Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4JTPolynomialSolver 27 // 28 // Class description: 29 // 30 // G4JTPolynomialSolver implements the Jenkins-Traub algorithm 31 // for real polynomial root finding. 32 // The solver returns -1, if the leading coefficient is zero, 33 // the number of roots found, otherwise. 34 // 35 // ----------------------------- INPUT -------------------------------- 36 // 37 // op - double precision vector of coefficients in order of 38 // decreasing powers 39 // degree - integer degree of polynomial 40 // 41 // ----------------------------- OUTPUT ------------------------------- 42 // 43 // zeror,zeroi - double precision vectors of the 44 // real and imaginary parts of the zeros 45 // 46 // ---------------------------- EXAMPLE ------------------------------- 47 // 48 // G4JTPolynomialSolver trapEq ; 49 // G4double coef[8] ; 50 // G4double zr[7] , zi[7] ; 51 // G4int num = trapEq.FindRoots(coef,7,zr,zi); 52 // 53 // Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond). 54 55 // Author: Oliver Link, 15.02.2005 56 // Translated to C++ and adapted to use STL vectors. 57 // -------------------------------------------------------------------- 58 #ifndef G4JTPOLYNOMIALSOLVER_HH 59 #define G4JTPOLYNOMIALSOLVER_HH 1 60 61 #include <cmath> 62 #include <vector> 63 64 #include "globals.hh" 65 66 class G4JTPolynomialSolver 67 { 68 public: 69 G4JTPolynomialSolver() = default; 70 ~G4JTPolynomialSolver() = default; 71 72 G4int FindRoots(G4double* op, G4int degree, G4double* zeror, G4double* zeroi); 73 74 private: 75 void Quadratic(G4double a, G4double b1, G4double c, G4double* sr, 76 G4double* si, G4double* lr, G4double* li); 77 void ComputeFixedShiftPolynomial(G4int l2, G4int* nz); 78 void QuadraticPolynomialIteration(G4double* uu, G4double* vv, G4int* nz); 79 void RealPolynomialIteration(G4double* sss, G4int* nz, G4int* iflag); 80 void ComputeScalarFactors(G4int* type); 81 void ComputeNextPolynomial(G4int* type); 82 void ComputeNewEstimate(G4int type, G4double* uu, G4double* vv); 83 void QuadraticSyntheticDivision(G4int n, G4double* u, G4double* v, 84 std::vector<G4double>& p, 85 std::vector<G4double>& q, G4double* a, 86 G4double* b); 87 88 private: 89 std::vector<G4double> p; 90 std::vector<G4double> qp; 91 std::vector<G4double> k; 92 std::vector<G4double> qk; 93 std::vector<G4double> svk; 94 95 G4double sr = 0.0; 96 G4double si = 0.0; 97 G4double u = 0.0, v = 0.0; 98 G4double a = 0.0, b = 0.0, c = 0.0, d = 0.0; 99 G4double a1 = 0.0, a3 = 0.0, a7 = 0.0; 100 G4double e = 0.0, f = 0.0, g = 0.0, h = 0.0; 101 G4double szr = 0.0, szi = 0.0; 102 G4double lzr = 0.0, lzi = 0.0; 103 G4int n = 0; 104 105 /* The following statements set machine constants */ 106 107 static const G4double base; 108 static const G4double eta; 109 static const G4double infin; 110 static const G4double smalno; 111 static const G4double are; 112 static const G4double mre; 113 static const G4double lo; 114 }; 115 116 #endif 117