Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4BogackiShampine45 27 // 28 // Class description: 29 // 30 // An implementation of the embedded RK method from the following paper 31 // by P. Bogacki and L. F. Shampine: 32 // "An efficient Runge-Kutta (4,5) pair" 33 // Comput. Math. with Appl., vol. 32, no. 6, pp. 15-28, Sep. 1996. 34 // 35 // An interpolation method provides the value of an intermediate 36 // point in a step -- if a step was sucessful. 37 // 38 // This version can provide the FSAL property of the method, 39 // which allows the reuse of the last derivative in the next step, 40 // but only by using the additional method GetLastDyDx() (an alternative 41 // interface for simpler use of FSAL is under development). 42 43 // Created: Somnath Banerjee, Google Summer of Code 2015, 25 May 2015 44 // Supervision: John Apostolakis, CERN 45 // -------------------------------------------------------------------- 46 #ifndef BOGACKI_SHAMPINE_45_HH 47 #define BOGACKI_SHAMPINE_45_HH 48 49 #include "G4MagIntegratorStepper.hh" 50 51 class G4BogackiShampine45 : public G4MagIntegratorStepper 52 { 53 public: 54 55 G4BogackiShampine45(G4EquationOfMotion* EqRhs, 56 G4int numberOfVariables = 6, 57 G4bool primary = true); 58 ~G4BogackiShampine45() override; 59 60 G4BogackiShampine45(const G4BogackiShampine45&) = delete; 61 G4BogackiShampine45& operator=(const G4BogackiShampine45&) = delete; 62 63 void Stepper( const G4double y[], 64 const G4double dydx[], 65 G4double h, 66 G4double yout[], 67 G4double yerr[] ) override ; 68 69 // This Stepper provides 'dense output'. After a successful 70 // step, it is possible to obtain an estimate of the value 71 // of the function at an intermediate point of the interval. 72 // This requires only two additional evaluations of the 73 // derivative (and thus the field). 74 75 inline void SetupInterpolation() 76 { 77 SetupInterpolationHigh(); // ( yInput, dydx, Step); 78 } 79 80 // For calculating the output at the tau fraction of Step 81 // 82 inline void Interpolate( G4double tau, 83 G4double yOut[] ) // Output value 84 { 85 InterpolateHigh( tau, yOut); 86 // InterpolateHigh( yInput, dydx, Step, yOut, tau); 87 } 88 89 void SetupInterpolationHigh(); 90 91 // For calculating the output at the tau fraction of Step 92 // 93 void InterpolateHigh( G4double tau, 94 G4double yOut[] ) const; 95 96 G4double DistChord() const override; 97 G4int IntegratorOrder() const override { return 4; } 98 99 void GetLastDydx( G4double dyDxLast[] ); 100 101 void PrepareConstants(); // Initialise the values of the bi[][] array 102 103 private: 104 105 G4double *ak2, *ak3, *ak4, *ak5, *ak6, *ak7, *ak8, 106 *ak9, *ak10, *ak11, *yTemp, *yIn; 107 108 G4double *p[6]; 109 110 G4double fLastStepLength = -1.0; 111 G4double *fLastInitialVector, *fLastFinalVector, *fLastDyDx, 112 *fMidVector, *fMidError; 113 // For DistChord calculations 114 115 G4BogackiShampine45* fAuxStepper = nullptr; 116 // For chord - until interpolation is proven 117 G4bool fPreparedInterpolation = false; 118 119 // Class constants 120 static G4bool fPreparedConstants; 121 static G4double bi[12][7]; 122 }; 123 124 #endif 125