Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4HelixExplicitEuler 27 // 28 // Class description: 29 // 30 // Helix Explicit Euler: x_1 = x_0 + helix(h) 31 // with helix(h) being a helix piece of length h. 32 // A simple approach for solving linear differential equations. 33 // Take the current derivative and add it to the current position. 34 35 // Author: W.Wander <wwc@mit.edu>, 12.09.1997 36 // ------------------------------------------------------------------- 37 #ifndef G4HELIXEXPLICITEULER_HH 38 #define G4HELIXEXPLICITEULER_HH 39 40 #include "G4MagHelicalStepper.hh" 41 42 class G4HelixExplicitEuler : public G4MagHelicalStepper 43 { 44 public: 45 46 G4HelixExplicitEuler(G4Mag_EqRhs* EqRhs); 47 ~G4HelixExplicitEuler() override; 48 49 void Stepper( const G4double y[], 50 const G4double*, 51 G4double h, 52 G4double yout[], 53 G4double yerr[] ) override; 54 55 void DumbStepper( const G4double y[], 56 G4ThreeVector Bfld, 57 G4double h, 58 G4double yout[]) override; 59 60 G4double DistChord() const override; 61 62 inline G4int IntegratorOrder() const override { return 1; } 63 }; 64 65 #endif 66