Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // Implementation for G4Sphere class 27 // 28 // 28.03.94 P.Kent: old C++ code converted to tolerant geometry 29 // 17.09.96 V.Grichine: final modifications to commit 30 // 30.10.03 J.Apostolakis: new algorithm in Inside for SPhi-sections 31 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal 32 // 22.07.05 O.Link: Added check for intersection with double cone 33 // 26.03.09 G.Cosmo: optimisations and uniform use of local radial tolerance 34 // 26.10.16 E.Tcherniaev: re-implemented CalculateExtent() using 35 // G4BoundingEnvelope, removed CreateRotatedVertices() 36 // -------------------------------------------------------------------- 37 38 #include "G4Sphere.hh" 39 40 #if !defined(G4GEOM_USE_USPHERE) 41 42 #include "G4GeomTools.hh" 43 #include "G4VoxelLimits.hh" 44 #include "G4AffineTransform.hh" 45 #include "G4GeometryTolerance.hh" 46 #include "G4BoundingEnvelope.hh" 47 48 #include "G4VPVParameterisation.hh" 49 50 #include "G4QuickRand.hh" 51 52 #include "meshdefs.hh" 53 54 #include "G4VGraphicsScene.hh" 55 #include "G4VisExtent.hh" 56 57 using namespace CLHEP; 58 59 // Private enum: Not for external use - used by distanceToOut 60 61 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTheta,kETheta}; 62 63 // used by normal 64 65 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSTheta,kNETheta}; 66 67 //////////////////////////////////////////////////////////////////////// 68 // 69 // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 70 // - note if pDPhi>2PI then reset to 2PI 71 72 G4Sphere::G4Sphere( const G4String& pName, 73 G4double pRmin, G4double pRmax, 74 G4double pSPhi, G4double pDPhi, 75 G4double pSTheta, G4double pDTheta ) 76 : G4CSGSolid(pName), fSPhi(0.0), fFullPhiSphere(true), fFullThetaSphere(true) 77 { 78 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 79 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 80 81 halfCarTolerance = 0.5*kCarTolerance; 82 halfAngTolerance = 0.5*kAngTolerance; 83 84 // Check radii and set radial tolerances 85 86 if ( (pRmin >= pRmax) || (pRmax < 1.1*kRadTolerance) || (pRmin < 0) ) 87 { 88 std::ostringstream message; 89 message << "Invalid radii for Solid: " << GetName() << G4endl 90 << " pRmin = " << pRmin << ", pRmax = " << pRmax; 91 G4Exception("G4Sphere::G4Sphere()", "GeomSolids0002", 92 FatalException, message); 93 } 94 fRmin=pRmin; fRmax=pRmax; 95 fRminTolerance = (fRmin) != 0.0 ? std::max( kRadTolerance, fEpsilon*fRmin ) : 0; 96 fRmaxTolerance = std::max( kRadTolerance, fEpsilon*fRmax ); 97 98 // Check angles 99 100 CheckPhiAngles(pSPhi, pDPhi); 101 CheckThetaAngles(pSTheta, pDTheta); 102 } 103 104 /////////////////////////////////////////////////////////////////////// 105 // 106 // Fake default constructor - sets only member data and allocates memory 107 // for usage restricted to object persistency. 108 // 109 G4Sphere::G4Sphere( __void__& a ) 110 : G4CSGSolid(a) 111 { 112 } 113 114 ///////////////////////////////////////////////////////////////////// 115 // 116 // Destructor 117 118 G4Sphere::~G4Sphere() = default; 119 120 ////////////////////////////////////////////////////////////////////////// 121 // 122 // Copy constructor 123 124 G4Sphere::G4Sphere(const G4Sphere&) = default; 125 126 ////////////////////////////////////////////////////////////////////////// 127 // 128 // Assignment operator 129 130 G4Sphere& G4Sphere::operator = (const G4Sphere& rhs) 131 { 132 // Check assignment to self 133 // 134 if (this == &rhs) { return *this; } 135 136 // Copy base class data 137 // 138 G4CSGSolid::operator=(rhs); 139 140 // Copy data 141 // 142 fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance; 143 kAngTolerance = rhs.kAngTolerance; kRadTolerance = rhs.kRadTolerance; 144 fEpsilon = rhs.fEpsilon; fRmin = rhs.fRmin; fRmax = rhs.fRmax; 145 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; fSTheta = rhs.fSTheta; 146 fDTheta = rhs.fDTheta; sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi; 147 cosHDPhi = rhs.cosHDPhi; 148 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT; 149 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi; 150 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi; 151 hDPhi = rhs.hDPhi; cPhi = rhs.cPhi; ePhi = rhs.ePhi; 152 sinSTheta = rhs.sinSTheta; cosSTheta = rhs.cosSTheta; 153 sinETheta = rhs.sinETheta; cosETheta = rhs.cosETheta; 154 tanSTheta = rhs.tanSTheta; tanSTheta2 = rhs.tanSTheta2; 155 tanETheta = rhs.tanETheta; tanETheta2 = rhs.tanETheta2; 156 eTheta = rhs.eTheta; fFullPhiSphere = rhs.fFullPhiSphere; 157 fFullThetaSphere = rhs.fFullThetaSphere; fFullSphere = rhs.fFullSphere; 158 halfCarTolerance = rhs.halfCarTolerance; 159 halfAngTolerance = rhs.halfAngTolerance; 160 161 return *this; 162 } 163 164 ////////////////////////////////////////////////////////////////////////// 165 // 166 // Dispatch to parameterisation for replication mechanism dimension 167 // computation & modification. 168 169 void G4Sphere::ComputeDimensions( G4VPVParameterisation* p, 170 const G4int n, 171 const G4VPhysicalVolume* pRep) 172 { 173 p->ComputeDimensions(*this,n,pRep); 174 } 175 176 ////////////////////////////////////////////////////////////////////////// 177 // 178 // Get bounding box 179 180 void G4Sphere::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 181 { 182 G4double rmin = GetInnerRadius(); 183 G4double rmax = GetOuterRadius(); 184 185 // Find bounding box 186 // 187 if (GetDeltaThetaAngle() >= pi && GetDeltaPhiAngle() >= twopi) 188 { 189 pMin.set(-rmax,-rmax,-rmax); 190 pMax.set( rmax, rmax, rmax); 191 } 192 else 193 { 194 G4double sinStart = GetSinStartTheta(); 195 G4double cosStart = GetCosStartTheta(); 196 G4double sinEnd = GetSinEndTheta(); 197 G4double cosEnd = GetCosEndTheta(); 198 199 G4double stheta = GetStartThetaAngle(); 200 G4double etheta = stheta + GetDeltaThetaAngle(); 201 G4double rhomin = rmin*std::min(sinStart,sinEnd); 202 G4double rhomax = rmax; 203 if (stheta > halfpi) rhomax = rmax*sinStart; 204 if (etheta < halfpi) rhomax = rmax*sinEnd; 205 206 G4TwoVector xymin,xymax; 207 G4GeomTools::DiskExtent(rhomin,rhomax, 208 GetSinStartPhi(),GetCosStartPhi(), 209 GetSinEndPhi(),GetCosEndPhi(), 210 xymin,xymax); 211 212 G4double zmin = std::min(rmin*cosEnd,rmax*cosEnd); 213 G4double zmax = std::max(rmin*cosStart,rmax*cosStart); 214 pMin.set(xymin.x(),xymin.y(),zmin); 215 pMax.set(xymax.x(),xymax.y(),zmax); 216 } 217 218 // Check correctness of the bounding box 219 // 220 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 221 { 222 std::ostringstream message; 223 message << "Bad bounding box (min >= max) for solid: " 224 << GetName() << " !" 225 << "\npMin = " << pMin 226 << "\npMax = " << pMax; 227 G4Exception("G4Sphere::BoundingLimits()", "GeomMgt0001", 228 JustWarning, message); 229 DumpInfo(); 230 } 231 } 232 233 //////////////////////////////////////////////////////////////////////////// 234 // 235 // Calculate extent under transform and specified limit 236 237 G4bool G4Sphere::CalculateExtent( const EAxis pAxis, 238 const G4VoxelLimits& pVoxelLimit, 239 const G4AffineTransform& pTransform, 240 G4double& pMin, G4double& pMax ) const 241 { 242 G4ThreeVector bmin, bmax; 243 244 // Get bounding box 245 BoundingLimits(bmin,bmax); 246 247 // Find extent 248 G4BoundingEnvelope bbox(bmin,bmax); 249 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 250 } 251 252 /////////////////////////////////////////////////////////////////////////// 253 // 254 // Return whether point inside/outside/on surface 255 // Split into radius, phi, theta checks 256 // Each check modifies 'in', or returns as approprate 257 258 EInside G4Sphere::Inside( const G4ThreeVector& p ) const 259 { 260 G4double rho,rho2,rad2,tolRMin,tolRMax; 261 G4double pPhi,pTheta; 262 EInside in = kOutside; 263 264 const G4double halfRmaxTolerance = fRmaxTolerance*0.5; 265 const G4double halfRminTolerance = fRminTolerance*0.5; 266 const G4double Rmax_minus = fRmax - halfRmaxTolerance; 267 const G4double Rmin_plus = (fRmin > 0) ? fRmin+halfRminTolerance : 0; 268 269 rho2 = p.x()*p.x() + p.y()*p.y() ; 270 rad2 = rho2 + p.z()*p.z() ; 271 272 // Check radial surfaces. Sets 'in' 273 274 tolRMin = Rmin_plus; 275 tolRMax = Rmax_minus; 276 277 if(rad2 == 0.0) 278 { 279 if (fRmin > 0.0) 280 { 281 return in = kOutside; 282 } 283 if ( (!fFullPhiSphere) || (!fFullThetaSphere) ) 284 { 285 return in = kSurface; 286 } 287 else 288 { 289 return in = kInside; 290 } 291 } 292 293 if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad2 >= Rmin_plus*Rmin_plus) ) 294 { 295 in = kInside; 296 } 297 else 298 { 299 tolRMax = fRmax + halfRmaxTolerance; // outside case 300 tolRMin = std::max(fRmin-halfRminTolerance, 0.); // outside case 301 if ( (rad2 <= tolRMax*tolRMax) && (rad2 >= tolRMin*tolRMin) ) 302 { 303 in = kSurface; 304 } 305 else 306 { 307 return in = kOutside; 308 } 309 } 310 311 // Phi boundaries : Do not check if it has no phi boundary! 312 313 if ( !fFullPhiSphere && (rho2 != 0.0) ) // [fDPhi < twopi] and [p.x or p.y] 314 { 315 pPhi = std::atan2(p.y(),p.x()) ; 316 317 if ( pPhi < fSPhi - halfAngTolerance ) { pPhi += twopi; } 318 else if ( pPhi > ePhi + halfAngTolerance ) { pPhi -= twopi; } 319 320 if ( (pPhi < fSPhi - halfAngTolerance) 321 || (pPhi > ePhi + halfAngTolerance) ) { return in = kOutside; } 322 323 else if (in == kInside) // else it's kSurface anyway already 324 { 325 if ( (pPhi < fSPhi + halfAngTolerance) 326 || (pPhi > ePhi - halfAngTolerance) ) { in = kSurface; } 327 } 328 } 329 330 // Theta bondaries 331 332 if ( ((rho2 != 0.0) || (p.z() != 0.0)) && (!fFullThetaSphere) ) 333 { 334 rho = std::sqrt(rho2); 335 pTheta = std::atan2(rho,p.z()); 336 337 if ( in == kInside ) 338 { 339 if ( ((fSTheta > 0.0) && (pTheta < fSTheta + halfAngTolerance)) 340 || ((eTheta < pi) && (pTheta > eTheta - halfAngTolerance)) ) 341 { 342 if ( (( (fSTheta>0.0)&&(pTheta>=fSTheta-halfAngTolerance) ) 343 || (fSTheta == 0.0) ) 344 && ((eTheta==pi)||(pTheta <= eTheta + halfAngTolerance) ) ) 345 { 346 in = kSurface; 347 } 348 else 349 { 350 in = kOutside; 351 } 352 } 353 } 354 else 355 { 356 if ( ((fSTheta > 0.0)&&(pTheta < fSTheta - halfAngTolerance)) 357 ||((eTheta < pi )&&(pTheta > eTheta + halfAngTolerance)) ) 358 { 359 in = kOutside; 360 } 361 } 362 } 363 return in; 364 } 365 366 ///////////////////////////////////////////////////////////////////// 367 // 368 // Return unit normal of surface closest to p 369 // - note if point on z axis, ignore phi divided sides 370 // - unsafe if point close to z axis a rmin=0 - no explicit checks 371 372 G4ThreeVector G4Sphere::SurfaceNormal( const G4ThreeVector& p ) const 373 { 374 G4int noSurfaces = 0; 375 G4double rho, rho2, radius, pTheta, pPhi=0.; 376 G4double distRMin = kInfinity; 377 G4double distSPhi = kInfinity, distEPhi = kInfinity; 378 G4double distSTheta = kInfinity, distETheta = kInfinity; 379 G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0.,0.,1.); 380 G4ThreeVector norm, sumnorm(0.,0.,0.); 381 382 rho2 = p.x()*p.x()+p.y()*p.y(); 383 radius = std::sqrt(rho2+p.z()*p.z()); 384 rho = std::sqrt(rho2); 385 386 G4double distRMax = std::fabs(radius-fRmax); 387 if (fRmin != 0.0) distRMin = std::fabs(radius-fRmin); 388 389 if ( (rho != 0.0) && !fFullSphere ) 390 { 391 pPhi = std::atan2(p.y(),p.x()); 392 393 if (pPhi < fSPhi-halfAngTolerance) { pPhi += twopi; } 394 else if (pPhi > ePhi+halfAngTolerance) { pPhi -= twopi; } 395 } 396 if ( !fFullPhiSphere ) 397 { 398 if ( rho != 0.0 ) 399 { 400 distSPhi = std::fabs( pPhi-fSPhi ); 401 distEPhi = std::fabs( pPhi-ePhi ); 402 } 403 else if( fRmin == 0.0 ) 404 { 405 distSPhi = 0.; 406 distEPhi = 0.; 407 } 408 nPs = G4ThreeVector(sinSPhi,-cosSPhi,0); 409 nPe = G4ThreeVector(-sinEPhi,cosEPhi,0); 410 } 411 if ( !fFullThetaSphere ) 412 { 413 if ( rho != 0.0 ) 414 { 415 pTheta = std::atan2(rho,p.z()); 416 distSTheta = std::fabs(pTheta-fSTheta); 417 distETheta = std::fabs(pTheta-eTheta); 418 419 nTs = G4ThreeVector(-cosSTheta*p.x()/rho, 420 -cosSTheta*p.y()/rho, 421 sinSTheta ); 422 423 nTe = G4ThreeVector( cosETheta*p.x()/rho, 424 cosETheta*p.y()/rho, 425 -sinETheta ); 426 } 427 else if( fRmin == 0.0 ) 428 { 429 if ( fSTheta != 0.0 ) 430 { 431 distSTheta = 0.; 432 nTs = G4ThreeVector(0.,0.,-1.); 433 } 434 if ( eTheta < pi ) 435 { 436 distETheta = 0.; 437 nTe = G4ThreeVector(0.,0.,1.); 438 } 439 } 440 } 441 if( radius != 0.0 ) { nR = G4ThreeVector(p.x()/radius,p.y()/radius,p.z()/radius); } 442 443 if( distRMax <= halfCarTolerance ) 444 { 445 ++noSurfaces; 446 sumnorm += nR; 447 } 448 if( (fRmin != 0.0) && (distRMin <= halfCarTolerance) ) 449 { 450 ++noSurfaces; 451 sumnorm -= nR; 452 } 453 if( !fFullPhiSphere ) 454 { 455 if (distSPhi <= halfAngTolerance) 456 { 457 ++noSurfaces; 458 sumnorm += nPs; 459 } 460 if (distEPhi <= halfAngTolerance) 461 { 462 ++noSurfaces; 463 sumnorm += nPe; 464 } 465 } 466 if ( !fFullThetaSphere ) 467 { 468 if ((distSTheta <= halfAngTolerance) && (fSTheta > 0.)) 469 { 470 ++noSurfaces; 471 if ((radius <= halfCarTolerance) && fFullPhiSphere) { sumnorm += nZ; } 472 else { sumnorm += nTs; } 473 } 474 if ((distETheta <= halfAngTolerance) && (eTheta < pi)) 475 { 476 ++noSurfaces; 477 if ((radius <= halfCarTolerance) && fFullPhiSphere) { sumnorm -= nZ; } 478 else { sumnorm += nTe; } 479 if(sumnorm.z() == 0.) { sumnorm += nZ; } 480 } 481 } 482 if ( noSurfaces == 0 ) 483 { 484 #ifdef G4CSGDEBUG 485 G4Exception("G4Sphere::SurfaceNormal(p)", "GeomSolids1002", 486 JustWarning, "Point p is not on surface !?" ); 487 #endif 488 norm = ApproxSurfaceNormal(p); 489 } 490 else if ( noSurfaces == 1 ) { norm = sumnorm; } 491 else { norm = sumnorm.unit(); } 492 return norm; 493 } 494 495 496 ///////////////////////////////////////////////////////////////////// 497 // 498 // Algorithm for SurfaceNormal() following the original specification 499 // for points not on the surface 500 501 G4ThreeVector G4Sphere::ApproxSurfaceNormal( const G4ThreeVector& p ) const 502 { 503 ENorm side; 504 G4ThreeVector norm; 505 G4double rho,rho2,radius,pPhi,pTheta; 506 G4double distRMin,distRMax,distSPhi,distEPhi, 507 distSTheta,distETheta,distMin; 508 509 rho2=p.x()*p.x()+p.y()*p.y(); 510 radius=std::sqrt(rho2+p.z()*p.z()); 511 rho=std::sqrt(rho2); 512 513 // 514 // Distance to r shells 515 // 516 517 distRMax=std::fabs(radius-fRmax); 518 if (fRmin != 0.0) 519 { 520 distRMin=std::fabs(radius-fRmin); 521 522 if (distRMin<distRMax) 523 { 524 distMin=distRMin; 525 side=kNRMin; 526 } 527 else 528 { 529 distMin=distRMax; 530 side=kNRMax; 531 } 532 } 533 else 534 { 535 distMin=distRMax; 536 side=kNRMax; 537 } 538 539 // 540 // Distance to phi planes 541 // 542 // Protected against (0,0,z) 543 544 pPhi = std::atan2(p.y(),p.x()); 545 if (pPhi<0) { pPhi += twopi; } 546 547 if (!fFullPhiSphere && (rho != 0.0)) 548 { 549 if (fSPhi<0) 550 { 551 distSPhi=std::fabs(pPhi-(fSPhi+twopi))*rho; 552 } 553 else 554 { 555 distSPhi=std::fabs(pPhi-fSPhi)*rho; 556 } 557 558 distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho; 559 560 // Find new minimum 561 // 562 if (distSPhi<distEPhi) 563 { 564 if (distSPhi<distMin) 565 { 566 distMin = distSPhi; 567 side = kNSPhi; 568 } 569 } 570 else 571 { 572 if (distEPhi<distMin) 573 { 574 distMin = distEPhi; 575 side = kNEPhi; 576 } 577 } 578 } 579 580 // 581 // Distance to theta planes 582 // 583 584 if (!fFullThetaSphere && (radius != 0.0)) 585 { 586 pTheta=std::atan2(rho,p.z()); 587 distSTheta=std::fabs(pTheta-fSTheta)*radius; 588 distETheta=std::fabs(pTheta-fSTheta-fDTheta)*radius; 589 590 // Find new minimum 591 // 592 if (distSTheta<distETheta) 593 { 594 if (distSTheta<distMin) 595 { 596 distMin = distSTheta ; 597 side = kNSTheta ; 598 } 599 } 600 else 601 { 602 if (distETheta<distMin) 603 { 604 distMin = distETheta ; 605 side = kNETheta ; 606 } 607 } 608 } 609 610 switch (side) 611 { 612 case kNRMin: // Inner radius 613 norm=G4ThreeVector(-p.x()/radius,-p.y()/radius,-p.z()/radius); 614 break; 615 case kNRMax: // Outer radius 616 norm=G4ThreeVector(p.x()/radius,p.y()/radius,p.z()/radius); 617 break; 618 case kNSPhi: 619 norm=G4ThreeVector(sinSPhi,-cosSPhi,0); 620 break; 621 case kNEPhi: 622 norm=G4ThreeVector(-sinEPhi,cosEPhi,0); 623 break; 624 case kNSTheta: 625 norm=G4ThreeVector(-cosSTheta*std::cos(pPhi), 626 -cosSTheta*std::sin(pPhi), 627 sinSTheta ); 628 break; 629 case kNETheta: 630 norm=G4ThreeVector( cosETheta*std::cos(pPhi), 631 cosETheta*std::sin(pPhi), 632 -sinETheta ); 633 break; 634 default: // Should never reach this case ... 635 DumpInfo(); 636 G4Exception("G4Sphere::ApproxSurfaceNormal()", 637 "GeomSolids1002", JustWarning, 638 "Undefined side for valid surface normal to solid."); 639 break; 640 } 641 642 return norm; 643 } 644 645 /////////////////////////////////////////////////////////////////////////////// 646 // 647 // Calculate distance to shape from outside, along normalised vector 648 // - return kInfinity if no intersection, or intersection distance <= tolerance 649 // 650 // -> If point is outside outer radius, compute intersection with rmax 651 // - if no intersection return 652 // - if valid phi,theta return intersection Dist 653 // 654 // -> If shell, compute intersection with inner radius, taking largest +ve root 655 // - if valid phi,theta, save intersection 656 // 657 // -> If phi segmented, compute intersection with phi half planes 658 // - if valid intersection(r,theta), return smallest intersection of 659 // inner shell & phi intersection 660 // 661 // -> If theta segmented, compute intersection with theta cones 662 // - if valid intersection(r,phi), return smallest intersection of 663 // inner shell & theta intersection 664 // 665 // 666 // NOTE: 667 // - `if valid' (above) implies tolerant checking of intersection points 668 // 669 // OPT: 670 // Move tolIO/ORmin/RMax2 precalcs to where they are needed - 671 // not required for most cases. 672 // Avoid atan2 for non theta cut G4Sphere. 673 674 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p, 675 const G4ThreeVector& v ) const 676 { 677 G4double snxt = kInfinity ; // snxt = default return value 678 G4double rho2, rad2, pDotV2d, pDotV3d, pTheta ; 679 G4double tolSTheta=0., tolETheta=0. ; 680 const G4double dRmax = 100.*fRmax; 681 682 const G4double halfRmaxTolerance = fRmaxTolerance*0.5; 683 const G4double halfRminTolerance = fRminTolerance*0.5; 684 const G4double tolORMin2 = (fRmin>halfRminTolerance) 685 ? (fRmin-halfRminTolerance)*(fRmin-halfRminTolerance) : 0; 686 const G4double tolIRMin2 = 687 (fRmin+halfRminTolerance)*(fRmin+halfRminTolerance); 688 const G4double tolORMax2 = 689 (fRmax+halfRmaxTolerance)*(fRmax+halfRmaxTolerance); 690 const G4double tolIRMax2 = 691 (fRmax-halfRmaxTolerance)*(fRmax-halfRmaxTolerance); 692 693 // Intersection point 694 // 695 G4double xi, yi, zi, rhoi, rhoi2, radi2, iTheta ; 696 697 // Phi intersection 698 // 699 G4double Comp ; 700 701 // Phi precalcs 702 // 703 G4double Dist, cosPsi ; 704 705 // Theta precalcs 706 // 707 G4double dist2STheta, dist2ETheta ; 708 G4double t1, t2, b, c, d2, d, sd = kInfinity ; 709 710 // General Precalcs 711 // 712 rho2 = p.x()*p.x() + p.y()*p.y() ; 713 rad2 = rho2 + p.z()*p.z() ; 714 pTheta = std::atan2(std::sqrt(rho2),p.z()) ; 715 716 pDotV2d = p.x()*v.x() + p.y()*v.y() ; 717 pDotV3d = pDotV2d + p.z()*v.z() ; 718 719 // Theta precalcs 720 // 721 if (!fFullThetaSphere) 722 { 723 tolSTheta = fSTheta - halfAngTolerance ; 724 tolETheta = eTheta + halfAngTolerance ; 725 726 // Special case rad2 = 0 comparing with direction 727 // 728 if ((rad2!=0.0) || (fRmin!=0.0)) 729 { 730 // Keep going for computation of distance... 731 } 732 else // Positioned on the sphere's origin 733 { 734 G4double vTheta = std::atan2(std::sqrt(v.x()*v.x()+v.y()*v.y()),v.z()) ; 735 if ( (vTheta < tolSTheta) || (vTheta > tolETheta) ) 736 { 737 return snxt ; // kInfinity 738 } 739 return snxt = 0.0 ; 740 } 741 } 742 743 // Outer spherical shell intersection 744 // - Only if outside tolerant fRmax 745 // - Check for if inside and outer G4Sphere heading through solid (-> 0) 746 // - No intersect -> no intersection with G4Sphere 747 // 748 // Shell eqn: x^2+y^2+z^2=RSPH^2 749 // 750 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 751 // 752 // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+sd^2(vx^2+vy^2+vz^2)=R^2 753 // => rad2 +2sd(pDotV3d) +sd^2 =R^2 754 // 755 // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2)) 756 757 c = rad2 - fRmax*fRmax ; 758 759 if (c > fRmaxTolerance*fRmax) 760 { 761 // If outside tolerant boundary of outer G4Sphere 762 // [should be std::sqrt(rad2)-fRmax > halfRmaxTolerance] 763 764 d2 = pDotV3d*pDotV3d - c ; 765 766 if ( d2 >= 0 ) 767 { 768 sd = -pDotV3d - std::sqrt(d2) ; 769 770 if (sd >= 0 ) 771 { 772 if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen on 773 { // 64 bits systems. Split long distances and recompute 774 G4double fTerm = sd-std::fmod(sd,dRmax); 775 sd = fTerm + DistanceToIn(p+fTerm*v,v); 776 } 777 xi = p.x() + sd*v.x() ; 778 yi = p.y() + sd*v.y() ; 779 rhoi = std::sqrt(xi*xi + yi*yi) ; 780 781 if (!fFullPhiSphere && (rhoi != 0.0)) // Check phi intersection 782 { 783 cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ; 784 785 if (cosPsi >= cosHDPhiOT) 786 { 787 if (!fFullThetaSphere) // Check theta intersection 788 { 789 zi = p.z() + sd*v.z() ; 790 791 // rhoi & zi can never both be 0 792 // (=>intersect at origin =>fRmax=0) 793 // 794 iTheta = std::atan2(rhoi,zi) ; 795 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 796 { 797 return snxt = sd ; 798 } 799 } 800 else 801 { 802 return snxt=sd; 803 } 804 } 805 } 806 else 807 { 808 if (!fFullThetaSphere) // Check theta intersection 809 { 810 zi = p.z() + sd*v.z() ; 811 812 // rhoi & zi can never both be 0 813 // (=>intersect at origin => fRmax=0 !) 814 // 815 iTheta = std::atan2(rhoi,zi) ; 816 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 817 { 818 return snxt=sd; 819 } 820 } 821 else 822 { 823 return snxt = sd; 824 } 825 } 826 } 827 } 828 else // No intersection with G4Sphere 829 { 830 return snxt=kInfinity; 831 } 832 } 833 else 834 { 835 // Inside outer radius 836 // check not inside, and heading through G4Sphere (-> 0 to in) 837 838 d2 = pDotV3d*pDotV3d - c ; 839 840 if ( (rad2 > tolIRMax2) 841 && ( (d2 >= fRmaxTolerance*fRmax) && (pDotV3d < 0) ) ) 842 { 843 if (!fFullPhiSphere) 844 { 845 // Use inner phi tolerant boundary -> if on tolerant 846 // phi boundaries, phi intersect code handles leaving/entering checks 847 848 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 849 850 if (cosPsi>=cosHDPhiIT) 851 { 852 // inside radii, delta r -ve, inside phi 853 854 if ( !fFullThetaSphere ) 855 { 856 if ( (pTheta >= tolSTheta + kAngTolerance) 857 && (pTheta <= tolETheta - kAngTolerance) ) 858 { 859 return snxt=0; 860 } 861 } 862 else // strictly inside Theta in both cases 863 { 864 return snxt=0; 865 } 866 } 867 } 868 else 869 { 870 if ( !fFullThetaSphere ) 871 { 872 if ( (pTheta >= tolSTheta + kAngTolerance) 873 && (pTheta <= tolETheta - kAngTolerance) ) 874 { 875 return snxt=0; 876 } 877 } 878 else // strictly inside Theta in both cases 879 { 880 return snxt=0; 881 } 882 } 883 } 884 } 885 886 // Inner spherical shell intersection 887 // - Always farthest root, because would have passed through outer 888 // surface first. 889 // - Tolerant check if travelling through solid 890 891 if (fRmin != 0.0) 892 { 893 c = rad2 - fRmin*fRmin ; 894 d2 = pDotV3d*pDotV3d - c ; 895 896 // Within tolerance inner radius of inner G4Sphere 897 // Check for immediate entry/already inside and travelling outwards 898 899 if ( (c > -halfRminTolerance) && (rad2 < tolIRMin2) 900 && ( (d2 < fRmin*kCarTolerance) || (pDotV3d >= 0) ) ) 901 { 902 if ( !fFullPhiSphere ) 903 { 904 // Use inner phi tolerant boundary -> if on tolerant 905 // phi boundaries, phi intersect code handles leaving/entering checks 906 907 cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)/std::sqrt(rho2) ; 908 if (cosPsi >= cosHDPhiIT) 909 { 910 // inside radii, delta r -ve, inside phi 911 // 912 if ( !fFullThetaSphere ) 913 { 914 if ( (pTheta >= tolSTheta + kAngTolerance) 915 && (pTheta <= tolETheta - kAngTolerance) ) 916 { 917 return snxt=0; 918 } 919 } 920 else 921 { 922 return snxt = 0 ; 923 } 924 } 925 } 926 else 927 { 928 if ( !fFullThetaSphere ) 929 { 930 if ( (pTheta >= tolSTheta + kAngTolerance) 931 && (pTheta <= tolETheta - kAngTolerance) ) 932 { 933 return snxt = 0 ; 934 } 935 } 936 else 937 { 938 return snxt=0; 939 } 940 } 941 } 942 else // Not special tolerant case 943 { 944 if (d2 >= 0) 945 { 946 sd = -pDotV3d + std::sqrt(d2) ; 947 if ( sd >= halfRminTolerance ) // It was >= 0 ?? 948 { 949 xi = p.x() + sd*v.x() ; 950 yi = p.y() + sd*v.y() ; 951 rhoi = std::sqrt(xi*xi+yi*yi) ; 952 953 if ( !fFullPhiSphere && (rhoi != 0.0) ) // Check phi intersection 954 { 955 cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ; 956 957 if (cosPsi >= cosHDPhiOT) 958 { 959 if ( !fFullThetaSphere ) // Check theta intersection 960 { 961 zi = p.z() + sd*v.z() ; 962 963 // rhoi & zi can never both be 0 964 // (=>intersect at origin =>fRmax=0) 965 // 966 iTheta = std::atan2(rhoi,zi) ; 967 if ( (iTheta >= tolSTheta) && (iTheta<=tolETheta) ) 968 { 969 snxt = sd; 970 } 971 } 972 else 973 { 974 snxt=sd; 975 } 976 } 977 } 978 else 979 { 980 if ( !fFullThetaSphere ) // Check theta intersection 981 { 982 zi = p.z() + sd*v.z() ; 983 984 // rhoi & zi can never both be 0 985 // (=>intersect at origin => fRmax=0 !) 986 // 987 iTheta = std::atan2(rhoi,zi) ; 988 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 989 { 990 snxt = sd; 991 } 992 } 993 else 994 { 995 snxt = sd; 996 } 997 } 998 } 999 } 1000 } 1001 } 1002 1003 // Phi segment intersection 1004 // 1005 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1006 // 1007 // o NOTE: Large duplication of code between sphi & ephi checks 1008 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1009 // intersection check <=0 -> >=0 1010 // -> Should use some form of loop Construct 1011 // 1012 if ( !fFullPhiSphere ) 1013 { 1014 // First phi surface ('S'tarting phi) 1015 // Comp = Component in outwards normal dirn 1016 // 1017 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1018 1019 if ( Comp < 0 ) 1020 { 1021 Dist = p.y()*cosSPhi - p.x()*sinSPhi ; 1022 1023 if (Dist < halfCarTolerance) 1024 { 1025 sd = Dist/Comp ; 1026 1027 if (sd < snxt) 1028 { 1029 if ( sd > 0 ) 1030 { 1031 xi = p.x() + sd*v.x() ; 1032 yi = p.y() + sd*v.y() ; 1033 zi = p.z() + sd*v.z() ; 1034 rhoi2 = xi*xi + yi*yi ; 1035 radi2 = rhoi2 + zi*zi ; 1036 } 1037 else 1038 { 1039 sd = 0 ; 1040 xi = p.x() ; 1041 yi = p.y() ; 1042 zi = p.z() ; 1043 rhoi2 = rho2 ; 1044 radi2 = rad2 ; 1045 } 1046 if ( (radi2 <= tolORMax2) 1047 && (radi2 >= tolORMin2) 1048 && ((yi*cosCPhi-xi*sinCPhi) <= 0) ) 1049 { 1050 // Check theta intersection 1051 // rhoi & zi can never both be 0 1052 // (=>intersect at origin =>fRmax=0) 1053 // 1054 if ( !fFullThetaSphere ) 1055 { 1056 iTheta = std::atan2(std::sqrt(rhoi2),zi) ; 1057 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 1058 { 1059 // r and theta intersections good 1060 // - check intersecting with correct half-plane 1061 1062 if ((yi*cosCPhi-xi*sinCPhi) <= 0) 1063 { 1064 snxt = sd; 1065 } 1066 } 1067 } 1068 else 1069 { 1070 snxt = sd; 1071 } 1072 } 1073 } 1074 } 1075 } 1076 1077 // Second phi surface ('E'nding phi) 1078 // Component in outwards normal dirn 1079 1080 Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ; 1081 1082 if (Comp < 0) 1083 { 1084 Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ; 1085 if ( Dist < halfCarTolerance ) 1086 { 1087 sd = Dist/Comp ; 1088 1089 if ( sd < snxt ) 1090 { 1091 if (sd > 0) 1092 { 1093 xi = p.x() + sd*v.x() ; 1094 yi = p.y() + sd*v.y() ; 1095 zi = p.z() + sd*v.z() ; 1096 rhoi2 = xi*xi + yi*yi ; 1097 radi2 = rhoi2 + zi*zi ; 1098 } 1099 else 1100 { 1101 sd = 0 ; 1102 xi = p.x() ; 1103 yi = p.y() ; 1104 zi = p.z() ; 1105 rhoi2 = rho2 ; 1106 radi2 = rad2 ; 1107 } 1108 if ( (radi2 <= tolORMax2) 1109 && (radi2 >= tolORMin2) 1110 && ((yi*cosCPhi-xi*sinCPhi) >= 0) ) 1111 { 1112 // Check theta intersection 1113 // rhoi & zi can never both be 0 1114 // (=>intersect at origin =>fRmax=0) 1115 // 1116 if ( !fFullThetaSphere ) 1117 { 1118 iTheta = std::atan2(std::sqrt(rhoi2),zi) ; 1119 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 1120 { 1121 // r and theta intersections good 1122 // - check intersecting with correct half-plane 1123 1124 if ((yi*cosCPhi-xi*sinCPhi) >= 0) 1125 { 1126 snxt = sd; 1127 } 1128 } 1129 } 1130 else 1131 { 1132 snxt = sd; 1133 } 1134 } 1135 } 1136 } 1137 } 1138 } 1139 1140 // Theta segment intersection 1141 1142 if ( !fFullThetaSphere ) 1143 { 1144 1145 // Intersection with theta surfaces 1146 // Known failure cases: 1147 // o Inside tolerance of stheta surface, skim 1148 // ~parallel to cone and Hit & enter etheta surface [& visa versa] 1149 // 1150 // To solve: Check 2nd root of etheta surface in addition to stheta 1151 // 1152 // o start/end theta is exactly pi/2 1153 // Intersections with cones 1154 // 1155 // Cone equation: x^2+y^2=z^2tan^2(t) 1156 // 1157 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t) 1158 // 1159 // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+pyvy-pzvztan^2(t)) 1160 // + sd^2(vx^2+vy^2-vz^2tan^2(t)) = 0 1161 // 1162 // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d-pzvztan^2(t)) 1163 // + (rho2-pz^2tan^2(t)) = 0 1164 1165 if (fSTheta != 0.0) 1166 { 1167 dist2STheta = rho2 - p.z()*p.z()*tanSTheta2 ; 1168 } 1169 else 1170 { 1171 dist2STheta = kInfinity ; 1172 } 1173 if ( eTheta < pi ) 1174 { 1175 dist2ETheta=rho2-p.z()*p.z()*tanETheta2; 1176 } 1177 else 1178 { 1179 dist2ETheta=kInfinity; 1180 } 1181 if ( pTheta < tolSTheta ) 1182 { 1183 // Inside (theta<stheta-tol) stheta cone 1184 // First root of stheta cone, second if first root -ve 1185 1186 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1187 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1188 if (t1 != 0.0) 1189 { 1190 b = t2/t1 ; 1191 c = dist2STheta/t1 ; 1192 d2 = b*b - c ; 1193 1194 if ( d2 >= 0 ) 1195 { 1196 d = std::sqrt(d2) ; 1197 sd = -b - d ; // First root 1198 zi = p.z() + sd*v.z(); 1199 1200 if ( (sd < 0) || (zi*(fSTheta - halfpi) > 0) ) 1201 { 1202 sd = -b+d; // Second root 1203 } 1204 if ((sd >= 0) && (sd < snxt)) 1205 { 1206 xi = p.x() + sd*v.x(); 1207 yi = p.y() + sd*v.y(); 1208 zi = p.z() + sd*v.z(); 1209 rhoi2 = xi*xi + yi*yi; 1210 radi2 = rhoi2 + zi*zi; 1211 if ( (radi2 <= tolORMax2) 1212 && (radi2 >= tolORMin2) 1213 && (zi*(fSTheta - halfpi) <= 0) ) 1214 { 1215 if ( !fFullPhiSphere && (rhoi2 != 0.0) ) // Check phi intersection 1216 { 1217 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1218 if (cosPsi >= cosHDPhiOT) 1219 { 1220 snxt = sd; 1221 } 1222 } 1223 else 1224 { 1225 snxt = sd; 1226 } 1227 } 1228 } 1229 } 1230 } 1231 1232 // Possible intersection with ETheta cone. 1233 // Second >= 0 root should be considered 1234 1235 if ( eTheta < pi ) 1236 { 1237 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1238 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1239 if (t1 != 0.0) 1240 { 1241 b = t2/t1 ; 1242 c = dist2ETheta/t1 ; 1243 d2 = b*b - c ; 1244 1245 if (d2 >= 0) 1246 { 1247 d = std::sqrt(d2) ; 1248 sd = -b + d ; // Second root 1249 1250 if ( (sd >= 0) && (sd < snxt) ) 1251 { 1252 xi = p.x() + sd*v.x() ; 1253 yi = p.y() + sd*v.y() ; 1254 zi = p.z() + sd*v.z() ; 1255 rhoi2 = xi*xi + yi*yi ; 1256 radi2 = rhoi2 + zi*zi ; 1257 1258 if ( (radi2 <= tolORMax2) 1259 && (radi2 >= tolORMin2) 1260 && (zi*(eTheta - halfpi) <= 0) ) 1261 { 1262 if (!fFullPhiSphere && (rhoi2 != 0.0)) // Check phi intersection 1263 { 1264 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1265 if (cosPsi >= cosHDPhiOT) 1266 { 1267 snxt = sd; 1268 } 1269 } 1270 else 1271 { 1272 snxt = sd; 1273 } 1274 } 1275 } 1276 } 1277 } 1278 } 1279 } 1280 else if ( pTheta > tolETheta ) 1281 { 1282 // dist2ETheta<-kRadTolerance*0.5 && dist2STheta>0) 1283 // Inside (theta > etheta+tol) e-theta cone 1284 // First root of etheta cone, second if first root 'imaginary' 1285 1286 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1287 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1288 if (t1 != 0.0) 1289 { 1290 b = t2/t1 ; 1291 c = dist2ETheta/t1 ; 1292 d2 = b*b - c ; 1293 1294 if (d2 >= 0) 1295 { 1296 d = std::sqrt(d2) ; 1297 sd = -b - d ; // First root 1298 zi = p.z() + sd*v.z(); 1299 1300 if ( (sd < 0) || (zi*(eTheta - halfpi) > 0) ) 1301 { 1302 sd = -b + d ; // second root 1303 } 1304 if ( (sd >= 0) && (sd < snxt) ) 1305 { 1306 xi = p.x() + sd*v.x() ; 1307 yi = p.y() + sd*v.y() ; 1308 zi = p.z() + sd*v.z() ; 1309 rhoi2 = xi*xi + yi*yi ; 1310 radi2 = rhoi2 + zi*zi ; 1311 1312 if ( (radi2 <= tolORMax2) 1313 && (radi2 >= tolORMin2) 1314 && (zi*(eTheta - halfpi) <= 0) ) 1315 { 1316 if (!fFullPhiSphere && (rhoi2 != 0.0)) // Check phi intersection 1317 { 1318 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1319 if (cosPsi >= cosHDPhiOT) 1320 { 1321 snxt = sd; 1322 } 1323 } 1324 else 1325 { 1326 snxt = sd; 1327 } 1328 } 1329 } 1330 } 1331 } 1332 1333 // Possible intersection with STheta cone. 1334 // Second >= 0 root should be considered 1335 1336 if ( fSTheta != 0.0 ) 1337 { 1338 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1339 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1340 if (t1 != 0.0) 1341 { 1342 b = t2/t1 ; 1343 c = dist2STheta/t1 ; 1344 d2 = b*b - c ; 1345 1346 if (d2 >= 0) 1347 { 1348 d = std::sqrt(d2) ; 1349 sd = -b + d ; // Second root 1350 1351 if ( (sd >= 0) && (sd < snxt) ) 1352 { 1353 xi = p.x() + sd*v.x() ; 1354 yi = p.y() + sd*v.y() ; 1355 zi = p.z() + sd*v.z() ; 1356 rhoi2 = xi*xi + yi*yi ; 1357 radi2 = rhoi2 + zi*zi ; 1358 1359 if ( (radi2 <= tolORMax2) 1360 && (radi2 >= tolORMin2) 1361 && (zi*(fSTheta - halfpi) <= 0) ) 1362 { 1363 if (!fFullPhiSphere && (rhoi2 != 0.0)) // Check phi intersection 1364 { 1365 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1366 if (cosPsi >= cosHDPhiOT) 1367 { 1368 snxt = sd; 1369 } 1370 } 1371 else 1372 { 1373 snxt = sd; 1374 } 1375 } 1376 } 1377 } 1378 } 1379 } 1380 } 1381 else if ( (pTheta < tolSTheta + kAngTolerance) 1382 && (fSTheta > halfAngTolerance) ) 1383 { 1384 // In tolerance of stheta 1385 // If entering through solid [r,phi] => 0 to in 1386 // else try 2nd root 1387 1388 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1389 if ( (t2>=0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta<halfpi) 1390 || (t2<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta>halfpi) 1391 || (v.z()<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta==halfpi) ) 1392 { 1393 if (!fFullPhiSphere && (rho2 != 0.0)) // Check phi intersection 1394 { 1395 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 1396 if (cosPsi >= cosHDPhiIT) 1397 { 1398 return 0 ; 1399 } 1400 } 1401 else 1402 { 1403 return 0 ; 1404 } 1405 } 1406 1407 // Not entering immediately/travelling through 1408 1409 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1410 if (t1 != 0.0) 1411 { 1412 b = t2/t1 ; 1413 c = dist2STheta/t1 ; 1414 d2 = b*b - c ; 1415 1416 if (d2 >= 0) 1417 { 1418 d = std::sqrt(d2) ; 1419 sd = -b + d ; 1420 if ( (sd >= halfCarTolerance) && (sd < snxt) && (fSTheta < halfpi) ) 1421 { // ^^^^^^^^^^^^^^^^^^^^^ shouldn't it be >=0 instead ? 1422 xi = p.x() + sd*v.x() ; 1423 yi = p.y() + sd*v.y() ; 1424 zi = p.z() + sd*v.z() ; 1425 rhoi2 = xi*xi + yi*yi ; 1426 radi2 = rhoi2 + zi*zi ; 1427 1428 if ( (radi2 <= tolORMax2) 1429 && (radi2 >= tolORMin2) 1430 && (zi*(fSTheta - halfpi) <= 0) ) 1431 { 1432 if ( !fFullPhiSphere && (rhoi2 != 0.0) ) // Check phi intersection 1433 { 1434 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1435 if ( cosPsi >= cosHDPhiOT ) 1436 { 1437 snxt = sd; 1438 } 1439 } 1440 else 1441 { 1442 snxt = sd; 1443 } 1444 } 1445 } 1446 } 1447 } 1448 } 1449 else if ((pTheta > tolETheta-kAngTolerance) && (eTheta < pi-kAngTolerance)) 1450 { 1451 1452 // In tolerance of etheta 1453 // If entering through solid [r,phi] => 0 to in 1454 // else try 2nd root 1455 1456 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1457 1458 if ( ((t2<0) && (eTheta < halfpi) 1459 && (tolIRMin2 < rad2) && (rad2 < tolIRMax2)) 1460 || ((t2>=0) && (eTheta > halfpi) 1461 && (tolIRMin2 < rad2) && (rad2 < tolIRMax2)) 1462 || ((v.z()>0) && (eTheta == halfpi) 1463 && (tolIRMin2 < rad2) && (rad2 < tolIRMax2)) ) 1464 { 1465 if (!fFullPhiSphere && (rho2 != 0.0)) // Check phi intersection 1466 { 1467 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 1468 if (cosPsi >= cosHDPhiIT) 1469 { 1470 return 0 ; 1471 } 1472 } 1473 else 1474 { 1475 return 0 ; 1476 } 1477 } 1478 1479 // Not entering immediately/travelling through 1480 1481 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1482 if (t1 != 0.0) 1483 { 1484 b = t2/t1 ; 1485 c = dist2ETheta/t1 ; 1486 d2 = b*b - c ; 1487 1488 if (d2 >= 0) 1489 { 1490 d = std::sqrt(d2) ; 1491 sd = -b + d ; 1492 1493 if ( (sd >= halfCarTolerance) 1494 && (sd < snxt) && (eTheta > halfpi) ) 1495 { 1496 xi = p.x() + sd*v.x() ; 1497 yi = p.y() + sd*v.y() ; 1498 zi = p.z() + sd*v.z() ; 1499 rhoi2 = xi*xi + yi*yi ; 1500 radi2 = rhoi2 + zi*zi ; 1501 1502 if ( (radi2 <= tolORMax2) 1503 && (radi2 >= tolORMin2) 1504 && (zi*(eTheta - halfpi) <= 0) ) 1505 { 1506 if (!fFullPhiSphere && (rhoi2 != 0.0)) // Check phi intersection 1507 { 1508 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1509 if (cosPsi >= cosHDPhiOT) 1510 { 1511 snxt = sd; 1512 } 1513 } 1514 else 1515 { 1516 snxt = sd; 1517 } 1518 } 1519 } 1520 } 1521 } 1522 } 1523 else 1524 { 1525 // stheta+tol<theta<etheta-tol 1526 // For BOTH stheta & etheta check 2nd root for validity [r,phi] 1527 1528 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1529 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1530 if (t1 != 0.0) 1531 { 1532 b = t2/t1; 1533 c = dist2STheta/t1 ; 1534 d2 = b*b - c ; 1535 1536 if (d2 >= 0) 1537 { 1538 d = std::sqrt(d2) ; 1539 sd = -b + d ; // second root 1540 1541 if ((sd >= 0) && (sd < snxt)) 1542 { 1543 xi = p.x() + sd*v.x() ; 1544 yi = p.y() + sd*v.y() ; 1545 zi = p.z() + sd*v.z() ; 1546 rhoi2 = xi*xi + yi*yi ; 1547 radi2 = rhoi2 + zi*zi ; 1548 1549 if ( (radi2 <= tolORMax2) 1550 && (radi2 >= tolORMin2) 1551 && (zi*(fSTheta - halfpi) <= 0) ) 1552 { 1553 if (!fFullPhiSphere && (rhoi2 != 0.0)) // Check phi intersection 1554 { 1555 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1556 if (cosPsi >= cosHDPhiOT) 1557 { 1558 snxt = sd; 1559 } 1560 } 1561 else 1562 { 1563 snxt = sd; 1564 } 1565 } 1566 } 1567 } 1568 } 1569 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1570 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1571 if (t1 != 0.0) 1572 { 1573 b = t2/t1 ; 1574 c = dist2ETheta/t1 ; 1575 d2 = b*b - c ; 1576 1577 if (d2 >= 0) 1578 { 1579 d = std::sqrt(d2) ; 1580 sd = -b + d; // second root 1581 1582 if ((sd >= 0) && (sd < snxt)) 1583 { 1584 xi = p.x() + sd*v.x() ; 1585 yi = p.y() + sd*v.y() ; 1586 zi = p.z() + sd*v.z() ; 1587 rhoi2 = xi*xi + yi*yi ; 1588 radi2 = rhoi2 + zi*zi ; 1589 1590 if ( (radi2 <= tolORMax2) 1591 && (radi2 >= tolORMin2) 1592 && (zi*(eTheta - halfpi) <= 0) ) 1593 { 1594 if (!fFullPhiSphere && (rhoi2 != 0.0)) // Check phi intersection 1595 { 1596 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1597 if ( cosPsi >= cosHDPhiOT ) 1598 { 1599 snxt = sd; 1600 } 1601 } 1602 else 1603 { 1604 snxt = sd; 1605 } 1606 } 1607 } 1608 } 1609 } 1610 } 1611 } 1612 return snxt; 1613 } 1614 1615 ////////////////////////////////////////////////////////////////////// 1616 // 1617 // Calculate distance (<= actual) to closest surface of shape from outside 1618 // - Calculate distance to radial planes 1619 // - Only to phi planes if outside phi extent 1620 // - Only to theta planes if outside theta extent 1621 // - Return 0 if point inside 1622 1623 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p ) const 1624 { 1625 G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta; 1626 G4double rho2,rds,rho; 1627 G4double cosPsi; 1628 G4double pTheta,dTheta1,dTheta2; 1629 rho2=p.x()*p.x()+p.y()*p.y(); 1630 rds=std::sqrt(rho2+p.z()*p.z()); 1631 rho=std::sqrt(rho2); 1632 1633 // 1634 // Distance to r shells 1635 // 1636 if (fRmin != 0.0) 1637 { 1638 safeRMin=fRmin-rds; 1639 safeRMax=rds-fRmax; 1640 if (safeRMin>safeRMax) 1641 { 1642 safe=safeRMin; 1643 } 1644 else 1645 { 1646 safe=safeRMax; 1647 } 1648 } 1649 else 1650 { 1651 safe=rds-fRmax; 1652 } 1653 1654 // 1655 // Distance to phi extent 1656 // 1657 if (!fFullPhiSphere && (rho != 0.0)) 1658 { 1659 // Psi=angle from central phi to point 1660 // 1661 cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho; 1662 if (cosPsi<cosHDPhi) 1663 { 1664 // Point lies outside phi range 1665 // 1666 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) 1667 { 1668 safePhi=std::fabs(p.x()*sinSPhi-p.y()*cosSPhi); 1669 } 1670 else 1671 { 1672 safePhi=std::fabs(p.x()*sinEPhi-p.y()*cosEPhi); 1673 } 1674 if (safePhi>safe) { safe=safePhi; } 1675 } 1676 } 1677 // 1678 // Distance to Theta extent 1679 // 1680 if ((rds!=0.0) && (!fFullThetaSphere)) 1681 { 1682 pTheta=std::acos(p.z()/rds); 1683 if (pTheta<0) { pTheta+=pi; } 1684 dTheta1=fSTheta-pTheta; 1685 dTheta2=pTheta-eTheta; 1686 if (dTheta1>dTheta2) 1687 { 1688 if (dTheta1>=0) // WHY ??????????? 1689 { 1690 safeTheta=rds*std::sin(dTheta1); 1691 if (safe<=safeTheta) 1692 { 1693 safe=safeTheta; 1694 } 1695 } 1696 } 1697 else 1698 { 1699 if (dTheta2>=0) 1700 { 1701 safeTheta=rds*std::sin(dTheta2); 1702 if (safe<=safeTheta) 1703 { 1704 safe=safeTheta; 1705 } 1706 } 1707 } 1708 } 1709 1710 if (safe<0) { safe=0; } 1711 return safe; 1712 } 1713 1714 ///////////////////////////////////////////////////////////////////// 1715 // 1716 // Calculate distance to surface of shape from 'inside', allowing for tolerance 1717 // - Only Calc rmax intersection if no valid rmin intersection 1718 1719 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p, 1720 const G4ThreeVector& v, 1721 const G4bool calcNorm, 1722 G4bool* validNorm, 1723 G4ThreeVector* n ) const 1724 { 1725 G4double snxt = kInfinity; // snxt is default return value 1726 G4double sphi= kInfinity,stheta= kInfinity; 1727 ESide side=kNull,sidephi=kNull,sidetheta=kNull; 1728 1729 const G4double halfRmaxTolerance = fRmaxTolerance*0.5; 1730 const G4double halfRminTolerance = fRminTolerance*0.5; 1731 const G4double Rmax_plus = fRmax + halfRmaxTolerance; 1732 const G4double Rmin_minus = (fRmin) != 0.0 ? fRmin-halfRminTolerance : 0; 1733 G4double t1,t2; 1734 G4double b,c,d; 1735 1736 // Variables for phi intersection: 1737 1738 G4double pDistS,compS,pDistE,compE,sphi2,vphi; 1739 1740 G4double rho2,rad2,pDotV2d,pDotV3d; 1741 1742 G4double xi,yi,zi; // Intersection point 1743 1744 // Theta precals 1745 // 1746 G4double rhoSecTheta; 1747 G4double dist2STheta, dist2ETheta, distTheta; 1748 G4double d2,sd; 1749 1750 // General Precalcs 1751 // 1752 rho2 = p.x()*p.x()+p.y()*p.y(); 1753 rad2 = rho2+p.z()*p.z(); 1754 1755 pDotV2d = p.x()*v.x()+p.y()*v.y(); 1756 pDotV3d = pDotV2d+p.z()*v.z(); 1757 1758 // Radial Intersections from G4Sphere::DistanceToIn 1759 // 1760 // Outer spherical shell intersection 1761 // - Only if outside tolerant fRmax 1762 // - Check for if inside and outer G4Sphere heading through solid (-> 0) 1763 // - No intersect -> no intersection with G4Sphere 1764 // 1765 // Shell eqn: x^2+y^2+z^2=RSPH^2 1766 // 1767 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 1768 // 1769 // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+sd^2(vx^2+vy^2+vz^2)=R^2 1770 // => rad2 +2sd(pDotV3d) +sd^2 =R^2 1771 // 1772 // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2)) 1773 1774 if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2 >= Rmin_minus*Rmin_minus) ) 1775 { 1776 c = rad2 - fRmax*fRmax; 1777 1778 if (c < fRmaxTolerance*fRmax) 1779 { 1780 // Within tolerant Outer radius 1781 // 1782 // The test is 1783 // rad - fRmax < 0.5*kRadTolerance 1784 // => rad < fRmax + 0.5*kRadTol 1785 // => rad2 < (fRmax + 0.5*kRadTol)^2 1786 // => rad2 < fRmax^2 + 2.*0.5*fRmax*kRadTol + 0.25*kRadTol*kRadTol 1787 // => rad2 - fRmax^2 <~ fRmax*kRadTol 1788 1789 d2 = pDotV3d*pDotV3d - c; 1790 1791 if( (c >- fRmaxTolerance*fRmax) // on tolerant surface 1792 && ((pDotV3d >=0) || (d2 < 0)) ) // leaving outside from Rmax 1793 // not re-entering 1794 { 1795 if(calcNorm) 1796 { 1797 *validNorm = true ; 1798 *n = G4ThreeVector(p.x()/fRmax,p.y()/fRmax,p.z()/fRmax) ; 1799 } 1800 return snxt = 0; 1801 } 1802 else 1803 { 1804 snxt = -pDotV3d+std::sqrt(d2); // second root since inside Rmax 1805 side = kRMax ; 1806 } 1807 } 1808 1809 // Inner spherical shell intersection: 1810 // Always first >=0 root, because would have passed 1811 // from outside of Rmin surface . 1812 1813 if (fRmin != 0.0) 1814 { 1815 c = rad2 - fRmin*fRmin; 1816 d2 = pDotV3d*pDotV3d - c; 1817 1818 if (c >- fRminTolerance*fRmin) // 2.0 * (0.5*kRadTolerance) * fRmin 1819 { 1820 if ( (c < fRminTolerance*fRmin) // leaving from Rmin 1821 && (d2 >= fRminTolerance*fRmin) && (pDotV3d < 0) ) 1822 { 1823 if(calcNorm) { *validNorm = false; } // Rmin surface is concave 1824 return snxt = 0 ; 1825 } 1826 else 1827 { 1828 if ( d2 >= 0. ) 1829 { 1830 sd = -pDotV3d-std::sqrt(d2); 1831 1832 if ( sd >= 0. ) // Always intersect Rmin first 1833 { 1834 snxt = sd ; 1835 side = kRMin ; 1836 } 1837 } 1838 } 1839 } 1840 } 1841 } 1842 1843 // Theta segment intersection 1844 1845 if ( !fFullThetaSphere ) 1846 { 1847 // Intersection with theta surfaces 1848 // 1849 // Known failure cases: 1850 // o Inside tolerance of stheta surface, skim 1851 // ~parallel to cone and Hit & enter etheta surface [& visa versa] 1852 // 1853 // To solve: Check 2nd root of etheta surface in addition to stheta 1854 // 1855 // o start/end theta is exactly pi/2 1856 // 1857 // Intersections with cones 1858 // 1859 // Cone equation: x^2+y^2=z^2tan^2(t) 1860 // 1861 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t) 1862 // 1863 // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+pyvy-pzvztan^2(t)) 1864 // + sd^2(vx^2+vy^2-vz^2tan^2(t)) = 0 1865 // 1866 // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d-pzvztan^2(t)) 1867 // + (rho2-pz^2tan^2(t)) = 0 1868 // 1869 1870 if(fSTheta != 0.0) // intersection with first cons 1871 { 1872 if( std::fabs(tanSTheta) > 5./kAngTolerance ) // kons is plane z=0 1873 { 1874 if( v.z() > 0. ) 1875 { 1876 if ( std::fabs( p.z() ) <= halfRmaxTolerance ) 1877 { 1878 if(calcNorm) 1879 { 1880 *validNorm = true; 1881 *n = G4ThreeVector(0.,0.,1.); 1882 } 1883 return snxt = 0 ; 1884 } 1885 stheta = -p.z()/v.z(); 1886 sidetheta = kSTheta; 1887 } 1888 } 1889 else // kons is not plane 1890 { 1891 t1 = 1-v.z()*v.z()*(1+tanSTheta2); 1892 t2 = pDotV2d-p.z()*v.z()*tanSTheta2; // ~vDotN if p on cons 1893 dist2STheta = rho2-p.z()*p.z()*tanSTheta2; // t3 1894 1895 distTheta = std::sqrt(rho2)-p.z()*tanSTheta; 1896 1897 if( std::fabs(t1) < halfAngTolerance ) // 1st order equation, 1898 { // v parallel to kons 1899 if( v.z() > 0. ) 1900 { 1901 if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface 1902 { 1903 if( (fSTheta < halfpi) && (p.z() > 0.) ) 1904 { 1905 if( calcNorm ) { *validNorm = false; } 1906 return snxt = 0.; 1907 } 1908 else if( (fSTheta > halfpi) && (p.z() <= 0) ) 1909 { 1910 if( calcNorm ) 1911 { 1912 *validNorm = true; 1913 if (rho2 != 0.0) 1914 { 1915 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 1916 1917 *n = G4ThreeVector( p.x()/rhoSecTheta, 1918 p.y()/rhoSecTheta, 1919 std::sin(fSTheta) ); 1920 } 1921 else *n = G4ThreeVector(0.,0.,1.); 1922 } 1923 return snxt = 0.; 1924 } 1925 } 1926 stheta = -0.5*dist2STheta/t2; 1927 sidetheta = kSTheta; 1928 } 1929 } // 2nd order equation, 1st root of fSTheta cone, 1930 else // 2nd if 1st root -ve 1931 { 1932 if( std::fabs(distTheta) < halfRmaxTolerance ) 1933 { 1934 if( (fSTheta > halfpi) && (t2 >= 0.) ) // leave 1935 { 1936 if( calcNorm ) 1937 { 1938 *validNorm = true; 1939 if (rho2 != 0.0) 1940 { 1941 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 1942 1943 *n = G4ThreeVector( p.x()/rhoSecTheta, 1944 p.y()/rhoSecTheta, 1945 std::sin(fSTheta) ); 1946 } 1947 else { *n = G4ThreeVector(0.,0.,1.); } 1948 } 1949 return snxt = 0.; 1950 } 1951 else if( (fSTheta < halfpi) && (t2 < 0.) && (p.z() >=0.) ) // leave 1952 { 1953 if( calcNorm ) { *validNorm = false; } 1954 return snxt = 0.; 1955 } 1956 } 1957 b = t2/t1; 1958 c = dist2STheta/t1; 1959 d2 = b*b - c ; 1960 1961 if ( d2 >= 0. ) 1962 { 1963 d = std::sqrt(d2); 1964 1965 if( fSTheta > halfpi ) 1966 { 1967 sd = -b - d; // First root 1968 1969 if ( ((std::fabs(s) < halfRmaxTolerance) && (t2 < 0.)) 1970 || (sd < 0.) || ( (sd > 0.) && (p.z() + sd*v.z() > 0.) ) ) 1971 { 1972 sd = -b + d ; // 2nd root 1973 } 1974 if( (sd > halfRmaxTolerance) && (p.z() + sd*v.z() <= 0.) ) 1975 { 1976 stheta = sd; 1977 sidetheta = kSTheta; 1978 } 1979 } 1980 else // sTheta < pi/2, concave surface, no normal 1981 { 1982 sd = -b - d; // First root 1983 1984 if ( ( (std::fabs(sd) < halfRmaxTolerance) && (t2 >= 0.) ) 1985 || (sd < 0.) || ( (sd > 0.) && (p.z() + sd*v.z() < 0.) ) ) 1986 { 1987 sd = -b + d ; // 2nd root 1988 } 1989 if( (sd > halfRmaxTolerance) && (p.z() + sd*v.z() >= 0.) ) 1990 { 1991 stheta = sd; 1992 sidetheta = kSTheta; 1993 } 1994 } 1995 } 1996 } 1997 } 1998 } 1999 if (eTheta < pi) // intersection with second cons 2000 { 2001 if( std::fabs(tanETheta) > 5./kAngTolerance ) // kons is plane z=0 2002 { 2003 if( v.z() < 0. ) 2004 { 2005 if ( std::fabs( p.z() ) <= halfRmaxTolerance ) 2006 { 2007 if(calcNorm) 2008 { 2009 *validNorm = true; 2010 *n = G4ThreeVector(0.,0.,-1.); 2011 } 2012 return snxt = 0 ; 2013 } 2014 sd = -p.z()/v.z(); 2015 2016 if( sd < stheta ) 2017 { 2018 stheta = sd; 2019 sidetheta = kETheta; 2020 } 2021 } 2022 } 2023 else // kons is not plane 2024 { 2025 t1 = 1-v.z()*v.z()*(1+tanETheta2); 2026 t2 = pDotV2d-p.z()*v.z()*tanETheta2; // ~vDotN if p on cons 2027 dist2ETheta = rho2-p.z()*p.z()*tanETheta2; // t3 2028 2029 distTheta = std::sqrt(rho2)-p.z()*tanETheta; 2030 2031 if( std::fabs(t1) < halfAngTolerance ) // 1st order equation, 2032 { // v parallel to kons 2033 if( v.z() < 0. ) 2034 { 2035 if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface 2036 { 2037 if( (eTheta > halfpi) && (p.z() < 0.) ) 2038 { 2039 if( calcNorm ) { *validNorm = false; } 2040 return snxt = 0.; 2041 } 2042 else if ( (eTheta < halfpi) && (p.z() >= 0) ) 2043 { 2044 if( calcNorm ) 2045 { 2046 *validNorm = true; 2047 if (rho2 != 0.0) 2048 { 2049 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2050 *n = G4ThreeVector( p.x()/rhoSecTheta, 2051 p.y()/rhoSecTheta, 2052 -sinETheta ); 2053 } 2054 else { *n = G4ThreeVector(0.,0.,-1.); } 2055 } 2056 return snxt = 0.; 2057 } 2058 } 2059 sd = -0.5*dist2ETheta/t2; 2060 2061 if( sd < stheta ) 2062 { 2063 stheta = sd; 2064 sidetheta = kETheta; 2065 } 2066 } 2067 } // 2nd order equation, 1st root of fSTheta cone 2068 else // 2nd if 1st root -ve 2069 { 2070 if ( std::fabs(distTheta) < halfRmaxTolerance ) 2071 { 2072 if( (eTheta < halfpi) && (t2 >= 0.) ) // leave 2073 { 2074 if( calcNorm ) 2075 { 2076 *validNorm = true; 2077 if (rho2 != 0.0) 2078 { 2079 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2080 *n = G4ThreeVector( p.x()/rhoSecTheta, 2081 p.y()/rhoSecTheta, 2082 -sinETheta ); 2083 } 2084 else *n = G4ThreeVector(0.,0.,-1.); 2085 } 2086 return snxt = 0.; 2087 } 2088 else if ( (eTheta > halfpi) 2089 && (t2 < 0.) && (p.z() <=0.) ) // leave 2090 { 2091 if( calcNorm ) { *validNorm = false; } 2092 return snxt = 0.; 2093 } 2094 } 2095 b = t2/t1; 2096 c = dist2ETheta/t1; 2097 d2 = b*b - c ; 2098 if ( (d2 <halfRmaxTolerance) && (d2 > -halfRmaxTolerance) ) 2099 { 2100 d2 = 0.; 2101 } 2102 if ( d2 >= 0. ) 2103 { 2104 d = std::sqrt(d2); 2105 2106 if( eTheta < halfpi ) 2107 { 2108 sd = -b - d; // First root 2109 2110 if( ((std::fabs(sd) < halfRmaxTolerance) && (t2 < 0.)) 2111 || (sd < 0.) ) 2112 { 2113 sd = -b + d ; // 2nd root 2114 } 2115 if( sd > halfRmaxTolerance ) 2116 { 2117 if( sd < stheta ) 2118 { 2119 stheta = sd; 2120 sidetheta = kETheta; 2121 } 2122 } 2123 } 2124 else // sTheta+fDTheta > pi/2, concave surface, no normal 2125 { 2126 sd = -b - d; // First root 2127 2128 if ( ((std::fabs(sd) < halfRmaxTolerance) && (t2 >= 0.)) 2129 || (sd < 0.) 2130 || ( (sd > 0.) && (p.z() + sd*v.z() > halfRmaxTolerance) ) ) 2131 { 2132 sd = -b + d ; // 2nd root 2133 } 2134 if ( ( sd>halfRmaxTolerance ) 2135 && ( p.z()+sd*v.z() <= halfRmaxTolerance ) ) 2136 { 2137 if( sd < stheta ) 2138 { 2139 stheta = sd; 2140 sidetheta = kETheta; 2141 } 2142 } 2143 } 2144 } 2145 } 2146 } 2147 } 2148 2149 } // end theta intersections 2150 2151 // Phi Intersection 2152 2153 if ( !fFullPhiSphere ) 2154 { 2155 if ( (p.x() != 0.0) || (p.y() != 0.0) ) // Check if on z axis (rho not needed later) 2156 { 2157 // pDist -ve when inside 2158 2159 pDistS=p.x()*sinSPhi-p.y()*cosSPhi; 2160 pDistE=-p.x()*sinEPhi+p.y()*cosEPhi; 2161 2162 // Comp -ve when in direction of outwards normal 2163 2164 compS = -sinSPhi*v.x()+cosSPhi*v.y() ; 2165 compE = sinEPhi*v.x()-cosEPhi*v.y() ; 2166 sidephi = kNull ; 2167 2168 if ( (pDistS <= 0) && (pDistE <= 0) ) 2169 { 2170 // Inside both phi *full* planes 2171 2172 if ( compS < 0 ) 2173 { 2174 sphi = pDistS/compS ; 2175 xi = p.x()+sphi*v.x() ; 2176 yi = p.y()+sphi*v.y() ; 2177 2178 // Check intersection with correct half-plane (if not -> no intersect) 2179 // 2180 if( (std::fabs(xi)<=kCarTolerance) && (std::fabs(yi)<=kCarTolerance) ) 2181 { 2182 vphi = std::atan2(v.y(),v.x()); 2183 sidephi = kSPhi; 2184 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2185 && ( (ePhi+halfAngTolerance) >= vphi) ) 2186 { 2187 sphi = kInfinity; 2188 } 2189 } 2190 else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2191 { 2192 sphi=kInfinity; 2193 } 2194 else 2195 { 2196 sidephi = kSPhi ; 2197 if ( pDistS > -halfCarTolerance) { sphi = 0; } // Leave by sphi 2198 } 2199 } 2200 else { sphi = kInfinity; } 2201 2202 if ( compE < 0 ) 2203 { 2204 sphi2=pDistE/compE ; 2205 if (sphi2 < sphi) // Only check further if < starting phi intersection 2206 { 2207 xi = p.x()+sphi2*v.x() ; 2208 yi = p.y()+sphi2*v.y() ; 2209 2210 // Check intersection with correct half-plane 2211 // 2212 if ( (std::fabs(xi)<=kCarTolerance) 2213 && (std::fabs(yi)<=kCarTolerance)) 2214 { 2215 // Leaving via ending phi 2216 // 2217 vphi = std::atan2(v.y(),v.x()) ; 2218 2219 if( (fSPhi-halfAngTolerance > vphi) 2220 ||(fSPhi+fDPhi+halfAngTolerance < vphi) ) 2221 { 2222 sidephi = kEPhi; 2223 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2; } 2224 else { sphi = 0.0; } 2225 } 2226 } 2227 else if ((yi*cosCPhi-xi*sinCPhi)>=0) // Leaving via ending phi 2228 { 2229 sidephi = kEPhi ; 2230 if ( pDistE <= -halfCarTolerance ) 2231 { 2232 sphi=sphi2; 2233 } 2234 else 2235 { 2236 sphi = 0 ; 2237 } 2238 } 2239 } 2240 } 2241 } 2242 else if ((pDistS >= 0) && (pDistE >= 0)) // Outside both *full* phi planes 2243 { 2244 if ( pDistS <= pDistE ) 2245 { 2246 sidephi = kSPhi ; 2247 } 2248 else 2249 { 2250 sidephi = kEPhi ; 2251 } 2252 if ( fDPhi > pi ) 2253 { 2254 if ( (compS < 0) && (compE < 0) ) { sphi = 0; } 2255 else { sphi = kInfinity; } 2256 } 2257 else 2258 { 2259 // if towards both >=0 then once inside (after error) 2260 // will remain inside 2261 2262 if ( (compS >= 0) && (compE >= 0) ) { sphi = kInfinity; } 2263 else { sphi = 0; } 2264 } 2265 } 2266 else if ( (pDistS > 0) && (pDistE < 0) ) 2267 { 2268 // Outside full starting plane, inside full ending plane 2269 2270 if ( fDPhi > pi ) 2271 { 2272 if ( compE < 0 ) 2273 { 2274 sphi = pDistE/compE ; 2275 xi = p.x() + sphi*v.x() ; 2276 yi = p.y() + sphi*v.y() ; 2277 2278 // Check intersection in correct half-plane 2279 // (if not -> not leaving phi extent) 2280 // 2281 if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) ) 2282 { 2283 vphi = std::atan2(v.y(),v.x()); 2284 sidephi = kSPhi; 2285 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2286 && ( (ePhi+halfAngTolerance) >= vphi) ) 2287 { 2288 sphi = kInfinity; 2289 } 2290 } 2291 else if ( ( yi*cosCPhi - xi*sinCPhi ) <= 0 ) 2292 { 2293 sphi = kInfinity ; 2294 } 2295 else // Leaving via Ending phi 2296 { 2297 sidephi = kEPhi ; 2298 if ( pDistE > -halfCarTolerance ) { sphi = 0.; } 2299 } 2300 } 2301 else 2302 { 2303 sphi = kInfinity ; 2304 } 2305 } 2306 else 2307 { 2308 if ( compS >= 0 ) 2309 { 2310 if ( compE < 0 ) 2311 { 2312 sphi = pDistE/compE ; 2313 xi = p.x() + sphi*v.x() ; 2314 yi = p.y() + sphi*v.y() ; 2315 2316 // Check intersection in correct half-plane 2317 // (if not -> remain in extent) 2318 // 2319 if( (std::fabs(xi)<=kCarTolerance) 2320 && (std::fabs(yi)<=kCarTolerance) ) 2321 { 2322 vphi = std::atan2(v.y(),v.x()); 2323 sidephi = kSPhi; 2324 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2325 && ( (ePhi+halfAngTolerance) >= vphi) ) 2326 { 2327 sphi = kInfinity; 2328 } 2329 } 2330 else if ( ( yi*cosCPhi - xi*sinCPhi) <= 0 ) 2331 { 2332 sphi=kInfinity; 2333 } 2334 else // otherwise leaving via Ending phi 2335 { 2336 sidephi = kEPhi ; 2337 } 2338 } 2339 else sphi=kInfinity; 2340 } 2341 else // leaving immediately by starting phi 2342 { 2343 sidephi = kSPhi ; 2344 sphi = 0 ; 2345 } 2346 } 2347 } 2348 else 2349 { 2350 // Must be pDistS < 0 && pDistE > 0 2351 // Inside full starting plane, outside full ending plane 2352 2353 if ( fDPhi > pi ) 2354 { 2355 if ( compS < 0 ) 2356 { 2357 sphi=pDistS/compS; 2358 xi=p.x()+sphi*v.x(); 2359 yi=p.y()+sphi*v.y(); 2360 2361 // Check intersection in correct half-plane 2362 // (if not -> not leaving phi extent) 2363 // 2364 if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) ) 2365 { 2366 vphi = std::atan2(v.y(),v.x()) ; 2367 sidephi = kSPhi; 2368 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2369 && ( (ePhi+halfAngTolerance) >= vphi) ) 2370 { 2371 sphi = kInfinity; 2372 } 2373 } 2374 else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2375 { 2376 sphi = kInfinity ; 2377 } 2378 else // Leaving via Starting phi 2379 { 2380 sidephi = kSPhi ; 2381 if ( pDistS > -halfCarTolerance ) { sphi = 0; } 2382 } 2383 } 2384 else 2385 { 2386 sphi = kInfinity ; 2387 } 2388 } 2389 else 2390 { 2391 if ( compE >= 0 ) 2392 { 2393 if ( compS < 0 ) 2394 { 2395 sphi = pDistS/compS ; 2396 xi = p.x()+sphi*v.x() ; 2397 yi = p.y()+sphi*v.y() ; 2398 2399 // Check intersection in correct half-plane 2400 // (if not -> remain in extent) 2401 // 2402 if( (std::fabs(xi)<=kCarTolerance) 2403 && (std::fabs(yi)<=kCarTolerance)) 2404 { 2405 vphi = std::atan2(v.y(),v.x()) ; 2406 sidephi = kSPhi; 2407 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2408 && ( (ePhi+halfAngTolerance) >= vphi) ) 2409 { 2410 sphi = kInfinity; 2411 } 2412 } 2413 else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2414 { 2415 sphi = kInfinity ; 2416 } 2417 else // otherwise leaving via Starting phi 2418 { 2419 sidephi = kSPhi ; 2420 } 2421 } 2422 else 2423 { 2424 sphi = kInfinity ; 2425 } 2426 } 2427 else // leaving immediately by ending 2428 { 2429 sidephi = kEPhi ; 2430 sphi = 0 ; 2431 } 2432 } 2433 } 2434 } 2435 else 2436 { 2437 // On z axis + travel not || to z axis -> if phi of vector direction 2438 // within phi of shape, Step limited by rmax, else Step =0 2439 2440 if ( (v.x() != 0.0) || (v.y() != 0.0) ) 2441 { 2442 vphi = std::atan2(v.y(),v.x()) ; 2443 if ((fSPhi-halfAngTolerance < vphi) && (vphi < ePhi+halfAngTolerance)) 2444 { 2445 sphi = kInfinity; 2446 } 2447 else 2448 { 2449 sidephi = kSPhi ; // arbitrary 2450 sphi = 0 ; 2451 } 2452 } 2453 else // travel along z - no phi intersection 2454 { 2455 sphi = kInfinity ; 2456 } 2457 } 2458 if ( sphi < snxt ) // Order intersecttions 2459 { 2460 snxt = sphi ; 2461 side = sidephi ; 2462 } 2463 } 2464 if (stheta < snxt ) // Order intersections 2465 { 2466 snxt = stheta ; 2467 side = sidetheta ; 2468 } 2469 2470 if (calcNorm) // Output switch operator 2471 { 2472 switch( side ) 2473 { 2474 case kRMax: 2475 xi=p.x()+snxt*v.x(); 2476 yi=p.y()+snxt*v.y(); 2477 zi=p.z()+snxt*v.z(); 2478 *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi/fRmax); 2479 *validNorm=true; 2480 break; 2481 2482 case kRMin: 2483 *validNorm=false; // Rmin is concave 2484 break; 2485 2486 case kSPhi: 2487 if ( fDPhi <= pi ) // Normal to Phi- 2488 { 2489 *n=G4ThreeVector(sinSPhi,-cosSPhi,0); 2490 *validNorm=true; 2491 } 2492 else { *validNorm=false; } 2493 break ; 2494 2495 case kEPhi: 2496 if ( fDPhi <= pi ) // Normal to Phi+ 2497 { 2498 *n=G4ThreeVector(-sinEPhi,cosEPhi,0); 2499 *validNorm=true; 2500 } 2501 else { *validNorm=false; } 2502 break; 2503 2504 case kSTheta: 2505 if( fSTheta == halfpi ) 2506 { 2507 *n=G4ThreeVector(0.,0.,1.); 2508 *validNorm=true; 2509 } 2510 else if ( fSTheta > halfpi ) 2511 { 2512 xi = p.x() + snxt*v.x(); 2513 yi = p.y() + snxt*v.y(); 2514 rho2=xi*xi+yi*yi; 2515 if (rho2 != 0.0) 2516 { 2517 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 2518 *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta, 2519 -tanSTheta/std::sqrt(1+tanSTheta2)); 2520 } 2521 else 2522 { 2523 *n = G4ThreeVector(0.,0.,1.); 2524 } 2525 *validNorm=true; 2526 } 2527 else { *validNorm=false; } // Concave STheta cone 2528 break; 2529 2530 case kETheta: 2531 if( eTheta == halfpi ) 2532 { 2533 *n = G4ThreeVector(0.,0.,-1.); 2534 *validNorm = true; 2535 } 2536 else if ( eTheta < halfpi ) 2537 { 2538 xi=p.x()+snxt*v.x(); 2539 yi=p.y()+snxt*v.y(); 2540 rho2=xi*xi+yi*yi; 2541 if (rho2 != 0.0) 2542 { 2543 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2544 *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta, 2545 -tanETheta/std::sqrt(1+tanETheta2) ); 2546 } 2547 else 2548 { 2549 *n = G4ThreeVector(0.,0.,-1.); 2550 } 2551 *validNorm=true; 2552 } 2553 else { *validNorm=false; } // Concave ETheta cone 2554 break; 2555 2556 default: 2557 G4cout << G4endl; 2558 DumpInfo(); 2559 std::ostringstream message; 2560 G4long oldprc = message.precision(16); 2561 message << "Undefined side for valid surface normal to solid." 2562 << G4endl 2563 << "Position:" << G4endl << G4endl 2564 << "p.x() = " << p.x()/mm << " mm" << G4endl 2565 << "p.y() = " << p.y()/mm << " mm" << G4endl 2566 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 2567 << "Direction:" << G4endl << G4endl 2568 << "v.x() = " << v.x() << G4endl 2569 << "v.y() = " << v.y() << G4endl 2570 << "v.z() = " << v.z() << G4endl << G4endl 2571 << "Proposed distance :" << G4endl << G4endl 2572 << "snxt = " << snxt/mm << " mm" << G4endl; 2573 message.precision(oldprc); 2574 G4Exception("G4Sphere::DistanceToOut(p,v,..)", 2575 "GeomSolids1002", JustWarning, message); 2576 break; 2577 } 2578 } 2579 if (snxt == kInfinity) 2580 { 2581 G4cout << G4endl; 2582 DumpInfo(); 2583 std::ostringstream message; 2584 G4long oldprc = message.precision(16); 2585 message << "Logic error: snxt = kInfinity ???" << G4endl 2586 << "Position:" << G4endl << G4endl 2587 << "p.x() = " << p.x()/mm << " mm" << G4endl 2588 << "p.y() = " << p.y()/mm << " mm" << G4endl 2589 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 2590 << "Rp = "<< std::sqrt( p.x()*p.x()+p.y()*p.y()+p.z()*p.z() )/mm 2591 << " mm" << G4endl << G4endl 2592 << "Direction:" << G4endl << G4endl 2593 << "v.x() = " << v.x() << G4endl 2594 << "v.y() = " << v.y() << G4endl 2595 << "v.z() = " << v.z() << G4endl << G4endl 2596 << "Proposed distance :" << G4endl << G4endl 2597 << "snxt = " << snxt/mm << " mm" << G4endl; 2598 message.precision(oldprc); 2599 G4Exception("G4Sphere::DistanceToOut(p,v,..)", 2600 "GeomSolids1002", JustWarning, message); 2601 } 2602 2603 return snxt; 2604 } 2605 2606 ///////////////////////////////////////////////////////////////////////// 2607 // 2608 // Calculate distance (<=actual) to closest surface of shape from inside 2609 2610 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p ) const 2611 { 2612 G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta; 2613 G4double rho2,rds,rho; 2614 G4double pTheta,dTheta1 = kInfinity,dTheta2 = kInfinity; 2615 rho2=p.x()*p.x()+p.y()*p.y(); 2616 rds=std::sqrt(rho2+p.z()*p.z()); 2617 rho=std::sqrt(rho2); 2618 2619 #ifdef G4CSGDEBUG 2620 if( Inside(p) == kOutside ) 2621 { 2622 G4long old_prc = G4cout.precision(16); 2623 G4cout << G4endl; 2624 DumpInfo(); 2625 G4cout << "Position:" << G4endl << G4endl ; 2626 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 2627 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 2628 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 2629 G4cout.precision(old_prc) ; 2630 G4Exception("G4Sphere::DistanceToOut(p)", 2631 "GeomSolids1002", JustWarning, "Point p is outside !?" ); 2632 } 2633 #endif 2634 2635 // Distance to r shells 2636 // 2637 safeRMax = fRmax-rds; 2638 safe = safeRMax; 2639 if (fRmin != 0.0) 2640 { 2641 safeRMin = rds-fRmin; 2642 safe = std::min( safeRMin, safeRMax ); 2643 } 2644 2645 // Distance to phi extent 2646 // 2647 if ( !fFullPhiSphere ) 2648 { 2649 if (rho>0.0) 2650 { 2651 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) 2652 { 2653 safePhi=-(p.x()*sinSPhi-p.y()*cosSPhi); 2654 } 2655 else 2656 { 2657 safePhi=(p.x()*sinEPhi-p.y()*cosEPhi); 2658 } 2659 } 2660 else 2661 { 2662 safePhi = 0.0; // Distance to both Phi surfaces (extended) 2663 } 2664 // Both cases above can be improved - in case fRMin > 0.0 2665 // although it may be costlier (good for precise, not fast version) 2666 2667 safe= std::min(safe, safePhi); 2668 } 2669 2670 // Distance to Theta extent 2671 // 2672 if ( !fFullThetaSphere ) 2673 { 2674 if( rds > 0.0 ) 2675 { 2676 pTheta=std::acos(p.z()/rds); 2677 if (pTheta<0) { pTheta+=pi; } 2678 if(fSTheta>0.) 2679 { dTheta1=pTheta-fSTheta;} 2680 if(eTheta<pi) 2681 { dTheta2=eTheta-pTheta;} 2682 2683 safeTheta=rds*std::sin(std::min(dTheta1, dTheta2) ); 2684 } 2685 else 2686 { 2687 safeTheta= 0.0; 2688 // An improvement will be to return negative answer if outside (TODO) 2689 } 2690 safe = std::min( safe, safeTheta ); 2691 } 2692 2693 if (safe<0.0) { safe=0; } 2694 // An improvement to return negative answer if outside (TODO) 2695 2696 return safe; 2697 } 2698 2699 ////////////////////////////////////////////////////////////////////////// 2700 // 2701 // G4EntityType 2702 2703 G4GeometryType G4Sphere::GetEntityType() const 2704 { 2705 return {"G4Sphere"}; 2706 } 2707 2708 ////////////////////////////////////////////////////////////////////////// 2709 // 2710 // Make a clone of the object 2711 // 2712 G4VSolid* G4Sphere::Clone() const 2713 { 2714 return new G4Sphere(*this); 2715 } 2716 2717 ////////////////////////////////////////////////////////////////////////// 2718 // 2719 // Stream object contents to an output stream 2720 2721 std::ostream& G4Sphere::StreamInfo( std::ostream& os ) const 2722 { 2723 G4long oldprc = os.precision(16); 2724 os << "-----------------------------------------------------------\n" 2725 << " *** Dump for solid - " << GetName() << " ***\n" 2726 << " ===================================================\n" 2727 << " Solid type: G4Sphere\n" 2728 << " Parameters: \n" 2729 << " inner radius: " << fRmin/mm << " mm \n" 2730 << " outer radius: " << fRmax/mm << " mm \n" 2731 << " starting phi of segment : " << fSPhi/degree << " degrees \n" 2732 << " delta phi of segment : " << fDPhi/degree << " degrees \n" 2733 << " starting theta of segment: " << fSTheta/degree << " degrees \n" 2734 << " delta theta of segment : " << fDTheta/degree << " degrees \n" 2735 << "-----------------------------------------------------------\n"; 2736 os.precision(oldprc); 2737 2738 return os; 2739 } 2740 2741 //////////////////////////////////////////////////////////////////////////////// 2742 // 2743 // Get volume 2744 2745 G4double G4Sphere::GetCubicVolume() 2746 { 2747 if (fCubicVolume == 0.) 2748 { 2749 G4double RRR = fRmax*fRmax*fRmax; 2750 G4double rrr = fRmin*fRmin*fRmin; 2751 fCubicVolume = fDPhi*(cosSTheta - cosETheta)*(RRR - rrr)/3.; 2752 } 2753 return fCubicVolume; 2754 } 2755 2756 //////////////////////////////////////////////////////////////////////////////// 2757 // 2758 // Get surface area 2759 2760 G4double G4Sphere::GetSurfaceArea() 2761 { 2762 if (fSurfaceArea == 0.) 2763 { 2764 G4double RR = fRmax*fRmax; 2765 G4double rr = fRmin*fRmin; 2766 fSurfaceArea = fDPhi*(RR + rr)*(cosSTheta - cosETheta); 2767 if (!fFullPhiSphere) fSurfaceArea += fDTheta*(RR - rr); 2768 if (fSTheta > 0) fSurfaceArea += 0.5*fDPhi*(RR - rr)*sinSTheta; 2769 if (eTheta < CLHEP::pi) fSurfaceArea += 0.5*fDPhi*(RR - rr)*sinETheta; 2770 } 2771 return fSurfaceArea; 2772 } 2773 2774 //////////////////////////////////////////////////////////////////////////////// 2775 // 2776 // Return a point randomly and uniformly selected on the surface 2777 2778 G4ThreeVector G4Sphere::GetPointOnSurface() const 2779 { 2780 G4double RR = fRmax*fRmax; 2781 G4double rr = fRmin*fRmin; 2782 2783 // Find surface areas 2784 // 2785 G4double aInner = fDPhi*rr*(cosSTheta - cosETheta); 2786 G4double aOuter = fDPhi*RR*(cosSTheta - cosETheta); 2787 G4double aPhi = (!fFullPhiSphere) ? fDTheta*(RR - rr) : 0.; 2788 G4double aSTheta = (fSTheta > 0) ? 0.5*fDPhi*(RR - rr)*sinSTheta : 0.; 2789 G4double aETheta = (eTheta < pi) ? 0.5*fDPhi*(RR - rr)*sinETheta : 0.; 2790 G4double aTotal = aInner + aOuter + aPhi + aSTheta + aETheta; 2791 2792 // Select surface and generate a point 2793 // 2794 G4double select = aTotal*G4QuickRand(); 2795 G4double u = G4QuickRand(); 2796 G4double v = G4QuickRand(); 2797 if (select < aInner + aOuter) // lateral surface 2798 { 2799 G4double r = (select < aInner) ? fRmin : fRmax; 2800 G4double z = cosSTheta + (cosETheta - cosSTheta)*u; 2801 G4double rho = std::sqrt(1. - z*z); 2802 G4double phi = fDPhi*v + fSPhi; 2803 return { r*rho*std::cos(phi), r*rho*std::sin(phi), r*z }; 2804 } 2805 else if (select < aInner + aOuter + aPhi) // cut in phi 2806 { 2807 G4double phi = (select < aInner + aOuter + 0.5*aPhi) ? fSPhi : fSPhi + fDPhi; 2808 G4double r = std::sqrt((RR - rr)*u + rr); 2809 G4double theta = fDTheta*v + fSTheta; 2810 G4double z = std::cos(theta); 2811 G4double rho = std::sin(theta); 2812 return { r*rho*std::cos(phi), r*rho*std::sin(phi), r*z }; 2813 } 2814 else // cut in theta 2815 { 2816 G4double theta = (select < aTotal - aETheta) ? fSTheta : fSTheta + fDTheta; 2817 G4double r = std::sqrt((RR - rr)*u + rr); 2818 G4double phi = fDPhi*v + fSPhi; 2819 G4double z = std::cos(theta); 2820 G4double rho = std::sin(theta); 2821 return { r*rho*std::cos(phi), r*rho*std::sin(phi), r*z }; 2822 } 2823 } 2824 2825 ///////////////////////////////////////////////////////////////////////////// 2826 // 2827 // Methods for visualisation 2828 2829 G4VisExtent G4Sphere::GetExtent() const 2830 { 2831 return { -fRmax, fRmax,-fRmax, fRmax,-fRmax, fRmax }; 2832 } 2833 2834 2835 void G4Sphere::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 2836 { 2837 scene.AddSolid (*this); 2838 } 2839 2840 G4Polyhedron* G4Sphere::CreatePolyhedron () const 2841 { 2842 return new G4PolyhedronSphere (fRmin, fRmax, fSPhi, fDPhi, fSTheta, fDTheta); 2843 } 2844 2845 #endif 2846