use STL vectors.
 57 // --------------------------------------------------------------------
 58 #ifndef G4JTPOLYNOMIALSOLVER_HH
 59 #define G4JTPOLYNOMIALSOLVER_HH 1
 60 
 61 #include <cmath>
 62 #include <vector>
 63 
 64 #include "globals.hh"
 65 
 66 class G4JTPolynomialSolver
 67 {
 68  public:
 69   G4JTPolynomialSolver() = default;
 70   ~G4JTPolynomialSolver() = default;
 71 
 72   G4int FindRoots(G4double* op, G4int degree, G4double* zeror, G4double* zeroi);
 73 
 74  private:
 75   void Quadratic(G4double a, G4double b1, G4double c, G4double* sr,
 76                  G4double* si, G4double* lr, G4double* li);
 77   void ComputeFixedShiftPolynomial(G4int l2, G4int* nz);
 78   void QuadraticPolynomialIteration(G4double* uu, G4double* vv, G4int* nz);
 79   void RealPolynomialIteration(G4double* sss, G4int* nz, G4int* iflag);
 80   void ComputeScalarFactors(G4int* type);
 81   void ComputeNextPolynomial(G4int* type);
 82   void ComputeNewEstimate(G4int type, G4double* uu, G4double* vv);
 83   void QuadraticSyntheticDivision(G4int n, G4double* u, G4double* v,
 84                                   std::vector<G4double>& p,
 85                                   std::vector<G4double>& q, G4double* a,
 86                                   G4double* b);
 87 
 88  private:
 89   std::vector<G4double> p;
 90   std::vector<G4double> qp;
 91   std::vector<G4double> k;
 92   std::vector<G4double> qk;
 93   std::vector<G4double> svk;
 94 
 95   G4double sr = 0.0;
 96   G4double si = 0.0;
 97   G4double u = 0.0, v = 0.0;
 98   G4double a = 0.0, b = 0.0, c = 0.0, d = 0.0;
 99   G4double a1 = 0.0, a3 = 0.0, a7 = 0.0;
100   G4double e = 0.0, f = 0.0, g = 0.0, h = 0.0;
101   G4double szr = 0.0, szi = 0.0;
102   G4double lzr = 0.0, lzi = 0.0;
103   G4int n = 0;
104 
105   /*  The following statements set machine constants */
106 
107   static const G4double base;
108   static const G4double eta;
109   static const G4double infin;
110   static const G4double smalno;
111   static const G4double are;
112   static const G4double mre;
113   static const G4double lo;
114 };
115 
116 #endif
117