Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4HelixMixedStepper.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // class G4HelixMixedStepper
 27 //
 28 // Class description:
 29 //
 30 // G4HelixMixedStepper split the Method used for Integration in two:
 31 //
 32 // If Stepping Angle ( h / R_curve) < pi/3  
 33 //        use Stepper for small step(ClassicalRK4 by default)
 34 // Else use  HelixExplicitEuler Stepper
 35 //
 36 // Created: T.Nikitina, CERN - 18.05.2007, derived from G4ExactHelicalStepper
 37 // -------------------------------------------------------------------------
 38 
 39 #include "G4HelixMixedStepper.hh"
 40 #include "G4PhysicalConstants.hh"
 41 #include "G4ClassicalRK4.hh"
 42 #include "G4CashKarpRKF45.hh"
 43 #include "G4SimpleRunge.hh"
 44 #include "G4HelixImplicitEuler.hh"
 45 #include "G4HelixExplicitEuler.hh"
 46 #include "G4HelixSimpleRunge.hh"
 47 #include "G4ExactHelixStepper.hh"
 48 #include "G4ExplicitEuler.hh"
 49 #include "G4ImplicitEuler.hh"
 50 #include "G4SimpleHeum.hh"
 51 #include "G4RKG3_Stepper.hh"
 52 #include "G4NystromRK4.hh"
 53 
 54 // Additional potential steppers
 55 #include "G4DormandPrince745.hh"
 56 #include "G4BogackiShampine23.hh"
 57 #include "G4BogackiShampine45.hh"
 58 #include "G4TsitourasRK45.hh"
 59 
 60 #include "G4ThreeVector.hh"
 61 #include "G4LineSection.hh"
 62 
 63 // ---------------------------------------------------------------------------
 64 G4HelixMixedStepper::
 65 G4HelixMixedStepper(G4Mag_EqRhs* EqRhs,
 66                     G4int        stepperNumber,
 67                     G4double     angleThreshold)
 68   : G4MagHelicalStepper(EqRhs)
 69 {
 70    if( angleThreshold < 0.0 )
 71    {
 72      fAngle_threshold = (1.0/3.0)*pi;
 73    }
 74    else
 75    {
 76      fAngle_threshold = angleThreshold;
 77    }
 78 
 79    if(stepperNumber<0)
 80    {
 81      // stepperNumber = 4;  // Default is RK4   (original)      
 82      stepperNumber = 745;   // Default is DormandPrince745 (ie DoPri5)
 83      // stepperNumber = 8;  // Default is CashKarp
 84    }
 85 
 86    fStepperNumber = stepperNumber; // Store the choice
 87    fRK4Stepper =  SetupStepper(EqRhs, fStepperNumber);
 88 }
 89 
 90 // ---------------------------------------------------------------------------
 91 G4HelixMixedStepper::~G4HelixMixedStepper()
 92 {  
 93   delete fRK4Stepper;
 94   if (fVerbose>0) { PrintCalls(); }
 95 }
 96 
 97 // ---------------------------------------------------------------------------
 98 void G4HelixMixedStepper::Stepper(  const G4double yInput[],  // [7]
 99                                     const G4double dydx[],    // [7]
100                                           G4double Step,
101                                           G4double yOut[],    // [7]
102                                           G4double yErr[])
103 {
104   // Estimation of the Stepping Angle
105   //
106   G4ThreeVector Bfld;
107   MagFieldEvaluate(yInput, Bfld);
108   
109   G4double Bmag = Bfld.mag();
110   const G4double* pIn = yInput+3;
111   G4ThreeVector initVelocity = G4ThreeVector( pIn[0], pIn[1], pIn[2] );
112   G4double velocityVal = initVelocity.mag();
113 
114   const G4double R_1 = std::abs(GetInverseCurve(velocityVal,Bmag));
115     // curv = inverse Radius
116   G4double Ang_curve = R_1 * Step;
117   // SetAngCurve(Ang_curve);
118   // SetCurve(std::abs(1/R_1));
119 
120   if(Ang_curve < fAngle_threshold)
121   {
122     ++fNumCallsRK4;
123     fRK4Stepper->Stepper(yInput,dydx,Step,yOut,yErr);
124   }
125   else
126   {
127     constexpr G4int nvar    = 6 ;
128     constexpr G4int nvarMax = 8 ;
129     G4double      yTemp[nvarMax], yIn[nvarMax], yTemp2[nvarMax];
130     G4ThreeVector Bfld_midpoint;
131     
132     SetAngCurve(Ang_curve);
133     SetCurve(std::abs(1.0/R_1));
134     ++fNumCallsHelix;
135     
136     // Saving yInput because yInput and yOut can be aliases for same array
137     //
138     for(G4int i=0; i<nvar; ++i)
139     {
140       yIn[i]=yInput[i];
141     }
142     
143     G4double halfS = Step * 0.5;
144 
145     // 1. Do first half step and full step
146     //
147     AdvanceHelix(yIn, Bfld, halfS, yTemp, yTemp2); // yTemp2 for s=2*h (halfS)
148 
149     MagFieldEvaluate(yTemp, Bfld_midpoint) ;
150 
151     // 2. Do second half step - with revised field
152     // NOTE: Could avoid this call if  'Bfld_midpoint == Bfld'
153     //       or diff 'almost' zero
154     //
155     AdvanceHelix(yTemp, Bfld_midpoint, halfS, yOut);
156       // Not requesting y at s=2*h (halfS)
157     
158     // 3. Estimate the integration error
159     //    should be (nearly) zero if Bfield= constant
160     //
161     for(G4int i=0; i<nvar; ++i)
162     {
163       yErr[i] = yOut[i] - yTemp2[i];
164     }
165   }
166 }
167 
168 // ---------------------------------------------------------------------------
169 void G4HelixMixedStepper::DumbStepper( const G4double      yIn[],
170                                              G4ThreeVector Bfld,
171                                              G4double      h,
172                                              G4double      yOut[] )
173 {
174   AdvanceHelix(yIn, Bfld, h, yOut);
175 }
176 
177 // ---------------------------------------------------------------------------
178 G4double G4HelixMixedStepper::DistChord() const
179 {
180   // Implementation : must check whether h/R > 2 pi  !!
181   //   If( h/R <  pi) use G4LineSection::DistLine
182   //   Else           DistChord=R_helix
183   //
184   G4double distChord;
185   G4double Ang_curve=GetAngCurve();
186   
187   if(Ang_curve<=pi)
188   {
189     distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
190   }
191   else
192   {
193     if(Ang_curve<twopi)
194     {
195       distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
196     }
197     else
198     {
199       distChord=2.*GetRadHelix();
200     }
201   }
202   
203   return distChord;
204 }
205 
206 // ---------------------------------------------------------------------------
207 void G4HelixMixedStepper::PrintCalls()
208 {
209   G4cout << "In HelixMixedStepper::Number of calls to smallStepStepper = "
210          << fNumCallsRK4
211          << "  and Number of calls to Helix = " << fNumCallsHelix << G4endl;
212 }
213 
214 // ---------------------------------------------------------------------------
215 G4MagIntegratorStepper*
216 G4HelixMixedStepper::SetupStepper(G4Mag_EqRhs* pE, G4int StepperNumber)
217 {
218   G4MagIntegratorStepper* pStepper;
219   if (fVerbose>0) { G4cout << " G4HelixMixedStepper: ";
220 }
221   switch ( StepperNumber )
222   {
223       // Robust, classic method
224       case 4:
225         pStepper = new G4ClassicalRK4( pE );
226         if (fVerbose>0) { G4cout << "G4ClassicalRK4"; }
227         break;
228 
229       // Steppers with embedded estimation of error
230       case 8:
231         pStepper = new G4CashKarpRKF45( pE );
232         if (fVerbose>0) { G4cout << "G4CashKarpRKF45"; }
233         break;
234       case 13:
235         pStepper = new G4NystromRK4( pE );
236         if (fVerbose>0) { G4cout << "G4NystromRK4"; }
237         break;
238         
239       // Lowest order RK Stepper - experimental
240       case 1:
241         pStepper = new G4ImplicitEuler( pE );
242         if (fVerbose>0) { G4cout << "G4ImplicitEuler"; }
243         break;
244 
245       // Lower order RK Steppers - ok overall, good for uneven fields        
246       case 2:
247         pStepper = new G4SimpleRunge( pE );
248         if (fVerbose>0) { G4cout << "G4SimpleRunge"; }
249         break;
250       case 3:
251         pStepper = new G4SimpleHeum( pE );
252         if (fVerbose>0) { G4cout << "G4SimpleHeum"; }
253         break;
254       case 23:
255         pStepper = new G4BogackiShampine23( pE );
256         if (fVerbose>0) { G4cout << "G4BogackiShampine23"; }
257         break;
258 
259       // Higher order RK Steppers
260       // for smoother fields and high accuracy requirements 
261       case 45:
262         pStepper = new G4BogackiShampine45( pE );
263         if (fVerbose>0) { G4cout << "G4BogackiShampine45"; }
264         break;
265       case 145:
266         pStepper = new G4TsitourasRK45( pE );
267         if (fVerbose>0) { G4cout << "G4TsitourasRK45"; }
268         break;
269       case 745:
270         pStepper = new G4DormandPrince745( pE );
271         if (fVerbose>0) { G4cout << "G4DormandPrince745"; }
272         break;
273 
274       // Helical Steppers
275       case 6:
276         pStepper = new G4HelixImplicitEuler( pE );
277         if (fVerbose>0) { G4cout << "G4HelixImplicitEuler"; }
278         break;
279       case 7:
280         pStepper = new G4HelixSimpleRunge( pE );
281         if (fVerbose>0) { G4cout << "G4HelixSimpleRunge"; }
282         break;
283       case 5:
284         pStepper = new G4HelixExplicitEuler( pE );
285         if (fVerbose>0) { G4cout << "G4HelixExplicitEuler"; }
286         break; //  Since Helix Explicit is used for long steps,
287                // this is useful only to measure overhead.
288       // Exact Helix - likely good only for cases of
289       //            i) uniform field (potentially over small distances)
290       //           ii) segmented uniform field (maybe)
291       case 9:
292         pStepper = new G4ExactHelixStepper( pE );
293         if (fVerbose>0) { G4cout << "G4ExactHelixStepper"; }
294         break;
295       case 10:
296         pStepper = new G4RKG3_Stepper( pE );
297         if (fVerbose>0) { G4cout << "G4RKG3_Stepper"; }
298         break;
299 
300       // Low Order Steppers - not good except for very weak fields
301       case 11:
302         pStepper = new G4ExplicitEuler( pE );
303         if (fVerbose>0) { G4cout << "G4ExplicitEuler"; }
304         break;
305       case 12:
306         pStepper = new G4ImplicitEuler( pE );
307         if (fVerbose>0) { G4cout << "G4ImplicitEuler"; }
308         break;
309 
310       case 0:
311       case -1:
312       default:
313          pStepper = new G4DormandPrince745( pE ); // Was G4ClassicalRK4( pE );
314         if (fVerbose>0) { G4cout << "G4DormandPrince745 (Default)"; }
315         break;
316   }
317 
318   if(fVerbose>0)
319   {
320     G4cout << " chosen as stepper for small steps in G4HelixMixedStepper."
321            << G4endl;
322   }
323 
324   return pStepper;
325 }
326