Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4ExactHelixStepper 27 // 28 // Class description: 29 // 30 // Concrete class for particle motion in constant magnetic field. 31 // Helix a-la-Explicity Euler: x_1 = x_0 + helix(h) 32 // with helix(h) being a helix piece of length h. 33 // simplest approach for solving linear differential equations. 34 // Take the current derivative and add it to the current position. 35 // 36 // As the field is assumed constant, an error is not calculated. 37 38 // Author: J.Apostolakis, 28.01.2005. 39 // Implementation adapted from ExplicitEuler by W.Wander 40 // -------------------------------------------------------------------- 41 #ifndef G4EXACTHELIXSTEPPER_HH 42 #define G4EXACTHELIXSTEPPER_HH 43 44 #include "G4Types.hh" 45 #include "G4ThreeVector.hh" 46 47 #include "G4MagIntegratorStepper.hh" 48 #include "G4MagHelicalStepper.hh" 49 #include "G4Mag_EqRhs.hh" 50 51 class G4ExactHelixStepper : public G4MagHelicalStepper 52 { 53 public: 54 55 G4ExactHelixStepper(G4Mag_EqRhs* EqRhs); 56 ~G4ExactHelixStepper() override; 57 58 G4ExactHelixStepper(const G4ExactHelixStepper&) = delete; 59 G4ExactHelixStepper& operator=(const G4ExactHelixStepper&) = delete; 60 61 void Stepper( const G4double y[], 62 const G4double dydx[], 63 G4double h, 64 G4double yout[], 65 G4double yerr[] ) override; 66 // Step 'integration' for step size 'h' 67 // Provides helix starting at y[0 to 6] 68 // Outputs yout[] and ZERO estimated error yerr[]=0. 69 70 void DumbStepper( const G4double y[], 71 G4ThreeVector Bfld, 72 G4double h, 73 G4double yout[] ) override; 74 // Performs a 'dump' Step without error calculation. 75 76 G4double DistChord() const override; 77 // Estimate maximum distance of curved solution and chord ... 78 79 G4int IntegratorOrder() const override; 80 81 private: 82 83 G4ThreeVector fBfieldValue; 84 // Initial value of field at last step 85 }; 86 87 #endif 88