Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/visualization/modeling/src/G4PhysicalVolumeModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /visualization/modeling/src/G4PhysicalVolumeModel.cc (Version 11.3.0) and /visualization/modeling/src/G4PhysicalVolumeModel.cc (Version 11.0.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 //                                                 26 //
 27 //                                                 27 //
 28 //                                                 28 // 
 29 // John Allison  31st December 1997.               29 // John Allison  31st December 1997.
 30 // Model for physical volumes.                     30 // Model for physical volumes.
 31                                                    31 
 32 #include "G4PhysicalVolumeModel.hh"                32 #include "G4PhysicalVolumeModel.hh"
 33                                                    33 
 34 #include "G4VGraphicsScene.hh"                     34 #include "G4VGraphicsScene.hh"
 35 #include "G4VPhysicalVolume.hh"                    35 #include "G4VPhysicalVolume.hh"
 36 #include "G4PhysicalVolumeStore.hh"                36 #include "G4PhysicalVolumeStore.hh"
 37 #include "G4VPVParameterisation.hh"                37 #include "G4VPVParameterisation.hh"
 38 #include "G4LogicalVolume.hh"                      38 #include "G4LogicalVolume.hh"
 39 #include "G4VSolid.hh"                             39 #include "G4VSolid.hh"
 40 #include "G4SubtractionSolid.hh"                   40 #include "G4SubtractionSolid.hh"
 41 #include "G4IntersectionSolid.hh"                  41 #include "G4IntersectionSolid.hh"
 42 #include "G4Material.hh"                           42 #include "G4Material.hh"
 43 #include "G4VisAttributes.hh"                      43 #include "G4VisAttributes.hh"
 44 #include "G4BoundingExtentScene.hh"                44 #include "G4BoundingExtentScene.hh"
                                                   >>  45 #include "G4PhysicalVolumeSearchScene.hh"
 45 #include "G4TransportationManager.hh"              46 #include "G4TransportationManager.hh"
 46 #include "G4Polyhedron.hh"                         47 #include "G4Polyhedron.hh"
 47 #include "HepPolyhedronProcessor.h"                48 #include "HepPolyhedronProcessor.h"
 48 #include "G4AttDefStore.hh"                        49 #include "G4AttDefStore.hh"
 49 #include "G4AttDef.hh"                             50 #include "G4AttDef.hh"
 50 #include "G4AttValue.hh"                           51 #include "G4AttValue.hh"
 51 #include "G4UnitsTable.hh"                         52 #include "G4UnitsTable.hh"
 52 #include "G4Vector3D.hh"                           53 #include "G4Vector3D.hh"
 53 #include "G4Mesh.hh"                               54 #include "G4Mesh.hh"
 54                                                    55 
 55 #include <sstream>                                 56 #include <sstream>
 56 #include <iomanip>                                 57 #include <iomanip>
 57                                                    58 
 58 #define G4warn G4cout                          <<  59 namespace {
                                                   >>  60   G4int volumeCount = 0;
                                                   >>  61 }
 59                                                    62 
 60 G4PhysicalVolumeModel::G4PhysicalVolumeModel       63 G4PhysicalVolumeModel::G4PhysicalVolumeModel
 61 (G4VPhysicalVolume*            pVPV                64 (G4VPhysicalVolume*            pVPV
 62  , G4int                       requestedDepth      65  , G4int                       requestedDepth
 63  , const G4Transform3D&        modelTransform      66  , const G4Transform3D&        modelTransform
 64  , const G4ModelingParameters* pMP                 67  , const G4ModelingParameters* pMP
 65  , G4bool                      useFullExtent       68  , G4bool                      useFullExtent
 66  , const std::vector<G4PhysicalVolumeNodeID>&      69  , const std::vector<G4PhysicalVolumeNodeID>& baseFullPVPath)
 67 : G4VModel           (pMP)                         70 : G4VModel           (pMP)
 68 , fpTopPV            (pVPV)                        71 , fpTopPV            (pVPV)
 69 , fTopPVCopyNo       (pVPV? pVPV->GetCopyNo():     72 , fTopPVCopyNo       (pVPV? pVPV->GetCopyNo(): 0)
 70 , fRequestedDepth    (requestedDepth)              73 , fRequestedDepth    (requestedDepth)
 71 , fUseFullExtent     (useFullExtent)               74 , fUseFullExtent     (useFullExtent)
 72 , fTransform         (modelTransform)              75 , fTransform         (modelTransform)
 73 , fCurrentDepth      (0)                           76 , fCurrentDepth      (0)
 74 , fpCurrentPV        (fpTopPV)                     77 , fpCurrentPV        (fpTopPV)
 75 , fCurrentPVCopyNo   (fpTopPV? fpTopPV->GetCop     78 , fCurrentPVCopyNo   (fpTopPV? fpTopPV->GetCopyNo(): 0)
 76 , fpCurrentLV        (fpTopPV? fpTopPV->GetLog     79 , fpCurrentLV        (fpTopPV? fpTopPV->GetLogicalVolume(): 0)
 77 , fpCurrentMaterial  (fpCurrentLV? fpCurrentLV     80 , fpCurrentMaterial  (fpCurrentLV? fpCurrentLV->GetMaterial(): 0)
 78 , fCurrentTransform  (modelTransform)              81 , fCurrentTransform  (modelTransform)
 79 , fBaseFullPVPath    (baseFullPVPath)              82 , fBaseFullPVPath    (baseFullPVPath)
 80 , fFullPVPath        (fBaseFullPVPath)         << 
 81 , fAbort             (false)                       83 , fAbort             (false)
 82 , fCurtailDescent    (false)                       84 , fCurtailDescent    (false)
 83 , fpClippingSolid    (0)                           85 , fpClippingSolid    (0)
 84 , fClippingMode      (subtraction)                 86 , fClippingMode      (subtraction)
 85 , fNClippers         (0)                       << 
 86 , fTotalTouchables   (0)                       << 
 87 {                                                  87 {
 88   fType = "G4PhysicalVolumeModel";                 88   fType = "G4PhysicalVolumeModel";
 89                                                    89 
 90   if (!fpTopPV) {                                  90   if (!fpTopPV) {
 91                                                    91 
 92     // In some circumstances creating an "empt     92     // In some circumstances creating an "empty" G4PhysicalVolumeModel is
 93     // allowed, so I have supressed the G4Exce     93     // allowed, so I have supressed the G4Exception below.  If it proves to
 94     // be a problem we might have to re-instat     94     // be a problem we might have to re-instate it, but it is unlikley to
 95     // be used except by visualisation experts     95     // be used except by visualisation experts.  See, for example, /vis/list,
 96     // where it is used simply to get a list o     96     // where it is used simply to get a list of G4AttDefs.
 97     //    G4Exception                              97     //    G4Exception
 98     //    ("G4PhysicalVolumeModel::G4PhysicalV     98     //    ("G4PhysicalVolumeModel::G4PhysicalVolumeModel",
 99     //     "modeling0010", FatalException, "Nu     99     //     "modeling0010", FatalException, "Null G4PhysicalVolumeModel pointer.");
100                                                   100 
101     fTopPVName = "NULL";                          101     fTopPVName = "NULL";
102     fGlobalTag = "Empty";                         102     fGlobalTag = "Empty";
103     fGlobalDescription = "G4PhysicalVolumeMode    103     fGlobalDescription = "G4PhysicalVolumeModel " + fGlobalTag;
104                                                   104 
105   } else {                                        105   } else {
106                                                   106 
107     fTopPVName = fpTopPV -> GetName ();           107     fTopPVName = fpTopPV -> GetName ();
108     std::ostringstream oss;                       108     std::ostringstream oss;
109     oss << fpTopPV->GetName() << ':' << fpTopP    109     oss << fpTopPV->GetName() << ':' << fpTopPV->GetCopyNo()
110     << " BasePath:" << fBaseFullPVPath;           110     << " BasePath:" << fBaseFullPVPath;
111     fGlobalTag = oss.str();                       111     fGlobalTag = oss.str();
112     fGlobalDescription = "G4PhysicalVolumeMode    112     fGlobalDescription = "G4PhysicalVolumeModel " + fGlobalTag;
113     CalculateExtent ();                           113     CalculateExtent ();
114   }                                               114   }
115 }                                                 115 }
116                                                   116 
117 G4PhysicalVolumeModel::~G4PhysicalVolumeModel     117 G4PhysicalVolumeModel::~G4PhysicalVolumeModel ()
118 {                                                 118 {
119   delete fpClippingSolid;                         119   delete fpClippingSolid;
120 }                                                 120 }
121                                                   121 
122 G4ModelingParameters::PVNameCopyNoPath G4Physi    122 G4ModelingParameters::PVNameCopyNoPath G4PhysicalVolumeModel::GetPVNameCopyNoPath
123 (const std::vector<G4PhysicalVolumeNodeID>& pa    123 (const std::vector<G4PhysicalVolumeNodeID>& path)
124 {                                                 124 {
125   G4ModelingParameters::PVNameCopyNoPath PVNam    125   G4ModelingParameters::PVNameCopyNoPath PVNameCopyNoPath;
126   for (const auto& node: path) {                  126   for (const auto& node: path) {
127     PVNameCopyNoPath.push_back                    127     PVNameCopyNoPath.push_back
128     (G4ModelingParameters::PVNameCopyNo           128     (G4ModelingParameters::PVNameCopyNo
129      (node.GetPhysicalVolume()->GetName(),node    129      (node.GetPhysicalVolume()->GetName(),node.GetCopyNo()));
130   }                                               130   }
131   return PVNameCopyNoPath;                        131   return PVNameCopyNoPath;
132 }                                                 132 }
133                                                   133 
134 G4String G4PhysicalVolumeModel::GetPVNamePathS << 
135 (const std::vector<G4PhysicalVolumeNodeID>& pa << 
136 // Converts to path string, e.g., " World 0 En << 
137 // Note leading space character.               << 
138 {                                              << 
139   std::ostringstream oss;                      << 
140   oss << path;                                 << 
141   return oss.str();                            << 
142 }                                              << 
143                                                << 
144 void G4PhysicalVolumeModel::CalculateExtent ()    134 void G4PhysicalVolumeModel::CalculateExtent ()
145 {                                                 135 {
146   // To handle paramaterisations, set copy num    136   // To handle paramaterisations, set copy number and compute dimensions
147   // to get extent right                          137   // to get extent right
148   G4VPVParameterisation* pP = fpTopPV -> GetPa    138   G4VPVParameterisation* pP = fpTopPV -> GetParameterisation ();
149   if (pP) {                                       139   if (pP) {
150     fpTopPV -> SetCopyNo (fTopPVCopyNo);          140     fpTopPV -> SetCopyNo (fTopPVCopyNo);
151     G4VSolid* solid = pP -> ComputeSolid (fTop    141     G4VSolid* solid = pP -> ComputeSolid (fTopPVCopyNo, fpTopPV);
152     solid -> ComputeDimensions (pP, fTopPVCopy    142     solid -> ComputeDimensions (pP, fTopPVCopyNo, fpTopPV);
153   }                                               143   }
154   if (fUseFullExtent) {                           144   if (fUseFullExtent) {
155     fExtent = fpTopPV -> GetLogicalVolume () -    145     fExtent = fpTopPV -> GetLogicalVolume () -> GetSolid () -> GetExtent ();
156   } else {                                        146   } else {
157     // Calculate extent of *drawn* volumes, i.    147     // Calculate extent of *drawn* volumes, i.e., ignoring culled, e.g.,
158     // invisible volumes, by traversing the wh    148     // invisible volumes, by traversing the whole geometry hierarchy below
159     // this physical volume.                      149     // this physical volume.
160     G4BoundingExtentScene beScene(this);          150     G4BoundingExtentScene beScene(this);
161     const G4int tempRequestedDepth = fRequeste    151     const G4int tempRequestedDepth = fRequestedDepth;
162     const G4Transform3D tempTransform = fTrans    152     const G4Transform3D tempTransform = fTransform;
163     const G4ModelingParameters* tempMP = fpMP;    153     const G4ModelingParameters* tempMP = fpMP;
164     fRequestedDepth = -1;  // Always search to    154     fRequestedDepth = -1;  // Always search to all depths to define extent.
165     fTransform = G4Transform3D();  // Extent i    155     fTransform = G4Transform3D();  // Extent is in local cooridinates
166     G4ModelingParameters mParams                  156     G4ModelingParameters mParams
167       (0,      // No default vis attributes ne    157       (0,      // No default vis attributes needed.
168        G4ModelingParameters::wf,  // wireframe    158        G4ModelingParameters::wf,  // wireframe (not relevant for this).
169        true,   // Global culling.                 159        true,   // Global culling.
170        true,   // Cull invisible volumes.         160        true,   // Cull invisible volumes.
171        false,  // Density culling.                161        false,  // Density culling.
172        0.,     // Density (not relevant if den    162        0.,     // Density (not relevant if density culling false).
173        true,   // Cull daughters of opaque mot    163        true,   // Cull daughters of opaque mothers.
174        24);    // No of sides (not relevant fo    164        24);    // No of sides (not relevant for this operation).
175     mParams.SetSpecialMeshRendering(true);  // << 
176     fpMP = &mParams;                              165     fpMP = &mParams;
177     DescribeYourselfTo (beScene);                 166     DescribeYourselfTo (beScene);
178     fExtent = beScene.GetBoundingExtent();        167     fExtent = beScene.GetBoundingExtent();
179     fpMP = tempMP;                                168     fpMP = tempMP;
180     fTransform = tempTransform;                   169     fTransform = tempTransform;
181     fRequestedDepth = tempRequestedDepth;         170     fRequestedDepth = tempRequestedDepth;
182   }                                               171   }
183   G4double radius = fExtent.GetExtentRadius();    172   G4double radius = fExtent.GetExtentRadius();
184   if (radius < 0.) {  // Nothing in the scene     173   if (radius < 0.) {  // Nothing in the scene - revert to top extent
185     fExtent = fpTopPV -> GetLogicalVolume () -    174     fExtent = fpTopPV -> GetLogicalVolume () -> GetSolid () -> GetExtent ();
186   }                                               175   }
187   fExtent.Transform(fTransform);                  176   fExtent.Transform(fTransform);
188 }                                                 177 }
189                                                   178 
190 void G4PhysicalVolumeModel::DescribeYourselfTo    179 void G4PhysicalVolumeModel::DescribeYourselfTo
191 (G4VGraphicsScene& sceneHandler)                  180 (G4VGraphicsScene& sceneHandler)
192 {                                                 181 {
193   if (!fpTopPV) {                              << 182   if (!fpTopPV) G4Exception
194     G4Exception                                << 
195     ("G4PhysicalVolumeModel::DescribeYourselfT    183     ("G4PhysicalVolumeModel::DescribeYourselfTo",
196      "modeling0012", FatalException, "No model    184      "modeling0012", FatalException, "No model.");
197     return;  // Should never reach here, but k << 
198   }                                            << 
199                                                   185 
200   if (!fpMP) {                                 << 186   if (!fpMP) G4Exception
201     G4Exception                                << 
202     ("G4PhysicalVolumeModel::DescribeYourselfT    187     ("G4PhysicalVolumeModel::DescribeYourselfTo",
203      "modeling0013", FatalException, "No model << 188      "modeling0003", FatalException, "No modeling parameters.");
204     return;  // Should never reach here, but k << 
205   }                                            << 
206                                                << 
207   fNClippers = 0;                              << 
208   G4DisplacedSolid* pSectionSolid = fpMP->GetS << 
209   G4DisplacedSolid* pCutawaySolid = fpMP->GetC << 
210   if (fpClippingSolid) fNClippers++;           << 
211   if (pSectionSolid)   fNClippers++;           << 
212   if (pCutawaySolid)   fNClippers++;           << 
213   if (fNClippers > 1) {                        << 
214     G4ExceptionDescription ed;                 << 
215     ed << "More than one solid cutter/clipper: << 
216     if (fpClippingSolid) ed << "\nclipper in f << 
217     if (pSectionSolid)   ed << "\nsectioner in << 
218     if (pCutawaySolid)   ed << "\ncutaway in f << 
219     G4Exception("G4PhysicalVolumeModel::Descri << 
220   }                                            << 
221                                                   189 
222   G4Transform3D startingTransformation = fTran    190   G4Transform3D startingTransformation = fTransform;
223                                                   191 
224   fNTouchables.clear();  // Keeps count of tou << 192   volumeCount = 0;
225                                                   193 
226   VisitGeometryAndGetVisReps                      194   VisitGeometryAndGetVisReps
227     (fpTopPV,                                     195     (fpTopPV,
228      fRequestedDepth,                             196      fRequestedDepth,
229      startingTransformation,                      197      startingTransformation,
230      sceneHandler);                               198      sceneHandler);
231                                                   199 
232   fTotalTouchables = 0;                        << 200 //  G4cout
233   for (const auto& entry : fNTouchables) {     << 201 //  << "G4PhysicalVolumeModel::DescribeYourselfTo: volume count: "
234     fTotalTouchables += entry.second;          << 202 //  << volumeCount
235   }                                            << 203 //  << G4endl;
236                                                   204 
237   // Reset or clear data...                       205   // Reset or clear data...
238   fCurrentDepth     = 0;                          206   fCurrentDepth     = 0;
239   fpCurrentPV       = fpTopPV;                    207   fpCurrentPV       = fpTopPV;
240   fCurrentPVCopyNo  = fpTopPV->GetCopyNo();       208   fCurrentPVCopyNo  = fpTopPV->GetCopyNo();
241   fpCurrentLV       = fpTopPV->GetLogicalVolum    209   fpCurrentLV       = fpTopPV->GetLogicalVolume();
242   fpCurrentMaterial = fpCurrentLV? fpCurrentLV    210   fpCurrentMaterial = fpCurrentLV? fpCurrentLV->GetMaterial(): 0;
243   fFullPVPath       = fBaseFullPVPath;            211   fFullPVPath       = fBaseFullPVPath;
244   fDrawnPVPath.clear();                           212   fDrawnPVPath.clear();
245   fAbort            = false;                      213   fAbort            = false;
246   fCurtailDescent   = false;                      214   fCurtailDescent   = false;
247 }                                                 215 }
248                                                   216 
249 G4String G4PhysicalVolumeModel::GetCurrentTag     217 G4String G4PhysicalVolumeModel::GetCurrentTag () const
250 {                                                 218 {
251   if (fpCurrentPV) {                              219   if (fpCurrentPV) {
252     std::ostringstream o;                         220     std::ostringstream o;
253     o << fpCurrentPV -> GetCopyNo ();             221     o << fpCurrentPV -> GetCopyNo ();
254     return fpCurrentPV -> GetName () + ":" + o    222     return fpCurrentPV -> GetName () + ":" + o.str();
255   }                                               223   }
256   else {                                          224   else {
257     return "WARNING: NO CURRENT VOLUME - globa    225     return "WARNING: NO CURRENT VOLUME - global tag is " + fGlobalTag;
258   }                                               226   }
259 }                                                 227 }
260                                                   228 
261 G4String G4PhysicalVolumeModel::GetCurrentDesc    229 G4String G4PhysicalVolumeModel::GetCurrentDescription () const
262 {                                                 230 {
263   return "G4PhysicalVolumeModel " + GetCurrent    231   return "G4PhysicalVolumeModel " + GetCurrentTag ();
264 }                                                 232 }
265                                                   233 
266 void G4PhysicalVolumeModel::VisitGeometryAndGe    234 void G4PhysicalVolumeModel::VisitGeometryAndGetVisReps
267 (G4VPhysicalVolume* pVPV,                         235 (G4VPhysicalVolume* pVPV,
268  G4int requestedDepth,                            236  G4int requestedDepth,
269  const G4Transform3D& theAT,                      237  const G4Transform3D& theAT,
270  G4VGraphicsScene& sceneHandler)                  238  G4VGraphicsScene& sceneHandler)
271 {                                                 239 {
272   // Visits geometry structure to a given dept    240   // Visits geometry structure to a given depth (requestedDepth), starting
273   //   at given physical volume with given sta    241   //   at given physical volume with given starting transformation and
274   //   describes volumes to the scene handler.    242   //   describes volumes to the scene handler.
275   // requestedDepth < 0 (default) implies full    243   // requestedDepth < 0 (default) implies full visit.
276   // theAT is the Accumulated Transformation.     244   // theAT is the Accumulated Transformation.
277                                                   245 
278   // Find corresponding logical volume and (la    246   // Find corresponding logical volume and (later) solid, storing in
279   // local variables to preserve re-entrancy.     247   // local variables to preserve re-entrancy.
280   G4LogicalVolume* pLV  = pVPV -> GetLogicalVo    248   G4LogicalVolume* pLV  = pVPV -> GetLogicalVolume ();
281   G4VSolid* pSol = nullptr;                       249   G4VSolid* pSol = nullptr;
282   G4Material* pMaterial = nullptr;                250   G4Material* pMaterial = nullptr;
283                                                   251 
284   if (!(pVPV -> IsReplicated ())) {               252   if (!(pVPV -> IsReplicated ())) {
285     // Non-replicated physical volume.            253     // Non-replicated physical volume.
286     pSol = pLV -> GetSolid ();                    254     pSol = pLV -> GetSolid ();
287     pMaterial = pLV -> GetMaterial ();            255     pMaterial = pLV -> GetMaterial ();
288     DescribeAndDescend (pVPV, requestedDepth,     256     DescribeAndDescend (pVPV, requestedDepth, pLV, pSol, pMaterial,
289       theAT, sceneHandler);                       257       theAT, sceneHandler);
290   }                                               258   }
291   else {                                          259   else {
292     // Replicated or parametrised physical vol    260     // Replicated or parametrised physical volume.
293     EAxis axis;                                   261     EAxis axis;
294     G4int nReplicas;                              262     G4int nReplicas;
295     G4double width;                               263     G4double width;
296     G4double offset;                              264     G4double offset;
297     G4bool consuming;                             265     G4bool consuming;
298     pVPV -> GetReplicationData (axis, nReplica    266     pVPV -> GetReplicationData (axis, nReplicas, width,  offset, consuming);
299     G4int nBegin = 0;                             267     G4int nBegin = 0;
300     G4int nEnd = nReplicas;                       268     G4int nEnd = nReplicas;
301     if (fCurrentDepth == 0) { // i.e., top vol    269     if (fCurrentDepth == 0) { // i.e., top volume
302       nBegin = fTopPVCopyNo;  // Describe only    270       nBegin = fTopPVCopyNo;  // Describe only one volume, namely the one
303       nEnd = nBegin + 1;      // specified by     271       nEnd = nBegin + 1;      // specified by the given copy number.
304     }                                             272     }
305     G4VPVParameterisation* pP = pVPV -> GetPar    273     G4VPVParameterisation* pP = pVPV -> GetParameterisation ();
306     if (pP) {  // Parametrised volume.            274     if (pP) {  // Parametrised volume.
307       for (int n = nBegin; n < nEnd; n++) {       275       for (int n = nBegin; n < nEnd; n++) {
308         pSol = pP -> ComputeSolid (n, pVPV);   << 276   pSol = pP -> ComputeSolid (n, pVPV);
309         pP -> ComputeTransformation (n, pVPV); << 277   pP -> ComputeTransformation (n, pVPV);
310         pSol -> ComputeDimensions (pP, n, pVPV << 278   pSol -> ComputeDimensions (pP, n, pVPV);
311         pVPV -> SetCopyNo (n);                 << 279   pVPV -> SetCopyNo (n);
312         fCurrentPVCopyNo = n;                     280         fCurrentPVCopyNo = n;
313         // Create a touchable of current paren << 281   // Create a touchable of current parent for ComputeMaterial.
314         // fFullPVPath has not been updated ye << 282   // fFullPVPath has not been updated yet so at this point it
315         // corresponds to the parent.          << 283   // corresponds to the parent.
316         G4PhysicalVolumeModelTouchable parentT << 284   G4PhysicalVolumeModelTouchable parentTouchable(fFullPVPath);
317         pMaterial = pP -> ComputeMaterial (n,  << 285   pMaterial = pP -> ComputeMaterial (n, pVPV, &parentTouchable);
318         DescribeAndDescend (pVPV, requestedDep << 286   DescribeAndDescend (pVPV, requestedDepth, pLV, pSol, pMaterial,
319                             theAT, sceneHandle << 287           theAT, sceneHandler);
320       }                                           288       }
321     }                                             289     }
322     else {  // Plain replicated volume.  From     290     else {  // Plain replicated volume.  From geometry_guide.txt...
323       // The replica's positions are claculate    291       // The replica's positions are claculated by means of a linear formula.
324       // Replication may occur along:             292       // Replication may occur along:
325       //                                          293       // 
326       // o Cartesian axes (kXAxis,kYAxis,kZAxi    294       // o Cartesian axes (kXAxis,kYAxis,kZAxis)
327       //                                          295       // 
328       //   The replications, of specified widt    296       //   The replications, of specified width have coordinates of
329       //   form (-width*(nReplicas-1)*0.5+n*wi    297       //   form (-width*(nReplicas-1)*0.5+n*width,0,0) where n=0.. nReplicas-1
330       //   for the case of kXAxis, and are unr    298       //   for the case of kXAxis, and are unrotated.
331       //                                          299       // 
332       // o Radial axis (cylindrical polar) (kR    300       // o Radial axis (cylindrical polar) (kRho)
333       //                                          301       // 
334       //   The replications are cons/tubs sect    302       //   The replications are cons/tubs sections, centred on the origin
335       //   and are unrotated.                     303       //   and are unrotated.
336       //   They have radii of width*n+offset t    304       //   They have radii of width*n+offset to width*(n+1)+offset
337       //                      where n=0..nRepl    305       //                      where n=0..nReplicas-1
338       //                                          306       // 
339       // o Phi axis (cylindrical polar) (kPhi)    307       // o Phi axis (cylindrical polar) (kPhi)
340       //   The replications are `phi sections'    308       //   The replications are `phi sections' or wedges, and of cons/tubs form
341       //   They have phi of offset+n*width to     309       //   They have phi of offset+n*width to offset+(n+1)*width where
342       //   n=0..nReplicas-1                       310       //   n=0..nReplicas-1
343       //                                          311       // 
344       pSol = pLV -> GetSolid ();                  312       pSol = pLV -> GetSolid ();
345       pMaterial = pLV -> GetMaterial ();          313       pMaterial = pLV -> GetMaterial ();
346       G4ThreeVector originalTranslation = pVPV    314       G4ThreeVector originalTranslation = pVPV -> GetTranslation ();
347       G4RotationMatrix* pOriginalRotation = pV    315       G4RotationMatrix* pOriginalRotation = pVPV -> GetRotation ();
348       G4double originalRMin = 0., originalRMax    316       G4double originalRMin = 0., originalRMax = 0.;
349       if (axis == kRho && pSol->GetEntityType(    317       if (axis == kRho && pSol->GetEntityType() == "G4Tubs") {
350         originalRMin = ((G4Tubs*)pSol)->GetInn << 318   originalRMin = ((G4Tubs*)pSol)->GetInnerRadius();
351         originalRMax = ((G4Tubs*)pSol)->GetOut << 319   originalRMax = ((G4Tubs*)pSol)->GetOuterRadius();
352       }                                           320       }
353       G4bool visualisable = true;                 321       G4bool visualisable = true;
354       for (int n = nBegin; n < nEnd; n++) {       322       for (int n = nBegin; n < nEnd; n++) {
355         G4ThreeVector translation;  // Identit << 323   G4ThreeVector translation;  // Identity.
356         G4RotationMatrix rotation;  // Identit << 324   G4RotationMatrix rotation;  // Identity - life enough for visualizing.
357         G4RotationMatrix* pRotation = 0;       << 325   G4RotationMatrix* pRotation = 0;
358         switch (axis) {                        << 326   switch (axis) {
359           default:                             << 327   default:
360           case kXAxis:                         << 328   case kXAxis:
361             translation = G4ThreeVector (-widt << 329     translation = G4ThreeVector (-width*(nReplicas-1)*0.5+n*width,0,0);
362             break;                             << 330     break;
363           case kYAxis:                         << 331   case kYAxis:
364             translation = G4ThreeVector (0,-wi << 332     translation = G4ThreeVector (0,-width*(nReplicas-1)*0.5+n*width,0);
365             break;                             << 333     break;
366           case kZAxis:                         << 334   case kZAxis:
367             translation = G4ThreeVector (0,0,- << 335     translation = G4ThreeVector (0,0,-width*(nReplicas-1)*0.5+n*width);
368             break;                             << 336     break;
369           case kRho:                           << 337   case kRho:
370             if (pSol->GetEntityType() == "G4Tu << 338     if (pSol->GetEntityType() == "G4Tubs") {
371               ((G4Tubs*)pSol)->SetInnerRadius( << 339       ((G4Tubs*)pSol)->SetInnerRadius(width*n+offset);
372               ((G4Tubs*)pSol)->SetOuterRadius( << 340       ((G4Tubs*)pSol)->SetOuterRadius(width*(n+1)+offset);
373             } else {                           << 341     } else {
374               if (fpMP->IsWarning())           << 342       if (fpMP->IsWarning())
375                 G4warn <<                      << 343         G4cout <<
376                 "G4PhysicalVolumeModel::VisitG << 344     "G4PhysicalVolumeModel::VisitGeometryAndGetVisReps: WARNING:"
377                 "\n  built-in replicated volum << 345     "\n  built-in replicated volumes replicated in radius for "
378                 << pSol->GetEntityType() <<    << 346          << pSol->GetEntityType() <<
379                 "-type\n  solids (your solid \ << 347     "-type\n  solids (your solid \""
380                 << pSol->GetName() <<          << 348          << pSol->GetName() <<
381                 "\") are not visualisable."    << 349     "\") are not visualisable."
382                 << G4endl;                     << 350          << G4endl;
383               visualisable = false;            << 351       visualisable = false;
384             }                                  << 352     }
385             break;                             << 353     break;
386           case kPhi:                           << 354   case kPhi:
387             rotation.rotateZ (-(offset+(n+0.5) << 355     rotation.rotateZ (-(offset+(n+0.5)*width));
388             // Minus Sign because for the phys << 356     // Minus Sign because for the physical volume we need the
389             // coordinate system rotation.     << 357     // coordinate system rotation.
390             pRotation = &rotation;             << 358     pRotation = &rotation;
391             break;                             << 359     break;
392         }                                      << 360   } 
393         pVPV -> SetTranslation (translation);  << 361   pVPV -> SetTranslation (translation);
394         pVPV -> SetRotation    (pRotation);    << 362   pVPV -> SetRotation    (pRotation);
395         pVPV -> SetCopyNo (n);                 << 363   pVPV -> SetCopyNo (n);
396         fCurrentPVCopyNo = n;                     364         fCurrentPVCopyNo = n;
397         if (visualisable) {                    << 365   if (visualisable) {
398           DescribeAndDescend (pVPV, requestedD << 366     DescribeAndDescend (pVPV, requestedDepth, pLV, pSol, pMaterial,
399                               theAT, sceneHand << 367           theAT, sceneHandler);
400         }                                      << 368   }
401       }                                           369       }
402       // Restore originals...                     370       // Restore originals...
403       pVPV -> SetTranslation (originalTranslat    371       pVPV -> SetTranslation (originalTranslation);
404       pVPV -> SetRotation    (pOriginalRotatio    372       pVPV -> SetRotation    (pOriginalRotation);
405       if (axis == kRho && pSol->GetEntityType(    373       if (axis == kRho && pSol->GetEntityType() == "G4Tubs") {
406         ((G4Tubs*)pSol)->SetInnerRadius(origin << 374   ((G4Tubs*)pSol)->SetInnerRadius(originalRMin);
407         ((G4Tubs*)pSol)->SetOuterRadius(origin << 375   ((G4Tubs*)pSol)->SetOuterRadius(originalRMax);
408       }                                           376       }
409     }                                             377     }
410   }                                               378   }
411 }                                                 379 }
412                                                   380 
413 void G4PhysicalVolumeModel::DescribeAndDescend    381 void G4PhysicalVolumeModel::DescribeAndDescend
414 (G4VPhysicalVolume* pVPV,                         382 (G4VPhysicalVolume* pVPV,
415  G4int requestedDepth,                            383  G4int requestedDepth,
416  G4LogicalVolume* pLV,                            384  G4LogicalVolume* pLV,
417  G4VSolid* pSol,                                  385  G4VSolid* pSol,
418  G4Material* pMaterial,                           386  G4Material* pMaterial,
419  const G4Transform3D& theAT,                      387  const G4Transform3D& theAT,
420  G4VGraphicsScene& sceneHandler)                  388  G4VGraphicsScene& sceneHandler)
421 {                                                 389 {
422   // Maintain useful data members...              390   // Maintain useful data members...
423   fpCurrentPV = pVPV;                             391   fpCurrentPV = pVPV;
424   fCurrentPVCopyNo = pVPV->GetCopyNo();           392   fCurrentPVCopyNo = pVPV->GetCopyNo();
425   fpCurrentLV = pLV;                              393   fpCurrentLV = pLV;
426   fpCurrentMaterial = pMaterial;                  394   fpCurrentMaterial = pMaterial;
427                                                   395 
428   // Create a nodeID for use below - note the     396   // Create a nodeID for use below - note the "drawn" flag is true
429   G4int copyNo = fpCurrentPV->GetCopyNo();        397   G4int copyNo = fpCurrentPV->GetCopyNo();
430   auto nodeID = G4PhysicalVolumeNodeID            398   auto nodeID = G4PhysicalVolumeNodeID
431   (fpCurrentPV,copyNo,fCurrentDepth,fCurrentTr    399   (fpCurrentPV,copyNo,fCurrentDepth,fCurrentTransform);
432                                                   400 
433   // Update full path of physical volumes...      401   // Update full path of physical volumes...
434   fFullPVPath.push_back(nodeID);                  402   fFullPVPath.push_back(nodeID);
435                                                   403 
436   const G4RotationMatrix objectRotation = pVPV    404   const G4RotationMatrix objectRotation = pVPV -> GetObjectRotationValue ();
437   const G4ThreeVector&  translation     = pVPV    405   const G4ThreeVector&  translation     = pVPV -> GetTranslation ();
438   G4Transform3D theLT (G4Transform3D (objectRo    406   G4Transform3D theLT (G4Transform3D (objectRotation, translation));
439                                                   407 
440   // Compute the accumulated transformation...    408   // Compute the accumulated transformation...
441   // Note that top volume's transformation rel    409   // Note that top volume's transformation relative to the world
442   // coordinate system is specified in theAT =    410   // coordinate system is specified in theAT == startingTransformation
443   // = fTransform (see DescribeYourselfTo), so    411   // = fTransform (see DescribeYourselfTo), so first time through the
444   // volume's own transformation, which is onl    412   // volume's own transformation, which is only relative to its
445   // mother, i.e., not relative to the world c    413   // mother, i.e., not relative to the world coordinate system, should
446   // not be accumulated.                          414   // not be accumulated.
447   G4Transform3D theNewAT (theAT);                 415   G4Transform3D theNewAT (theAT);
448   if (fCurrentDepth != 0) theNewAT = theAT * t    416   if (fCurrentDepth != 0) theNewAT = theAT * theLT;
449   fCurrentTransform = theNewAT;                   417   fCurrentTransform = theNewAT;
450                                                   418 
451   const G4VisAttributes* pVisAttribs = pLV->Ge    419   const G4VisAttributes* pVisAttribs = pLV->GetVisAttributes();
452   //  If the volume does not have any vis attr    420   //  If the volume does not have any vis attributes, create it.
453   G4VisAttributes* tempVisAtts = nullptr;         421   G4VisAttributes* tempVisAtts = nullptr;
454   if (!pVisAttribs) {                             422   if (!pVisAttribs) {
455     if (fpMP->GetDefaultVisAttributes()) {        423     if (fpMP->GetDefaultVisAttributes()) {
456       tempVisAtts = new G4VisAttributes(*fpMP-    424       tempVisAtts = new G4VisAttributes(*fpMP->GetDefaultVisAttributes());
457     } else {                                      425     } else {
458       tempVisAtts = new G4VisAttributes;          426       tempVisAtts = new G4VisAttributes;
459     }                                             427     }
460     // The user may request /vis/viewer/set/co    428     // The user may request /vis/viewer/set/colourByDensity.
461     if (fpMP->GetCBDAlgorithmNumber() == 1) {     429     if (fpMP->GetCBDAlgorithmNumber() == 1) {
462       // Algorithm 1: 3 parameters: Simple rai    430       // Algorithm 1: 3 parameters: Simple rainbow mapping.
463       if (fpMP->GetCBDParameters().size() != 3    431       if (fpMP->GetCBDParameters().size() != 3) {
464         G4Exception("G4PhysicalVolumeModelTouc    432         G4Exception("G4PhysicalVolumeModelTouchable::DescribeAndDescend",
465                     "modeling0014",               433                     "modeling0014",
466                     FatalErrorInArgument,         434                     FatalErrorInArgument,
467                     "Algorithm-parameter misma    435                     "Algorithm-parameter mismatch for Colour By Density");
468       } else {                                    436       } else {
469         const G4double d = pMaterial? pMateria    437         const G4double d = pMaterial? pMaterial->GetDensity(): 0.;
470         const G4double d0 = fpMP->GetCBDParame    438         const G4double d0 = fpMP->GetCBDParameters()[0]; // Invisible d < d0.
471         const G4double d1 = fpMP->GetCBDParame    439         const G4double d1 = fpMP->GetCBDParameters()[1]; // Rainbow d0->d1->d2.
472         const G4double d2 = fpMP->GetCBDParame    440         const G4double d2 = fpMP->GetCBDParameters()[2]; // Blue d > d2.
473         if (d < d0) { // Density < d0 is invis    441         if (d < d0) { // Density < d0 is invisible.
474           tempVisAtts->SetVisibility(false);      442           tempVisAtts->SetVisibility(false);
475         } else { // Intermediate densities are    443         } else { // Intermediate densities are on a spectrum.
476           G4double red, green, blue;              444           G4double red, green, blue;
477           if (d < d1) {                           445           if (d < d1) {
478             red = (d1-d)/(d1-d0); green = (d-d    446             red = (d1-d)/(d1-d0); green = (d-d0)/(d1-d0); blue = 0.;
479           } else if (d < d2) {                    447           } else if (d < d2) {
480             red = 0.; green = (d2-d)/(d2-d1);     448             red = 0.; green = (d2-d)/(d2-d1); blue = (d-d1)/(d2-d1);
481           } else {  // Density >= d2 is blue.     449           } else {  // Density >= d2 is blue.
482             red = 0.; green = 0.; blue = 1.;      450             red = 0.; green = 0.; blue = 1.;
483           }                                       451           }
484           tempVisAtts->SetColour(G4Colour(red,    452           tempVisAtts->SetColour(G4Colour(red,green,blue));
485         }                                         453         }
486       }                                           454       }
487     } else if (fpMP->GetCBDAlgorithmNumber() =    455     } else if (fpMP->GetCBDAlgorithmNumber() == 2) {
488       // Algorithm 2                              456       // Algorithm 2
489       // ...etc.                                  457       // ...etc.
490     }                                             458     }
491     pVisAttribs = tempVisAtts;                    459     pVisAttribs = tempVisAtts;
492   }                                               460   }
493   // From here, can assume pVisAttribs is a va    461   // From here, can assume pVisAttribs is a valid pointer.  This is necessary
494   // because PreAddSolid needs a vis attribute    462   // because PreAddSolid needs a vis attributes object.
495                                                   463 
496   // Check if vis attributes are to be modifie    464   // Check if vis attributes are to be modified by a /vis/touchable/set/ command.
497   const auto& vams = fpMP->GetVisAttributesMod    465   const auto& vams = fpMP->GetVisAttributesModifiers();
498   if (vams.size()) {                              466   if (vams.size()) {
499     // OK, we have some VAMs (Vis Attributes M    467     // OK, we have some VAMs (Vis Attributes Modifiers).
500     for (const auto& vam: vams) {                 468     for (const auto& vam: vams) {
501       const auto& vamPath = vam.GetPVNameCopyN    469       const auto& vamPath = vam.GetPVNameCopyNoPath();
502       if (vamPath.size() == fFullPVPath.size()    470       if (vamPath.size() == fFullPVPath.size()) {
503         // OK, we have a size match.              471         // OK, we have a size match.
504         // Check the volume name/copy number p    472         // Check the volume name/copy number path.
505         auto iVAMNameCopyNo = vamPath.begin();    473         auto iVAMNameCopyNo = vamPath.begin();
506         auto iPVNodeId = fFullPVPath.begin();     474         auto iPVNodeId = fFullPVPath.begin();
507         for (; iVAMNameCopyNo != vamPath.end()    475         for (; iVAMNameCopyNo != vamPath.end(); ++iVAMNameCopyNo, ++iPVNodeId) {
508           if (!(                                  476           if (!(
509                 iVAMNameCopyNo->GetName() ==      477                 iVAMNameCopyNo->GetName() ==
510                 iPVNodeId->GetPhysicalVolume()    478                 iPVNodeId->GetPhysicalVolume()->GetName() &&
511                 iVAMNameCopyNo->GetCopyNo() ==    479                 iVAMNameCopyNo->GetCopyNo() ==
512                 iPVNodeId->GetPhysicalVolume()    480                 iPVNodeId->GetPhysicalVolume()->GetCopyNo()
513                 )) {                              481                 )) {
514             // This path element does NOT matc    482             // This path element does NOT match.
515             break;                                483             break;
516           }                                       484           }
517         }                                         485         }
518         if (iVAMNameCopyNo == vamPath.end()) {    486         if (iVAMNameCopyNo == vamPath.end()) {
519           // OK, the paths match (the above lo    487           // OK, the paths match (the above loop terminated normally).
520           // Create a vis atts object for the     488           // Create a vis atts object for the modified vis atts.
521           // It is static so that we may retur    489           // It is static so that we may return a reliable pointer to it.
522           static G4VisAttributes modifiedVisAt    490           static G4VisAttributes modifiedVisAtts;
523           // Initialise it with the current vi    491           // Initialise it with the current vis atts and reset the pointer.
524           modifiedVisAtts = *pVisAttribs;         492           modifiedVisAtts = *pVisAttribs;
525           pVisAttribs = &modifiedVisAtts;         493           pVisAttribs = &modifiedVisAtts;
526           const G4VisAttributes& transVisAtts     494           const G4VisAttributes& transVisAtts = vam.GetVisAttributes();
527           switch (vam.GetVisAttributesSignifie    495           switch (vam.GetVisAttributesSignifier()) {
528             case G4ModelingParameters::VASVisi    496             case G4ModelingParameters::VASVisibility:
529               modifiedVisAtts.SetVisibility(tr    497               modifiedVisAtts.SetVisibility(transVisAtts.IsVisible());
530               break;                              498               break;
531             case G4ModelingParameters::VASDaug    499             case G4ModelingParameters::VASDaughtersInvisible:
532               modifiedVisAtts.SetDaughtersInvi    500               modifiedVisAtts.SetDaughtersInvisible
533               (transVisAtts.IsDaughtersInvisib    501               (transVisAtts.IsDaughtersInvisible());
534               break;                              502               break;
535             case G4ModelingParameters::VASColo    503             case G4ModelingParameters::VASColour:
536               modifiedVisAtts.SetColour(transV    504               modifiedVisAtts.SetColour(transVisAtts.GetColour());
537               break;                              505               break;
538             case G4ModelingParameters::VASLine    506             case G4ModelingParameters::VASLineStyle:
539               modifiedVisAtts.SetLineStyle(tra    507               modifiedVisAtts.SetLineStyle(transVisAtts.GetLineStyle());
540               break;                              508               break;
541             case G4ModelingParameters::VASLine    509             case G4ModelingParameters::VASLineWidth:
542               modifiedVisAtts.SetLineWidth(tra    510               modifiedVisAtts.SetLineWidth(transVisAtts.GetLineWidth());
543               break;                              511               break;
544             case G4ModelingParameters::VASForc    512             case G4ModelingParameters::VASForceWireframe:
545               if (transVisAtts.IsForceDrawingS    513               if (transVisAtts.IsForceDrawingStyle()) {
546                 if (transVisAtts.GetForcedDraw    514                 if (transVisAtts.GetForcedDrawingStyle() ==
547                     G4VisAttributes::wireframe    515                     G4VisAttributes::wireframe) {
548                   modifiedVisAtts.SetForceWire    516                   modifiedVisAtts.SetForceWireframe(true);
549                 }                                 517                 }
550               }                                   518               }
551               break;                              519               break;
552             case G4ModelingParameters::VASForc    520             case G4ModelingParameters::VASForceSolid:
553               if (transVisAtts.IsForceDrawingS    521               if (transVisAtts.IsForceDrawingStyle()) {
554                 if (transVisAtts.GetForcedDraw    522                 if (transVisAtts.GetForcedDrawingStyle() ==
555                     G4VisAttributes::solid) {     523                     G4VisAttributes::solid) {
556                   modifiedVisAtts.SetForceSoli    524                   modifiedVisAtts.SetForceSolid(true);
557                 }                                 525                 }
558               }                                   526               }
559               break;                              527               break;
560             case G4ModelingParameters::VASForc    528             case G4ModelingParameters::VASForceCloud:
561               if (transVisAtts.IsForceDrawingS    529               if (transVisAtts.IsForceDrawingStyle()) {
562                 if (transVisAtts.GetForcedDraw    530                 if (transVisAtts.GetForcedDrawingStyle() ==
563                     G4VisAttributes::cloud) {     531                     G4VisAttributes::cloud) {
564                   modifiedVisAtts.SetForceClou    532                   modifiedVisAtts.SetForceCloud(true);
565                 }                                 533                 }
566               }                                   534               }
567               break;                              535               break;
568             case G4ModelingParameters::VASForc    536             case G4ModelingParameters::VASForceNumberOfCloudPoints:
569               modifiedVisAtts.SetForceNumberOf    537               modifiedVisAtts.SetForceNumberOfCloudPoints
570               (transVisAtts.GetForcedNumberOfC    538               (transVisAtts.GetForcedNumberOfCloudPoints());
571               break;                              539               break;
572             case G4ModelingParameters::VASForc    540             case G4ModelingParameters::VASForceAuxEdgeVisible:
573               if (transVisAtts.IsForceAuxEdgeV    541               if (transVisAtts.IsForceAuxEdgeVisible()) {
574                 modifiedVisAtts.SetForceAuxEdg    542                 modifiedVisAtts.SetForceAuxEdgeVisible
575                 (transVisAtts.IsForcedAuxEdgeV    543                 (transVisAtts.IsForcedAuxEdgeVisible());
576               }                                   544               }
577               break;                              545               break;
578             case G4ModelingParameters::VASForc    546             case G4ModelingParameters::VASForceLineSegmentsPerCircle:
579               modifiedVisAtts.SetForceLineSegm    547               modifiedVisAtts.SetForceLineSegmentsPerCircle
580               (transVisAtts.GetForcedLineSegme    548               (transVisAtts.GetForcedLineSegmentsPerCircle());
581               break;                              549               break;
582           }                                       550           }
583         }                                         551         }
584       }                                           552       }
585     }                                             553     }
586   }                                               554   }
587                                                   555 
588   // Check for special mesh rendering             556   // Check for special mesh rendering
589   if (fpMP->IsSpecialMeshRendering()) {           557   if (fpMP->IsSpecialMeshRendering()) {
590     G4bool potentialG4Mesh = false;            << 
591     if (fpMP->GetSpecialMeshVolumes().empty())    558     if (fpMP->GetSpecialMeshVolumes().empty()) {
592       // No volumes specified - all are potent    559       // No volumes specified - all are potentially possible
593       potentialG4Mesh = true;                  << 560       goto create_mesh;
594     } else {                                      561     } else {
595       // Name and (optionally) copy number of  << 
596       for (const auto& pvNameCopyNo: fpMP->Get    562       for (const auto& pvNameCopyNo: fpMP->GetSpecialMeshVolumes()) {
597         if (pVPV->GetName() == pvNameCopyNo.Ge << 563   if (pVPV->GetName() == pvNameCopyNo.GetName()) {
598           // We have a name match              << 564     // We have a name match
599           if (pvNameCopyNo.GetCopyNo() < 0) {  << 565     if (pvNameCopyNo.GetCopyNo() < 0) {
600             // Any copy number is OK           << 566       // Any copy number is OK
601             potentialG4Mesh = true;            << 567       goto create_mesh;
602           } else {                             << 568     } else {
603             if (pVPV->GetCopyNo() == pvNameCop << 569       if (pVPV->GetCopyNo() == pvNameCopyNo.GetCopyNo()) {
604               // We have a name and copy numbe << 570         // We have a name and copy number match
605               potentialG4Mesh = true;          << 571         goto create_mesh;
606             }                                  << 572       }
607           }                                    << 573     }
608         }                                      << 574   }
609       }                                           575       }
                                                   >> 576       // We have fallen out of this loop without finding a match
                                                   >> 577       goto continue_processing;
610     }                                             578     }
611     if (potentialG4Mesh) {                     << 579   create_mesh:
612       // Create - or at least attempt to creat << 580     // Create - or at least attempt to create - a mesh. If it cannot be created
613       // out of this pVPV the type will be "in << 581     // out of this pVPV the type will be "invalid".
614       G4Mesh mesh(pVPV,theNewAT);              << 582     G4Mesh mesh(pVPV,theNewAT);
615       if (mesh.GetMeshType() != G4Mesh::invali << 583     if (mesh.GetMeshType() != G4Mesh::invalid) {
616         // Create "artificial" nodeID to repre << 584       fFullPVPath.push_back(nodeID);
617         G4int artCopyNo = 0;                   << 585       fDrawnPVPath.push_back(nodeID);
618         auto artPV = mesh.GetParameterisedVolu << 586       sceneHandler.AddCompound(mesh);
619         auto artDepth = fCurrentDepth + 1;     << 587       fFullPVPath.pop_back();
620         auto artNodeID = G4PhysicalVolumeNodeI << 588       fDrawnPVPath.pop_back();
621         fFullPVPath.push_back(artNodeID);      << 589       delete tempVisAtts;  // Needs cleaning up (Coverity warning!!)
622         fDrawnPVPath.push_back(artNodeID);     << 590       return;
623         sceneHandler.AddCompound(mesh);        << 591     }  // else continue processing
624         fFullPVPath.pop_back();                << 
625         fDrawnPVPath.pop_back();               << 
626         delete tempVisAtts;  // Needs cleaning << 
627         return;  // Mesh found and processed - << 
628       }  // else continue processing           << 
629     }                                          << 
630   }                                               592   }
                                                   >> 593 continue_processing:
631                                                   594 
632   // Make decision to draw...                     595   // Make decision to draw...
633   G4bool thisToBeDrawn = true;                    596   G4bool thisToBeDrawn = true;
634                                                   597 
635   // There are various reasons why this volume    598   // There are various reasons why this volume
636   // might not be drawn...                        599   // might not be drawn...
637   G4bool culling = fpMP->IsCulling();             600   G4bool culling = fpMP->IsCulling();
638   G4bool cullingInvisible = fpMP->IsCullingInv    601   G4bool cullingInvisible = fpMP->IsCullingInvisible();
639   G4bool markedVisible                            602   G4bool markedVisible
640   = pVisAttribs->IsVisible() && pVisAttribs->G    603   = pVisAttribs->IsVisible() && pVisAttribs->GetColour().GetAlpha() > 0;
641   G4bool cullingLowDensity = fpMP->IsDensityCu    604   G4bool cullingLowDensity = fpMP->IsDensityCulling();
642   G4double density = pMaterial? pMaterial->Get    605   G4double density = pMaterial? pMaterial->GetDensity(): 0;
643   G4double densityCut = fpMP -> GetVisibleDens    606   G4double densityCut = fpMP -> GetVisibleDensity ();
644                                                   607 
645   // 1) Global culling is on....                  608   // 1) Global culling is on....
646   if (culling) {                                  609   if (culling) {
647     // 2) Culling of invisible volumes is on..    610     // 2) Culling of invisible volumes is on...
648     if (cullingInvisible) {                       611     if (cullingInvisible) {
649       // 3) ...and the volume is marked not vi    612       // 3) ...and the volume is marked not visible...
650       if (!markedVisible) thisToBeDrawn = fals    613       if (!markedVisible) thisToBeDrawn = false;
651     }                                             614     }
652     // 4) Or culling of low density volumes is    615     // 4) Or culling of low density volumes is on...
653     if (cullingLowDensity) {                      616     if (cullingLowDensity) {
654       // 5) ...and density is less than cut va    617       // 5) ...and density is less than cut value...
655       if (density < densityCut) thisToBeDrawn     618       if (density < densityCut) thisToBeDrawn = false;
656     }                                             619     }
657   }                                               620   }
658   // 6) The user has asked for all further tra    621   // 6) The user has asked for all further traversing to be aborted...
659   if (fAbort) thisToBeDrawn = false;              622   if (fAbort) thisToBeDrawn = false;
660                                                   623 
661   // Set "drawn" flag (it was true by default)    624   // Set "drawn" flag (it was true by default) - thisToBeDrawn may be false
662   nodeID.SetDrawn(thisToBeDrawn);                 625   nodeID.SetDrawn(thisToBeDrawn);
663                                                   626 
664   if (thisToBeDrawn) {                            627   if (thisToBeDrawn) {
665                                                   628 
666     // Update path of drawn physical volumes..    629     // Update path of drawn physical volumes...
667     fDrawnPVPath.push_back(nodeID);               630     fDrawnPVPath.push_back(nodeID);
668                                                   631 
669     if (fpMP->IsExplode() && fDrawnPVPath.size    632     if (fpMP->IsExplode() && fDrawnPVPath.size() == 1) {
670       // For top-level drawn volumes, explode     633       // For top-level drawn volumes, explode along radius...
671       G4Transform3D centering = G4Translate3D(    634       G4Transform3D centering = G4Translate3D(fpMP->GetExplodeCentre());
672       G4Transform3D centred = centering.invers    635       G4Transform3D centred = centering.inverse() * theNewAT;
673       G4Scale3D oldScale;                         636       G4Scale3D oldScale;
674       G4Rotate3D oldRotation;                     637       G4Rotate3D oldRotation;
675       G4Translate3D oldTranslation;               638       G4Translate3D oldTranslation;
676       centred.getDecomposition(oldScale, oldRo    639       centred.getDecomposition(oldScale, oldRotation, oldTranslation);
677       G4double explodeFactor = fpMP->GetExplod    640       G4double explodeFactor = fpMP->GetExplodeFactor();
678       G4Translate3D newTranslation =              641       G4Translate3D newTranslation =
679   G4Translate3D(explodeFactor * oldTranslation    642   G4Translate3D(explodeFactor * oldTranslation.dx(),
680           explodeFactor * oldTranslation.dy(),    643           explodeFactor * oldTranslation.dy(),
681           explodeFactor * oldTranslation.dz())    644           explodeFactor * oldTranslation.dz());
682       theNewAT = centering * newTranslation *     645       theNewAT = centering * newTranslation * oldRotation * oldScale;
683     }                                             646     }
684                                                   647 
685     auto fullDepth = fCurrentDepth + (G4int)fB << 648     volumeCount++;
686     fNTouchables[fullDepth]++;  // Increment f << 
687                                                << 
688     DescribeSolid (theNewAT, pSol, pVisAttribs    649     DescribeSolid (theNewAT, pSol, pVisAttribs, sceneHandler);
689                                                   650 
690   }                                               651   }
691                                                   652 
692   // Make decision to draw daughters, if any.     653   // Make decision to draw daughters, if any.  There are various
693   // reasons why daughters might not be drawn.    654   // reasons why daughters might not be drawn...
694                                                   655 
695   // First, reasons that do not depend on cull    656   // First, reasons that do not depend on culling policy...
696   G4int nDaughters = (G4int)pLV->GetNoDaughter << 657   G4int nDaughters = pLV->GetNoDaughters();
697   G4bool daughtersToBeDrawn = true;               658   G4bool daughtersToBeDrawn = true;
698   // 1) There are no daughters...                 659   // 1) There are no daughters...
699   if (!nDaughters) daughtersToBeDrawn = false;    660   if (!nDaughters) daughtersToBeDrawn = false;
700   // 2) We are at the limit if requested depth    661   // 2) We are at the limit if requested depth...
701   else if (requestedDepth == 0) daughtersToBeD    662   else if (requestedDepth == 0) daughtersToBeDrawn = false;
702   // 3) The user has asked for all further tra    663   // 3) The user has asked for all further traversing to be aborted...
703   else if (fAbort) daughtersToBeDrawn = false;    664   else if (fAbort) daughtersToBeDrawn = false;
704   // 4) The user has asked that the descent be    665   // 4) The user has asked that the descent be curtailed...
705   else if (fCurtailDescent) daughtersToBeDrawn    666   else if (fCurtailDescent) daughtersToBeDrawn = false;
706                                                   667 
707   // Now, reasons that depend on culling polic    668   // Now, reasons that depend on culling policy...
708   else {                                          669   else {
709     G4bool daughtersInvisible = pVisAttribs->I    670     G4bool daughtersInvisible = pVisAttribs->IsDaughtersInvisible();
710     // Culling of covered daughters request.      671     // Culling of covered daughters request.  This is computed in
711     // G4VSceneHandler::CreateModelingParamete    672     // G4VSceneHandler::CreateModelingParameters() depending on view
712     // parameters...                              673     // parameters...
713     G4bool cullingCovered = fpMP->IsCullingCov    674     G4bool cullingCovered = fpMP->IsCullingCovered();
714     G4bool surfaceDrawing =                       675     G4bool surfaceDrawing =
715       fpMP->GetDrawingStyle() == G4ModelingPar    676       fpMP->GetDrawingStyle() == G4ModelingParameters::hsr ||
716       fpMP->GetDrawingStyle() == G4ModelingPar    677       fpMP->GetDrawingStyle() == G4ModelingParameters::hlhsr;    
717     if (pVisAttribs->IsForceDrawingStyle()) {     678     if (pVisAttribs->IsForceDrawingStyle()) {
718       switch (pVisAttribs->GetForcedDrawingSty    679       switch (pVisAttribs->GetForcedDrawingStyle()) {
719       default:                                    680       default:
720       case G4VisAttributes::wireframe: surface    681       case G4VisAttributes::wireframe: surfaceDrawing = false; break;
721       case G4VisAttributes::solid: surfaceDraw    682       case G4VisAttributes::solid: surfaceDrawing = true; break;
722       }                                           683       }
723     }                                             684     }
724     G4bool opaque = pVisAttribs->GetColour().G    685     G4bool opaque = pVisAttribs->GetColour().GetAlpha() >= 1.;
725     // 5) Global culling is on....                686     // 5) Global culling is on....
726     if (culling) {                                687     if (culling) {
727       // 6) ..and culling of invisible volumes    688       // 6) ..and culling of invisible volumes is on...
728       if (cullingInvisible) {                     689       if (cullingInvisible) {
729   // 7) ...and the mother requests daughters i    690   // 7) ...and the mother requests daughters invisible
730   if (daughtersInvisible) daughtersToBeDrawn =    691   if (daughtersInvisible) daughtersToBeDrawn = false;
731       }                                           692       }
732       // 8) Or culling of covered daughters is    693       // 8) Or culling of covered daughters is requested...
733       if (cullingCovered) {                       694       if (cullingCovered) {
734   // 9) ...and surface drawing is operating...    695   // 9) ...and surface drawing is operating...
735   if (surfaceDrawing) {                           696   if (surfaceDrawing) {
736     // 10) ...but only if mother is visible...    697     // 10) ...but only if mother is visible...
737     if (thisToBeDrawn) {                          698     if (thisToBeDrawn) {
738       // 11) ...and opaque...                     699       // 11) ...and opaque...
739         if (opaque) daughtersToBeDrawn = false    700         if (opaque) daughtersToBeDrawn = false;
740     }                                             701     }
741   }                                               702   }
742       }                                           703       }
743     }                                             704     }
744   }                                               705   }
745                                                   706 
746   if (daughtersToBeDrawn) {                       707   if (daughtersToBeDrawn) {
747     for (G4int iDaughter = 0; iDaughter < nDau    708     for (G4int iDaughter = 0; iDaughter < nDaughters; iDaughter++) {
748       // Store daughter pVPV in local variable    709       // Store daughter pVPV in local variable ready for recursion...
749       G4VPhysicalVolume* pDaughterVPV = pLV ->    710       G4VPhysicalVolume* pDaughterVPV = pLV -> GetDaughter (iDaughter);
750       // Descend the geometry structure recurs    711       // Descend the geometry structure recursively...
751       fCurrentDepth++;                            712       fCurrentDepth++;
752       VisitGeometryAndGetVisReps                  713       VisitGeometryAndGetVisReps
753   (pDaughterVPV, requestedDepth - 1, theNewAT,    714   (pDaughterVPV, requestedDepth - 1, theNewAT, sceneHandler);
754       fCurrentDepth--;                            715       fCurrentDepth--;
755     }                                             716     }
756   }                                               717   }
757                                                   718 
758   // Clean up                                     719   // Clean up
759   delete tempVisAtts;                             720   delete tempVisAtts;
760                                                   721 
761   // Reset for normal descending of next volum    722   // Reset for normal descending of next volume at this level...
762   fCurtailDescent = false;                        723   fCurtailDescent = false;
763                                                   724 
764   // Pop item from paths physical volumes...      725   // Pop item from paths physical volumes...
765   fFullPVPath.pop_back();                         726   fFullPVPath.pop_back();
766   if (thisToBeDrawn) {                            727   if (thisToBeDrawn) {
767     fDrawnPVPath.pop_back();                      728     fDrawnPVPath.pop_back();
768   }                                               729   }
769 }                                                 730 }
770                                                   731 
771 namespace                                      << 
772 {                                              << 
773   G4bool SubtractionBoundingLimits(const G4VSo << 
774   {                                            << 
775     // Algorithm from G4SubtractionSolid::Boun << 
776     // Since it is unclear how the shape of th << 
777     // after subtraction, just return its orig << 
778     G4ThreeVector pMin, pMax;                  << 
779     const auto& pSolA = target;                << 
780     pSolA->BoundingLimits(pMin,pMax);          << 
781     // Check correctness of the bounding box   << 
782     if (pMin.x() >= pMax.x() || pMin.y() >= pM << 
783       // Bad bounding box (min >= max)         << 
784       // This signifies a subtraction of non-i << 
785       return false;                            << 
786     }                                          << 
787     return true;                               << 
788   }                                            << 
789                                                << 
790   G4bool IntersectionBoundingLimits(const G4VS << 
791   {                                            << 
792     // Algorithm from G4IntersectionSolid::Bou << 
793     G4ThreeVector pMin, pMax;                  << 
794     G4ThreeVector minA,maxA, minB,maxB;        << 
795     const auto& pSolA = target;                << 
796     const auto& pSolB = intersector;           << 
797     pSolA->BoundingLimits(minA,maxA);          << 
798     pSolB->BoundingLimits(minB,maxB);          << 
799     pMin.set(std::max(minA.x(),minB.x()),      << 
800              std::max(minA.y(),minB.y()),      << 
801              std::max(minA.z(),minB.z()));     << 
802     pMax.set(std::min(maxA.x(),maxB.x()),      << 
803              std::min(maxA.y(),maxB.y()),      << 
804              std::min(maxA.z(),maxB.z()));     << 
805     if (pMin.x() >= pMax.x() || pMin.y() >= pM << 
806       // Bad bounding box (min >= max)         << 
807       // This signifies a subtraction of non-i << 
808       return false;                            << 
809     }                                          << 
810     return true;                               << 
811   }                                            << 
812 }                                              << 
813                                                << 
814 void G4PhysicalVolumeModel::DescribeSolid         732 void G4PhysicalVolumeModel::DescribeSolid
815 (const G4Transform3D& theAT,                      733 (const G4Transform3D& theAT,
816  G4VSolid* pSol,                                  734  G4VSolid* pSol,
817  const G4VisAttributes* pVisAttribs,              735  const G4VisAttributes* pVisAttribs,
818  G4VGraphicsScene& sceneHandler)                  736  G4VGraphicsScene& sceneHandler)
819 {                                                 737 {
820   G4DisplacedSolid* pSectionSolid = fpMP->GetS    738   G4DisplacedSolid* pSectionSolid = fpMP->GetSectionSolid();
821   G4DisplacedSolid* pCutawaySolid = fpMP->GetC    739   G4DisplacedSolid* pCutawaySolid = fpMP->GetCutawaySolid();
822                                                   740 
823   if (fNClippers <= 0 || fNClippers > 1) {     << 741   if (!fpClippingSolid && !pSectionSolid && !pCutawaySolid) {
824                                                   742 
825     // Normal case - no clipping, etc. - or, i << 
826     sceneHandler.PreAddSolid (theAT, *pVisAttr    743     sceneHandler.PreAddSolid (theAT, *pVisAttribs);
827     pSol -> DescribeYourselfTo (sceneHandler);    744     pSol -> DescribeYourselfTo (sceneHandler);  // Standard treatment.
828     sceneHandler.PostAddSolid ();                 745     sceneHandler.PostAddSolid ();
829                                                   746 
830   } else {  // fNClippers == 1                 << 747   } else {
831                                                   748 
832     G4VSolid*         pResultantSolid = nullpt << 749     // Clipping, etc., performed by Boolean operations.
833     G4DisplacedSolid* pDisplacedSolid = nullpt << 
834                                                   750 
835     if (fpClippingSolid) {                     << 751     // First, get polyhedron for current solid...
836       pDisplacedSolid = new G4DisplacedSolid(" << 752     if (pVisAttribs->IsForceLineSegmentsPerCircle())
837       switch (fClippingMode) {                 << 753       G4Polyhedron::SetNumberOfRotationSteps
838         case subtraction:                      << 754   (pVisAttribs->GetForcedLineSegmentsPerCircle());
839           if (SubtractionBoundingLimits(pSol)) << 755     else
840             pResultantSolid = new G4Subtractio << 756       G4Polyhedron::SetNumberOfRotationSteps(fpMP->GetNoOfSides());
841             ("subtracted_clipped_solid", pSol, << 757     const G4Polyhedron* pOriginalPolyhedron = pSol->GetPolyhedron();
842           }                                    << 758     G4Polyhedron::ResetNumberOfRotationSteps();
843           break;                               << 759 
844         case intersection:                     << 760     if (!pOriginalPolyhedron) {
845           if (IntersectionBoundingLimits(pSol, << 761 
846             pResultantSolid = new G4Intersecti << 762       if (fpMP->IsWarning())
847             ("intersected_clipped_solid", pSol << 763   G4cout <<
848           }                                    << 764     "WARNING: G4PhysicalVolumeModel::DescribeSolid: solid\n  \""
849           break;                               << 765          << pSol->GetName() <<
                                                   >> 766     "\" has no polyhedron.  Cannot by clipped."
                                                   >> 767          << G4endl;
                                                   >> 768       pSol -> DescribeYourselfTo (sceneHandler);  // Standard treatment.
                                                   >> 769 
                                                   >> 770     } else {
                                                   >> 771 
                                                   >> 772       G4VSolid* pResultantSolid = 0;
                                                   >> 773 
                                                   >> 774       if (fpClippingSolid) {
                                                   >> 775   switch (fClippingMode) {
                                                   >> 776   default:
                                                   >> 777   case subtraction:
                                                   >> 778     pResultantSolid = new G4SubtractionSolid
                                                   >> 779       ("subtracted_clipped_solid", pSol, fpClippingSolid, theAT.inverse());
                                                   >> 780     break;
                                                   >> 781   case intersection:
                                                   >> 782     pResultantSolid = new G4IntersectionSolid
                                                   >> 783       ("intersected_clipped_solid", pSol, fpClippingSolid, theAT.inverse());
                                                   >> 784     break;
                                                   >> 785   }
850       }                                           786       }
851                                                   787 
852     } else if (pSectionSolid) {                << 788       if (pSectionSolid) {
853       pDisplacedSolid = new G4DisplacedSolid(" << 789   pResultantSolid = new G4IntersectionSolid
854       if (IntersectionBoundingLimits(pSol, pDi << 790     ("sectioned_solid", pSol, pSectionSolid, theAT.inverse());
855         pResultantSolid = new G4IntersectionSo << 791       }
                                                   >> 792 
                                                   >> 793       if (pCutawaySolid) {
                                                   >> 794         // Follow above...
                                                   >> 795   pResultantSolid = new G4SubtractionSolid
                                                   >> 796     ("cutaway_solid", pSol, pCutawaySolid, theAT.inverse());
                                                   >> 797       }
                                                   >> 798 
                                                   >> 799       G4Polyhedron* pResultantPolyhedron = pResultantSolid->GetPolyhedron();
                                                   >> 800       if (!pResultantPolyhedron) {
                                                   >> 801         if (fpMP->IsWarning())
                                                   >> 802           G4cout <<
                                                   >> 803           "WARNING: G4PhysicalVolumeModel::DescribeSolid: resultant polyhedron for"
                                                   >> 804           "\n  solid \"" << pSol->GetName() <<
                                                   >> 805           "\" not defined due to error during Boolean processing."
                                                   >> 806           << G4endl;
                                                   >> 807       } else {
                                                   >> 808         // It seems that if the sectioning solid does not intersect the
                                                   >> 809         // original solid the Boolean Processor returns the original
                                                   >> 810         // polyhedron, or a copy thereof. We do not want it.
                                                   >> 811         // Check the number of facets, etc. If same, ignore.
                                                   >> 812         // What we need from the Boolean Processor is a null pointer or a
                                                   >> 813         // null polyhedron. It seems to return the original or a copy of it.
                                                   >> 814         if (pResultantPolyhedron->GetNoFacets() == pOriginalPolyhedron->GetNoFacets())
                                                   >> 815           // This works in most cases but I still get a box in test202 with
                                                   >> 816           // /vis/viewer/set/sectionPlane on 0 0 0 m 0.1 0.1 1
                                                   >> 817         {
                                                   >> 818           pResultantPolyhedron = nullptr;
                                                   >> 819         }
856       }                                           820       }
857                                                   821 
858     } else if (pCutawaySolid) {                << 822       if (pResultantPolyhedron) {
859       pDisplacedSolid = new G4DisplacedSolid(" << 823         // Finally, draw polyhedron...
860       switch (fpMP->GetCutawayMode()) {        << 824         sceneHandler.BeginPrimitives(theAT);
861         case G4ModelingParameters::cutawayUnio << 825   pResultantPolyhedron->SetVisAttributes(pVisAttribs);
862           if (SubtractionBoundingLimits(pSol)) << 826         sceneHandler.AddPrimitive(*pResultantPolyhedron);
863             pResultantSolid = new G4Subtractio << 827         sceneHandler.EndPrimitives();
864           }                                    << 
865           break;                               << 
866         case G4ModelingParameters::cutawayInte << 
867           if (IntersectionBoundingLimits(pSol, << 
868             pResultantSolid = new G4Intersecti << 
869           }                                    << 
870           break;                               << 
871       }                                           828       }
872     }                                          << 
873                                                   829 
874     if (pResultantSolid) {                     << 830       delete pResultantSolid;
875       sceneHandler.PreAddSolid (theAT, *pVisAt << 
876       pResultantSolid -> DescribeYourselfTo (s << 
877       sceneHandler.PostAddSolid ();            << 
878     }                                             831     }
879                                                << 
880     delete pResultantSolid;                    << 
881     delete pDisplacedSolid;                    << 
882   }                                               832   }
883 }                                                 833 }
884                                                   834 
885 G4bool G4PhysicalVolumeModel::Validate (G4bool    835 G4bool G4PhysicalVolumeModel::Validate (G4bool warn)
886 {                                                 836 {
887 // Not easy to see how to validate this sort o    837 // Not easy to see how to validate this sort of model. Previously there was
888 // a check that a volume of the same name (fTo    838 // a check that a volume of the same name (fTopPVName) existed somewhere in
889 // the geometry tree but under some circumstan    839 // the geometry tree but under some circumstances this consumed lots of CPU
890 // time. Instead, let us simply check that the    840 // time. Instead, let us simply check that the volume (fpTopPV) exists in the
891 // physical volume store.                         841 // physical volume store.
                                                   >> 842 
892   const auto& pvStore = G4PhysicalVolumeStore:    843   const auto& pvStore = G4PhysicalVolumeStore::GetInstance();
893   auto iterator = find(pvStore->begin(),pvStor    844   auto iterator = find(pvStore->begin(),pvStore->end(),fpTopPV);
894   if (iterator == pvStore->end()) {               845   if (iterator == pvStore->end()) {
895     if (warn) {                                   846     if (warn) {
896       G4ExceptionDescription ed;                  847       G4ExceptionDescription ed;
897       ed << "Attempt to validate a volume that    848       ed << "Attempt to validate a volume that is no longer in the physical volume store.";
898       G4Exception("G4PhysicalVolumeModel::Vali    849       G4Exception("G4PhysicalVolumeModel::Validate", "modeling0015", JustWarning, ed);
899     }                                             850     }
900     return false;                                 851     return false;
901   } else {                                        852   } else {
902     return true;                                  853     return true;
903   }                                               854   }
                                                   >> 855 
                                                   >> 856   // Previous algorithm
                                                   >> 857 //  G4TransportationManager* transportationManager =
                                                   >> 858 //    G4TransportationManager::GetTransportationManager ();
                                                   >> 859 //  size_t nWorlds = transportationManager->GetNoWorlds();
                                                   >> 860 //  G4bool found = false;
                                                   >> 861 //  std::vector<G4VPhysicalVolume*>::iterator iterWorld =
                                                   >> 862 //    transportationManager->GetWorldsIterator();
                                                   >> 863 //  for (size_t i = 0; i < nWorlds; ++i, ++iterWorld) {
                                                   >> 864 //    G4VPhysicalVolume* world = (*iterWorld);
                                                   >> 865 //    if (!world) break; // This can happen if geometry has been cleared/destroyed.
                                                   >> 866 //    // The idea now is to seek a PV with the same name and copy no
                                                   >> 867 //    // in the hope it's the same one!!
                                                   >> 868 //    G4PhysicalVolumeModel searchModel (world);
                                                   >> 869 //    G4int verbosity = 0;  // Suppress messages from G4PhysicalVolumeSearchScene.
                                                   >> 870 //    G4PhysicalVolumeSearchScene searchScene
                                                   >> 871 //      (&searchModel, fTopPVName, fTopPVCopyNo, verbosity);
                                                   >> 872 //    G4ModelingParameters mp;  // Default modeling parameters for this search.
                                                   >> 873 //    mp.SetDefaultVisAttributes(fpMP? fpMP->GetDefaultVisAttributes(): 0);
                                                   >> 874 //    searchModel.SetModelingParameters (&mp);
                                                   >> 875 //    searchModel.DescribeYourselfTo (searchScene);
                                                   >> 876 //    G4VPhysicalVolume* foundVolume = searchScene.GetFoundVolume ();
                                                   >> 877 //    if (foundVolume) {
                                                   >> 878 //      if (foundVolume != fpTopPV && warn) {
                                                   >> 879 //  G4cout <<
                                                   >> 880 //    "G4PhysicalVolumeModel::Validate(): A volume of the same name and"
                                                   >> 881 //    "\n  copy number (\""
                                                   >> 882 //         << fTopPVName << "\", copy " << fTopPVCopyNo
                                                   >> 883 //         << ") still exists and is being used."
                                                   >> 884 //    "\n  But it is not the same volume you originally specified"
                                                   >> 885 //    "\n  in /vis/scene/add/."
                                                   >> 886 //         << G4endl;
                                                   >> 887 //      }
                                                   >> 888 //      fpTopPV = foundVolume;
                                                   >> 889 //      CalculateExtent ();
                                                   >> 890 //      found = true;
                                                   >> 891 //    }
                                                   >> 892 //  }
                                                   >> 893 //  if (found) return true;
                                                   >> 894 //  else {
                                                   >> 895 //    if (warn) {
                                                   >> 896 //      G4cout <<
                                                   >> 897 //  "G4PhysicalVolumeModel::Validate(): No volume of name and"
                                                   >> 898 //  "\n  copy number (\""
                                                   >> 899 //       << fTopPVName << "\", copy " << fTopPVCopyNo
                                                   >> 900 //       << ") exists."
                                                   >> 901 //       << G4endl;
                                                   >> 902 //    }
                                                   >> 903 //    return false;
                                                   >> 904 //  }
904 }                                                 905 }
905                                                   906 
906 const std::map<G4String,G4AttDef>* G4PhysicalV    907 const std::map<G4String,G4AttDef>* G4PhysicalVolumeModel::GetAttDefs() const
907 {                                                 908 {
908     G4bool isNew;                                 909     G4bool isNew;
909     std::map<G4String,G4AttDef>* store            910     std::map<G4String,G4AttDef>* store
910       = G4AttDefStore::GetInstance("G4Physical    911       = G4AttDefStore::GetInstance("G4PhysicalVolumeModel", isNew);
911     if (isNew) {                                  912     if (isNew) {
912       (*store)["PVPath"] =                        913       (*store)["PVPath"] =
913       G4AttDef("PVPath","Physical Volume Path"    914       G4AttDef("PVPath","Physical Volume Path","Physics","","G4String");
914       (*store)["BasePVPath"] =                    915       (*store)["BasePVPath"] =
915       G4AttDef("BasePVPath","Base Physical Vol    916       G4AttDef("BasePVPath","Base Physical Volume Path","Physics","","G4String");
916       (*store)["LVol"] =                          917       (*store)["LVol"] =
917       G4AttDef("LVol","Logical Volume","Physic << 918   G4AttDef("LVol","Logical Volume","Physics","","G4String");
918       (*store)["Solid"] =                         919       (*store)["Solid"] =
919       G4AttDef("Solid","Solid Name","Physics", << 920   G4AttDef("Solid","Solid Name","Physics","","G4String");
920       (*store)["EType"] =                         921       (*store)["EType"] =
921       G4AttDef("EType","Entity Type","Physics" << 922   G4AttDef("EType","Entity Type","Physics","","G4String");
922       (*store)["DmpSol"] =                        923       (*store)["DmpSol"] =
923       G4AttDef("DmpSol","Dump of Solid propert << 924   G4AttDef("DmpSol","Dump of Solid properties","Physics","","G4String");
924       (*store)["LocalTrans"] =                    925       (*store)["LocalTrans"] =
925       G4AttDef("LocalTrans","Local transformat << 926     G4AttDef("LocalTrans","Local transformation of volume","Physics","","G4String");
926       (*store)["LocalExtent"] =                << 
927       G4AttDef("LocalExtent","Local extent of  << 
928       (*store)["GlobalTrans"] =                   927       (*store)["GlobalTrans"] =
929       G4AttDef("GlobalTrans","Global transform << 928     G4AttDef("GlobalTrans","Global transformation of volume","Physics","","G4String");
930       (*store)["GlobalExtent"] =               << 
931       G4AttDef("GlobalExtent","Global extent o << 
932       (*store)["Material"] =                      929       (*store)["Material"] =
933       G4AttDef("Material","Material Name","Phy << 930   G4AttDef("Material","Material Name","Physics","","G4String");
934       (*store)["Density"] =                       931       (*store)["Density"] =
935       G4AttDef("Density","Material Density","P << 932   G4AttDef("Density","Material Density","Physics","G4BestUnit","G4double");
936       (*store)["State"] =                         933       (*store)["State"] =
937       G4AttDef("State","Material State (enum u << 934   G4AttDef("State","Material State (enum undefined,solid,liquid,gas)","Physics","","G4String");
938       (*store)["Radlen"] =                        935       (*store)["Radlen"] =
939       G4AttDef("Radlen","Material Radiation Le << 936   G4AttDef("Radlen","Material Radiation Length","Physics","G4BestUnit","G4double");
940       (*store)["Region"] =                        937       (*store)["Region"] =
941       G4AttDef("Region","Cuts Region","Physics << 938   G4AttDef("Region","Cuts Region","Physics","","G4String");
942       (*store)["RootRegion"] =                    939       (*store)["RootRegion"] =
943       G4AttDef("RootRegion","Root Region (0/1  << 940   G4AttDef("RootRegion","Root Region (0/1 = false/true)","Physics","","G4bool");
944     }                                             941     }
945   return store;                                   942   return store;
946 }                                                 943 }
947                                                   944 
948 static std::ostream& operator<< (std::ostream&    945 static std::ostream& operator<< (std::ostream& o, const G4Transform3D t)
949 {                                                 946 {
950   using namespace std;                            947   using namespace std;
951                                                   948 
952   G4Scale3D sc;                                   949   G4Scale3D sc;
953   G4Rotate3D r;                                   950   G4Rotate3D r;
954   G4Translate3D tl;                               951   G4Translate3D tl;
955   t.getDecomposition(sc, r, tl);                  952   t.getDecomposition(sc, r, tl);
956                                                   953 
957   const int w = 10;                               954   const int w = 10;
958                                                   955 
959   // Transformation itself                        956   // Transformation itself
960   o << setw(w) << t.xx() << setw(w) << t.xy()     957   o << setw(w) << t.xx() << setw(w) << t.xy() << setw(w) << t.xz() << setw(w) << t.dx() << endl;
961   o << setw(w) << t.yx() << setw(w) << t.yy()     958   o << setw(w) << t.yx() << setw(w) << t.yy() << setw(w) << t.yz() << setw(w) << t.dy() << endl;
962   o << setw(w) << t.zx() << setw(w) << t.zy()     959   o << setw(w) << t.zx() << setw(w) << t.zy() << setw(w) << t.zz() << setw(w) << t.dz() << endl;
963                                                   960 
964   // Translation                                  961   // Translation
965   o << "= translation:" << endl;                  962   o << "= translation:" << endl;
966   o << setw(w) << tl.dx() << setw(w) << tl.dy(    963   o << setw(w) << tl.dx() << setw(w) << tl.dy() << setw(w) << tl.dz() << endl;
967                                                   964 
968   // Rotation                                     965   // Rotation
969   o << "* rotation:" << endl;                     966   o << "* rotation:" << endl;
970   o << setw(w) << r.xx() << setw(w) << r.xy()     967   o << setw(w) << r.xx() << setw(w) << r.xy() << setw(w) << r.xz() << endl;
971   o << setw(w) << r.yx() << setw(w) << r.yy()     968   o << setw(w) << r.yx() << setw(w) << r.yy() << setw(w) << r.yz() << endl;
972   o << setw(w) << r.zx() << setw(w) << r.zy()     969   o << setw(w) << r.zx() << setw(w) << r.zy() << setw(w) << r.zz() << endl;
973                                                   970 
974   // Scale                                        971   // Scale
975   o << "* scale:" << endl;                        972   o << "* scale:" << endl;
976   o << setw(w) << sc.xx() << setw(w) << sc.yy(    973   o << setw(w) << sc.xx() << setw(w) << sc.yy() << setw(w) << sc.zz() << endl;
977                                                   974 
978   // Transformed axes                             975   // Transformed axes
979   o << "Transformed axes:" << endl;               976   o << "Transformed axes:" << endl;
980   o << "x': " << r * G4Vector3D(1., 0., 0.) <<    977   o << "x': " << r * G4Vector3D(1., 0., 0.) << endl;
981   o << "y': " << r * G4Vector3D(0., 1., 0.) <<    978   o << "y': " << r * G4Vector3D(0., 1., 0.) << endl;
982   o << "z': " << r * G4Vector3D(0., 0., 1.) <<    979   o << "z': " << r * G4Vector3D(0., 0., 1.) << endl;
983                                                   980 
984   return o;                                       981   return o;
985 }                                                 982 }
986                                                   983 
987 std::vector<G4AttValue>* G4PhysicalVolumeModel    984 std::vector<G4AttValue>* G4PhysicalVolumeModel::CreateCurrentAttValues() const
988 {                                                 985 {
989   std::vector<G4AttValue>* values = new std::v    986   std::vector<G4AttValue>* values = new std::vector<G4AttValue>;
990                                                   987 
991   if (!fpCurrentLV) {                             988   if (!fpCurrentLV) {
992      G4Exception                                  989      G4Exception
993         ("G4PhysicalVolumeModel::CreateCurrent    990         ("G4PhysicalVolumeModel::CreateCurrentAttValues",
994          "modeling0004",                          991          "modeling0004",
995          JustWarning,                             992          JustWarning,
996          "Current logical volume not defined."    993          "Current logical volume not defined.");
997      return values;                               994      return values;
998   }                                               995   }
999                                                   996 
1000   std::ostringstream oss; oss << fFullPVPath;    997   std::ostringstream oss; oss << fFullPVPath;
1001   values->push_back(G4AttValue("PVPath", oss.    998   values->push_back(G4AttValue("PVPath", oss.str(),""));
1002                                               << 
1003   oss.str(""); oss << fBaseFullPVPath;           999   oss.str(""); oss << fBaseFullPVPath;
1004   values->push_back(G4AttValue("BasePVPath",     1000   values->push_back(G4AttValue("BasePVPath", oss.str(),""));
1005                                               << 
1006   values->push_back(G4AttValue("LVol", fpCurr    1001   values->push_back(G4AttValue("LVol", fpCurrentLV->GetName(),""));
1007   G4VSolid* pSol = fpCurrentLV->GetSolid();      1002   G4VSolid* pSol = fpCurrentLV->GetSolid();
1008                                               << 
1009   values->push_back(G4AttValue("Solid", pSol-    1003   values->push_back(G4AttValue("Solid", pSol->GetName(),""));
1010                                               << 
1011   values->push_back(G4AttValue("EType", pSol-    1004   values->push_back(G4AttValue("EType", pSol->GetEntityType(),""));
1012                                               << 
1013   oss.str(""); oss << '\n' << *pSol;             1005   oss.str(""); oss << '\n' << *pSol;
1014   values->push_back(G4AttValue("DmpSol", oss.    1006   values->push_back(G4AttValue("DmpSol", oss.str(),""));
1015                                               << 
1016   const G4RotationMatrix localRotation = fpCu    1007   const G4RotationMatrix localRotation = fpCurrentPV->GetObjectRotationValue();
1017   const G4ThreeVector& localTranslation = fpC    1008   const G4ThreeVector& localTranslation = fpCurrentPV->GetTranslation();
1018   oss.str(""); oss << '\n' << G4Transform3D(l    1009   oss.str(""); oss << '\n' << G4Transform3D(localRotation,localTranslation);
1019   values->push_back(G4AttValue("LocalTrans",     1010   values->push_back(G4AttValue("LocalTrans", oss.str(),""));
1020                                               << 
1021   oss.str(""); oss << '\n' << pSol->GetExtent << 
1022   values->push_back(G4AttValue("LocalExtent", << 
1023                                               << 
1024   oss.str(""); oss << '\n' << fCurrentTransfo    1011   oss.str(""); oss << '\n' << fCurrentTransform;
1025   values->push_back(G4AttValue("GlobalTrans",    1012   values->push_back(G4AttValue("GlobalTrans", oss.str(),""));
1026                                               << 
1027   oss.str(""); oss << '\n' << (pSol->GetExten << 
1028   values->push_back(G4AttValue("GlobalExtent" << 
1029                                               << 
1030   G4String matName = fpCurrentMaterial? fpCur    1013   G4String matName = fpCurrentMaterial? fpCurrentMaterial->GetName(): G4String("No material");
1031   values->push_back(G4AttValue("Material", ma    1014   values->push_back(G4AttValue("Material", matName,""));
1032                                               << 
1033   G4double matDensity = fpCurrentMaterial? fp    1015   G4double matDensity = fpCurrentMaterial? fpCurrentMaterial->GetDensity(): 0.;
1034   values->push_back(G4AttValue("Density", G4B    1016   values->push_back(G4AttValue("Density", G4BestUnit(matDensity,"Volumic Mass"),""));
1035                                               << 
1036   G4State matState = fpCurrentMaterial? fpCur    1017   G4State matState = fpCurrentMaterial? fpCurrentMaterial->GetState(): kStateUndefined;
1037   oss.str(""); oss << matState;                  1018   oss.str(""); oss << matState;
1038   values->push_back(G4AttValue("State", oss.s    1019   values->push_back(G4AttValue("State", oss.str(),""));
1039                                               << 
1040   G4double matRadlen = fpCurrentMaterial? fpC    1020   G4double matRadlen = fpCurrentMaterial? fpCurrentMaterial->GetRadlen(): 0.;
1041   values->push_back(G4AttValue("Radlen", G4Be    1021   values->push_back(G4AttValue("Radlen", G4BestUnit(matRadlen,"Length"),""));
1042                                               << 
1043   G4Region* region = fpCurrentLV->GetRegion()    1022   G4Region* region = fpCurrentLV->GetRegion();
1044   G4String regionName = region? region->GetNa    1023   G4String regionName = region? region->GetName(): G4String("No region");
1045   values->push_back(G4AttValue("Region", regi    1024   values->push_back(G4AttValue("Region", regionName,""));
1046                                               << 
1047   oss.str(""); oss << fpCurrentLV->IsRootRegi    1025   oss.str(""); oss << fpCurrentLV->IsRootRegion();
1048   values->push_back(G4AttValue("RootRegion",     1026   values->push_back(G4AttValue("RootRegion", oss.str(),""));
1049                                               << 
1050   return values;                                 1027   return values;
1051 }                                                1028 }
1052                                                  1029 
1053 G4bool G4PhysicalVolumeModel::G4PhysicalVolum    1030 G4bool G4PhysicalVolumeModel::G4PhysicalVolumeNodeID::operator<
1054   (const G4PhysicalVolumeModel::G4PhysicalVol    1031   (const G4PhysicalVolumeModel::G4PhysicalVolumeNodeID& right) const
1055 {                                                1032 {
1056   if (fpPV < right.fpPV) return true;            1033   if (fpPV < right.fpPV) return true;
1057   if (fpPV == right.fpPV) {                      1034   if (fpPV == right.fpPV) {
1058     if (fCopyNo < right.fCopyNo) return true;    1035     if (fCopyNo < right.fCopyNo) return true;
1059     if (fCopyNo == right.fCopyNo)                1036     if (fCopyNo == right.fCopyNo)
1060       return fNonCulledDepth < right.fNonCull    1037       return fNonCulledDepth < right.fNonCulledDepth;
1061   }                                              1038   }
1062   return false;                                  1039   return false;
1063 }                                                1040 }
1064                                                  1041 
1065 G4bool G4PhysicalVolumeModel::G4PhysicalVolum    1042 G4bool G4PhysicalVolumeModel::G4PhysicalVolumeNodeID::operator!=
1066   (const G4PhysicalVolumeModel::G4PhysicalVol    1043   (const G4PhysicalVolumeModel::G4PhysicalVolumeNodeID& right) const
1067 {                                                1044 {
1068   if (fpPV            != right.fpPV ||           1045   if (fpPV            != right.fpPV ||
1069       fCopyNo         != right.fCopyNo ||        1046       fCopyNo         != right.fCopyNo ||
1070       fNonCulledDepth != right.fNonCulledDept    1047       fNonCulledDepth != right.fNonCulledDepth ||
1071       fTransform      != right.fTransform ||     1048       fTransform      != right.fTransform ||
1072       fDrawn          != right.fDrawn) return    1049       fDrawn          != right.fDrawn) return true;
1073   return false;                                  1050   return false;
1074 }                                                1051 }
1075                                                  1052 
1076 std::ostream& operator<<                         1053 std::ostream& operator<<
1077   (std::ostream& os, const G4PhysicalVolumeMo    1054   (std::ostream& os, const G4PhysicalVolumeModel::G4PhysicalVolumeNodeID& node)
1078 {                                                1055 {
1079   G4VPhysicalVolume* pPV = node.GetPhysicalVo    1056   G4VPhysicalVolume* pPV = node.GetPhysicalVolume();
1080   if (pPV) {                                     1057   if (pPV) {
1081     os << pPV->GetName()                         1058     os << pPV->GetName()
1082        << ' ' << node.GetCopyNo()                1059        << ' ' << node.GetCopyNo()
1083 //       << '[' << node.GetNonCulledDepth() <    1060 //       << '[' << node.GetNonCulledDepth() << ']'
1084 //       << ':' << node.GetTransform()           1061 //       << ':' << node.GetTransform()
1085     ;                                            1062     ;
1086 //    os << " (";                                1063 //    os << " (";
1087 //    if (!node.GetDrawn()) os << "not ";        1064 //    if (!node.GetDrawn()) os << "not ";
1088 //    os << "drawn)";                            1065 //    os << "drawn)";
1089   } else {                                       1066   } else {
1090     os << " (Null PV node)";                     1067     os << " (Null PV node)";
1091   }                                              1068   }
1092   return os;                                     1069   return os;
1093 }                                                1070 }
1094                                                  1071 
1095 std::ostream& operator<<                         1072 std::ostream& operator<<
1096 (std::ostream& os, const std::vector<G4Physic    1073 (std::ostream& os, const std::vector<G4PhysicalVolumeModel::G4PhysicalVolumeNodeID>& path)
1097 {                                                1074 {
1098   if (path.empty()) {                            1075   if (path.empty()) {
1099     os << " TOP";                                1076     os << " TOP";
1100   } else {                                       1077   } else {
1101     for (const auto& nodeID: path) {             1078     for (const auto& nodeID: path) {
1102       os << ' ' << nodeID;                       1079       os << ' ' << nodeID;
1103     }                                            1080     }
1104   }                                              1081   }
1105   return os;                                     1082   return os;
1106 }                                                1083 }
1107                                                  1084 
1108 G4PhysicalVolumeModel::G4PhysicalVolumeModelT    1085 G4PhysicalVolumeModel::G4PhysicalVolumeModelTouchable::G4PhysicalVolumeModelTouchable
1109 (const std::vector<G4PhysicalVolumeNodeID>& f    1086 (const std::vector<G4PhysicalVolumeNodeID>& fullPVPath):
1110   fFullPVPath(fullPVPath) {}                     1087   fFullPVPath(fullPVPath) {}
1111                                                  1088 
1112 const G4ThreeVector& G4PhysicalVolumeModel::G    1089 const G4ThreeVector& G4PhysicalVolumeModel::G4PhysicalVolumeModelTouchable::GetTranslation(G4int depth) const
1113 {                                                1090 {
1114   size_t i = fFullPVPath.size() - depth - 1;     1091   size_t i = fFullPVPath.size() - depth - 1;
1115   if (i >= fFullPVPath.size()) {                 1092   if (i >= fFullPVPath.size()) {
1116     G4Exception("G4PhysicalVolumeModelTouchab    1093     G4Exception("G4PhysicalVolumeModelTouchable::GetTranslation",
1117     "modeling0005",                              1094     "modeling0005",
1118     FatalErrorInArgument,                        1095     FatalErrorInArgument,
1119     "Index out of range. Asking for non-exist    1096     "Index out of range. Asking for non-existent depth");
1120   }                                              1097   }
1121   static G4ThreeVector tempTranslation;          1098   static G4ThreeVector tempTranslation;
1122   tempTranslation = fFullPVPath[i].GetTransfo    1099   tempTranslation = fFullPVPath[i].GetTransform().getTranslation();
1123   return tempTranslation;                        1100   return tempTranslation;
1124 }                                                1101 }
1125                                                  1102 
1126 const G4RotationMatrix* G4PhysicalVolumeModel    1103 const G4RotationMatrix* G4PhysicalVolumeModel::G4PhysicalVolumeModelTouchable::GetRotation(G4int depth) const
1127 {                                                1104 {
1128   size_t i = fFullPVPath.size() - depth - 1;     1105   size_t i = fFullPVPath.size() - depth - 1;
1129   if (i >= fFullPVPath.size()) {                 1106   if (i >= fFullPVPath.size()) {
1130     G4Exception("G4PhysicalVolumeModelTouchab    1107     G4Exception("G4PhysicalVolumeModelTouchable::GetRotation",
1131     "modeling0006",                              1108     "modeling0006",
1132     FatalErrorInArgument,                        1109     FatalErrorInArgument,
1133     "Index out of range. Asking for non-exist    1110     "Index out of range. Asking for non-existent depth");
1134   }                                              1111   }
1135   static G4RotationMatrix tempRotation;          1112   static G4RotationMatrix tempRotation;
1136   tempRotation = fFullPVPath[i].GetTransform(    1113   tempRotation = fFullPVPath[i].GetTransform().getRotation();
1137   return &tempRotation;                          1114   return &tempRotation;
1138 }                                                1115 }
1139                                                  1116 
1140 G4VPhysicalVolume* G4PhysicalVolumeModel::G4P    1117 G4VPhysicalVolume* G4PhysicalVolumeModel::G4PhysicalVolumeModelTouchable::GetVolume(G4int depth) const
1141 {                                                1118 {
1142   size_t i = fFullPVPath.size() - depth - 1;     1119   size_t i = fFullPVPath.size() - depth - 1;
1143   if (i >= fFullPVPath.size()) {                 1120   if (i >= fFullPVPath.size()) {
1144     G4Exception("G4PhysicalVolumeModelTouchab    1121     G4Exception("G4PhysicalVolumeModelTouchable::GetVolume",
1145     "modeling0007",                              1122     "modeling0007",
1146     FatalErrorInArgument,                        1123     FatalErrorInArgument,
1147     "Index out of range. Asking for non-exist    1124     "Index out of range. Asking for non-existent depth");
1148   }                                              1125   }
1149   return fFullPVPath[i].GetPhysicalVolume();     1126   return fFullPVPath[i].GetPhysicalVolume();
1150 }                                                1127 }
1151                                                  1128 
1152 G4VSolid* G4PhysicalVolumeModel::G4PhysicalVo    1129 G4VSolid* G4PhysicalVolumeModel::G4PhysicalVolumeModelTouchable::GetSolid(G4int depth) const
1153 {                                                1130 {
1154   size_t i = fFullPVPath.size() - depth - 1;     1131   size_t i = fFullPVPath.size() - depth - 1;
1155   if (i >= fFullPVPath.size()) {                 1132   if (i >= fFullPVPath.size()) {
1156     G4Exception("G4PhysicalVolumeModelTouchab    1133     G4Exception("G4PhysicalVolumeModelTouchable::GetSolid",
1157     "modeling0008",                              1134     "modeling0008",
1158     FatalErrorInArgument,                        1135     FatalErrorInArgument,
1159     "Index out of range. Asking for non-exist    1136     "Index out of range. Asking for non-existent depth");
1160   }                                              1137   }
1161   return fFullPVPath[i].GetPhysicalVolume()->    1138   return fFullPVPath[i].GetPhysicalVolume()->GetLogicalVolume()->GetSolid();
1162 }                                                1139 }
1163                                                  1140 
1164 G4int G4PhysicalVolumeModel::G4PhysicalVolume    1141 G4int G4PhysicalVolumeModel::G4PhysicalVolumeModelTouchable::GetReplicaNumber(G4int depth) const
1165 {                                                1142 {
1166   size_t i = fFullPVPath.size() - depth - 1;     1143   size_t i = fFullPVPath.size() - depth - 1;
1167   if (i >= fFullPVPath.size()) {                 1144   if (i >= fFullPVPath.size()) {
1168     G4Exception("G4PhysicalVolumeModelTouchab    1145     G4Exception("G4PhysicalVolumeModelTouchable::GetReplicaNumber",
1169     "modeling0009",                              1146     "modeling0009",
1170     FatalErrorInArgument,                        1147     FatalErrorInArgument,
1171     "Index out of range. Asking for non-exist    1148     "Index out of range. Asking for non-existent depth");
1172   }                                              1149   }
1173   return fFullPVPath[i].GetCopyNo();             1150   return fFullPVPath[i].GetCopyNo();
1174 }                                                1151 }
1175                                                  1152