Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 26 27 #include "globals.hh" 27 #include "globals.hh" 28 #include "G4PhysicalConstants.hh" << 29 #include "G4SystemOfUnits.hh" << 30 #include "G4Proton.hh" 28 #include "G4Proton.hh" 31 #include "G4Neutron.hh" 29 #include "G4Neutron.hh" 32 #include "G4LorentzRotation.hh" 30 #include "G4LorentzRotation.hh" 33 #include "G4BinaryCascade.hh" 31 #include "G4BinaryCascade.hh" 34 #include "G4KineticTrackVector.hh" 32 #include "G4KineticTrackVector.hh" 35 #include "G4DecayKineticTracks.hh" << 36 #include "G4ReactionProductVector.hh" 33 #include "G4ReactionProductVector.hh" 37 #include "G4Track.hh" 34 #include "G4Track.hh" 38 #include "G4V3DNucleus.hh" 35 #include "G4V3DNucleus.hh" 39 #include "G4Fancy3DNucleus.hh" 36 #include "G4Fancy3DNucleus.hh" 40 #include "G4Scatterer.hh" 37 #include "G4Scatterer.hh" 41 #include "G4MesonAbsorption.hh" 38 #include "G4MesonAbsorption.hh" 42 #include "G4ping.hh" 39 #include "G4ping.hh" 43 #include "G4Delete.hh" 40 #include "G4Delete.hh" 44 41 45 #include "G4CollisionManager.hh" 42 #include "G4CollisionManager.hh" 46 #include "G4Absorber.hh" 43 #include "G4Absorber.hh" 47 44 48 #include "G4CollisionInitialState.hh" 45 #include "G4CollisionInitialState.hh" 49 #include "G4ListOfCollisions.hh" 46 #include "G4ListOfCollisions.hh" 50 #include "G4Fragment.hh" 47 #include "G4Fragment.hh" 51 #include "G4RKPropagation.hh" 48 #include "G4RKPropagation.hh" 52 49 53 #include "G4NuclearShellModelDensity.hh" << 50 #include "G4NuclearShellModelDensity.hh" 54 #include "G4NuclearFermiDensity.hh" 51 #include "G4NuclearFermiDensity.hh" 55 #include "G4FermiMomentum.hh" 52 #include "G4FermiMomentum.hh" 56 53 57 #include "G4PreCompoundModel.hh" 54 #include "G4PreCompoundModel.hh" 58 #include "G4ExcitationHandler.hh" 55 #include "G4ExcitationHandler.hh" 59 #include "G4HadronicInteractionRegistry.hh" << 60 56 61 #include "G4FermiPhaseSpaceDecay.hh" 57 #include "G4FermiPhaseSpaceDecay.hh" 62 58 63 #include "G4PreCompoundModel.hh" << 64 #include "G4HadronicParameters.hh" << 65 << 66 #include <algorithm> 59 #include <algorithm> 67 #include "G4ShortLivedConstructor.hh" 60 #include "G4ShortLivedConstructor.hh" 68 #include <typeinfo> 61 #include <typeinfo> 69 62 70 #include "G4PhysicsModelCatalog.hh" << 71 << 72 // turn on general debugging info, and consi 63 // turn on general debugging info, and consistency checks 73 << 74 //#define debug_G4BinaryCascade 1 64 //#define debug_G4BinaryCascade 1 75 65 76 // more detailed debugging -- deprecated << 66 // more detailed debugging -- deprecated 77 //#define debug_H1_BinaryCascade 1 << 67 //#define debug_1_BinaryCascade 1 78 68 79 // specific debugging info per method or func << 69 // specific debuuging info per method or functionality 80 //#define debug_BIC_ApplyCollision 1 70 //#define debug_BIC_ApplyCollision 1 81 //#define debug_BIC_CheckPauli 1 71 //#define debug_BIC_CheckPauli 1 82 //#define debug_BIC_CorrectFinalPandE 1 72 //#define debug_BIC_CorrectFinalPandE 1 83 //#define debug_BIC_Propagate 1 73 //#define debug_BIC_Propagate 1 84 //#define debug_BIC_Propagate_Excitation 1 74 //#define debug_BIC_Propagate_Excitation 1 85 //#define debug_BIC_Propagate_Collisions 1 << 86 //#define debug_BIC_Propagate_finals 1 75 //#define debug_BIC_Propagate_finals 1 87 //#define debug_BIC_DoTimeStep 1 76 //#define debug_BIC_DoTimeStep 1 88 //#define debug_BIC_CorrectBarionsOnBoundary 1 77 //#define debug_BIC_CorrectBarionsOnBoundary 1 89 //#define debug_BIC_GetExcitationEnergy 1 78 //#define debug_BIC_GetExcitationEnergy 1 90 //#define debug_BIC_DeexcitationProducts 1 << 91 //#define debug_BIC_FinalNucleusMomentum 1 79 //#define debug_BIC_FinalNucleusMomentum 1 92 //#define debug_BIC_Final4Momentum 1 << 93 //#define debug_BIC_FillVoidnucleus 1 << 94 //#define debug_BIC_FindFragments 1 80 //#define debug_BIC_FindFragments 1 95 //#define debug_BIC_BuildTargetList 1 << 96 //#define debug_BIC_FindCollision 1 << 97 //#define debug_BIC_return 1 << 98 << 99 //------- << 100 //#if defined(debug_G4BinaryCascade) << 101 #if 0 << 102 #define _CheckChargeAndBaryonNumber_(val) Ch << 103 //#define debugCheckChargeAndBaryonNumberver << 104 #else << 105 #define _CheckChargeAndBaryonNumber_(val) << 106 #endif << 107 //#if defined(debug_G4BinaryCascade) << 108 #if 0 << 109 #define _DebugEpConservation(val) DebugEpCo << 110 //#define debugCheckChargeAndBaryonNumberver << 111 #else << 112 #define _DebugEpConservation(val) << 113 #endif << 114 81 115 G4int G4BinaryCascade::theBIC_ID = -1; << 116 82 117 // << 83 118 // C O N S T R U C T O R S A N D D E S T 84 // C O N S T R U C T O R S A N D D E S T R U C T O R S 119 // 85 // 120 G4BinaryCascade::G4BinaryCascade(G4VPreCompoun << 86 121 G4VIntraNuclearTransportModel("Binary Cascade" << 87 G4BinaryCascade::G4BinaryCascade() : G4VIntraNuclearTransportModel() 122 { 88 { 123 // initialise the resonance sector << 89 // initialise the resonance sector 124 G4ShortLivedConstructor ShortLived; << 90 G4ShortLivedConstructor ShortLived; 125 ShortLived.ConstructParticle(); << 91 ShortLived.ConstructParticle(); 126 << 92 127 theCollisionMgr = new G4CollisionManager; << 93 theCollisionMgr = new G4CollisionManager; 128 theDecay=new G4BCDecay; << 94 theDecay=new G4BCDecay; 129 theImR.push_back(theDecay); << 95 theImR.push_back(theDecay); 130 theLateParticle= new G4BCLateParticle; << 96 theImR.push_back(new G4Scatterer); 131 G4MesonAbsorption * aAb=new G4MesonAbsorpt << 97 theImR.push_back(new G4MesonAbsorption); 132 theImR.push_back(aAb); << 98 thePropagator = new G4RKPropagation; 133 G4Scatterer * aSc=new G4Scatterer; << 99 theCurrentTime = 0.; 134 theH1Scatterer = new G4Scatterer; << 100 theCutOnP = 90*MeV; 135 theImR.push_back(aSc); << 101 theCutOnPAbsorb= 0*MeV; 136 << 102 // G4ExcitationHandler * 137 thePropagator = new G4RKPropagation; << 103 theExcitationHandler = new G4ExcitationHandler; 138 theCurrentTime = 0.; << 104 SetDeExcitation(new G4PreCompoundModel(theExcitationHandler)); 139 theBCminP = 45*MeV; << 105 SetMinEnergy(0.0*GeV); 140 theCutOnP = 90*MeV; << 106 SetMaxEnergy(10.1*GeV); 141 theCutOnPAbsorb= 0*MeV; // No Absorption << 107 PrintWelcomeMessage(); 142 << 108 thePrimaryEscape = true; 143 // reuse existing pre-compound model << 109 thePrimaryType = 0; 144 if(!ptr) { << 145 G4HadronicInteraction* p = << 146 G4HadronicInteractionRegistry::Instance()->F << 147 G4VPreCompoundModel* pre = static_cast<G << 148 if(!pre) { pre = new G4PreCompoundModel( << 149 SetDeExcitation(pre); << 150 } << 151 theExcitationHandler = GetDeExcitation()-> << 152 SetMinEnergy(0.0*GeV); << 153 SetMaxEnergy(10.1*GeV); << 154 //PrintWelcomeMessage(); << 155 thePrimaryEscape = true; << 156 thePrimaryType = 0; << 157 << 158 SetEnergyMomentumCheckLevels(1.0*perCent, << 159 << 160 // init data members << 161 currentA=currentZ=0; << 162 lateA=lateZ=0; << 163 initialA=initialZ=0; << 164 projectileA=projectileZ=0; << 165 currentInitialEnergy=initial_nuclear_mass= << 166 massInNucleus=0.; << 167 theOuterRadius=0.; << 168 theBIC_ID = G4PhysicsModelCatalog::GetMode << 169 fBCDEBUG = G4HadronicParameters::Instance( << 170 } 110 } 171 111 >> 112 >> 113 G4BinaryCascade::G4BinaryCascade(const G4BinaryCascade& ) >> 114 : G4VIntraNuclearTransportModel() >> 115 { >> 116 } >> 117 >> 118 172 G4BinaryCascade::~G4BinaryCascade() 119 G4BinaryCascade::~G4BinaryCascade() 173 { 120 { 174 ClearAndDestroy(&theTargetList); << 121 ClearAndDestroy(&theTargetList); 175 ClearAndDestroy(&theSecondaryList); << 122 ClearAndDestroy(&theSecondaryList); 176 ClearAndDestroy(&theCapturedList); << 123 ClearAndDestroy(&theCapturedList); 177 delete thePropagator; << 124 ClearAndDestroy(&theProjectileList); 178 delete theCollisionMgr; << 125 delete thePropagator; 179 for(auto & ptr : theImR) { delete ptr; } << 126 delete theCollisionMgr; 180 theImR.clear(); << 127 std::for_each(theImR.begin(), theImR.end(), Delete<G4BCAction>()); 181 delete theLateParticle; << 128 delete theExcitationHandler; 182 delete theH1Scatterer; << 183 } << 184 << 185 void G4BinaryCascade::ModelDescription(std::os << 186 { << 187 outFile << "G4BinaryCascade is an intra-nu << 188 << "an incident hadron collides wi << 189 << "final-state particles, one or << 190 << "The resonances then decay hadr << 191 << "are then propagated through th << 192 << "trajectories until they re-int << 193 << "This model is valid for incide << 194 << "nucleons up to 10 GeV.\n" << 195 << "The remaining excited nucleus << 196 if (theDeExcitation) << 197 { << 198 outFile << theDeExcitation->GetM << 199 theDeExcitation->DeExciteModelDe << 200 } << 201 else if (theExcitationHandler) << 202 { << 203 outFile << "G4ExcitationHandler << 204 theExcitationHandler->ModelDesc << 205 } << 206 else << 207 { << 208 outFile << "void.\n"; << 209 } << 210 outFile<< " \n"; << 211 } << 212 void G4BinaryCascade::PropagateModelDescriptio << 213 { << 214 outFile << "G4BinaryCascade propagtes seco << 215 << "energy model through the wound << 216 << "Secondaries are followed after << 217 << "within the nucleus are propaga << 218 << "potential along curved traject << 219 << "with a nucleon, decay, or leav << 220 << "An interaction of a secondary << 221 << "final-state particles, one or << 222 << "Resonances decay hadronically << 223 << "are in turn propagated through << 224 << "trajectories until they re-int << 225 << "This model is valid for pions << 226 << "nucleons up to about 3.5 GeV.\ << 227 << "The remaining excited nucleus << 228 if (theDeExcitation) // pre << 229 { << 230 outFile << theDeExcitation->GetModelName << 231 theDeExcitation->DeExciteModelDescriptio << 232 } << 233 else if (theExcitationHandler) // de-ex << 234 { << 235 outFile << "G4ExcitationHandler"; // << 236 theExcitationHandler->ModelDescription( << 237 } << 238 else << 239 { << 240 outFile << "void.\n"; << 241 } << 242 outFile<< " \n"; << 243 } 129 } 244 130 245 //-------------------------------------------- 131 //---------------------------------------------------------------------------- 246 132 247 // 133 // 248 // I M P L E M E N T A T I O N 134 // I M P L E M E N T A T I O N 249 // 135 // 250 136 251 137 252 //-------------------------------------------- 138 //---------------------------------------------------------------------------- 253 G4HadFinalState * G4BinaryCascade::ApplyYourse 139 G4HadFinalState * G4BinaryCascade::ApplyYourself(const G4HadProjectile & aTrack, 254 G4Nucleus & aNucleus) << 255 //-------------------------------------------- 140 //---------------------------------------------------------------------------- >> 141 G4Nucleus & aNucleus) 256 { 142 { 257 if(fBCDEBUG) G4cerr << " ######### Binary << 143 static G4int eventcounter=0; 258 << 144 //if(eventcounter == 100*(eventcounter/100) ) 259 G4LorentzVector initial4Momentum = aTrack. << 145 eventcounter++; 260 const G4ParticleDefinition * definition = << 146 if(getenv("BCDEBUG") ) G4cerr << " ######### Binary Cascade Reaction number starts ######### "<<eventcounter<<G4endl; 261 << 147 G4LorentzVector initial4Momentum = aTrack.Get4Momentum(); 262 if(initial4Momentum.e()-initial4Momentum.m << 148 if(initial4Momentum.e()-initial4Momentum.m()<theCutOnP/2.) 263 ( definition==G4Neutron::NeutronDe << 149 { 264 { << 150 return theDeExcitation->ApplyYourself(aTrack, aNucleus); 265 return theDeExcitation->ApplyYourself( << 151 } 266 } << 152 267 << 153 theParticleChange.Clear(); 268 theParticleChange.Clear(); << 154 // initialize the G4V3DNucleus from G4Nucleus 269 // initialize the G4V3DNucleus from G4Nucl << 155 the3DNucleus = new G4Fancy3DNucleus; 270 the3DNucleus = new G4Fancy3DNucleus; << 156 the3DNucleus->Init(aNucleus.GetN(), aNucleus.GetZ()); 271 << 157 272 // Build a KineticTrackVector with the G4T << 158 thePropagator->Init(the3DNucleus); 273 G4KineticTrackVector * secondaries;// = ne << 159 274 G4ThreeVector initialPosition(0., 0., 0.); << 160 // Build a KineticTrackVector with the G4Track 275 << 161 G4KineticTrackVector * secondaries = new G4KineticTrackVector; 276 if(!fBCDEBUG) << 162 G4ParticleDefinition * definition = const_cast<G4ParticleDefinition *>(aTrack.GetDefinition()); 277 { << 163 G4ThreeVector initialPosition(0., 0., 0.); // will be set later 278 if(definition!=G4Neutron::NeutronDefin << 164 279 definition!=G4Proton::ProtonDe << 165 if(!getenv("I_Am_G4BinaryCascade_Developer") ) 280 definition!=G4PionPlus::PionPl << 166 { 281 definition!=G4PionMinus::PionM << 167 if(definition!=G4Neutron::NeutronDefinition() && 282 { << 168 definition!=G4Proton::ProtonDefinition() && 283 G4cerr << "You are trying to use G << 169 definition!=G4PionPlus::PionPlusDefinition() && 284 G4cerr << "G4BinaryCascade should << 170 definition!=G4PionMinus::PionMinusDefinition() ) 285 G4cerr << "If you want to continue << 171 { 286 G4cerr << "setenv I_Am_G4BinaryCas << 172 G4cerr << "You are using G4BinaryCascade for projectiles other than nucleons or pions."<<G4endl; 287 throw G4HadronicException(__FILE__ << 173 G4cerr << "If you want to continue, please switch on the developer environment: "<<G4endl; 288 } << 174 G4cerr << "setenv I_Am_G4BinaryCascade_Developer 1 "<<G4endl<<G4endl; 289 } << 175 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade - used for unvalid particle type - Fatal"); 290 << 176 } 291 // keep primary << 177 } 292 thePrimaryType = definition; << 178 293 thePrimaryEscape = false; << 179 // keep primary 294 << 180 thePrimaryType = definition; 295 G4double timePrimary=aTrack.GetGlobalTime( << 181 thePrimaryEscape = false; 296 << 182 297 // try until an interaction will happen << 183 // try untill an interaction will happen 298 G4ReactionProductVector * products = nullp << 184 G4ReactionProductVector * products = 0; 299 G4int interactionCounter = 0,collisionLoop << 185 G4double radius = the3DNucleus->GetOuterRadius()+3*fermi; 300 do << 186 G4int interactionCounter = 0; 301 { << 187 do 302 // reset status that could be changed << 188 { 303 theCollisionMgr->ClearAndDestroy(); << 189 // reset status that could be changed in previous loop event 304 << 190 theCollisionMgr->ClearAndDestroy(); 305 if(products != nullptr) << 191 ClearAndDestroy(&theTargetList); // clear and rebuild theTargetList 306 { // free memory from previous loop e << 192 the3DNucleus->Init(aNucleus.GetN(), aNucleus.GetZ()); 307 ClearAndDestroy(products); << 193 BuildTargetList(); 308 delete products; << 194 G4KineticTrack * kt = new G4KineticTrack(definition, 0., initialPosition, 309 } << 195 initial4Momentum); 310 << 196 // Note: secondaries has been cleared by Propagate() in the previous loop event 311 G4int massNumber=aNucleus.GetA_asInt() << 197 secondaries->push_back(kt); 312 the3DNucleus->Init(massNumber, aNucleu << 198 313 thePropagator->Init(the3DNucleus); << 199 while(theCollisionMgr->Entries() == 0) // until we FIND a collision... 314 G4KineticTrack * kt; << 200 { 315 collisionLoopMaxCount = 200; << 201 theCurrentTime=0; 316 do // sample impact p << 202 initialPosition=GetSpherePoint(1.1*radius, initial4Momentum); // get random position 317 { << 203 kt->SetPosition(initialPosition); // kt is in secondaries!! 318 theCurrentTime=0; << 204 kt->SetState(G4KineticTrack::outside); 319 G4double radius = the3DNucleus->Ge << 205 FindCollisions(secondaries); 320 initialPosition=GetSpherePoint(1.1 << 206 } 321 kt = new G4KineticTrack(definition << 207 if(products != NULL) 322 kt->SetState(G4KineticTrack::outsi << 208 { // free memory from previous loop event 323 // secondaries has been cleared by << 209 ClearAndDestroy(products); 324 secondaries= new G4KineticTrackVec << 210 delete products; 325 secondaries->push_back(kt); << 211 } 326 if(massNumber > 1) // 1H1 is speci << 212 products = Propagate(secondaries, the3DNucleus); 327 { << 213 328 products = Propagate(secondari << 214 // --------- debug 329 } else { << 215 // untill Propagate will be able to return some product... 330 products = Propagate1H1(second << 216 // if(1) 331 } << 217 // return &theParticleChange; 332 // until we FIND a collision ... o << 218 // --------- end debug 333 } while(! products && --collisionLoopM << 219 if(++interactionCounter>99) break; 334 << 220 } while(products->size() == 0); // ...untill we find an ALLOWED collision 335 if(++interactionCounter>99) break; << 221 336 // ...until we find an ALLOWED collisi << 222 if(products->size()==0) 337 } while(products && products->size() == 0) << 223 { 338 << 224 theParticleChange.SetStatusChange(isAlive); 339 if(products && products->size()>0) << 225 theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy()); 340 { << 226 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 341 // G4cout << "BIC Applyyourself: numb << 227 return &theParticleChange; 342 << 228 } 343 // Fill the G4ParticleChange * with pr << 229 // G4cout << "HKM Applyyourself: number of products " << products->size() << G4endl; 344 theParticleChange.SetStatusChange(stop << 345 G4ReactionProductVector::iterator iter << 346 << 347 for(iter = products->begin(); iter != << 348 { << 349 G4DynamicParticle * aNewDP = << 350 new G4DynamicParticle((*it << 351 (*iter)->GetTotalE << 352 (*iter)->GetMoment << 353 G4HadSecondary aNew = G4HadSecondary << 354 G4double time=(*iter)->GetFormatio << 355 if(time < 0.0) { time = 0.0; } << 356 aNew.SetTime(timePrimary + time); << 357 aNew.SetCreatorModelID((*iter)->Ge << 358 aNew.SetParentResonanceDef((*iter) << 359 aNew.SetParentResonanceID((*iter)- << 360 theParticleChange.AddSecondary(aNe << 361 } << 362 << 363 //DebugFinalEpConservation(aTrack, pr << 364 << 365 << 366 } else { // no interaction, return primar << 367 if(fBCDEBUG) G4cerr << " ######### Bin << 368 theParticleChange.SetStatusChange(isAl << 369 theParticleChange.SetEnergyChange(aTra << 370 theParticleChange.SetMomentumChange(aT << 371 } << 372 << 373 if ( products ) << 374 { << 375 ClearAndDestroy(products); << 376 delete products; << 377 } << 378 << 379 delete the3DNucleus; << 380 the3DNucleus = nullptr; << 381 230 382 if(fBCDEBUG) G4cerr << " ######### Binary << 231 // Fill the G4ParticleChange * with products >> 232 theParticleChange.SetStatusChange(stopAndKill); >> 233 G4ReactionProductVector::iterator iter; >> 234 G4double Efinal=0; >> 235 if (std::abs(theParticleChange.GetWeightChange() -1 ) > 1e-5 ) >> 236 { >> 237 G4cout <<" BIC-weight change " << theParticleChange.GetWeightChange()<< G4endl; >> 238 } 383 239 384 return &theParticleChange; << 240 for(iter = products->begin(); iter != products->end(); ++iter) >> 241 { >> 242 G4DynamicParticle * aNew = >> 243 new G4DynamicParticle((*iter)->GetDefinition(), >> 244 (*iter)->GetTotalEnergy(), >> 245 (*iter)->GetMomentum()); >> 246 if(getenv("BCDEBUG") ) >> 247 { >> 248 if(std::abs(aNew->GetDefinition()->GetPDGEncoding()) >100 >> 249 && std::abs(aNew->GetDefinition()->GetPDGEncoding()) < 300) G4cout << "Pion info "<<aNew->GetDefinition()->GetPDGEncoding() <<" "<<aNew->GetKineticEnergy()<<G4endl; >> 250 } >> 251 // FixMe: should I use "position" or "time" specifyed AddSecondary() methods? >> 252 theParticleChange.AddSecondary(aNew); >> 253 >> 254 // G4cout << " Secondary E - Ekin / p " << >> 255 // (*iter)->GetDefinition()->GetParticleName() << " " << >> 256 // (*iter)->GetTotalEnergy() << " - " << >> 257 // (*iter)->GetKineticEnergy()<< " / " << >> 258 // (*iter)->GetMomentum().x() << " " << >> 259 // (*iter)->GetMomentum().y() << " " << >> 260 // (*iter)->GetMomentum().z() << G4endl; >> 261 Efinal += (*iter)->GetTotalEnergy(); >> 262 } >> 263 >> 264 // G4cout << "e outgoing/ total : " << Efinal << " " << Efinal+GetFinal4Momentum().e()<< G4endl; >> 265 >> 266 ClearAndDestroy(products); >> 267 delete products; >> 268 delete secondaries; >> 269 >> 270 delete the3DNucleus; >> 271 the3DNucleus = NULL; // protect from wrong usage... >> 272 >> 273 if(getenv("BCDEBUG") ) G4cerr << " ######### Binary Cascade Reaction number ends ######### "<<eventcounter<<G4endl; >> 274 if (std::abs(theParticleChange.GetWeightChange() -1 ) > 1e-5 ) >> 275 { >> 276 G4cout <<" BIC-fin-weight change " << theParticleChange.GetWeightChange()<< G4endl; >> 277 } >> 278 return &theParticleChange; 385 } 279 } >> 280 386 //-------------------------------------------- 281 //---------------------------------------------------------------------------- 387 G4ReactionProductVector * G4BinaryCascade::Pro 282 G4ReactionProductVector * G4BinaryCascade::Propagate( 388 G4KineticTrackVector * secondaries, G4 << 389 //-------------------------------------------- 283 //---------------------------------------------------------------------------- >> 284 G4KineticTrackVector * secondaries, G4V3DNucleus * nucleus) 390 { 285 { 391 G4ping debug("debug_G4BinaryCascade"); << 286 G4ping debug("debug_G4BinaryCascade"); >> 287 debug.push_back("trial"); >> 288 debug.dump(); 392 #ifdef debug_BIC_Propagate 289 #ifdef debug_BIC_Propagate 393 G4cout << "G4BinaryCascade Propagate start << 290 G4cout << "G4BinaryCascade Propagate starting -------------------------------------------------------" <<G4endl; 394 #endif 291 #endif 395 << 292 G4ReactionProductVector * products = new G4ReactionProductVector; 396 the3DNucleus=aNucleus; << 293 the3DNucleus = nucleus; 397 G4ReactionProductVector * products = new G << 294 theOuterRadius = the3DNucleus->GetOuterRadius(); 398 theOuterRadius = the3DNucleus->GetOuterRad << 295 theCurrentTime=0; 399 theCurrentTime=0; << 296 // build theSecondaryList, theProjectileList and theCapturedList 400 theProjectile4Momentum=G4LorentzVector(0,0 << 297 ClearAndDestroy(&theCapturedList); 401 theMomentumTransfer=G4ThreeVector(0,0,0); << 298 ClearAndDestroy(&theSecondaryList); 402 // build theSecondaryList, theProjectileLi << 299 ClearAndDestroy(&theProjectileList); 403 ClearAndDestroy(&theCapturedList); << 300 ClearAndDestroy(&theFinalState); 404 ClearAndDestroy(&theSecondaryList); << 301 std::vector<G4KineticTrack *>::iterator iter; 405 theSecondaryList.clear(); << 302 if(nucleus->GetMassNumber() == 1) // 1H1 is special case 406 ClearAndDestroy(&theFinalState); << 303 { 407 std::vector<G4KineticTrack *>::iterator it << 304 return Propagate1H1(secondaries,nucleus); 408 theCollisionMgr->ClearAndDestroy(); << 305 } 409 << 306 410 theCutOnP=90*MeV; << 307 for(iter = secondaries->begin(); iter != secondaries->end(); ++iter) 411 if(the3DNucleus->GetMass()>30) theCutOnP = << 308 { 412 if(the3DNucleus->GetMass()>60) theCutOnP = << 309 theSecondaryList.push_back(*iter); 413 if(the3DNucleus->GetMass()>120) theCutOnP << 310 theProjectileList.push_back(new G4KineticTrack(*(*iter))); 414 << 311 } 415 << 312 secondaries->clear(); // Don't leave "G4KineticTrack *"s in two vectors >> 313 >> 314 thePropagator->Init(the3DNucleus); >> 315 >> 316 // if called stand alone, build theTargetList and find first collisions >> 317 >> 318 if(nucleus->GetMass()>30) theCutOnP = 70*MeV; >> 319 if(nucleus->GetMass()>60) theCutOnP = 50*MeV; >> 320 if(nucleus->GetMass()>120) theCutOnP = 45*MeV; >> 321 if(theCollisionMgr->Entries() == 0) >> 322 { >> 323 the3DNucleus = nucleus; >> 324 ClearAndDestroy(&theTargetList); 416 BuildTargetList(); 325 BuildTargetList(); >> 326 FindCollisions(&theSecondaryList); >> 327 } 417 328 418 #ifdef debug_BIC_GetExcitationEnergy << 329 // thePropagator->Init(the3DNucleus); 419 G4cout << "ExcitationEnergy0 " << GetExcit << 420 #endif << 421 << 422 thePropagator->Init(the3DNucleus); << 423 330 424 G4bool success = BuildLateParticleCollisio << 331 // end of initialization: do the job now 425 if (! success ) // fails if no excitatio << 332 // loop untill there are collisions 426 { << 427 products=HighEnergyModelFSProducts(prod << 428 ClearAndDestroy(secondaries); << 429 delete secondaries; << 430 333 431 #ifdef debug_G4BinaryCascade << 432 G4cout << "G4BinaryCascade::Propagate: << 433 #endif << 434 334 435 return products; << 335 G4bool haveProducts = false; >> 336 G4int collisionCount=0; >> 337 theMomentumTransfer=0; >> 338 while(theCollisionMgr->Entries() > 0) >> 339 { >> 340 // G4cout << "Propagate Captured size: " << theCapturedList.size() << G4endl; >> 341 // FixMe: at the moment I absorb pi with mom < theCutOnp, and I capture >> 342 // p and n with mom < theCutOnP. What about antip, k and sigmas >> 343 // with mom < theCutOnP? >> 344 if(Absorb()) { // absorb secondaries >> 345 haveProducts = true; >> 346 //G4cout << "Absorb sucess " << G4endl; 436 } 347 } 437 // check baryon and charge ... << 438 348 439 _CheckChargeAndBaryonNumber_("lateparticle << 349 if(Capture()) { // capture secondaries (nucleons) 440 _DebugEpConservation(" be4 findcollisions" << 350 haveProducts = true; 441 << 351 //G4cout << "Capture sucess " << G4endl; 442 // if called stand alone find first collis << 443 FindCollisions(&theSecondaryList); << 444 << 445 << 446 if(theCollisionMgr->Entries() == 0 ) << 447 { << 448 //G4cout << " no collsions -> return 0 << 449 delete products; << 450 #ifdef debug_BIC_return << 451 G4cout << "return @ begin2, no collis << 452 #endif << 453 return nullptr; << 454 } 352 } 455 353 456 // end of initialization: do the job now << 354 // propagate to the next collision if any (collisions could have been deleted 457 // loop until there are no more collisions << 355 // by previous absorption or capture) >> 356 if(theCollisionMgr->Entries() > 0) >> 357 { >> 358 G4CollisionInitialState * >> 359 nextCollision = theCollisionMgr->GetNextCollision(); 458 360 >> 361 debug.push_back("======> test 1"); debug.dump(); >> 362 if (!DoTimeStep(nextCollision->GetCollisionTime()-theCurrentTime) ) >> 363 { >> 364 // Check if nextCollision is still valid, ie. partcile did not leave nucleus >> 365 if (theCollisionMgr->GetNextCollision() != nextCollision ) >> 366 { >> 367 nextCollision = 0; >> 368 } >> 369 } >> 370 debug.push_back("======> test 2"); debug.dump(); >> 371 // G4cerr <<"post- DoTimeStep 1"<<G4endl; 459 372 460 G4bool haveProducts = false; << 373 if( nextCollision ) 461 #ifdef debug_BIC_Propagate_Collisions << 374 { 462 G4int collisionCount=0; << 375 // GF for testing only, must be removed otherwise! 463 #endif << 376 // theCollisionMgr->RemoveCollision(nextCollision); 464 G4int collisionLoopMaxCount=1000000; << 377 debug.push_back("======> test 3"); debug.dump(); 465 while(theCollisionMgr->Entries() > 0 && cu << 378 if (ApplyCollision(nextCollision)) 466 { << 379 // testing if ( true ) 467 if(Absorb()) { // absorb secondaries, p << 380 { 468 haveProducts = true; << 381 // apply the collision 469 } << 382 //G4cerr << "ApplyCollision sucess " << G4endl; 470 if(Capture()) { // capture secondaries, << 383 haveProducts = true; 471 haveProducts = true; << 384 collisionCount++; 472 } << 385 debug.push_back("======> test 4.1"); debug.dump(); 473 << 386 } else { 474 // propagate to the next collision if << 387 //G4cerr << "ApplyCollision failure " << G4endl; 475 // by previous absorption or capture) << 388 theCollisionMgr->RemoveCollision(nextCollision); 476 if(theCollisionMgr->Entries() > 0) << 389 debug.push_back("======> test 4.2"); debug.dump(); 477 { << 390 } 478 G4CollisionInitialState * << 391 } 479 nextCollision = theCollisionMgr->G << 392 debug.push_back("======> test 5"); debug.dump(); 480 #ifdef debug_BIC_Propagate_Collisions << 393 // G4cerr <<"post-post- DoTimeStep 1"<<G4endl; 481 G4cout << " NextCollision * , Tim << 482 <<nextCollision->GetCollis << 483 theCurrentTime<< G4endl; << 484 #endif << 485 if (!DoTimeStep(nextCollision->Get << 486 { << 487 // Check if nextCollision is s << 488 if (theCollisionMgr->GetNextCo << 489 { << 490 nextCollision = nullptr; << 491 } << 492 } << 493 //_DebugEpConservation("Stepped"); << 494 << 495 if( nextCollision ) << 496 { << 497 if (ApplyCollision(nextCollisi << 498 { << 499 //G4cerr << "ApplyCollisio << 500 haveProducts = true; << 501 #ifdef debug_BIC_Propagate_Collisions << 502 collisionCount++; << 503 #endif << 504 << 505 } else { << 506 //G4cerr << "ApplyCollisio << 507 theCollisionMgr->RemoveCol << 508 } << 509 } << 510 } << 511 } << 512 << 513 //--------- end of on Collisions << 514 //G4cout << "currentZ @ end loop " << curr << 515 G4int nProtons(0); << 516 for(iter = theTargetList.begin(); iter != << 517 { << 518 if ( (*iter)->GetDefinition() == G4Proto << 519 } << 520 if ( ! theTargetList.size() || ! nProtons << 521 // nucleus completely destroyed, fill << 522 products = FillVoidNucleusProducts(prod << 523 #ifdef debug_BIC_return << 524 G4cout << "return @ Z=0 after collisio << 525 PrintKTVector(&theSecondaryList,std::s << 526 G4cout << "theTargetList size: " << th << 527 PrintKTVector(&theTargetList,std::stri << 528 PrintKTVector(&theCapturedList,std::st << 529 << 530 G4cout << " ExcitE be4 Correct : " <<G << 531 G4cout << " Mom Transfered to nucleus << 532 PrintKTVector(&theFinalState,std::stri << 533 G4cout << "returned products: " << pro << 534 _CheckChargeAndBaryonNumber_("destroye << 535 _DebugEpConservation("destroyed Nucleu << 536 #endif << 537 << 538 return products; << 539 } << 540 << 541 // No more collisions: absorb, capture and << 542 if(Absorb()) { << 543 haveProducts = true; << 544 // G4cout << "Absorb sucess " << G4end << 545 } << 546 << 547 if(Capture()) { << 548 haveProducts = true; << 549 // G4cout << "Capture sucess " << G4en << 550 } 394 } >> 395 } 551 396 552 if(!haveProducts) // no collisions happen << 397 debug.push_back("======> #### through the first loop"); debug.dump(); 553 { << 398 // No more collisions: absorb, capture and propagate the secondaries out of the nucleus 554 #ifdef debug_BIC_return << 399 if(Absorb()) { 555 G4cout << "return 3, no products "<< G << 400 haveProducts = true; 556 #endif << 401 // G4cout << "Absorb sucess " << G4endl; 557 return products; << 402 } 558 } << 403 >> 404 if(Capture()) { >> 405 haveProducts = true; >> 406 // G4cout << "Capture sucess " << G4endl; >> 407 } >> 408 >> 409 if(!haveProducts) // no collisions happened. Return an empty vector. >> 410 { >> 411 return products; >> 412 } 559 413 560 414 561 #ifdef debug_BIC_Propagate 415 #ifdef debug_BIC_Propagate 562 G4cout << " Momentum transfer to Nucleus " << 416 G4cout << " Momentum transfer to Nucleus " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; 563 G4cout << " Stepping particles out...... << 417 G4cout << " Stepping particles out...... " << G4endl; 564 #endif 418 #endif 565 419 566 StepParticlesOut(); << 420 StepParticlesOut(); 567 _DebugEpConservation("stepped out"); << 421 568 << 422 569 << 423 if ( theSecondaryList.size() > 0 ) 570 if ( theSecondaryList.size() > 0 ) << 424 { 571 { << 572 #ifdef debug_G4BinaryCascade 425 #ifdef debug_G4BinaryCascade 573 G4cerr << "G4BinaryCascade: Warning, h << 426 G4cerr << "G4BinaryCascade: Warning, have active particles at end" << G4endl; 574 PrintKTVector(&theSecondaryList, "acti << 575 #endif 427 #endif 576 // add left secondaries to FinalSate << 428 // add left secondaries to FinalSate 577 for ( iter =theSecondaryList.begin(); << 429 std::vector<G4KineticTrack *>::iterator iter; 578 { << 430 for ( iter =theSecondaryList.begin(); iter != theSecondaryList.end(); ++iter) 579 theFinalState.push_back(*iter); << 431 { 580 } << 432 theFinalState.push_back(*iter); 581 theSecondaryList.clear(); << 433 } >> 434 theSecondaryList.clear(); 582 435 583 } << 436 } 584 while ( theCollisionMgr->Entries() > 0 ) << 437 while ( theCollisionMgr->Entries() > 0 ) 585 { << 438 { 586 #ifdef debug_G4BinaryCascade 439 #ifdef debug_G4BinaryCascade 587 G4cerr << " Warning: remove left over << 440 G4cerr << " Warning: remove left over collision " << G4endl; 588 #endif 441 #endif 589 theCollisionMgr->RemoveCollision(theCo << 442 theCollisionMgr->RemoveCollision(theCollisionMgr->GetNextCollision()); 590 } << 443 } 591 444 592 #ifdef debug_BIC_Propagate_Excitation 445 #ifdef debug_BIC_Propagate_Excitation 593 446 594 PrintKTVector(&theSecondaryList,std::strin << 447 PrintKTVector(&theProjectileList,std::string(" theProjectileList")); 595 G4cout << "theTargetList size: " << theTar << 448 PrintKTVector(&theSecondaryList,std::string(" theSecondaryList")); 596 // PrintKTVector(&theTargetList,std::stri << 449 G4cout << "theTargetList size: " << theTargetList.size() << G4endl; 597 PrintKTVector(&theCapturedList,std::string << 450 // PrintKTVector(&theTargetList,std::string(" theTargetList")); 598 << 451 PrintKTVector(&theCapturedList,std::string(" theCapturedList")); 599 G4cout << " ExcitE be4 Correct : " <<GetEx << 452 600 G4cout << " Mom Transfered to nucleus : " << 453 G4cout << " ExcitE be4 Correct : " <<GetExcitationEnergy() << G4endl; 601 PrintKTVector(&theFinalState,std::string(" << 454 G4cout << " Mom Transfered to nucleus : " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; >> 455 PrintKTVector(&theFinalState,std::string(" FinalState uncorrected")); 602 #endif 456 #endif 603 457 604 // << 458 // 605 459 606 460 607 G4double ExcitationEnergy=GetExcitationEne << 461 G4double ExcitationEnergy=GetExcitationEnergy(); 608 462 609 #ifdef debug_BIC_Propagate_finals 463 #ifdef debug_BIC_Propagate_finals 610 PrintKTVector(&theFinalState,std::string(" << 464 PrintKTVector(&theFinalState,std::string(" FinalState be4 corr")); 611 G4cout << " Excitation Energy prefinal, # << 465 G4cout << " Excitation Energy prefinal, #collisions:, out, captured " 612 << ExcitationEnergy << " " << 466 << ExcitationEnergy << " " 613 << collisionCount << " " << 467 << collisionCount << " " 614 << theFinalState.size() << " " << 468 << theFinalState.size() << " " 615 << theCapturedList.size()<<G4endl; << 469 << theCapturedList.size()<<G4endl; 616 #endif << 470 #endif 617 << 471 618 if (ExcitationEnergy < 0 ) << 472 if (ExcitationEnergy < 0 ) 619 { << 473 { 620 G4int maxtry=5, ntry=0; << 474 G4int maxtry=5, ntry=0; 621 do { << 475 do { 622 CorrectFinalPandE(); << 476 CorrectFinalPandE(); 623 ExcitationEnergy=GetExcitationEner << 477 ExcitationEnergy=GetExcitationEnergy(); 624 } while ( ++ntry < maxtry && Excitatio << 478 } while ( ++ntry < maxtry && ExcitationEnergy < 0 ); 625 } << 479 } 626 _DebugEpConservation("corrected"); << 627 480 628 #ifdef debug_BIC_Propagate_finals 481 #ifdef debug_BIC_Propagate_finals 629 PrintKTVector(&theFinalState,std::string(" << 482 PrintKTVector(&theFinalState,std::string(" FinalState corrected")); 630 G4cout << " Excitation Energy final, #col << 483 G4cout << " Excitation Energy final, #collisions:, out, captured " 631 << ExcitationEnergy << " " << 484 << ExcitationEnergy << " " 632 << collisionCount << " " << 485 << collisionCount << " " 633 << theFinalState.size() << " " << 486 << theFinalState.size() << " " 634 << theCapturedList.size()<<G4endl; << 487 << theCapturedList.size()<<G4endl; 635 #endif 488 #endif 636 489 637 490 638 if ( ExcitationEnergy < 0. ) << 491 if ( ExcitationEnergy < 0. ) 639 { << 492 { 640 #ifdef debug_G4BinaryCascade << 493 // if ( ExcitationEnergy < 0. ) 641 G4cerr << "G4BinaryCascade-W << 494 { 642 G4cerr <<ExcitationEnergy<<G << 495 //#ifdef debug_G4BinaryCascade 643 PrintKTVector(&theFinalState, << 496 // G4cerr << "G4BinaryCascade-Warning: negative excitation energy "; 644 PrintKTVector(&theCapturedLis << 497 // G4cerr <<ExcitationEnergy<<G4endl; 645 G4cout << "negative ExE:Final << 498 // PrintKTVector(&theFinalState,std::string("FinalState")); 646 << " "<< GetFinal4Mome << 499 // PrintKTVector(&theCapturedList,std::string("captured")); 647 << "negative ExE:Final << 500 // G4cout << "negative ExE:Final 4Momentum .mag: " << GetFinal4Momentum() 648 << " "<< GetFinalNucleusMome << 501 // << " "<< GetFinal4Momentum().mag()<< G4endl 649 #endif << 502 // << "negative ExE:FinalNucleusMom .mag: " << GetFinalNucleusMomentum() 650 #ifdef debug_BIC_return << 503 // << " "<< GetFinalNucleusMomentum().mag()<< G4endl; 651 G4cout << " negative Exci << 504 //#endif 652 G4cout << "return 4, excit << 505 } 653 #endif << 506 ClearAndDestroy(products); 654 << 507 return products; // return empty products 655 ClearAndDestroy(products); << 508 } 656 return products; // return empty pro << 657 } << 658 << 659 G4ReactionProductVector * precompoundProdu << 660 509 661 510 662 G4DecayKineticTracks decay(&theFinalState) << 511 // find a fragment and call the precompound model. 663 _DebugEpConservation("decayed"); << 512 G4Fragment * fragment = 0; >> 513 G4ReactionProductVector * precompoundProducts = 0; >> 514 >> 515 if ( ExcitationEnergy >= 0 ) >> 516 { >> 517 fragment = FindFragments(); 664 518 665 products= ProductsAddFinalState(products, << 519 // theDeExcitation =0; >> 520 if(fragment && fragment->GetA() >1.5) // hpw @@@@ still to add the nucleon, if one exists. >> 521 { >> 522 if (theDeExcitation) >> 523 { >> 524 precompoundProducts= theDeExcitation->DeExcite(*fragment); >> 525 delete fragment; >> 526 fragment=0; >> 527 } else if (theExcitationHandler) >> 528 { >> 529 precompoundProducts=theExcitationHandler->BreakItUp(*fragment); >> 530 delete fragment; >> 531 fragment=0; >> 532 } >> 533 } else { >> 534 if ( theTargetList.size() == 1 ) >> 535 { >> 536 precompoundProducts = new G4ReactionProductVector(); >> 537 std::vector<G4KineticTrack *>::iterator i=theTargetList.begin(); >> 538 G4ReactionProduct * aNew = new G4ReactionProduct((*i)->GetDefinition()); >> 539 aNew->SetTotalEnergy((*i)->GetDefinition()->GetPDGMass()); >> 540 aNew->SetMomentum(G4ThreeVector(0)); // see boost fro preCompoundProducts below.. >> 541 precompoundProducts->push_back(aNew); >> 542 } else if ( theTargetList.size() > 1) >> 543 { >> 544 precompoundProducts = new G4ReactionProductVector(); >> 545 std::vector<G4KineticTrack *>::iterator aNuc; >> 546 G4LorentzVector aVec; >> 547 std::vector<G4double> masses; >> 548 G4double sumMass(0); >> 549 for ( aNuc=theTargetList.begin(); aNuc != theTargetList.end(); aNuc++) >> 550 { >> 551 G4double mass=(*aNuc)->GetDefinition()->GetPDGMass(); >> 552 masses.push_back(mass); >> 553 sumMass += mass; >> 554 } >> 555 G4LorentzVector finalP=GetFinal4Momentum(); >> 556 G4FermiPhaseSpaceDecay decay; >> 557 // G4cout << " some neutrons? " << masses.size() <<" " << theTargetList.size()<<" "<<finalP <<" " << finalP.mag()<<G4endl; >> 558 G4double eCMS=finalP.mag(); >> 559 if ( eCMS < sumMass ) // @@GF --- Cheat!! >> 560 { >> 561 eCMS=sumMass + (2*MeV*masses.size()); >> 562 finalP.setE(std::sqrt(finalP.vect().mag2() + sqr(eCMS))); >> 563 } >> 564 precompoundLorentzboost.set(finalP.boostVector()); >> 565 std::vector<G4LorentzVector*> * momenta=decay.Decay(eCMS,masses); >> 566 std::vector<G4LorentzVector*>::iterator aMom=momenta->begin(); >> 567 for ( aNuc=theTargetList.begin(); >> 568 (aNuc != theTargetList.end()) && (aMom!=momenta->end()); >> 569 aNuc++, aMom++ ) >> 570 { >> 571 G4ReactionProduct * aNew = new G4ReactionProduct((*aNuc)->GetDefinition()); >> 572 aNew->SetTotalEnergy((*aMom)->e()); >> 573 aNew->SetMomentum((*aMom)->vect()); >> 574 precompoundProducts->push_back(aNew); >> 575 // G4cout << " only neutrons? " << (*aNuc)->GetDefinition()->GetParticleName() << G4endl; >> 576 delete *aMom; >> 577 } >> 578 delete momenta; >> 579 } >> 580 } 666 581 667 products= ProductsAddPrecompound(products, << 582 } 668 583 669 // products=ProductsAddFakeGamma(products); << 584 { >> 585 // fill in products the outgoing particles >> 586 G4double Ekinout=0; >> 587 size_t i(0); >> 588 for(i = 0; i< theFinalState.size(); i++) >> 589 { >> 590 G4KineticTrack * kt = theFinalState[i]; >> 591 if(kt->GetDefinition()->IsShortLived()) >> 592 { >> 593 G4KineticTrackVector * dec = kt->Decay(); >> 594 G4KineticTrackVector::const_iterator jter; >> 595 for(jter=dec->begin(); jter != dec->end(); jter++) >> 596 { >> 597 theFinalState.push_back(*jter); >> 598 } >> 599 delete dec; >> 600 } >> 601 else >> 602 { >> 603 G4ReactionProduct * aNew = new G4ReactionProduct(kt->GetDefinition()); >> 604 aNew->SetMomentum(kt->Get4Momentum().vect()); >> 605 aNew->SetTotalEnergy(kt->Get4Momentum().e()); >> 606 Ekinout += aNew->GetKineticEnergy(); >> 607 if(kt->IsParticipant()) >> 608 { >> 609 aNew->SetNewlyAdded(true); >> 610 } >> 611 else >> 612 { >> 613 aNew->SetNewlyAdded(false); >> 614 } >> 615 //G4cout << " Particle Ekin " << aNew->GetKineticEnergy() << G4endl; >> 616 products->push_back(aNew); 670 617 >> 618 #ifdef debug_BIC_Propagate_finals >> 619 if (! kt->GetDefinition()->GetPDGStable() ) >> 620 { >> 621 if (kt->GetDefinition()->IsShortLived()) >> 622 { >> 623 G4cout << "final shortlived : "; >> 624 } else >> 625 { >> 626 G4cout << "final un stable : "; >> 627 } >> 628 G4cout <<kt->GetDefinition()->GetParticleName()<< G4endl; >> 629 } >> 630 #endif >> 631 } 671 632 672 thePrimaryEscape = true; << 633 } >> 634 //G4cout << " Total Ekin " << Ekinout << G4endl; >> 635 } >> 636 // add precompound products to products >> 637 if ( precompoundProducts ) >> 638 { >> 639 std::vector<G4ReactionProduct *>::iterator j; >> 640 for(j = precompoundProducts->begin(); j != precompoundProducts->end(); ++j) >> 641 { >> 642 // boost back to system of moving nucleus >> 643 G4LorentzVector pProduct((*j)->GetMomentum(),(*j)->GetTotalEnergy()); >> 644 #ifdef debug_BIC_Propagate_finals >> 645 G4cout << " pProduct be4 boost " <<pProduct << G4endl; >> 646 #endif >> 647 pProduct *= precompoundLorentzboost; >> 648 #ifdef debug_BIC_Propagate_finals >> 649 G4cout << " pProduct aft boost " <<pProduct << G4endl; >> 650 #endif >> 651 (*j)->SetTotalEnergy(pProduct.e()); >> 652 (*j)->SetMomentum(pProduct.vect()); >> 653 (*j)->SetNewlyAdded(true); >> 654 products->push_back(*j); >> 655 } 673 656 674 #ifdef debug_BIC_return << 657 precompoundProducts->clear(); 675 G4cout << "BIC: return @end, all ok "<< G4 << 658 delete precompoundProducts; 676 //G4cout << " return products " << produc << 659 } 677 #endif << 660 else >> 661 { >> 662 G4ReactionProduct * aNew=0; >> 663 // return nucleus e and p >> 664 if (fragment != 0 ) { >> 665 aNew = new G4ReactionProduct(G4Gamma::GammaDefinition()); // we only want to pass e/p >> 666 aNew->SetMomentum(fragment->GetMomentum().vect()); >> 667 aNew->SetTotalEnergy(fragment->GetMomentum().e()); >> 668 delete fragment; >> 669 fragment=0; >> 670 } else if (products->size() == 0) { >> 671 // FixMe GF: for testing without precompound, return 1 gamma of 0.01 MeV in +x >> 672 #include "G4Gamma.hh" >> 673 aNew = new G4ReactionProduct(G4Gamma::GammaDefinition()); >> 674 aNew->SetMomentum(G4ThreeVector(0.01*MeV,0,0)); >> 675 aNew->SetTotalEnergy(0.01*MeV); >> 676 } >> 677 if ( aNew != 0 ) products->push_back(aNew); >> 678 } 678 679 679 return products; << 680 // G4cerr <<"mon - end of event "<<G4endl; >> 681 thePrimaryEscape = true; >> 682 return products; 680 } 683 } 681 684 >> 685 682 //-------------------------------------------- 686 //---------------------------------------------------------------------------- 683 G4double G4BinaryCascade::GetExcitationEnergy( 687 G4double G4BinaryCascade::GetExcitationEnergy() 684 //-------------------------------------------- 688 //---------------------------------------------------------------------------- 685 { 689 { 686 690 687 // get A and Z for the residual nucleus << 691 G4ping debug("debug_ExcitationEnergy"); 688 #if defined(debug_G4BinaryCascade) || defined( << 692 // get A and Z for the residual nucleus 689 G4int finalA = theTargetList.size()+theCap << 693 #ifdef debug_G4BinaryCascade 690 G4int finalZ = GetTotalCharge(theTargetLis << 694 G4int finalA = theTargetList.size()+theCapturedList.size(); 691 if ( (currentA - finalA) != 0 || (currentZ << 695 G4int finalZ = GetTotalCharge(theTargetList)+GetTotalCharge(theCapturedList); 692 { << 696 if ( (currentA - finalA) != 0 || (currentZ - finalZ) != 0 ) 693 G4cerr << "G4BIC:GetExcitationEnergy() << 697 { 694 << "("<< currentA << "," << fi << 698 G4cerr << "G4BIC:GetExcitationEnergy(): Nucleon counting error current/final{A,Z} " 695 } << 699 << currentA << " " << finalA << " "<< currentZ << " " << finalZ << G4endl; >> 700 } >> 701 >> 702 #endif >> 703 >> 704 G4double excitationE(0); >> 705 G4double nucleusMass(0); >> 706 if(currentZ>.5) >> 707 { >> 708 nucleusMass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA); >> 709 } >> 710 else if (currentZ==0 && currentA==1 ) >> 711 { >> 712 nucleusMass = G4Neutron::Neutron()->GetPDGMass(); >> 713 } >> 714 else >> 715 { >> 716 #ifdef debug_BinaryCascade >> 717 G4cout << "G4BinaryCascade::GetExcitationEnergy(): Warning - invalid nucleus (A,Z)=(" >> 718 << currentA << "," << currentZ << ")" << G4endl; >> 719 #endif >> 720 return 0; >> 721 } 696 722 697 #endif << 723 #ifdef debug_BIC_GetExcitationEnergy >> 724 debug.push_back("====> current A, Z"); >> 725 debug.push_back(currentZ); >> 726 debug.push_back(currentA); >> 727 debug.push_back(finalZ); >> 728 debug.push_back(finalA); >> 729 debug.push_back(nucleusMass); >> 730 debug.push_back(GetFinalNucleusMomentum().mag()); >> 731 debug.dump(); >> 732 // PrintKTVector(&theTargetList, std::string(" current target list info")); >> 733 PrintKTVector(&theCapturedList, std::string(" current captured list info")); >> 734 #endif 698 735 699 G4double excitationE(0); << 736 excitationE = GetFinalNucleusMomentum().mag() - nucleusMass; 700 G4double nucleusMass(0); << 701 if(currentZ>.5) << 702 { << 703 nucleusMass = GetIonMass(currentZ,curr << 704 } << 705 else if (currentZ==0 ) << 706 { << 707 if(currentA == 1) {nucleusMass = G4Neu << 708 else {nucleusMass = GetFi << 709 } << 710 else << 711 { << 712 #ifdef debug_G4BinaryCascade << 713 G4cout << "G4BinaryCascade::GetExcitat << 714 << currentA << "," << currentZ << 715 #endif << 716 return 0; << 717 } << 718 737 719 #ifdef debug_BIC_GetExcitationEnergy 738 #ifdef debug_BIC_GetExcitationEnergy 720 G4ping debug("debug_ExcitationEnergy"); << 739 // ------ debug 721 debug.push_back("====> current A, Z"); << 740 if ( excitationE < 0 ) 722 debug.push_back(currentZ); << 741 { 723 debug.push_back(currentA); << 742 G4cout << "negative ExE final Ion mass" <<nucleusMass<< G4endl; 724 debug.push_back("====> final A, Z"); << 743 G4LorentzVector Nucl_mom=GetFinalNucleusMomentum(); 725 debug.push_back(finalZ); << 744 if(finalZ>.5) G4cout << " Final nuclmom/mass " << Nucl_mom << " " << Nucl_mom.mag() 726 debug.push_back(finalA); << 745 << " (A,Z)=("<< finalA <<","<<finalZ <<")" 727 debug.push_back(nucleusMass); << 746 << " mass " << nucleusMass << " " 728 debug.push_back(GetFinalNucleusMomentum(). << 747 << " excitE " << excitationE << G4endl; 729 debug.dump(); << 730 // PrintKTVector(&theTargetList, std::str << 731 //PrintKTVector(&theCapturedList, std::str << 732 #endif << 733 << 734 excitationE = GetFinalNucleusMomentum().ma << 735 << 736 //G4double exE2 = GetFinal4Momentum().mag( << 737 748 738 //G4cout << "old/new excitE " << excitatio << 739 749 740 #ifdef debug_BIC_GetExcitationEnergy << 750 G4int A = the3DNucleus->GetMassNumber(); 741 // ------ debug << 751 G4int Z = the3DNucleus->GetCharge(); 742 if ( excitationE < 0 ) << 752 G4double initialExc(0); >> 753 if(Z>.5) 743 { 754 { 744 G4cout << "negative ExE final Ion mass << 755 initialExc = theInitial4Mom.mag()- 745 G4LorentzVector Nucl_mom=GetFinalNucle << 756 G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z, A); 746 if(finalZ>.5) G4cout << " Final nuclmo << 757 G4cout << " Initial nucleus A Z" << A << " " << Z << initialExc << G4endl; 747 << " (A,Z)=("<< finalA << 748 << " mass " << nucleusM << 749 << " excitE " << excita << 750 << 751 << 752 G4int A = the3DNucleus->GetMassNumber( << 753 G4int Z = the3DNucleus->GetCharge(); << 754 G4double initialExc(0); << 755 if(Z>.5) << 756 { << 757 initialExc = theInitial4Mom.mag()- << 758 G4cout << "GetExcitationEnergy: In << 759 } << 760 } 758 } >> 759 } 761 760 762 #endif 761 #endif 763 762 764 return excitationE; << 763 return excitationE; 765 } 764 } 766 765 767 766 768 //-------------------------------------------- 767 //---------------------------------------------------------------------------- 769 // 768 // 770 // P R I V A T E M E M B E R F U N C 769 // P R I V A T E M E M B E R F U N C T I O N S 771 // 770 // 772 //-------------------------------------------- 771 //---------------------------------------------------------------------------- 773 772 774 //-------------------------------------------- 773 //---------------------------------------------------------------------------- 775 void G4BinaryCascade::BuildTargetList() 774 void G4BinaryCascade::BuildTargetList() 776 //-------------------------------------------- 775 //---------------------------------------------------------------------------- 777 { 776 { 778 777 779 if(!the3DNucleus->StartLoop()) << 778 if(!the3DNucleus->StartLoop()) 780 { << 779 { 781 // G4cerr << "G4BinaryCascade::Buil << 780 // G4cerr << "G4BinaryCascade::BuildTargetList(): StartLoop() error!" 782 // << G4endl; << 781 // << G4endl; 783 return; << 782 return; 784 } << 783 } 785 << 784 786 ClearAndDestroy(&theTargetList); // clear << 785 G4Nucleon * nucleon; 787 << 786 G4ParticleDefinition * definition; 788 G4Nucleon * nucleon; << 787 G4ThreeVector pos; 789 const G4ParticleDefinition * definition; << 788 G4LorentzVector mom; 790 G4ThreeVector pos; << 789 // if there are nucleon hit by higher energy models, then SUM(momenta) != 0 791 G4LorentzVector mom; << 790 theInitial4Mom = G4LorentzVector(0,0,0,0); 792 // if there are nucleon hit by higher ener << 791 currentA=0; 793 initialZ=the3DNucleus->GetCharge(); << 792 currentZ=0; 794 initialA=the3DNucleus->GetMassNumber(); << 793 // G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; 795 initial_nuclear_mass=GetIonMass(initialZ,i << 794 while((nucleon = the3DNucleus->GetNextNucleon()) != NULL) 796 theInitial4Mom = G4LorentzVector(0,0,0,ini << 795 { 797 currentA=0; << 796 // check if nucleon is hit by higher energy model. 798 currentZ=0; << 797 if ( ! nucleon->AreYouHit() ) 799 while((nucleon = the3DNucleus->GetNextNucl << 798 { 800 { << 799 definition = nucleon->GetDefinition(); 801 // check if nucleon is hit by higher e << 800 pos = nucleon->GetPosition(); 802 if ( ! nucleon->AreYouHit() ) << 801 mom = nucleon->GetMomentum(); 803 { << 802 // G4cout << "Nucleus " << pos.mag()/fermi << " " << mom.e() << G4endl; 804 definition = nucleon->GetDefinitio << 803 theInitial4Mom += mom; 805 pos = nucleon->GetPosition(); << 804 // In the kinetic Model, the potential inside the nucleus is taken into account, and nucleons 806 mom = nucleon->GetMomentum(); << 805 // are on mass shell. 807 // G4cout << "Nucleus " << pos. << 806 mom.setE( std::sqrt( mom.vect().mag2() + sqr(definition->GetPDGMass()) ) ); 808 //theInitial4Mom += mom; << 807 G4KineticTrack * kt = new G4KineticTrack(definition, 0., pos, mom); 809 // the potential inside the << 808 kt->SetState(G4KineticTrack::inside); 810 mom.setE( std::sqrt( mom.vect().ma << 809 kt->SetNucleon(nucleon); 811 G4KineticTrack * kt = new G4Kineti << 810 theTargetList.push_back(kt); 812 kt->SetState(G4KineticTrack::insid << 811 ++currentA; 813 kt->SetNucleon(nucleon); << 812 if (definition->GetPDGCharge() > .5 ) ++currentZ; 814 theTargetList.push_back(kt); << 813 } 815 ++currentA; << 814 } 816 if (definition->GetPDGCharge() > . << 815 massInNucleus = 0; 817 } << 816 if(currentZ>.5) 818 << 817 { 819 #ifdef debug_BIC_BuildTargetList << 818 massInNucleus = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA); 820 else { G4cout << "nucleon is hit" << n << 819 } else if (currentZ==0 && currentA>=1 ) 821 #endif << 820 { 822 } << 821 massInNucleus = currentA * G4Neutron::Neutron()->GetPDGMass(); 823 massInNucleus = 0; << 822 } else 824 if(currentZ>.5) << 823 { 825 { << 824 //G4cout << "G4BinaryCascade::BuildTargetList(): Warning - invalid nucleus (A,Z)=(" 826 massInNucleus = GetIonMass(currentZ,cu << 825 // << currentA << "," << currentZ << ")" << G4endl; 827 } else if (currentZ==0 && currentA>=1 ) << 826 } 828 { << 827 //G4cout << "G4BinaryCascade::BuildTargetList(): nucleus (A,Z)=(" 829 massInNucleus = currentA * G4Neutron:: << 828 // << currentA << "," << currentZ << ") mass: " << massInNucleus << 830 } else << 829 // ", theInitial4Mom " << theInitial4Mom << G4endl; 831 { << 830 832 G4cerr << "G4BinaryCascade::BuildTarge << 831 currentInitialEnergy= theInitial4Mom.e(); 833 << currentA << "," << currentZ << 832 G4KineticTrackVector::iterator i; 834 throw G4HadronicException(__FILE__, __ << 833 for(i = theProjectileList.begin() ; i != theProjectileList.end(); ++i) 835 } << 834 { 836 currentInitialEnergy= theInitial4Mom.e() + << 835 currentInitialEnergy+= (*i)->GetTrackingMomentum().e(); 837 << 836 } 838 #ifdef debug_BIC_BuildTargetList << 837 839 G4cout << "G4BinaryCascade::BuildTargetLis << 840 << currentA << "," << currentZ << << 841 ", theInitial4Mom " << theInitial4 << 842 ", currentInitialEnergy " << curre << 843 #endif << 844 << 845 } << 846 << 847 //-------------------------------------------- << 848 G4bool G4BinaryCascade::BuildLateParticleColl << 849 //-------------------------------------------- << 850 { << 851 G4bool success(false); << 852 std::vector<G4KineticTrack *>::iterator ite << 853 << 854 lateA=lateZ=0; << 855 projectileA=projectileZ=0; << 856 << 857 G4double StartingTime=DBL_MAX; // Se << 858 for(iter = secondaries->begin(); iter != se << 859 { << 860 if((*iter)->GetFormationTime() < Startin << 861 StartingTime = (*iter)->GetFormationT << 862 } << 863 << 864 //PrintKTVector(secondaries, "initial late << 865 G4LorentzVector lateParticles4Momentum(0,0, << 866 for(iter = secondaries->begin(); iter != se << 867 { << 868 // G4cout << " Formation time : " << (* << 869 // << (*iter)->GetFormationTime() << G << 870 G4double FormTime = (*iter)->GetFormatio << 871 (*iter)->SetFormationTime(FormTime); << 872 if( (*iter)->GetState() == G4KineticTrac << 873 { << 874 FindLateParticleCollision(*iter); << 875 lateParticles4Momentum += (*iter)->Ge << 876 lateA += (*iter)->GetDefinition()->Ge << 877 lateZ += G4lrint((*iter)->GetDefiniti << 878 //PrintKTVector(*iter, "late particle << 879 } else << 880 { << 881 theSecondaryList.push_back(*iter); << 882 //PrintKTVector(*iter, "incoming part << 883 theProjectile4Momentum += (*iter)->Ge << 884 projectileA += (*iter)->GetDefinition << 885 projectileZ += G4lrint((*iter)->GetDe << 886 #ifdef debug_BIC_Propagate << 887 G4cout << " Adding initial secondary << 888 << " time" << (*iter)->GetForma << 889 << ", state " << (*iter)->GetSt << 890 #endif << 891 } << 892 } << 893 //theCollisionMgr->Print(); << 894 const G4HadProjectile * primary = GetPrimar << 895 << 896 if (primary){ << 897 G4LorentzVector mom=primary->Get4Momentu << 898 theProjectile4Momentum += mom; << 899 projectileA = primary->GetDefinition()-> << 900 projectileZ = G4lrint(primary->GetDefini << 901 // now check if "excitation" energy left << 902 G4double excitation= theProjectile4Momen << 903 #ifdef debug_BIC_GetExcitationEnergy << 904 G4cout << "BIC: Proj.e, nucl initial, nu << 905 << theProjectile4Momentum << ", " << 906 << initial_nuclear_mass<< ", " << << 907 << lateParticles4Momentum << G4end << 908 G4cout << "BIC: Proj.e / initial excitat << 909 #endif << 910 success = excitation > 0; << 911 #ifdef debug_G4BinaryCascade << 912 if ( ! success ) { << 913 G4cout << "G4BinaryCascade::BuildLate << 914 //PrintKTVector(secondaries); << 915 } << 916 #endif << 917 } else { << 918 // no primary from HE model -> cascade << 919 success=true; << 920 } << 921 << 922 if (success) { << 923 secondaries->clear(); // Don't leave "G4 << 924 delete secondaries; << 925 } << 926 return success; << 927 } << 928 << 929 //-------------------------------------------- << 930 G4ReactionProductVector * G4BinaryCascade::De << 931 //-------------------------------------------- << 932 { << 933 // find a fragment and call the precompound << 934 G4Fragment * fragment = nullptr; << 935 G4ReactionProductVector * precompoundProduc << 936 << 937 G4LorentzVector pFragment(0); << 938 // G4cout << " final4mon " << GetFinal4Mome << 939 << 940 fragment = FindFragments(); << 941 << 942 if(fragment) << 943 { << 944 if(fragment->GetA_asInt() >1) << 945 { << 946 pFragment=fragment->GetMomentum(); << 947 // G4cout << " going to preco with fr << 948 if (theDeExcitation) / << 949 { << 950 precompoundProducts= theDeExcitati << 951 } << 952 else if (theExcitationHandler) // << 953 { << 954 precompoundProducts=theExcitationH << 955 } << 956 << 957 } else << 958 { // f << 959 if (theTargetList.size() + theCapture << 960 throw G4HadronicException(__FILE__ << 961 } << 962 << 963 std::vector<G4KineticTrack *>::iterat << 964 if ( theTargetList.size() == 1 ) {i= << 965 if ( theCapturedList.size() == 1 ) {i << 966 G4ReactionProduct * aNew = new G4Reac << 967 aNew->SetTotalEnergy((*i)->GetDefinit << 968 aNew->SetCreatorModelID(theBIC_ID); << 969 aNew->SetParentResonanceDef((*i)->GetParent << 970 aNew->SetParentResonanceID((*i)->GetParentR << 971 aNew->SetMomentum(G4ThreeVector(0));/ << 972 precompoundProducts = new G4ReactionP << 973 precompoundProducts->push_back(aNew); << 974 } // End of f << 975 delete fragment; << 976 fragment=nullptr; << 977 << 978 } else // End of << 979 { // No fra << 980 838 981 precompoundProducts = DecayVoidNucleus() << 982 } << 983 #ifdef debug_BIC_DeexcitationProducts << 984 << 985 G4LorentzVector fragment_momentum=GetFi << 986 G4LorentzVector Preco_momentum; << 987 if ( precompoundProducts ) << 988 { << 989 std::vector<G4ReactionProduct *>::it << 990 for(j = precompoundProducts->begin() << 991 { << 992 G4LorentzVector pProduct((*j)->Ge << 993 Preco_momentum += pProduct; << 994 } << 995 } << 996 G4cout << "finalNuclMom / sum preco pro << 997 << " delta E "<< fragment_momentum. << 998 << 999 #endif << 1000 << 1001 return precompoundProducts; << 1002 } 839 } 1003 840 1004 //------------------------------------------- << 1005 G4ReactionProductVector * G4BinaryCascade::D << 1006 //------------------------------------------- << 1007 { << 1008 G4ReactionProductVector * result = nullptr << 1009 if ( (theTargetList.size()+theCapturedList << 1010 { << 1011 result = new G4ReactionProductVector; << 1012 std::vector<G4KineticTrack *>::iterator << 1013 G4LorentzVector aVec; << 1014 std::vector<G4double> masses; << 1015 G4double sumMass(0); << 1016 << 1017 if ( theTargetList.size() != 0) << 1018 { << 1019 for ( aNuc=theTargetList.begin(); aN << 1020 { << 1021 G4double mass=(*aNuc)->GetDefinit << 1022 masses.push_back(mass); << 1023 sumMass += mass; << 1024 } << 1025 } << 1026 << 1027 if ( theCapturedList.size() != 0) << 1028 { << 1029 for(aNuc = theCapturedList.begin(); << 1030 { << 1031 G4double mass=(*aNuc)->GetDefinit << 1032 masses.push_back(mass); << 1033 sumMass += mass; << 1034 } << 1035 } << 1036 << 1037 G4LorentzVector finalP=GetFinal4Momentu << 1038 G4FermiPhaseSpaceDecay decay; << 1039 // G4cout << " some neutrons? " << mass << 1040 // G4cout<< theTargetList.size()<<" "<< << 1041 << 1042 G4double eCMS=finalP.mag(); << 1043 if ( eCMS < sumMass ) << 1044 { << 1045 eCMS=sumMass + 2*MeV*masses.size(); << 1046 finalP.setE(std::sqrt(finalP.vect(). << 1047 } << 1048 << 1049 precompoundLorentzboost.set(finalP.boos << 1050 std::vector<G4LorentzVector*> * momenta << 1051 std::vector<G4LorentzVector*>::iterator << 1052 << 1053 << 1054 if ( theTargetList.size() != 0) << 1055 { << 1056 for ( aNuc=theTargetList.begin(); << 1057 (aNuc != theTargetList.end()) << 1058 aNuc++, aMom++ ) << 1059 { << 1060 G4ReactionProduct * aNew = new G4 << 1061 aNew->SetTotalEnergy((*aMom)->e() << 1062 aNew->SetMomentum((*aMom)->vect() << 1063 aNew->SetCreatorModelID(theBIC_ID << 1064 aNew->SetParentResonanceDef((*aNuc)->Ge << 1065 aNew->SetParentResonanceID((*aNuc)->Get << 1066 result->push_back(aNew); << 1067 delete *aMom; << 1068 } << 1069 } << 1070 << 1071 if ( theCapturedList.size() != 0) << 1072 { << 1073 for ( aNuc=theCapturedList.begin(); << 1074 (aNuc != theCapturedList.end() << 1075 aNuc++, aMom++ ) << 1076 { << 1077 G4ReactionProduct * aNew = new G4 << 1078 aNew->SetTotalEnergy((*aMom)->e() << 1079 aNew->SetMomentum((*aMom)->vect() << 1080 aNew->SetCreatorModelID(theBIC_ID << 1081 aNew->SetParentResonanceDef((*aNu << 1082 aNew->SetParentResonanceID((*aNuc << 1083 result->push_back(aNew); << 1084 delete *aMom; << 1085 } << 1086 } << 1087 << 1088 delete momenta; << 1089 } << 1090 return result; << 1091 } // End if(!fragment) << 1092 << 1093 //------------------------------------------- << 1094 G4ReactionProductVector * G4BinaryCascade::Pr << 1095 //------------------------------------------- << 1096 { << 1097 // fill in products the outgoing particles << 1098 std::size_t i(0); << 1099 #ifdef debug_BIC_Propagate_finals << 1100 G4LorentzVector mom_fs; << 1101 #endif << 1102 for(i = 0; i< fs.size(); i++) << 1103 { << 1104 G4KineticTrack * kt = fs[i]; << 1105 G4ReactionProduct * aNew = new G4Reac << 1106 aNew->SetMomentum(kt->Get4Momentum(). << 1107 aNew->SetTotalEnergy(kt->Get4Momentum << 1108 aNew->SetNewlyAdded(kt->IsParticipant << 1109 aNew->SetCreatorModelID(theBIC_ID); << 1110 aNew->SetParentResonanceDef(kt->GetPa << 1111 aNew->SetParentResonanceID(kt->GetPar << 1112 products->push_back(aNew); << 1113 << 1114 #ifdef debug_BIC_Propagate_finals << 1115 mom_fs += kt->Get4Momentum(); << 1116 G4cout <<kt->GetDefinition()->GetPart << 1117 G4cout << " Particle Ekin " << aNew-> << 1118 G4cout << ", is " << (kt->GetDefiniti << 1119 (kt->GetDefinition()->IsShort << 1120 G4cout << G4endl; << 1121 #endif << 1122 << 1123 } << 1124 #ifdef debug_BIC_Propagate_finals << 1125 G4cout << " Final state momentum " << mom << 1126 #endif << 1127 841 1128 return products; << 1129 } << 1130 //------------------------------------------- 842 //---------------------------------------------------------------------------- 1131 G4ReactionProductVector * G4BinaryCascade::Pr << 843 void G4BinaryCascade::FindCollisions(G4KineticTrackVector * secondaries) 1132 //------------------------------------------- 844 //---------------------------------------------------------------------------- 1133 { 845 { 1134 G4LorentzVector pSumPreco(0), pPreco(0); << 846 for(std::vector<G4KineticTrack *>::iterator i = secondaries->begin(); 1135 << 847 i != secondaries->end(); ++i) 1136 if ( precompoundProducts ) << 848 { 1137 { << 849 if ( (*i)->GetTrackingMomentum().mag2() < -1.*eV ) 1138 for(auto j = precompoundProducts->cbegi << 850 { >> 851 G4cout << "G4BinaryCascade::FindCollisions(): negative m2:" << (*i)->GetTrackingMomentum().mag2() << G4endl; >> 852 } >> 853 for(std::vector<G4BCAction *>::iterator j = theImR.begin(); >> 854 j!=theImR.end(); j++) >> 855 { >> 856 const std::vector<G4CollisionInitialState *> & aCandList >> 857 = (*j)->GetCollisions(*i, theTargetList, theCurrentTime); >> 858 for(size_t count=0; count<aCandList.size(); count++) 1139 { 859 { 1140 // boost back to system of moving nu << 860 theCollisionMgr->AddCollision(aCandList[count]); 1141 G4LorentzVector pProduct((*j)->GetMo << 1142 pPreco+= pProduct; << 1143 #ifdef debug_BIC_Propagate_finals << 1144 G4cout << "BIC: pProduct be4 boost " << 1145 #endif << 1146 pProduct *= precompoundLorentzboost; << 1147 #ifdef debug_BIC_Propagate_finals << 1148 G4cout << "BIC: pProduct aft boost " << 1149 #endif << 1150 pSumPreco += pProduct; << 1151 (*j)->SetTotalEnergy(pProduct.e()); << 1152 (*j)->SetMomentum(pProduct.vect()); << 1153 (*j)->SetNewlyAdded(true); << 1154 products->push_back(*j); << 1155 } 861 } 1156 // G4cout << " unboosted preco result m << 1157 // G4cout << " preco result mom " << pS << 1158 precompoundProducts->clear(); << 1159 delete precompoundProducts; << 1160 } << 1161 return products; << 1162 } << 1163 //------------------------------------------- << 1164 void G4BinaryCascade::FindCollisions(G4Kinet << 1165 //------------------------------------------- << 1166 { << 1167 for(auto i=secondaries->cbegin(); i!=seco << 1168 { << 1169 for(auto j=theImR.cbegin(); j!=theImR << 1170 { << 1171 // G4cout << "G4BinaryCascad << 1172 const std::vector<G4CollisionInit << 1173 = (*j)->GetCollisions(*i, theTarg << 1174 for(std::size_t count=0; count<aC << 1175 { << 1176 theCollisionMgr->AddCollision << 1177 //4cout << "================= << 1178 //theCollisionMgr->Print(); << 1179 } << 1180 } << 1181 } 862 } >> 863 } 1182 } 864 } 1183 865 1184 << 1185 //------------------------------------------- 866 //---------------------------------------------------------------------------- 1186 void G4BinaryCascade::FindDecayCollision(G4K 867 void G4BinaryCascade::FindDecayCollision(G4KineticTrack * secondary) 1187 //------------------------------------------- 868 //---------------------------------------------------------------------------- 1188 { 869 { 1189 const auto& aCandList = theDecay->GetColl << 870 if ( secondary->GetTrackingMomentum().mag2() < -1.*eV ) 1190 for(std::size_t count=0; count<aCandList. << 1191 { << 1192 theCollisionMgr->AddCollision(aCandLi << 1193 } << 1194 } << 1195 << 1196 //------------------------------------------- << 1197 void G4BinaryCascade::FindLateParticleCollis << 1198 //------------------------------------------- << 1199 { << 1200 << 1201 G4double tin=0., tout=0.; << 1202 if (((G4RKPropagation*)thePropagator)->Ge << 1203 { 871 { 1204 if ( tin > 0 ) << 872 G4cout << "G4BinaryCascade::FindDecayCollision(): negative m2:" << secondary->GetTrackingMomentum().mag2() << G4endl; 1205 { << 873 } 1206 secondary->SetState(G4KineticTrac << 874 const std::vector<G4CollisionInitialState *> & aCandList 1207 } else if ( tout > 0 ) << 875 = theDecay->GetCollisions(secondary, theTargetList, theCurrentTime); 1208 { << 876 for(size_t count=0; count<aCandList.size(); count++) 1209 secondary->SetState(G4KineticTrac << 1210 } else { << 1211 //G4cout << "G4BC set miss , tin, << 1212 secondary->SetState(G4KineticTrac << 1213 } << 1214 } else { << 1215 secondary->SetState(G4KineticTrack::m << 1216 //G4cout << "G4BC set miss ,no inters << 1217 } << 1218 << 1219 << 1220 #ifdef debug_BIC_FindCollision << 1221 G4cout << "FindLateP Particle, 4-mom, tim << 1222 << secondary->GetDefinition()->Ge << 1223 << secondary->Get4Momentum() << 1224 << " times " << tin << " " << to << 1225 << secondary->GetState() << G4end << 1226 #endif << 1227 << 1228 const auto& aCandList = theLateParticle-> << 1229 for(std::size_t count=0; count<aCandList. << 1230 { 877 { 1231 #ifdef debug_BIC_FindCollision << 878 theCollisionMgr->AddCollision(aCandList[count]); 1232 G4cout << " Adding a late Col : " << << 1233 #endif << 1234 theCollisionMgr->AddCollision(aCandLi << 1235 } 879 } 1236 } 880 } 1237 881 1238 882 1239 //------------------------------------------- 883 //---------------------------------------------------------------------------- 1240 G4bool G4BinaryCascade::ApplyCollision(G4Coll 884 G4bool G4BinaryCascade::ApplyCollision(G4CollisionInitialState * collision) 1241 //------------------------------------------- 885 //---------------------------------------------------------------------------- 1242 { 886 { 1243 G4KineticTrack * primary = collision->Get << 887 G4ping debug("debug_ApplyCollision"); 1244 << 888 //G4cerr << "G4BinaryCascade::ApplyCollision start"<<G4endl; 1245 #ifdef debug_BIC_ApplyCollision << 889 G4KineticTrack * primary = collision->GetPrimary(); 1246 G4cerr << "G4BinaryCascade::ApplyCollisio << 890 if(primary->GetState() != G4KineticTrack::inside) 1247 theCollisionMgr->Print(); << 891 { 1248 G4cout << "ApplyCollisions : projte 4mom << 892 #ifdef debug_BinaryCascade 1249 #endif << 893 G4cout << "G4BinaryCasacde::ApplyCollision(): StateError (ignored)" << primary << G4endl; 1250 << 894 G4KineticTrackVector debug; 1251 G4KineticTrackVector target_collection=co << 895 debug.push_back(primary); 1252 G4bool haveTarget=target_collection.size( << 896 PrintKTVector(&debug,std::string("primay- target")); 1253 if( haveTarget && (primary->GetState() != << 897 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCasacde::ApplyCollision()"); 1254 { << 898 #else 1255 #ifdef debug_G4BinaryCascade << 899 return false; 1256 G4cout << "G4BinaryCasacde::ApplyColl << 1257 PrintKTVector(primary,std::string("pr << 1258 PrintKTVector(&target_collection,std: << 1259 collision->Print(); << 1260 G4cout << G4endl; << 1261 theCollisionMgr->Print(); << 1262 //*GF* throw G4HadronicException( << 1263 #endif 900 #endif 1264 return false; << 901 } 1265 // } else { << 1266 // G4cout << "G4BinaryCasacde::ApplyCol << 1267 // PrintKTVector(primary,std::string("p << 1268 // G4double tin=0., tout=0.; << 1269 // if (((G4RKPropagation*)thePropagator << 1270 // { << 1271 // G4cout << "tin tout: " << tin << << 1272 // } << 1273 << 1274 } << 1275 << 1276 G4LorentzVector mom4Primary=primary->Get4 << 1277 << 1278 G4int initialBaryon(0); << 1279 G4int initialCharge(0); << 1280 if (primary->GetState() == G4KineticTrack << 1281 { << 1282 initialBaryon = primary->GetDefinitio << 1283 initialCharge = G4lrint(primary->GetD << 1284 } << 1285 << 1286 // for primary resonances, subtract neutr << 1287 G4double initial_Efermi=CorrectShortlived << 1288 //*************************************** << 1289 << 1290 << 1291 G4KineticTrackVector * products = collisi << 1292 902 >> 903 G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; >> 904 1293 #ifdef debug_BIC_ApplyCollision 905 #ifdef debug_BIC_ApplyCollision 1294 DebugApplyCollisionFail(collision, produc << 906 // G4cout << "ApplyCollisions : projte 4mom " << primary->GetTrackingMomentum()<< G4endl; 1295 #endif << 1296 << 1297 // reset primary to initial state, in cas << 1298 primary->Set4Momentum(mom4Primary); << 1299 << 1300 G4bool lateParticleCollision= (!haveTarge << 1301 G4bool decayCollision= (!haveTarget) && p << 1302 G4bool Success(true); << 1303 << 1304 << 1305 #ifdef debug_G4BinaryCascade << 1306 G4int lateBaryon(0), lateCharge(0); << 1307 #endif << 1308 << 1309 if ( lateParticleCollision ) << 1310 { // for late particles, reset charges << 1311 //G4cout << "lateP, initial B C state << 1312 // << initialCharge<< " " << p << 1313 #ifdef debug_G4BinaryCascade << 1314 lateBaryon = initialBaryon; << 1315 lateCharge = initialCharge; << 1316 #endif 907 #endif 1317 initialBaryon=initialCharge=0; << 1318 lateA -= primary->GetDefinition()->Ge << 1319 lateZ -= G4lrint(primary->GetDefiniti << 1320 } << 1321 908 1322 initialBaryon += collision->GetTargetBary << 909 G4int initialBaryon = primary->GetDefinition()->GetBaryonNumber(); 1323 initialCharge += G4lrint(collision->GetTa << 910 G4int initialCharge(0); 1324 if (!lateParticleCollision) << 911 initialCharge+=G4lrint(primary->GetDefinition()->GetPDGCharge()); 1325 { << 912 1326 if( !products || products->size()==0 | << 913 // for primary resonances, subtract neutron ( = proton) field ( ie. add std::abs(field)) 1327 { << 914 G4int PDGcode=std::abs(primary->GetDefinition()->GetPDGEncoding()); 1328 #ifdef debug_BIC_ApplyCollision << 915 G4LorentzVector mom4Primary=primary->Get4Momentum(); 1329 if (products) G4cout << " ======Fai << 916 G4double initial_Efermi=RKprop->GetField(primary->GetDefinition()->GetPDGEncoding(),primary->GetPosition()); 1330 G4cerr << "G4BinaryCascade::ApplyCo << 917 if ( PDGcode > 1000 && PDGcode != 2112 && PDGcode != 2212 ) 1331 #endif << 918 { 1332 Success=false; << 919 initial_Efermi = RKprop->GetField(G4Neutron::Neutron()->GetPDGEncoding(),primary->GetPosition()); >> 920 primary->Update4Momentum(mom4Primary.e() - initial_Efermi); >> 921 } >> 922 G4KineticTrackVector target_collection=collision->GetTargetCollection(); >> 923 std::vector<G4KineticTrack *>::iterator titer; >> 924 for ( titer=target_collection.begin() ; titer!=target_collection.end(); ++titer) >> 925 { >> 926 initial_Efermi+= RKprop->GetField((*titer)->GetDefinition()->GetPDGEncoding(),(*titer)->GetPosition()); >> 927 } >> 928 >> 929 G4KineticTrackVector * products=0; >> 930 products = collision->GetFinalState(); >> 931 >> 932 // reset primary to initial state >> 933 primary->Set4Momentum(mom4Primary); >> 934 >> 935 initialBaryon += collision->GetTargetBaryonNumber(); >> 936 initialCharge+=G4lrint(collision->GetTargetCharge()); >> 937 >> 938 if(!products || products->size()==0 || !CheckPauliPrinciple(products)) >> 939 { >> 940 #ifdef debug_BIC_ApplyCollision >> 941 if (products) G4cout << " ======Failed Pauli =====" << G4endl; >> 942 G4cerr << "G4BinaryCascade::ApplyCollision blocked"<<G4endl; >> 943 #endif >> 944 if (products) ClearAndDestroy(products); >> 945 if (target_collection.size() == 0 ) FindDecayCollision(primary); // for decay, sample new decay >> 946 delete products; >> 947 return false; >> 948 } >> 949 >> 950 G4double final_Efermi(0); >> 951 G4KineticTrackVector resonances; >> 952 for ( std::vector<G4KineticTrack *>::iterator i =products->begin(); i != products->end(); i++) >> 953 { >> 954 G4int PDGcode=std::abs((*i)->GetDefinition()->GetPDGEncoding()); >> 955 final_Efermi+=RKprop->GetField(PDGcode,(*i)->GetPosition()); >> 956 if ( PDGcode > 1000 && PDGcode != 2112 && PDGcode != 2212 ) >> 957 { >> 958 resonances.push_back(*i); 1333 } 959 } >> 960 } >> 961 if ( resonances.size() > 0 ) >> 962 { >> 963 G4double delta_Fermi= (initial_Efermi-final_Efermi)/resonances.size(); >> 964 for (std::vector<G4KineticTrack *>::iterator res=resonances.begin(); res != resonances.end(); res++) >> 965 { >> 966 G4LorentzVector mom=(*res)->Get4Momentum(); >> 967 G4double mass2=mom.mag2(); >> 968 G4double newEnergy=mom.e() + delta_Fermi; >> 969 G4double newEnergy2= newEnergy*newEnergy; >> 970 if ( newEnergy2 < mass2 ) >> 971 { >> 972 delete products; >> 973 return false; >> 974 } >> 975 // G4cout << " correct resonance from /to " << mom.e() << " / " << newEnergy<< G4endl; >> 976 G4ThreeVector mom3=std::sqrt(newEnergy2 - mass2) * mom.vect().unit(); >> 977 (*res)->Set4Momentum(G4LorentzVector(mom3,newEnergy)); >> 978 } >> 979 } 1334 980 >> 981 1335 982 1336 983 1337 if (Success && primary->GetState() == << 1338 if (! CorrectShortlivedFinalsForFer << 1339 Success=false; << 1340 } << 1341 } << 1342 } << 1343 984 >> 985 // debug block 1344 #ifdef debug_BIC_ApplyCollision 986 #ifdef debug_BIC_ApplyCollision 1345 DebugApplyCollision(collision, products); << 987 G4KineticTrackVector debug1; 1346 #endif << 988 debug1.push_back(collision->GetPrimary()); 1347 << 989 PrintKTVector(&debug1,std::string(" Primary particle")); 1348 if ( ! Success ){ << 990 PrintKTVector(&collision->GetTargetCollection(),std::string(" Target particles")); 1349 if (products) ClearAndDestroy(product << 991 PrintKTVector(products,std::string(" Scatterer products")); 1350 if ( decayCollision ) FindDecayCollis << 992 1351 delete products; << 993 G4double thisExcitation(0); 1352 products=nullptr; << 994 // excitation energy from this collision 1353 return false; << 995 // initial state: 1354 } << 996 G4double initial(0); 1355 << 997 G4KineticTrack * kt=collision->GetPrimary(); 1356 G4int finalBaryon(0); << 998 initial += kt->Get4Momentum().e(); 1357 G4int finalCharge(0); << 999 1358 G4KineticTrackVector toFinalState; << 1000 initial += RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 1359 for(auto i=products->cbegin(); i!=product << 1001 initial -= RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 1360 { << 1002 G4cout << "prim. E/field/Barr/Sum " << kt->Get4Momentum().e() 1361 if ( ! lateParticleCollision ) << 1003 << " " << RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 1362 { << 1004 << " " << RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()) 1363 (*i)->SetState(primary->GetState( << 1005 << " " << initial << G4endl;; 1364 if ( (*i)->GetState() == G4Kineti << 1006 1365 finalBaryon+=(*i)->GetDefinit << 1007 G4KineticTrackVector ktv=collision->GetTargetCollection(); 1366 finalCharge+=G4lrint((*i)->Ge << 1008 for ( unsigned int it=0; it < ktv.size(); it++) 1367 } else { << 1009 { 1368 G4double tin=0., tout=0.; << 1010 kt=ktv[it]; 1369 if (((G4RKPropagation*)theProp << 1011 initial += kt->Get4Momentum().e(); 1370 tin < 0 && tout > 0 ) << 1012 thisExcitation += kt->GetDefinition()->GetPDGMass() 1371 { << 1013 - kt->Get4Momentum().e() 1372 PrintKTVector((*i),"particl << 1014 - RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 1373 G4cout << "tin tout: " << << 1015 // initial += RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 1374 } << 1016 // initial -= RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 1375 } << 1017 G4cout << "Targ. def/E/field/Barr/Sum " << kt->GetDefinition()->GetPDGEncoding() 1376 } else { << 1018 << " " << kt->Get4Momentum().e() 1377 G4double tin=0., tout=0.; << 1019 << " " << RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 1378 if (((G4RKPropagation*)thePropaga << 1020 << " " << RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()) 1379 { << 1021 << " " << initial <<" Excit " << thisExcitation << G4endl;; 1380 //G4cout << "tin tout: " << t << 1022 } 1381 if ( tin > 0 ) << 1023 1382 { << 1024 G4double final(0); 1383 (*i)->SetState(G4KineticT << 1025 G4double mass_out(0); 1384 } << 1026 G4int product_barions(0); 1385 else if ( tout > 0 ) << 1027 for ( unsigned int it=0; it < products->size(); it++) 1386 { << 1028 { 1387 (*i)->SetState(G4KineticT << 1029 kt=(*products)[it]; 1388 finalBaryon+=(*i)->GetDef << 1030 final += kt->Get4Momentum().e(); 1389 finalCharge+=G4lrint((*i) << 1031 final += RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 1390 } << 1032 final += RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 1391 else << 1033 if ( kt->GetDefinition()->GetBaryonNumber()==1 ) product_barions++; 1392 { << 1034 mass_out += kt->GetDefinition()->GetPDGMass(); 1393 (*i)->SetState(G4KineticT << 1035 G4cout << "sec. def/E/field/Barr/Sum " << kt->GetDefinition()->GetPDGEncoding() 1394 toFinalState.push_back((* << 1036 << " " << kt->Get4Momentum().e() 1395 } << 1037 << " " << RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 1396 } else << 1038 << " " << RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()) 1397 { << 1039 << " " << final << G4endl;; 1398 (*i)->SetState(G4KineticTrack << 1040 } 1399 //G4cout << " G4BC - miss -la << 1041 1400 toFinalState.push_back((*i)); << 1042 1401 } << 1043 G4int finalA = currentA - product_barions; 1402 << 1044 G4int finalZ = currentZ - GetTotalCharge(*products); 1403 } << 1045 G4double delta = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA) 1404 } << 1046 - (G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(finalZ,finalA) 1405 if(!toFinalState.empty()) << 1047 + mass_out); 1406 { << 1048 G4cout << " current/final a,z " << currentA << " " << currentZ << " "<< finalA<< " "<< finalZ 1407 theFinalState.insert(theFinalState.ce << 1049 << " delta-mass " << delta<<G4endl; 1408 toFinalState.cbegin(),toFinal << 1050 final+=delta; 1409 std::vector<G4KineticTrack *>::iterat << 1051 mass_out = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(finalZ,finalA); 1410 for(auto iter1=toFinalState.cbegin(); << 1052 G4cout << " initE/ E_out/ Mfinal/ Excit " << currentInitialEnergy 1411 { << 1053 << " " << final << " " 1412 iter2 = std::find(products->begin << 1054 << mass_out<<" " 1413 if ( iter2 != products->cend() ) << 1055 << currentInitialEnergy - final - mass_out 1414 } << 1056 << G4endl; 1415 theCollisionMgr->RemoveTracksCollisio << 1057 currentInitialEnergy-=final; 1416 } << 1058 #endif 1417 << 1059 1418 //G4cout << " currentA, Z be4: " << curre << 1060 G4int finalBaryon(0); 1419 currentA += finalBaryon-initialBaryon; << 1061 G4int finalCharge(0); 1420 currentZ += finalCharge-initialCharge; << 1062 for(size_t ig=0;ig<products->size();ig++) 1421 //G4cout << " ApplyCollision currentA, Z << 1063 { 1422 << 1064 finalBaryon+=products->operator[](ig)->GetDefinition()->GetBaryonNumber(); 1423 G4KineticTrackVector oldSecondaries; << 1065 finalCharge+=G4lrint(products->operator[](ig)->GetDefinition()->GetPDGCharge()); 1424 oldSecondaries.push_back(primary); << 1066 // secondaries are created inside nucleus 1425 primary->Hit(); << 1067 products->operator[](ig)->SetState(G4KineticTrack::inside); 1426 << 1068 } >> 1069 >> 1070 currentA += finalBaryon-initialBaryon; >> 1071 currentZ += finalCharge-initialCharge; >> 1072 >> 1073 G4KineticTrackVector oldSecondaries; >> 1074 oldSecondaries.push_back(primary); 1427 #ifdef debug_G4BinaryCascade 1075 #ifdef debug_G4BinaryCascade 1428 if ( (finalBaryon-initialBaryon-lateBaryo << 1076 if ( (finalBaryon-initialBaryon) != 0 || (finalCharge-initialCharge) != 0 ) 1429 { << 1077 { 1430 G4cout << "G4BinaryCascade: Error in 1078 G4cout << "G4BinaryCascade: Error in Balancing: " << G4endl; 1431 G4cout << "initial/final baryon numbe 1079 G4cout << "initial/final baryon number, initial/final Charge " 1432 << initialBaryon <<" "<< fina << 1080 << initialBaryon <<" "<< finalBaryon <<" " 1433 << initialCharge <<" "<< fina << 1081 << initialCharge <<" "<< finalCharge <<" " 1434 << " in Collision type: "<< t << 1082 << " in Collision type: "<< typeid(*collision->GetGenerator()).name() 1435 << ", with number of products << 1083 << ", with number of products: "<< products->size() <<G4endl; 1436 G4cout << G4endl<<"Initial condition << 1084 G4cout << G4endl<<"Initial condition are these:"<<G4endl; 1437 G4cout << "proj: "<<collision->GetPri << 1085 G4cout << "proj: "<<collision->GetPrimary()->GetDefinition()->GetParticleName()<<G4endl; 1438 for(std::size_t it=0; it<collision->G << 1086 for(size_t it=0; it<collision->GetTargetCollection().size(); it++) 1439 { << 1087 { 1440 G4cout << "targ: " << 1088 G4cout << "targ: " 1441 <<collision->GetTargetCol << 1089 <<collision->GetTargetCollection()[it]->GetDefinition()->GetParticleName()<<G4endl; 1442 } << 1090 } 1443 PrintKTVector(&collision->GetTargetCo << 1091 PrintKTVector(&collision->GetTargetCollection(),std::string(" Target particles")); 1444 G4cout << G4endl<<G4endl; << 1092 G4cout << G4endl<<G4endl; 1445 } << 1093 } 1446 #endif << 1094 #endif 1447 << 1095 1448 G4KineticTrackVector oldTarget = collisio << 1096 G4KineticTrackVector oldTarget = collision->GetTargetCollection(); 1449 for(std::size_t ii=0; ii< oldTarget.size( << 1097 primary->Hit(); 1450 { << 1098 for(size_t ii=0; ii< oldTarget.size(); ii++) 1451 oldTarget[ii]->Hit(); << 1099 { 1452 } << 1100 oldTarget[ii]->Hit(); 1453 << 1101 } 1454 UpdateTracksAndCollisions(&oldSecondaries << 1102 1455 std::for_each(oldSecondaries.cbegin(), ol << 1103 debug.push_back("=======> we have hit nucleons <======="); 1456 std::for_each(oldTarget.cbegin(), oldTarg << 1104 >> 1105 UpdateTracksAndCollisions(&oldSecondaries, &oldTarget, products); >> 1106 std::for_each(oldSecondaries.begin(), oldSecondaries.end(), Delete<G4KineticTrack>()); >> 1107 std::for_each(oldTarget.begin(), oldTarget.end(), Delete<G4KineticTrack>()); 1457 1108 1458 delete products; << 1109 delete products; 1459 return true; << 1110 return true; 1460 } 1111 } 1461 1112 1462 1113 1463 //------------------------------------------- 1114 //---------------------------------------------------------------------------- 1464 G4bool G4BinaryCascade::Absorb() 1115 G4bool G4BinaryCascade::Absorb() 1465 //------------------------------------------- 1116 //---------------------------------------------------------------------------- 1466 { 1117 { 1467 // Do it in two step: cannot change theSe << 1118 // Do it in two step: cannot change theSecondaryList inside the first loop. 1468 G4Absorber absorber(theCutOnPAbsorb); << 1119 G4Absorber absorber(theCutOnPAbsorb); 1469 << 1470 // Build the vector of G4KineticTracks th << 1471 G4KineticTrackVector absorbList; << 1472 std::vector<G4KineticTrack *>::const_iter << 1473 // PrintKTVector(&theSecondaryList, " te << 1474 for(iter = theSecondaryList.cbegin(); << 1475 iter != theSecondaryList.cend(); << 1476 { << 1477 G4KineticTrack * kt = *iter; << 1478 if(kt->GetState() == G4KineticTrack:: << 1479 { << 1480 if(absorber.WillBeAbsorbed(*kt)) << 1481 { << 1482 absorbList.push_back(kt); << 1483 } << 1484 } << 1485 } << 1486 1120 1487 if(absorbList.empty()) << 1121 // Build the vector of G4KineticTracks that must be absorbed 1488 return false; << 1122 G4KineticTrackVector absorbList; 1489 << 1123 std::vector<G4KineticTrack *>::iterator iter; 1490 G4KineticTrackVector toDelete; << 1124 for(iter = theSecondaryList.begin(); 1491 for(iter = absorbList.cbegin(); iter != a << 1125 iter != theSecondaryList.end(); ++iter) 1492 { << 1126 { 1493 G4KineticTrack * kt = *iter; << 1127 G4KineticTrack * kt = *iter; 1494 if(!absorber.FindAbsorbers(*kt, theTa << 1128 if(kt->GetState() == G4KineticTrack::inside)// absorption happens only inside the nucleus 1495 throw G4HadronicException(__FILE_ << 1129 { >> 1130 if(absorber.WillBeAbsorbed(*kt)) >> 1131 { >> 1132 absorbList.push_back(kt); >> 1133 } >> 1134 } >> 1135 } 1496 1136 1497 if(!absorber.FindProducts(*kt)) << 1137 if(absorbList.empty()) 1498 throw G4HadronicException(__FILE_ << 1138 return false; 1499 1139 1500 G4KineticTrackVector * products = abs << 1140 G4KineticTrackVector toDelete; 1501 G4int maxLoopCount = 1000; << 1141 for(iter = absorbList.begin(); iter != absorbList.end(); ++iter) 1502 while(!CheckPauliPrinciple(products) << 1142 { 1503 { << 1143 G4KineticTrack * kt = *iter; 1504 ClearAndDestroy(products); << 1144 if(!absorber.FindAbsorbers(*kt, theTargetList)) 1505 if(!absorber.FindProducts(*kt)) << 1145 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1506 throw G4HadronicException(__F << 1146 1507 "G4BinaryCascade::Abs << 1147 if(!absorber.FindProducts(*kt)) 1508 } << 1148 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1509 if ( --maxLoopCount < 0 ) throw G4Hadro << 1149 1510 // ------ debug << 1150 G4KineticTrackVector * products = absorber.GetProducts(); 1511 // G4cerr << "Absorb CheckPauliPri << 1151 // ------ debug 1512 // ------ end debug << 1152 G4int count = 0; 1513 G4KineticTrackVector toRemove; // bu << 1153 // ------ end debug 1514 toRemove.push_back(kt); << 1154 while(!CheckPauliPrinciple(products)) 1515 toDelete.push_back(kt); // delete th << 1155 { 1516 G4KineticTrackVector * absorbers = ab << 1156 // ------ debug 1517 UpdateTracksAndCollisions(&toRemove, << 1157 count++; 1518 ClearAndDestroy(absorbers); << 1158 // ------ end debug 1519 } << 1159 ClearAndDestroy(products); 1520 ClearAndDestroy(&toDelete); << 1160 if(!absorber.FindProducts(*kt)) 1521 return true; << 1161 throw G4HadronicException(__FILE__, __LINE__, >> 1162 "G4BinaryCascade::Absorb(): Cannot absorb a particle."); >> 1163 } >> 1164 // ------ debug >> 1165 // G4cerr << "Absorb CheckPauliPrinciple count= " << count << G4endl; >> 1166 // ------ end debug >> 1167 G4KineticTrackVector toRemove; // build a vector for UpdateTrack... >> 1168 toRemove.push_back(kt); >> 1169 toDelete.push_back(kt); // delete the track later >> 1170 G4KineticTrackVector * absorbers = absorber.GetAbsorbers(); >> 1171 UpdateTracksAndCollisions(&toRemove, absorbers, products); >> 1172 ClearAndDestroy(absorbers); >> 1173 } >> 1174 ClearAndDestroy(&toDelete); >> 1175 return true; 1522 } 1176 } 1523 1177 1524 1178 1525 1179 1526 // Capture all p and n with Energy < theCutOn 1180 // Capture all p and n with Energy < theCutOnP 1527 //------------------------------------------- 1181 //---------------------------------------------------------------------------- 1528 G4bool G4BinaryCascade::Capture(G4bool verbos 1182 G4bool G4BinaryCascade::Capture(G4bool verbose) 1529 //------------------------------------------- 1183 //---------------------------------------------------------------------------- 1530 { 1184 { 1531 G4KineticTrackVector captured; << 1185 G4KineticTrackVector captured; 1532 G4bool capture = false; << 1186 G4bool capture = false; 1533 std::vector<G4KineticTrack *>::const_iter << 1187 std::vector<G4KineticTrack *>::iterator i; 1534 << 1188 1535 G4RKPropagation * RKprop=(G4RKPropagation << 1189 G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; 1536 << 1190 1537 G4double capturedEnergy = 0; << 1191 G4double capturedEnergy = 0; 1538 G4int particlesAboveCut=0; << 1192 G4int particlesAboveCut=0; 1539 G4int particlesBelowCut=0; << 1193 G4int particlesBelowCut=0; 1540 if ( verbose ) G4cout << " Capture: secon << 1194 if ( verbose ) G4cout << " Capture: secondaries " << theSecondaryList.size() << G4endl; 1541 for(i = theSecondaryList.cbegin(); i != t << 1195 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1542 { << 1196 { 1543 G4KineticTrack * kt = *i; << 1197 G4KineticTrack * kt = *i; 1544 if (verbose) G4cout << "Capture posit << 1198 if (verbose) G4cout << "Capture position, radius, state " <<kt->GetPosition().mag()<<" "<<theOuterRadius<<" "<<kt->GetState()<<G4endl; 1545 if(kt->GetState() == G4KineticTrack:: << 1199 if(kt->GetState() == G4KineticTrack::inside) // capture happens only inside the nucleus 1546 { << 1200 { 1547 if((kt->GetDefinition() == G4Prot << 1201 if((kt->GetDefinition() == G4Proton::Proton()) || 1548 (kt->GetDefinition() == G << 1202 (kt->GetDefinition() == G4Neutron::Neutron())) 1549 { << 1203 { 1550 //GF cut on kinetic energy << 1204 //GF cut on kinetic energy if(kt->Get4Momentum().vect().mag() >= theCutOnP) 1551 G4double field=RKprop->GetFie << 1205 G4double field=RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 1552 -RKprop->GetBarr << 1206 -RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 1553 G4double energy= kt->Get4Mome << 1207 G4double energy= kt->Get4Momentum().e() - kt->GetActualMass() + field; 1554 if (verbose ) G4cout << "Capt << 1208 if (verbose ) G4cout << "Capture: .e(), mass, field, energy" << kt->Get4Momentum().e() <<" "<<kt->GetActualMass()<<" "<<field<<" "<<energy<< G4endl; 1555 // if( energy < theCutOnP ) << 1209 // if( energy < theCutOnP ) 1556 // { << 1210 // { 1557 capturedEnergy+=energy; << 1211 capturedEnergy+=energy; 1558 ++particlesBelowCut; << 1212 ++particlesBelowCut; 1559 // } else << 1213 // } else 1560 // { << 1214 // { 1561 // ++particlesAboveCut; << 1215 // ++particlesAboveCut; 1562 // } << 1216 // } 1563 } << 1217 } 1564 } << 1218 } 1565 } << 1219 } 1566 if (verbose) G4cout << "Capture particles << 1220 if (verbose) G4cout << "Capture particlesAboveCut,particlesBelowCut, capturedEnergy,capturedEnergy/particlesBelowCut <? 0.2*theCutOnP " 1567 << particlesAboveCut << " " << pa << 1221 << particlesAboveCut << " " << particlesBelowCut << " " << capturedEnergy 1568 << " " << G4endl; << 1222 << " " << capturedEnergy/particlesBelowCut << " " << 0.2*theCutOnP << G4endl; 1569 // << " " << (particlesBelowCut>0) ? (capt << 1223 // if(particlesAboveCut==0 && particlesBelowCut>0 && capturedEnergy/particlesBelowCut<0.2*theCutOnP) 1570 // if(particlesAboveCut==0 && particlesB << 1224 if(capturedEnergy/particlesBelowCut<0.2*theCutOnP) 1571 if(particlesBelowCut>0 && capturedEnergy/ << 1225 { >> 1226 capture=true; >> 1227 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1572 { 1228 { 1573 capture=true; << 1229 G4KineticTrack * kt = *i; 1574 for(i = theSecondaryList.cbegin(); i << 1230 if(kt->GetState() == G4KineticTrack::inside) // capture happens only inside the nucleus >> 1231 { >> 1232 if((kt->GetDefinition() == G4Proton::Proton()) || >> 1233 (kt->GetDefinition() == G4Neutron::Neutron())) 1575 { 1234 { 1576 G4KineticTrack * kt = *i; << 1235 captured.push_back(kt); 1577 if(kt->GetState() == G4KineticTra << 1236 kt->Hit(); // 1578 { << 1237 theCapturedList.push_back(kt); 1579 if((kt->GetDefinition() == G4 << 1238 } 1580 (kt->GetDefinition() << 1239 } 1581 { << 1582 captured.push_back(kt); << 1583 kt->Hit(); // << 1584 theCapturedList.push_back << 1585 } << 1586 } << 1587 } << 1588 UpdateTracksAndCollisions(&captured, << 1589 } 1240 } >> 1241 UpdateTracksAndCollisions(&captured, NULL, NULL); >> 1242 } 1590 1243 1591 return capture; << 1244 return capture; 1592 } 1245 } 1593 1246 1594 1247 1595 //------------------------------------------- 1248 //---------------------------------------------------------------------------- 1596 G4bool G4BinaryCascade::CheckPauliPrinciple(G 1249 G4bool G4BinaryCascade::CheckPauliPrinciple(G4KineticTrackVector * products) 1597 //------------------------------------------- 1250 //---------------------------------------------------------------------------- 1598 { 1251 { 1599 G4int A = the3DNucleus->GetMassNumber(); << 1252 G4int A = the3DNucleus->GetMassNumber(); 1600 G4int Z = the3DNucleus->GetCharge(); << 1253 G4int Z = the3DNucleus->GetCharge(); 1601 << 1602 G4FermiMomentum fermiMom; << 1603 fermiMom.Init(A, Z); << 1604 1254 1605 const G4VNuclearDensity * density=the3DNu << 1255 G4FermiMomentum fermiMom; >> 1256 fermiMom.Init(A, Z); 1606 1257 1607 G4KineticTrackVector::const_iterator i; << 1258 const G4VNuclearDensity * density=the3DNucleus->GetNuclearDensity(); 1608 const G4ParticleDefinition * definition; << 1609 1259 1610 // ------ debug << 1260 G4KineticTrackVector::iterator i; 1611 G4bool myflag = true; << 1261 G4ParticleDefinition * definition; 1612 // ------ end debug << 1262 1613 // G4ThreeVector xpos(0); << 1263 // ------ debug 1614 for(i = products->cbegin(); i != products << 1264 G4bool myflag = true; 1615 { << 1265 // ------ end debug 1616 definition = (*i)->GetDefinition(); << 1266 // G4ThreeVector xpos(0); 1617 if((definition == G4Proton::Proton()) << 1267 for(i = products->begin(); i != products->end(); ++i) 1618 (definition == G4Neutron::Neu << 1268 { 1619 { << 1269 definition = (*i)->GetDefinition(); 1620 G4ThreeVector pos = (*i)->GetPosi << 1270 if((definition == G4Proton::Proton()) || 1621 G4double d = density->GetDensity( << 1271 (definition == G4Neutron::Neutron())) 1622 // energy correspondiing to fermi << 1272 { 1623 G4double eFermi = std::sqrt( sqr( << 1273 G4ThreeVector pos = (*i)->GetPosition(); 1624 if( definition == G4Proton::Proto << 1274 G4double d = density->GetDensity(pos); 1625 { << 1275 // energy correspondiing to fermi momentum 1626 eFermi -= the3DNucleus->Coulo << 1276 G4double eFermi = std::sqrt( sqr(fermiMom.GetFermiMomentum(d)) + (*i)->Get4Momentum().mag2() ); 1627 } << 1277 if( definition == G4Proton::Proton() ) 1628 G4LorentzVector mom = (*i)->Get4M << 1278 { 1629 // ------ debug << 1279 eFermi -= the3DNucleus->CoulombBarrier(); 1630 /* << 1280 } 1631 * G4cout << "p:[" << (1/M << 1281 G4LorentzVector mom = (*i)->Get4Momentum(); 1632 * << (1/MeV)*mom.z() << 1282 // ------ debug 1633 * << (1/MeV)*mom.vect << 1283 /* 1634 * << (1/MeV)*mom.mag( << 1284 * G4cout << "p:[" << (1/MeV)*mom.x() << " " << (1/MeV)*mom.y() << " " 1635 * << (1/fermi)*pos.x( << 1285 * << (1/MeV)*mom.z() << "] |p3|:" 1636 * << (1/fermi)*pos.z( << 1286 * << (1/MeV)*mom.vect().mag() << " E:" << (1/MeV)*mom.t() << " ] m: " 1637 * << (1/fermi)*(pos-x << 1287 * << (1/MeV)*mom.mag() << " pos[" 1638 * << (1/MeV)*p << G4e << 1288 * << (1/fermi)*pos.x() << " "<< (1/fermi)*pos.y() << " " 1639 * xpos=pos; << 1289 * << (1/fermi)*pos.z() << "] |Dpos|: " 1640 */ << 1290 * << (1/fermi)*(pos-xpos).mag() << " Pfermi:" 1641 // ------ end debug << 1291 * << (1/MeV)*p << G4endl; 1642 if(mom.e() < eFermi ) << 1292 * xpos=pos; 1643 { << 1293 */ 1644 // ------ debug << 1294 // ------ end debug 1645 myflag = false; << 1295 if(mom.e() < eFermi ) 1646 // ------ end debug << 1296 { 1647 // return false; << 1297 // ------ debug 1648 } << 1298 myflag = false; 1649 } << 1299 // ------ end debug 1650 } << 1300 // return false; 1651 #ifdef debug_BIC_CheckPauli << 1301 } 1652 if ( myflag ) << 1302 } 1653 { << 1303 } 1654 for(i = products->cbegin(); i != prod << 1304 #ifdef debug_BIC_CheckPauli 1655 { << 1305 if ( myflag ) 1656 definition = (*i)->GetDefinition( << 1306 { 1657 if((definition == G4Proton::Proto << 1307 for(i = products->begin(); i != products->end(); ++i) 1658 (definition == G4Neutron: << 1308 { 1659 { << 1309 definition = (*i)->GetDefinition(); 1660 G4ThreeVector pos = (*i)->Get << 1310 if((definition == G4Proton::Proton()) || 1661 G4double d = density->GetDens << 1311 (definition == G4Neutron::Neutron())) 1662 G4double pFermi = fermiMom.Ge << 1312 { 1663 G4LorentzVector mom = (*i)->G << 1313 G4ThreeVector pos = (*i)->GetPosition(); 1664 G4double field =((G4RKPropaga << 1314 G4double d = density->GetDensity(pos); 1665 if ( mom.e()-mom.mag()+field << 1315 G4double pFermi = fermiMom.GetFermiMomentum(d); 1666 { << 1316 G4LorentzVector mom = (*i)->Get4Momentum(); 1667 G4cout << "momentum probl << 1317 G4double field =((G4RKPropagation*)thePropagator)->GetField(definition->GetPDGEncoding(),pos); 1668 << " mom, mom.m " << 1318 if ( mom.e()-mom.mag()+field > 160*MeV ) 1669 << " field " << f << 1319 { 1670 } << 1320 G4cout << "momentum problem pFermi=" << pFermi 1671 } << 1321 << " mom, mom.m " << mom << " " << mom.mag() 1672 } << 1322 << " field " << field << G4endl; 1673 } << 1323 } 1674 #endif << 1324 } >> 1325 } >> 1326 } >> 1327 #endif 1675 1328 1676 return myflag; << 1329 return myflag; 1677 } 1330 } 1678 1331 1679 //------------------------------------------- 1332 //---------------------------------------------------------------------------- 1680 void G4BinaryCascade::StepParticlesOut() 1333 void G4BinaryCascade::StepParticlesOut() 1681 //------------------------------------------- 1334 //---------------------------------------------------------------------------- 1682 { 1335 { 1683 G4int counter=0; << 1336 G4int counter=0; 1684 G4int countreset=0; << 1337 G4int countreset=0; 1685 //G4cout << " nucl. Radius " << radius << << 1338 //G4cout << " nucl. Radius " << radius << G4endl; 1686 // G4cerr <<"pre-while- theSecondaryList << 1339 // G4cerr <<"pre-while- theSecondaryList "<<G4endl; 1687 while( theSecondaryList.size() > 0 ) << 1340 while( theSecondaryList.size() > 0 ) 1688 << 1341 { 1689 { << 1342 G4int nsec=0; 1690 G4double minTimeStep = 1.e-12*ns; / << 1343 G4double minTimeStep = 1.e-12*ns; // about 30*fermi/(0.1*c_light);1.e-12*ns 1691 / << 1344 // i.e. a big step 1692 for(auto i = theSecondaryList.cbegin( << 1345 std::vector<G4KineticTrack *>::iterator i; 1693 { << 1346 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1694 G4KineticTrack * kt = *i; << 1347 { 1695 if( kt->GetState() == G4KineticTr << 1348 G4KineticTrack * kt = *i; 1696 { << 1349 if( kt->GetState() == G4KineticTrack::inside ) 1697 G4double tStep(0), tdummy(0); << 1350 { 1698 G4bool intersect = << 1351 nsec++; 1699 ((G4RKPropagation*)th << 1352 G4double tStep(0), tdummy(0); >> 1353 ((G4RKPropagation*)thePropagator)->GetSphereIntersectionTimes(kt,tdummy,tStep); 1700 #ifdef debug_BIC_StepParticlesOut 1354 #ifdef debug_BIC_StepParticlesOut 1701 G4cout << " minTimeStep, tSte << 1355 G4cout << " minTimeStep, tStep Particle " <<minTimeStep << " " <<tStep 1702 << " " <<kt->GetDefin << 1356 << " " <<kt->GetDefinition()->GetParticleName() 1703 << " 4mom " << kt->Ge << 1357 << " 4mom " << kt->GetTrackingMomentum()<<G4endl; 1704 if ( ! intersect ); << 1358 #endif 1705 { << 1359 if(tStep<minTimeStep && tStep> 0 ) 1706 PrintKTVector(&theSeconda << 1360 { 1707 throw G4HadronicException << 1361 minTimeStep = tStep; 1708 } << 1362 } 1709 #endif << 1363 } else if ( kt->GetState() != G4KineticTrack::outside ){ 1710 if(intersect && tStep<minTime << 1364 PrintKTVector(&theSecondaryList, std::string(" state ERROR.....")); 1711 { << 1365 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::StepParticlesOut() particle not in nucleus"); 1712 minTimeStep = tStep; << 1366 } 1713 } << 1367 } 1714 } else if ( kt->GetState() != G4K << 1368 minTimeStep *= 1.2; 1715 PrintKTVector(&theSecondaryLi << 1369 // G4cerr << "CaptureCount = "<<counter<<" "<<nsec<<" "<<minTimeStep<<" "<<1*ns<<G4endl; 1716 throw G4HadronicException(__F << 1370 G4double timeToCollision=DBL_MAX; 1717 } << 1371 G4CollisionInitialState * nextCollision=0; 1718 } << 1372 if(theCollisionMgr->Entries() > 0) 1719 minTimeStep *= 1.2; << 1373 { 1720 G4double timeToCollision=DBL_MAX; << 1374 nextCollision = theCollisionMgr->GetNextCollision(); 1721 G4CollisionInitialState * nextCollisi << 1375 timeToCollision = nextCollision->GetCollisionTime()-theCurrentTime; 1722 if(theCollisionMgr->Entries() > 0) << 1376 } 1723 { << 1377 if ( timeToCollision > minTimeStep ) 1724 nextCollision = theCollisionMgr-> << 1378 { 1725 timeToCollision = nextCollision-> << 1379 DoTimeStep(minTimeStep); 1726 // G4cout << " NextCollision * << 1380 ++counter; 1727 } << 1381 } else 1728 if ( timeToCollision > minTimeStep ) << 1382 { 1729 { << 1383 if (!DoTimeStep(timeToCollision) ) 1730 DoTimeStep(minTimeStep); << 1384 { 1731 ++counter; << 1385 // Check if nextCollision is still valid, ie. partcile did not leave nucleus 1732 } else << 1386 if (theCollisionMgr->GetNextCollision() != nextCollision ) 1733 { << 1387 { 1734 if (!DoTimeStep(timeToCollision) << 1388 nextCollision = 0; 1735 { << 1389 } 1736 // Check if nextCollision is << 1390 } 1737 if (theCollisionMgr->GetNextC << 1391 // G4cerr <<"post- DoTimeStep 3"<<G4endl; 1738 { << 1739 nextCollision = nullptr; << 1740 } << 1741 } << 1742 // G4cerr <<"post- DoTimeStep 3"< << 1743 << 1744 if(nextCollision) << 1745 { << 1746 if ( ApplyCollision(nextColl << 1747 { << 1748 // G4cout << "ApplyCollis << 1749 } else << 1750 { << 1751 theCollisionMgr->RemoveCo << 1752 } << 1753 } << 1754 } << 1755 1392 1756 if(countreset>100) << 1393 if(nextCollision) 1757 { << 1394 { >> 1395 if ( ApplyCollision(nextCollision)) >> 1396 { >> 1397 // G4cout << "ApplyCollision sucess " << G4endl; >> 1398 } else >> 1399 { >> 1400 theCollisionMgr->RemoveCollision(nextCollision); >> 1401 } >> 1402 } >> 1403 } >> 1404 >> 1405 if(countreset>100) >> 1406 { 1758 #ifdef debug_G4BinaryCascade 1407 #ifdef debug_G4BinaryCascade 1759 G4cerr << "G4BinaryCascade.cc: Wa << 1408 G4cerr << "G4BinaryCascade.cc: Warning - aborting looping particle(s)" << G4endl; 1760 PrintKTVector(&theSecondaryList," << 1761 #endif 1409 #endif 1762 1410 1763 // add left secondaries to Final << 1411 // add left secondaries to FinalSate 1764 for (auto iter=theSecondaryList.c << 1412 std::vector<G4KineticTrack *>::iterator iter; 1765 { << 1413 for ( iter =theSecondaryList.begin(); iter != theSecondaryList.end(); ++iter) 1766 theFinalState.push_back(*iter << 1414 { 1767 } << 1415 theFinalState.push_back(*iter); 1768 theSecondaryList.clear(); << 1416 } 1769 << 1417 theSecondaryList.clear(); 1770 break; << 1771 } << 1772 << 1773 if(Absorb()) << 1774 { << 1775 // haveProducts = true; << 1776 // G4cout << "Absorb sucess " << << 1777 } << 1778 << 1779 if(Capture(false)) << 1780 { << 1781 // haveProducts = true; << 1782 #ifdef debug_BIC_StepParticlesOut << 1783 G4cout << "Capture sucess " << G4 << 1784 #endif << 1785 } << 1786 if ( counter > 100 && theCollisionMgr << 1787 { << 1788 #ifdef debug_BIC_StepParticlesOut << 1789 PrintKTVector(&theSecondaryList,s << 1790 #endif << 1791 FindCollisions(&theSecondaryList) << 1792 counter=0; << 1793 ++countreset; << 1794 } << 1795 //G4cout << "currentZ @ end loop " << << 1796 if ( ! currentZ ){ << 1797 // nucleus completely destroyed, << 1798 // products = FillVoidNucleusProdu << 1799 #ifdef debug_BIC_return << 1800 G4cout << "return @ Z=0 after col << 1801 PrintKTVector(&theSecondaryList,s << 1802 G4cout << "theTargetList size: " << 1803 PrintKTVector(&theTargetList,std: << 1804 PrintKTVector(&theCapturedList,st << 1805 << 1806 G4cout << " ExcitE be4 Correct : << 1807 G4cout << " Mom Transfered to nuc << 1808 PrintKTVector(&theFinalState,std: << 1809 // G4cout << "returned products: " << 1810 #endif << 1811 } << 1812 1418 >> 1419 break; 1813 } 1420 } 1814 // G4cerr <<"Finished capture loop "<<G4 << 1815 << 1816 //G4cerr <<"pre- DoTimeStep 4"<<G4endl; << 1817 DoTimeStep(DBL_MAX); << 1818 //G4cerr <<"post- DoTimeStep 4"<<G4endl; << 1819 } << 1820 1421 1821 //------------------------------------------- << 1422 if(Absorb()) 1822 G4double G4BinaryCascade::CorrectShortlivedPr << 1423 { 1823 G4KineticTrack* primary,G4KineticTrac << 1424 // haveProducts = true; 1824 //------------------------------------------- << 1425 // G4cout << "Absorb sucess " << G4endl; 1825 { << 1826 G4double Efermi(0); << 1827 if (primary->GetState() == G4KineticTrack << 1828 G4int PDGcode=primary->GetDefinition( << 1829 Efermi=((G4RKPropagation *)thePropaga << 1830 << 1831 if ( std::abs(PDGcode) > 1000 && PDGc << 1832 { << 1833 Efermi = ((G4RKPropagation *)theP << 1834 G4LorentzVector mom4Primary=prima << 1835 primary->Update4Momentum(mom4Prim << 1836 } << 1837 << 1838 for (auto titer=target_collection.cbe << 1839 { << 1840 const G4ParticleDefinition * aDef << 1841 G4int aCode=aDef->GetPDGEncoding( << 1842 G4ThreeVector aPos=(*titer)->GetP << 1843 Efermi+= ((G4RKPropagation *)theP << 1844 } << 1845 } 1426 } 1846 return Efermi; << 1847 } << 1848 1427 1849 //------------------------------------------- << 1428 if(Capture(false)) 1850 G4bool G4BinaryCascade::CorrectShortlivedFina << 1851 G4double initial_Efermi) << 1852 //------------------------------------------- << 1853 { << 1854 G4double final_Efermi(0); << 1855 G4KineticTrackVector resonances; << 1856 for (auto i =products->cbegin(); i != pro << 1857 { 1429 { 1858 G4int PDGcode=(*i)->GetDefinition()-> << 1430 // haveProducts = true; 1859 // G4cout << " PDGcode, state " << 1431 #ifdef debug_BIC_StepParticlesOut 1860 final_Efermi+=((G4RKPropagation *)the << 1432 G4cout << "Capture sucess " << G4endl; 1861 if ( std::abs(PDGcode) > 1000 && PDGc << 1433 #endif 1862 { << 1863 resonances.push_back(*i); << 1864 } << 1865 } 1434 } 1866 if ( resonances.size() > 0 ) << 1435 if ( counter > 100 && theCollisionMgr->Entries() == 0) // no collision, and stepping a while.... 1867 { 1436 { 1868 G4double delta_Fermi= (initial_Efermi << 1437 #ifdef debug_1_BinaryCascade 1869 for (auto res=resonances.cbegin(); re << 1438 PrintKTVector(&theSecondaryList,std::string("stepping 100 steps")); 1870 { << 1439 #endif 1871 G4LorentzVector mom=(*res)->Get4M << 1440 FindCollisions(&theSecondaryList); 1872 G4double mass2=mom.mag2(); << 1441 counter=0; 1873 G4double newEnergy=mom.e() + delt << 1442 ++countreset; 1874 G4double newEnergy2= newEnergy*ne << 1875 //G4cout << "mom = " << mom <<" n << 1876 if ( newEnergy2 < mass2 ) << 1877 { << 1878 return false; << 1879 } << 1880 G4ThreeVector mom3=std::sqrt(newE << 1881 (*res)->Set4Momentum(G4LorentzVec << 1882 //G4cout << " correct resonan << 1883 // " 3mom from/to " << << 1884 } << 1885 } 1443 } 1886 return true; << 1444 } >> 1445 // G4cerr <<"Finished capture loop "<<G4endl; >> 1446 >> 1447 //G4cerr <<"pre- DoTimeStep 4"<<G4endl; >> 1448 DoTimeStep(DBL_MAX); >> 1449 //G4cerr <<"post- DoTimeStep 4"<<G4endl; >> 1450 >> 1451 1887 } 1452 } 1888 1453 1889 //------------------------------------------- 1454 //---------------------------------------------------------------------------- 1890 void G4BinaryCascade::CorrectFinalPandE() 1455 void G4BinaryCascade::CorrectFinalPandE() 1891 //------------------------------------------- 1456 //---------------------------------------------------------------------------- 1892 // 1457 // 1893 // Modify momenta of outgoing particles. << 1458 // Modify momenta of outgoing particles. 1894 // Assume two body decay, nucleus(@nominal << 1459 // Assume two body decay, nucleus(@nominal mass) + sum of final state particles(SFSP). 1895 // momentum of SFSP shall be less than mome << 1460 // momentum of SFSP shall be less than momentum for two body decay. 1896 // 1461 // 1897 { 1462 { 1898 #ifdef debug_BIC_CorrectFinalPandE 1463 #ifdef debug_BIC_CorrectFinalPandE 1899 G4cerr << "BIC: -CorrectFinalPandE called << 1464 G4cerr << " -CorrectFinalPandE 1" << G4endl; 1900 #endif 1465 #endif 1901 1466 1902 if ( theFinalState.size() == 0 ) return; << 1467 if ( theFinalState.size() == 0 ) return; 1903 << 1904 G4KineticTrackVector::const_iterator i; << 1905 G4LorentzVector pNucleus=GetFinal4Momentu << 1906 if ( pNucleus.e() == 0 ) return; // ch << 1907 #ifdef debug_BIC_CorrectFinalPandE << 1908 G4cerr << " -CorrectFinalPandE 3" << G4en << 1909 #endif << 1910 G4LorentzVector pFinals(0); << 1911 for(i = theFinalState.cbegin(); i != theF << 1912 { << 1913 pFinals += (*i)->Get4Momentum(); << 1914 #ifdef debug_BIC_CorrectFinalPandE << 1915 G4cout <<"CorrectFinalPandE a final " << 1916 << " 4mom " << (*i)->G << 1917 #endif << 1918 } << 1919 #ifdef debug_BIC_CorrectFinalPandE << 1920 G4cout << "CorrectFinalPandE pN pF: " <<p << 1921 #endif << 1922 G4LorentzVector pCM=pNucleus + pFinals; << 1923 1468 1924 G4LorentzRotation toCMS(-pCM.boostVector( << 1925 pFinals *=toCMS; << 1926 #ifdef debug_BIC_CorrectFinalPandE 1469 #ifdef debug_BIC_CorrectFinalPandE 1927 G4cout << "CorrectFinalPandE pCM, CMS pCM << 1470 G4cerr << " -CorrectFinalPandE 2" << G4endl; 1928 G4cout << "CorrectFinal CMS pN pF " <<toC << 1929 <<pFinals << G4endl << 1930 << " nucleus initial mass : " <<G << 1931 <<" massInNucleus m(nucleus) m(fi << 1932 << pFinals.mag() << " " << pCM.ma << 1933 #endif 1471 #endif 1934 1472 1935 G4LorentzRotation toLab = toCMS.inverse() << 1473 G4KineticTrackVector::iterator i; 1936 << 1474 G4LorentzVector pNucleus=GetFinal4Momentum(); 1937 G4double s0 = pCM.mag2(); << 1475 if ( pNucleus.e() == 0 ) return; // check against explicit 0 from GetNucleus4Momentum() 1938 G4double m10 = GetIonMass(currentZ,curren << 1939 G4double m20 = pFinals.mag(); << 1940 if( s0-(m10+m20)*(m10+m20) < 0 ) << 1941 { << 1942 #ifdef debug_BIC_CorrectFinalPandE 1476 #ifdef debug_BIC_CorrectFinalPandE 1943 G4cout << "G4BinaryCascade::CorrectFi << 1477 G4cerr << " -CorrectFinalPandE 3" << G4endl; 1944 << 1945 G4cout << "not enough mass to correct << 1946 << (s0-(m10+m20)*(m10+m20)) < << 1947 << currentA << " " << current << 1948 << m10 << " " << m20 << 1949 << G4endl; << 1950 G4cerr << " -CorrectFinalPandE 4" << << 1951 << 1952 PrintKTVector(&theFinalState," mass p << 1953 #endif 1478 #endif 1954 return; << 1479 G4LorentzVector pFinals(0); 1955 } << 1480 G4int nFinals(0); >> 1481 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) >> 1482 { >> 1483 pFinals += (*i)->Get4Momentum(); >> 1484 ++nFinals; >> 1485 #ifdef debug_BIC_CorrectFinalPandE >> 1486 G4cout <<"CorrectFinalPandE a final " << (*i)->GetDefinition()->GetParticleName() >> 1487 << " 4mom " << (*i)->Get4Momentum()<< G4endl; >> 1488 #endif >> 1489 } >> 1490 #ifdef debug_BIC_CorrectFinalPandE >> 1491 G4cout << "CorrectFinalPandE pN pF: " <<pNucleus << " " <<pFinals << G4endl; >> 1492 #endif >> 1493 G4LorentzVector pCM=pNucleus + pFinals; 1956 1494 1957 // Three momentum in cm system << 1495 G4LorentzRotation toCMS(-pCM.boostVector()); 1958 G4double pInCM = std::sqrt((s0-(m10+m20)* << 1496 pFinals *=toCMS; 1959 #ifdef debug_BIC_CorrectFinalPandE << 1960 G4cout <<" CorrectFinalPandE pInCM new, << 1961 << " " << (pFinals).vect().mag()< << 1962 #endif << 1963 if ( pFinals.vect().mag() > pInCM ) << 1964 { << 1965 G4ThreeVector p3finals=pInCM*pFinals. << 1966 1497 1967 G4double factor=std::max(0.98,pInCM/p << 1968 G4LorentzVector qFinals(0); << 1969 for(i = theFinalState.cbegin(); i != << 1970 { << 1971 // G4ThreeVector p3((toCMS*( << 1972 G4ThreeVector p3(factor*(toCMS*(* << 1973 G4LorentzVector p(p3,std::sqrt((* << 1974 qFinals += p; << 1975 p *= toLab; << 1976 #ifdef debug_BIC_CorrectFinalPandE 1498 #ifdef debug_BIC_CorrectFinalPandE 1977 G4cout << " final p corrected: " << 1499 G4cout << "CorrectFinalPandE pCM, CMS pCM " << pCM << " " <<toCMS*pCM<< G4endl; 1978 #endif << 1500 G4cout << "CorrectFinal CMS pN pF " <<toCMS*pNucleus << " " 1979 (*i)->Set4Momentum(p); << 1501 <<pFinals << G4endl 1980 } << 1502 << " nucleus initial mass : " <<GetFinal4Momentum().mag() 1981 #ifdef debug_BIC_CorrectFinalPandE << 1503 <<" massInNucleus m(nucleus) m(finals) std::sqrt(s): " << massInNucleus << " " <<pNucleus.mag()<< " " 1982 G4cout << "CorrectFinalPandE nucleus << 1504 << pFinals.mag() << " " << pCM.mag() << G4endl; 1983 <<GetFinal4Momentum().mag() < << 1505 #endif 1984 << " CMS pFinals , mag, 3.mag << 1506 1985 G4cerr << " -CorrectFinalPandE 5 " << << 1507 G4LorentzRotation toLab = toCMS.inverse(); 1986 #endif << 1508 >> 1509 G4double s = pCM.mag2(); >> 1510 // G4double m10 = massInNucleus; //pNucleus.mag(); >> 1511 G4double m10 = GetIonMass(currentZ,currentA); >> 1512 G4double m20 = pFinals.mag(); >> 1513 if( s-(m10+m20)*(m10+m20) < 0 ) >> 1514 { >> 1515 #ifdef debug_BIC_CorrectFinalPandE >> 1516 G4cout << "G4BinaryCascade::CorrectFinalPandE() : error! " << G4endl; >> 1517 >> 1518 G4cout << "not enough mass to correct: mass, A,Z, mass(nucl), mass(finals) " >> 1519 << std::sqrt(-s+(m10+m20)*(m10+m20)) << " " >> 1520 << currentA << " " << currentZ << " " >> 1521 << m10 << " " << m20 >> 1522 << G4endl; >> 1523 G4cerr << " -CorrectFinalPandE 4" << G4endl; >> 1524 >> 1525 PrintKTVector(&theFinalState," mass problem"); >> 1526 #endif >> 1527 return; >> 1528 } >> 1529 >> 1530 // Three momentum in cm system >> 1531 G4double pInCM = std::sqrt((s-(m10+m20)*(m10+m20))*(s-(m10-m20)*(m10-m20))/(4.*s)); >> 1532 #ifdef debug_BIC_CorrectFinalPandE >> 1533 G4cout <<" CorrectFinalPandE pInCM new, CURRENT, ratio : " << pInCM >> 1534 << " " << (pFinals).vect().mag()<< " " << pInCM/(pFinals).vect().mag() << G4endl; >> 1535 #endif >> 1536 if ( pFinals.vect().mag() > pInCM ) >> 1537 { >> 1538 G4ThreeVector p3finals=pInCM*pFinals.vect().unit(); >> 1539 >> 1540 // G4ThreeVector deltap=(p3finals - pFinals.vect() ) / nFinals; >> 1541 G4double factor=std::max(0.98,pInCM/pFinals.vect().mag()); // small correction >> 1542 G4LorentzVector qFinals(0); >> 1543 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) >> 1544 { >> 1545 // G4ThreeVector p3((toCMS*(*i)->Get4Momentum()).vect() + deltap); >> 1546 G4ThreeVector p3(factor*(toCMS*(*i)->Get4Momentum()).vect()); >> 1547 G4LorentzVector p(p3,std::sqrt((*i)->Get4Momentum().mag2() + p3.mag2())); >> 1548 qFinals += p; >> 1549 p *= toLab; >> 1550 #ifdef debug_BIC_CorrectFinalPandE >> 1551 G4cout << " final p corrected: " << p << G4endl; >> 1552 #endif >> 1553 (*i)->Set4Momentum(p); 1987 } 1554 } 1988 #ifdef debug_BIC_CorrectFinalPandE << 1555 #ifdef debug_BIC_CorrectFinalPandE 1989 else { G4cerr << " -CorrectFinalPandE 6 - << 1556 G4cout << "CorrectFinalPandE nucleus corrected mass : " << GetFinal4Momentum() << " " 1990 #endif << 1557 <<GetFinal4Momentum().mag() << G4endl 1991 << 1558 << " CMS pFinals , mag, 3.mag : " << qFinals << " " << qFinals.mag() << " " << qFinals.vect().mag()<< G4endl; >> 1559 G4cerr << " -CorrectFinalPandE 5 " << factor << G4endl; >> 1560 #endif >> 1561 } >> 1562 #ifdef debug_BIC_CorrectFinalPandE >> 1563 else { G4cerr << " -CorrectFinalPandE 6 - no correction done" << G4endl; } >> 1564 #endif >> 1565 1992 } 1566 } 1993 1567 1994 //------------------------------------------- 1568 //---------------------------------------------------------------------------- 1995 void G4BinaryCascade::UpdateTracksAndCollisio 1569 void G4BinaryCascade::UpdateTracksAndCollisions( 1996 //----------------------------------- << 1570 //---------------------------------------------------------------------------- 1997 G4KineticTrackVector * oldSecondaries << 1571 G4KineticTrackVector * oldSecondaries, 1998 G4KineticTrackVector * oldTarget, << 1572 G4KineticTrackVector * oldTarget, 1999 G4KineticTrackVector * newSecondaries << 1573 G4KineticTrackVector * newSecondaries) 2000 { << 1574 { 2001 std::vector<G4KineticTrack *>::const_iter << 1575 // G4cout << "Entering ... "<<oldTarget<<G4endl; 2002 << 1576 std::vector<G4KineticTrack *>::iterator iter1, iter2; 2003 // remove old secondaries from the second << 1577 2004 if(oldSecondaries) << 1578 // remove old secondaries from the secondary list >> 1579 if(oldSecondaries) >> 1580 { >> 1581 if(!oldSecondaries->empty()) 2005 { 1582 { 2006 if(!oldSecondaries->empty()) << 1583 for(iter1 = oldSecondaries->begin(); iter1 != oldSecondaries->end(); 2007 { << 1584 ++iter1) 2008 for(auto iter1=oldSecondaries->cb << 1585 { 2009 { << 1586 iter2 = std::find(theSecondaryList.begin(), theSecondaryList.end(), 2010 iter2 = std::find(theSecondar << 1587 *iter1); 2011 if ( iter2 != theSecondaryLis << 1588 theSecondaryList.erase(iter2); 2012 } << 1589 } 2013 theCollisionMgr->RemoveTracksColl << 1590 theCollisionMgr->RemoveTracksCollisions(oldSecondaries); 2014 } << 2015 } 1591 } >> 1592 } 2016 1593 2017 // remove old target from the target list << 1594 // remove old target from the target list 2018 if(oldTarget) << 1595 if(oldTarget) >> 1596 { >> 1597 // G4cout << "################## Debugging 0 "<<G4endl; >> 1598 if(oldTarget->size()!=0) 2019 { 1599 { 2020 // G4cout << "################## Debu << 1600 // G4cout << "################## Debugging 1 "<<oldTarget->size()<<G4endl; 2021 if(oldTarget->size()!=0) << 1601 for(iter1 = oldTarget->begin(); iter1 != oldTarget->end(); ++iter1) 2022 { << 1602 { 2023 << 1603 iter2 = std::find(theTargetList.begin(), theTargetList.end(), 2024 // G4cout << "################## << 1604 *iter1); 2025 for(auto iter1 = oldTarget->cbegi << 1605 theTargetList.erase(iter2); 2026 { << 1606 } 2027 iter2 = std::find(theTargetLi << 1607 theCollisionMgr->RemoveTracksCollisions(oldTarget); 2028 theTargetList.erase(iter2); << 2029 } << 2030 theCollisionMgr->RemoveTracksColl << 2031 } << 2032 } 1608 } >> 1609 } 2033 1610 2034 if(newSecondaries) << 1611 if(newSecondaries) >> 1612 { >> 1613 if(!newSecondaries->empty()) 2035 { 1614 { 2036 if(!newSecondaries->empty()) << 1615 // insert new secondaries in the secondary list 2037 { << 1616 for(iter1 = newSecondaries->begin(); iter1 != newSecondaries->end(); 2038 // insert new secondaries in the << 1617 ++iter1) 2039 for(auto iter1 = newSecondaries-> << 1618 { 2040 { << 1619 theSecondaryList.push_back(*iter1); 2041 theSecondaryList.push_back(*i << 1620 } 2042 if ((*iter1)->GetState() == G << 1621 // look for collisions of new secondaries 2043 { << 1622 FindCollisions(newSecondaries); 2044 PrintKTVector(*iter1, "und << 2045 } << 2046 << 2047 << 2048 } << 2049 // look for collisions of new sec << 2050 FindCollisions(newSecondaries); << 2051 } << 2052 } 1623 } 2053 // G4cout << "Exiting ... "<<oldTarget<<G << 1624 } >> 1625 // G4cout << "Exiting ... "<<oldTarget<<G4endl; 2054 } 1626 } 2055 1627 2056 1628 2057 class SelectFromKTV 1629 class SelectFromKTV 2058 { 1630 { 2059 private: << 1631 private: 2060 G4KineticTrackVector * ktv; << 1632 G4KineticTrackVector * ktv; 2061 G4KineticTrack::CascadeState wanted_state << 1633 G4KineticTrack::CascadeState wanted_state; 2062 public: << 1634 public: 2063 SelectFromKTV(G4KineticTrackVector * out, << 1635 SelectFromKTV(G4KineticTrackVector * out, G4KineticTrack::CascadeState astate) 2064 : << 1636 : 2065 ktv(out), wanted_state(astate) << 1637 ktv(out), wanted_state(astate) 2066 {}; << 1638 {}; 2067 void operator() (G4KineticTrack *& kt) co << 1639 void operator() (G4KineticTrack *& kt) const 2068 { << 1640 { 2069 if ( (kt)->GetState() == wanted_state << 1641 if ( (kt)->GetState() == wanted_state ) ktv->push_back(kt); 2070 }; << 1642 }; 2071 }; 1643 }; 2072 << 1644 2073 1645 2074 1646 2075 //------------------------------------------- 1647 //---------------------------------------------------------------------------- 2076 G4bool G4BinaryCascade::DoTimeStep(G4double t 1648 G4bool G4BinaryCascade::DoTimeStep(G4double theTimeStep) 2077 //------------------------------------------- 1649 //---------------------------------------------------------------------------- 2078 { 1650 { 2079 1651 2080 #ifdef debug_BIC_DoTimeStep 1652 #ifdef debug_BIC_DoTimeStep 2081 G4ping debug("debug_G4BinaryCascade"); << 1653 G4ping debug("debug_G4BinaryCascade"); 2082 debug.push_back("======> DoTimeStep 1"); << 1654 debug.push_back("======> DoTimeStep 1"); debug.dump(); 2083 G4cerr <<"G4BinaryCascade::DoTimeStep: en << 1655 G4cerr <<"G4BinaryCascade::DoTimeStep: enter "<< theTimeStep << G4endl; 2084 << " , time="<<theCurrentTime << << 1656 PrintKTVector(&theSecondaryList, std::string("DoTimeStep - theSecondaryList")); 2085 PrintKTVector(&theSecondaryList, std::str << 1657 // PrintKTVector(&theTargetList, std::string("DoTimeStep - theTargetList")); 2086 //PrintKTVector(&theTargetList, std::stri << 1658 #endif 2087 #endif << 1659 2088 << 1660 G4bool success=true; 2089 G4bool success=true; << 1661 std::vector<G4KineticTrack *>::iterator iter; 2090 std::vector<G4KineticTrack *>::const_iter << 1662 // Count particles in nucleus 2091 << 1663 #ifdef debug_BIC_DoTimeStep 2092 G4KineticTrackVector * kt_outside = new G << 1664 G4int secondaryBarions=0; 2093 std::for_each( theSecondaryList.begin(),t << 1665 G4int secondaryCharge=0; 2094 SelectFromKTV(kt_outside,G4Kineti << 1666 G4double secondaryMass=0; 2095 //PrintKTVector(kt_outside, std::string(" << 1667 #endif 2096 << 1668 2097 G4KineticTrackVector * kt_inside = new G4 << 1669 G4KineticTrackVector * kt_outside = new G4KineticTrackVector; 2098 std::for_each( theSecondaryList.begin(),t << 1670 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2099 SelectFromKTV(kt_inside, G4Kineti << 1671 SelectFromKTV(kt_outside,G4KineticTrack::outside)); 2100 // PrintKTVector(kt_inside, std::string( << 1672 // PrintKTVector(kt_outside, std::string("DoTimeStep - found outside")); 2101 //----- << 1673 >> 1674 G4KineticTrackVector * kt_inside = new G4KineticTrackVector; >> 1675 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), >> 1676 SelectFromKTV(kt_inside, G4KineticTrack::inside)); >> 1677 // PrintKTVector(kt_inside, std::string("DoTimeStep - found inside")); >> 1678 //----- 2102 G4KineticTrackVector dummy; // needed f 1679 G4KineticTrackVector dummy; // needed for re-usability 2103 #ifdef debug_BIC_DoTimeStep << 1680 #ifdef debug_BIC_DoTimeStep 2104 G4cout << "NOW WE ARE ENTERING THE TRANSP 1681 G4cout << "NOW WE ARE ENTERING THE TRANSPORT"<<G4endl; 2105 #endif << 1682 #endif 2106 << 2107 // =================== Here we move the p << 2108 << 2109 thePropagator->Transport(theSecondaryList << 2110 1683 2111 // =================== Here we move the p << 1684 // =================== Here we move the particles =================== 2112 1685 2113 //------ << 1686 thePropagator->Transport(theSecondaryList, dummy, theTimeStep); >> 1687 >> 1688 // =================== Here we move the particles =================== 2114 1689 2115 theMomentumTransfer += thePropagator->Get << 1690 //------ 2116 #ifdef debug_BIC_DoTimeStep 1691 #ifdef debug_BIC_DoTimeStep 2117 G4cout << "DoTimeStep : theMomentumTransf << 1692 PrintKTVector(&theSecondaryList, std::string("DoTimeStep - secondaries")); 2118 PrintKTVector(&theSecondaryList, std::str << 1693 debug.push_back("======> DoTimeStep 1.1.1"); debug.dump(); 2119 #endif 1694 #endif 2120 1695 2121 //_DebugEpConservation(" after stepping") << 1696 theMomentumTransfer += thePropagator->GetMomentumTransfer(); 2122 << 2123 // Partclies which went INTO nucleus << 2124 << 2125 G4KineticTrackVector * kt_gone_in = new G << 2126 std::for_each( kt_outside->begin(),kt_out << 2127 SelectFromKTV(kt_gone_in,G4Kineti << 2128 // PrintKTVector(kt_gone_in, std::string << 2129 << 2130 << 2131 // Partclies which went OUT OF nucleus << 2132 G4KineticTrackVector * kt_gone_out = new << 2133 std::for_each( kt_inside->begin(),kt_insi << 2134 SelectFromKTV(kt_gone_out, G4Kine << 2135 << 2136 // PrintKTVector(kt_gone_out, std::strin << 2137 << 2138 G4KineticTrackVector *fail=CorrectBarions << 2139 << 2140 if ( fail ) << 2141 { << 2142 // some particle(s) supposed to enter << 2143 kt_gone_in->clear(); << 2144 std::for_each( kt_outside->begin(),kt << 2145 SelectFromKTV(kt_gone_in,G4Ki << 2146 << 2147 kt_gone_out->clear(); << 2148 std::for_each( kt_inside->begin(),kt_ << 2149 SelectFromKTV(kt_gone_out, G4 << 2150 << 2151 #ifdef debug_BIC_DoTimeStep << 2152 PrintKTVector(fail,std::string(" Fail << 2153 PrintKTVector(kt_gone_in, std::string << 2154 PrintKTVector(kt_gone_out, std::strin << 2155 #endif << 2156 delete fail; << 2157 } << 2158 << 2159 // Add tracks missing nucleus and tracks << 2160 std::for_each( kt_outside->begin(),kt_out << 2161 SelectFromKTV(kt_gone_out,G4Kinet << 2162 //PrintKTVector(kt_gone_out, std::string( << 2163 std::for_each( kt_outside->begin(),kt_out << 2164 SelectFromKTV(kt_gone_out,G4Kinet << 2165 << 2166 #ifdef debug_BIC_DoTimeStep 1697 #ifdef debug_BIC_DoTimeStep 2167 PrintKTVector(kt_gone_out, std::string("a << 1698 G4cout << "DoTimeStep : theMomentumTransfer = " << theMomentumTransfer << G4endl; 2168 #endif 1699 #endif >> 1700 >> 1701 // Partclies which went INTO nucleus >> 1702 >> 1703 G4KineticTrackVector * kt_gone_in = new G4KineticTrackVector; >> 1704 std::for_each( kt_outside->begin(),kt_outside->end(), >> 1705 SelectFromKTV(kt_gone_in,G4KineticTrack::inside)); >> 1706 // PrintKTVector(kt_gone_in, std::string("DoTimeStep - gone in")); >> 1707 >> 1708 //PrintKTVector(&theSecondaryList,std::string("aft trsprt.....")); >> 1709 >> 1710 // Partclies which went OUT OF nucleus >> 1711 G4KineticTrackVector * kt_gone_out = new G4KineticTrackVector; >> 1712 std::for_each( kt_inside->begin(),kt_inside->end(), >> 1713 SelectFromKTV(kt_gone_out, G4KineticTrack::gone_out)); >> 1714 >> 1715 // PrintKTVector(kt_gone_out, std::string("DoTimeStep - gone out")); >> 1716 G4KineticTrackVector *fail=CorrectBarionsOnBoundary(kt_gone_in,kt_gone_out); >> 1717 if ( fail ) >> 1718 { >> 1719 // some particle(s) supposed to leave was captured by the correction >> 1720 // PrintKTVector(fail,std::string(" Failed to go out -> captured")); >> 1721 delete fail; >> 1722 kt_gone_out->clear(); >> 1723 std::for_each( kt_inside->begin(),kt_inside->end(), >> 1724 SelectFromKTV(kt_gone_out, G4KineticTrack::gone_out)); >> 1725 // PrintKTVector(kt_gone_out, std::string("recreated kt_gone_out")); >> 1726 >> 1727 } >> 1728 >> 1729 // Add tracks missing nucleus and tracks going straight though to addFinals >> 1730 std::for_each( kt_outside->begin(),kt_outside->end(), >> 1731 SelectFromKTV(kt_gone_out,G4KineticTrack::miss_nucleus)); >> 1732 std::for_each( kt_outside->begin(),kt_outside->end(), >> 1733 SelectFromKTV(kt_gone_out,G4KineticTrack::gone_out)); >> 1734 >> 1735 #ifdef debug_BIC_DoTimeStep >> 1736 PrintKTVector(kt_gone_out, std::string("append to final state..")); >> 1737 #endif 2169 1738 2170 theFinalState.insert(theFinalState.end(), << 1739 theFinalState.insert(theFinalState.end(), 2171 kt_gone_out->begin(),kt_gone_out- << 1740 kt_gone_out->begin(),kt_gone_out->end()); 2172 1741 2173 // Partclies which could not leave nucleu << 1742 // Partclies which could not leave nucleus, captured... 2174 G4KineticTrackVector * kt_captured = new << 1743 G4KineticTrackVector * kt_captured = new G4KineticTrackVector; 2175 std::for_each( theSecondaryList.begin(),t 1744 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2176 SelectFromKTV(kt_captured, G4Kine << 1745 SelectFromKTV(kt_captured, G4KineticTrack::captured)); 2177 1746 2178 // Check no track is part in next collisi << 1747 // Check no track is part in next collision, ie. 2179 // this step was to far, and collisions << 1748 // this step was to far, and collisions should not occur any more 2180 1749 2181 if ( theCollisionMgr->Entries()> 0 ) << 1750 if ( theCollisionMgr->Entries()> 0 ) 2182 { << 1751 { 2183 if (kt_gone_out->size() ) << 1752 if (kt_gone_out->size() ) 2184 { << 1753 { 2185 G4KineticTrack * nextPrimary = th << 1754 G4KineticTrack * nextPrimary = theCollisionMgr->GetNextCollision()->GetPrimary(); 2186 iter = std::find(kt_gone_out->beg << 1755 iter = std::find(kt_gone_out->begin(),kt_gone_out->end(),nextPrimary); 2187 if ( iter != kt_gone_out->cend() << 1756 if ( iter != kt_gone_out->end() ) 2188 { << 1757 { 2189 success=false; << 1758 success=false; 2190 #ifdef debug_BIC_DoTimeStep 1759 #ifdef debug_BIC_DoTimeStep 2191 G4cout << " DoTimeStep - WARN << 1760 G4cout << " DoTimeStep - WARNING: deleting current collision!" << G4endl; 2192 #endif 1761 #endif 2193 } << 1762 } 2194 } << 1763 } 2195 if ( kt_captured->size() ) << 1764 if ( kt_captured->size() ) 2196 { << 1765 { 2197 G4KineticTrack * nextPrimary = th << 1766 G4KineticTrack * nextPrimary = theCollisionMgr->GetNextCollision()->GetPrimary(); 2198 iter = std::find(kt_captured->beg << 1767 iter = std::find(kt_captured->begin(),kt_captured->end(),nextPrimary); 2199 if ( iter != kt_captured->cend() << 1768 if ( iter != kt_captured->end() ) 2200 { << 1769 { 2201 success=false; << 1770 success=false; 2202 #ifdef debug_BIC_DoTimeStep 1771 #ifdef debug_BIC_DoTimeStep 2203 G4cout << " DoTimeStep - WARN << 1772 G4cout << " DoTimeStep - WARNING: deleting current collision!" << G4endl; 2204 #endif 1773 #endif 2205 } << 1774 } 2206 } << 1775 } 2207 << 2208 } << 2209 // PrintKTVector(kt_gone_out," kt_gone_ou << 2210 UpdateTracksAndCollisions(kt_gone_out,0 , << 2211 << 2212 << 2213 if ( kt_captured->size() ) << 2214 { << 2215 theCapturedList.insert(theCapturedLis << 2216 kt_captured->begin(),kt_captu << 2217 //should be std::for_each(kt_cap << 2218 // std::mem_fun(&G4Kinet << 2219 // but VC 6 requires: << 2220 for(auto i_captured=kt_captured->cbeg << 2221 { << 2222 (*i_captured)->Hit(); << 2223 } << 2224 // PrintKTVector(kt_captured," kt << 2225 UpdateTracksAndCollisions(kt_captured << 2226 } << 2227 1776 >> 1777 } >> 1778 //G4cout << "Here we are 4 "<<kt_gone_out->size()<<G4endl; >> 1779 // PrintKTVector(kt_gone_out," kt_gone_out be4 updatetrack..."); >> 1780 UpdateTracksAndCollisions(kt_gone_out,0 ,0); >> 1781 //G4cout << "Here we are 5"<<G4endl; >> 1782 >> 1783 >> 1784 if ( kt_captured->size() ) >> 1785 { >> 1786 theCapturedList.insert(theCapturedList.end(), >> 1787 kt_captured->begin(),kt_captured->end()); >> 1788 //should be std::for_each(kt_captured->begin(),kt_captured->end(), >> 1789 // std::mem_fun(&G4KineticTrack::Hit)); >> 1790 // but VC 6 requires: >> 1791 std::vector<G4KineticTrack *>::iterator i_captured; >> 1792 for(i_captured=kt_captured->begin();i_captured!=kt_captured->end();i_captured++) >> 1793 { >> 1794 (*i_captured)->Hit(); >> 1795 } >> 1796 // PrintKTVector(kt_captured," kt_catured be4 updatetrack..."); >> 1797 UpdateTracksAndCollisions(kt_captured, NULL, NULL); >> 1798 } >> 1799 2228 #ifdef debug_G4BinaryCascade 1800 #ifdef debug_G4BinaryCascade 2229 delete kt_inside; << 1801 delete kt_inside; 2230 kt_inside = new G4KineticTrackVector; << 1802 kt_inside = new G4KineticTrackVector; 2231 std::for_each( theSecondaryList.begin(),t << 1803 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2232 SelectFromKTV(kt_inside, G4Kineti << 1804 SelectFromKTV(kt_inside, G4KineticTrack::inside)); 2233 if ( currentZ != (GetTotalCharge(theTarge << 1805 if ( currentZ != (GetTotalCharge(theTargetList) 2234 + GetTotalCharge(theCapturedList) << 1806 + GetTotalCharge(theCapturedList) 2235 + GetTotalCharge(*kt_inside)) ) << 1807 + GetTotalCharge(*kt_inside)) ) 2236 { << 1808 { 2237 G4cout << " error-DoTimeStep aft, A, << 1809 G4cout << " error-DoTimeStep, aft, A, Z, sec-Z,... " 2238 << " sum(tgt,capt,active) " << 1810 << currentA << " " 2239 << GetTotalCharge(theTargetLi << 1811 << currentZ << " " 2240 << " targets: " << GetTotalC << 1812 << GetTotalCharge(theTargetList) 2241 << " captured: " << GetTotalC << 1813 + GetTotalCharge(theCapturedList) 2242 << " active: " << GetTotalC << 1814 + GetTotalCharge(*kt_inside) << " " 2243 << G4endl; << 1815 << GetTotalCharge(theTargetList) << " " 2244 } << 1816 << GetTotalCharge(theCapturedList) << " " 2245 #endif << 1817 << GetTotalCharge(*kt_inside) << " " 2246 << 1818 << G4endl; 2247 delete kt_inside; << 1819 } 2248 delete kt_outside; << 1820 #endif 2249 delete kt_captured; << 1821 2250 delete kt_gone_in; << 1822 delete kt_inside; 2251 delete kt_gone_out; << 1823 delete kt_outside; >> 1824 delete kt_captured; >> 1825 delete kt_gone_in; >> 1826 delete kt_gone_out; 2252 1827 2253 // G4cerr <<"G4BinaryCascade::DoTimeStep << 1828 // G4cerr <<"G4BinaryCascade::DoTimeStep: exit "<<G4endl; 2254 theCurrentTime += theTimeStep; << 1829 theCurrentTime += theTimeStep; 2255 1830 2256 //debug.push_back("======> DoTimeStep 2") << 1831 //debug.push_back("======> DoTimeStep 2"); debug.dump(); 2257 return success; << 1832 return success; 2258 1833 2259 } 1834 } 2260 1835 2261 //------------------------------------------- 1836 //---------------------------------------------------------------------------- 2262 G4KineticTrackVector* G4BinaryCascade::Correc 1837 G4KineticTrackVector* G4BinaryCascade::CorrectBarionsOnBoundary( 2263 G4KineticTrackVector *in, << 1838 G4KineticTrackVector *in, 2264 G4KineticTrackVector *out) << 1839 G4KineticTrackVector *out) 2265 //------------------------------------------- 1840 //---------------------------------------------------------------------------- 2266 { 1841 { 2267 G4KineticTrackVector * kt_fail(nullptr); << 1842 G4KineticTrackVector * kt_fail(0); 2268 std::vector<G4KineticTrack *>::const_iter << 1843 std::vector<G4KineticTrack *>::iterator iter; 2269 // G4cout << "CorrectBarionsOnBoundary,c << 1844 // G4cout << "CorrectBarionsOnBoundary,currentZ,currentA," 2270 // << currentZ << " "<< currentA << 1845 // << currentZ << " "<< currentA << G4endl; 2271 if (in->size()) << 1846 if (in->size()) 2272 { << 1847 { 2273 G4int secondaries_in(0); << 1848 G4int secondaries_in(0); 2274 G4int secondaryBarions_in(0); << 1849 G4int secondaryBarions_in(0); 2275 G4int secondaryCharge_in(0); << 1850 G4int secondaryCharge_in(0); 2276 G4double secondaryMass_in(0); << 1851 G4double secondaryMass_in(0); 2277 << 1852 2278 for ( iter =in->cbegin(); iter != in- << 1853 for ( iter =in->begin(); iter != in->end(); ++iter) 2279 { << 1854 { 2280 ++secondaries_in; << 1855 ++secondaries_in; 2281 secondaryCharge_in += G4lrint((*i << 1856 secondaryCharge_in += G4lrint((*iter)->GetDefinition()->GetPDGCharge()); 2282 if ((*iter)->GetDefinition()->Get << 1857 if ((*iter)->GetDefinition()->GetBaryonNumber()==1 ) 2283 { << 1858 { 2284 secondaryBarions_in += (*iter << 1859 ++secondaryBarions_in; 2285 if((*iter)->GetDefinition() = << 1860 if((*iter)->GetDefinition() == G4Neutron::Neutron() || 2286 (*iter)->GetDefinitio << 1861 (*iter)->GetDefinition() == G4Proton::Proton() ) 2287 { << 1862 { 2288 secondaryMass_in += (*ite << 1863 secondaryMass_in += (*iter)->GetDefinition()->GetPDGMass(); 2289 } else { << 1864 } else { 2290 secondaryMass_in += G4Pro << 1865 secondaryMass_in += G4Proton::Proton()->GetPDGMass(); 2291 } << 1866 } 2292 } << 1867 } 2293 } << 1868 } 2294 G4double mass_initial= GetIonMass(cur << 1869 G4double mass_initial= GetIonMass(currentZ,currentA); 2295 << 1870 2296 currentZ += secondaryCharge_in; << 1871 currentZ += secondaryCharge_in; 2297 currentA += secondaryBarions_in; << 1872 currentA += secondaryBarions_in; 2298 << 1873 2299 // G4cout << "CorrectBarionsOnBounda << 1874 // G4cout << "CorrectBarionsOnBoundary,secondaryCharge_in, secondaryBarions_in" 2300 // << secondaryCharge_in < << 1875 // << secondaryCharge_in << " "<< secondaryBarions_in << G4endl; 2301 << 1876 2302 G4double mass_final= GetIonMass(curre << 1877 G4double mass_final= GetIonMass(currentZ,currentA); 2303 << 1878 2304 G4double correction= secondaryMass_in << 1879 G4double correction= secondaryMass_in + mass_initial - mass_final; 2305 if (secondaries_in>1) << 1880 if (secondaries_in>1) 2306 {correction /= secondaries_in;} << 1881 {correction /= secondaries_in;} 2307 1882 2308 #ifdef debug_BIC_CorrectBarionsOnBoundary 1883 #ifdef debug_BIC_CorrectBarionsOnBoundary 2309 G4cout << "CorrectBarionsOnBoundary,c << 1884 G4cout << "CorrectBarionsOnBoundary,currentZ,currentA," 2310 << "secondaryCharge_in,second << 1885 << "secondaryCharge_in,secondaryBarions_in," 2311 << "energy correction,m_secon << 1886 << "energy correction,m_secondry,m_nucl_init,m_nucl_final " 2312 << currentZ << " "<< currentA << 1887 << currentZ << " "<< currentA <<" " 2313 << secondaryCharge_in<<" "<<s << 1888 << secondaryCharge_in<<" "<<secondaryBarions_in<<" " 2314 << correction << " " << 1889 << correction << " " 2315 << secondaryMass_in << " " << 1890 << secondaryMass_in << " " 2316 << mass_initial << " " << 1891 << mass_initial << " " 2317 << mass_final << " " << 1892 << mass_final << " " 2318 << G4endl; << 1893 << G4endl; 2319 PrintKTVector(in,std::string("in be4 << 1894 PrintKTVector(in,std::string("in be4 correction")); 2320 #endif << 1895 #endif 2321 for ( iter = in->cbegin(); iter != in << 1896 2322 { << 1897 for ( iter = in->begin(); iter != in->end(); ++iter) 2323 if ((*iter)->GetTrackingMomentum( << 1898 { 2324 { << 1899 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() + correction); 2325 (*iter)->UpdateTrackingMoment << 1900 } 2326 } else { << 2327 //particle cannot go in, put << 2328 G4RKPropagation * RKprop=(G4R << 2329 (*iter)->SetState(G4KineticTr << 2330 // Undo correction for Colomb << 2331 G4double barrier=RKprop->GetB << 2332 (*iter)->UpdateTrackingMoment << 2333 if ( ! kt_fail ) kt_fail=new << 2334 kt_fail->push_back(*iter); << 2335 currentZ -= G4lrint((*iter)-> << 2336 currentA -= (*iter)->GetDefin << 2337 << 2338 } << 2339 << 2340 } << 2341 #ifdef debug_BIC_CorrectBarionsOnBoundary 1901 #ifdef debug_BIC_CorrectBarionsOnBoundary 2342 G4cout << " CorrectBarionsOnBoundary, << 1902 G4cout << " CorrectBarionsOnBoundary, aft, A, Z, sec-Z,A,m,m_in_nucleus " 2343 << currentZ << " " << current << 1903 << currentA << " " << currentZ << " " 2344 << secondaryCharge_in << " " << 1904 << secondaryCharge_in << " " << secondaryBarions_in << " " 2345 << secondaryMass_in << " " << 1905 << secondaryMass_in << " " 2346 << G4endl; << 1906 << G4endl; 2347 PrintKTVector(in,std::string("in AFT << 1907 PrintKTVector(in,std::string("in AFT correction")); 2348 #endif << 1908 #endif 2349 << 1909 2350 } << 1910 } 2351 //--------------------------------------- << 1911 //---------------------------------------------- 2352 if (out->size()) << 1912 if (out->size()) 2353 { << 1913 { 2354 G4int secondaries_out(0); << 1914 G4int secondaries_out(0); 2355 G4int secondaryBarions_out(0); << 1915 G4int secondaryBarions_out(0); 2356 G4int secondaryCharge_out(0); << 1916 G4int secondaryCharge_out(0); 2357 G4double secondaryMass_out(0); << 1917 G4double secondaryMass_out(0); 2358 << 1918 2359 for ( iter = out->cbegin(); iter != o << 1919 for ( iter =out->begin(); iter != out->end(); ++iter) 2360 { << 1920 { 2361 ++secondaries_out; << 1921 ++secondaries_out; 2362 secondaryCharge_out += G4lrint((* << 1922 secondaryCharge_out += G4lrint((*iter)->GetDefinition()->GetPDGCharge()); 2363 if ((*iter)->GetDefinition()->Get << 1923 if ((*iter)->GetDefinition()->GetBaryonNumber()==1 ) 2364 { << 1924 { 2365 secondaryBarions_out += (*ite << 1925 ++secondaryBarions_out; 2366 if((*iter)->GetDefinition() = << 1926 if((*iter)->GetDefinition() == G4Neutron::Neutron() || 2367 (*iter)->GetDefinitio << 1927 (*iter)->GetDefinition() == G4Proton::Proton() ) 2368 { << 1928 { 2369 secondaryMass_out += (*it << 1929 secondaryMass_out += (*iter)->GetDefinition()->GetPDGMass(); 2370 } else { << 1930 } else { 2371 secondaryMass_out += G4Ne << 1931 secondaryMass_out += G4Neutron::Neutron()->GetPDGMass(); 2372 } << 1932 } 2373 } << 1933 } 2374 } << 1934 } 2375 << 1935 2376 G4double mass_initial= GetIonMass(cu << 1936 G4double mass_initial= GetIonMass(currentZ,currentA); 2377 currentA -=secondaryBarions_out; << 1937 currentA -=secondaryBarions_out; 2378 currentZ -=secondaryCharge_out; << 1938 currentZ -=secondaryCharge_out; 2379 << 1939 2380 // G4cout << "CorrectBarionsOnBounda << 1940 // G4cout << "CorrectBarionsOnBoundary,secondaryCharge_out, secondaryBarions_out" 2381 // << secondaryCharge_out << 1941 // << secondaryCharge_out << " "<< secondaryBarions_out << G4endl; 2382 << 1942 2383 // a delta min << 1943 // a delta minus will do currentZ < 0 in light nuclei 2384 // if (currentA < 0 || currentZ < << 1944 // if (currentA < 0 || currentZ < 0 ) 2385 if (currentA < 0 ) << 1945 if (currentA < 0 ) 2386 { << 1946 { 2387 G4cerr << "G4BinaryCascade - seco << 1947 G4cerr << "G4BinaryCascade - secondaryBarions_out,secondaryCharge_out " << 2388 secondaryBarions_out << " << 1948 secondaryBarions_out << " " << secondaryCharge_out << G4endl; 2389 PrintKTVector(&theTargetList,"Cor << 1949 PrintKTVector(&theTargetList,"CorrectBarionsOnBoundary Target"); 2390 PrintKTVector(&theCapturedList,"C << 1950 PrintKTVector(&theCapturedList,"CorrectBarionsOnBoundary Captured"); 2391 PrintKTVector(&theSecondaryList," << 1951 PrintKTVector(&theSecondaryList,"CorrectBarionsOnBoundary Secondaries"); 2392 G4cerr << "G4BinaryCascade - curr << 1952 G4cerr << "G4BinaryCascade - currentA, currentZ " << currentA << " " << currentZ << G4endl; 2393 throw G4HadronicException(__FILE_ << 1953 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::CorrectBarionsOnBoundary() - fatal error"); 2394 } << 1954 } 2395 G4double mass_final=GetIonMass(curren << 1955 G4double mass_final=GetIonMass(currentZ,currentA); 2396 G4double correction= mass_initial - m << 1956 G4double correction= mass_initial - mass_final - secondaryMass_out; 2397 // G4cout << "G4BinaryCascade::Correc << 2398 1957 2399 if (secondaries_out>1) correction /= << 1958 if (secondaries_out>1) correction /= secondaries_out; 2400 #ifdef debug_BIC_CorrectBarionsOnBoundary 1959 #ifdef debug_BIC_CorrectBarionsOnBoundary 2401 G4cout << "DoTimeStep,(current Z,A)," << 1960 G4cout << "DoTimeStep,currentZ,currentA," 2402 << "(secondaries out,Charge,B << 1961 << "secondaries_out," 2403 <<"* energy correction,(m_sec << 1962 <<"secondaryCharge_out,secondaryBarions_out," 2404 << "("<< currentZ << ","<< cu << 1963 <<"energy correction,m_secondry,m_nucl_init,m_nucl_final " 2405 << secondaries_out << "," << 1964 << " "<< currentZ << " "<< currentA <<" " 2406 << secondaryCharge_out<<","<< << 1965 << secondaries_out << " " 2407 << correction << " (" << 1966 << secondaryCharge_out<<" "<<secondaryBarions_out<<" " 2408 << secondaryMass_out << ", " << 1967 << correction << " " 2409 << mass_initial << ", " << 1968 << secondaryMass_out << " " 2410 << mass_final << ")" << 1969 << mass_initial << " " 2411 << G4endl; << 1970 << mass_final << " " 2412 PrintKTVector(out,std::string("out be << 1971 << G4endl; 2413 #endif << 1972 PrintKTVector(out,std::string("out be4 correction")); 2414 << 1973 #endif 2415 for ( iter = out->cbegin(); iter != o << 1974 2416 { << 1975 for ( iter = out->begin(); iter != out->end(); ++iter) 2417 if ((*iter)->GetTrackingMomentum( << 1976 { 2418 { << 1977 if ((*iter)->GetTrackingMomentum().e()+correction > (*iter)->GetActualMass()) 2419 (*iter)->UpdateTrackingMoment << 1978 { 2420 } else << 1979 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() + correction); 2421 { << 1980 } else 2422 // particle cannot go out due << 1981 { 2423 // capture protons and neutr << 1982 // particle cannot go out due to change of nuclear potential! 2424 if(((*iter)->GetDefinition() << 1983 // capture protons and neutrons; 2425 ((*iter)->GetDefiniti << 1984 if(((*iter)->GetDefinition() == G4Proton::Proton()) || 2426 { << 1985 ((*iter)->GetDefinition() == G4Neutron::Neutron())) 2427 (*iter)->SetState(G4Kinet << 1986 { 2428 // Undo correction for Co << 1987 G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; 2429 G4double barrier=((G4RKPr << 1988 (*iter)->SetState(G4KineticTrack::captured); 2430 (*iter)->UpdateTrackingMo << 1989 // Undo correction for Colomb Barrier 2431 if ( kt_fail == 0 ) kt_fa << 1990 G4double barrier=RKprop->GetBarrier((*iter)->GetDefinition()->GetPDGEncoding()); 2432 kt_fail->push_back(*iter) << 1991 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() - barrier); 2433 currentZ += G4lrint((*ite << 1992 if ( kt_fail == 0 ) kt_fail=new G4KineticTrackVector; 2434 currentA += (*iter)->GetD << 1993 kt_fail->push_back(*iter); 2435 } << 1994 currentZ += G4lrint((*iter)->GetDefinition()->GetPDGCharge()); >> 1995 if ((*iter)->GetDefinition()->GetBaryonNumber()==1 ) ++currentA; >> 1996 } 2436 #ifdef debug_BIC_CorrectBarionsOnBoundary 1997 #ifdef debug_BIC_CorrectBarionsOnBoundary 2437 else << 1998 else 2438 { << 1999 { 2439 G4cout << "Not correcting << 2000 G4cout << "Not correcting outgoing " << *iter << " " 2440 << (*iter)->GetDe << 2001 << (*iter)->GetDefinition()->GetPDGEncoding() << " " 2441 << (*iter)->GetDe << 2002 << (*iter)->GetDefinition()->GetParticleName() << G4endl; 2442 PrintKTVector(out,std::st << 2003 PrintKTVector(out,std::string("outgoing, one not corrected")); 2443 } << 2004 } 2444 #endif 2005 #endif 2445 } << 2006 } 2446 } << 2007 } 2447 2008 2448 #ifdef debug_BIC_CorrectBarionsOnBoundary 2009 #ifdef debug_BIC_CorrectBarionsOnBoundary 2449 PrintKTVector(out,std::string("out AF << 2010 PrintKTVector(out,std::string("out AFTER correction")); 2450 G4cout << " DoTimeStep, nucl-update, << 2011 G4cout << " DoTimeStep, nucl-update, A, Z, sec-Z,A,m,m_in_nucleus, table-mass, delta " 2451 << currentA << " "<< currentZ << 2012 << currentA << " "<< currentZ << " " 2452 << secondaryCharge_out << " " << 2013 << secondaryCharge_out << " "<< secondaryBarions_out << " "<< 2453 secondaryMass_out << " " << 2014 secondaryMass_out << " " 2454 << massInNucleus << " " << 2015 << massInNucleus << " " 2455 << GetIonMass(currentZ,curren << 2016 << G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA) 2456 << " " << massInNucleus - Get << 2017 << " " << massInNucleus -G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA) 2457 << G4endl; << 2018 << G4endl; 2458 #endif << 2019 #endif 2459 } << 2020 } 2460 << 2021 2461 return kt_fail; << 2022 return kt_fail; 2462 } 2023 } 2463 2024 2464 << 2025 2465 //------------------------------------------- 2026 //---------------------------------------------------------------------------- 2466 2027 2467 G4Fragment * G4BinaryCascade::FindFragments() 2028 G4Fragment * G4BinaryCascade::FindFragments() 2468 //------------------------------------------- 2029 //---------------------------------------------------------------------------- 2469 { 2030 { 2470 2031 >> 2032 G4int a = theTargetList.size()+theCapturedList.size(); 2471 #ifdef debug_BIC_FindFragments 2033 #ifdef debug_BIC_FindFragments 2472 G4cout << "target, captured, secondary: " << 2034 G4cout << "target, captured, secondary: " 2473 << theTargetList.size() << " " << 2035 << theTargetList.size() << " " 2474 << theCapturedList.size()<< " " << 2036 << theCapturedList.size()<< " " 2475 << theSecondaryList.size() << 2037 << theSecondaryList.size() 2476 << G4endl; << 2038 << G4endl; 2477 #endif << 2039 #endif 2478 << 2040 G4int zTarget = 0; 2479 G4int a = G4int(theTargetList.size()+theC << 2041 G4KineticTrackVector::iterator i; 2480 G4int zTarget = 0; << 2042 for(i = theTargetList.begin(); i != theTargetList.end(); ++i) 2481 for(auto i = theTargetList.cbegin(); i != << 2043 { 2482 { << 2044 if((*i)->GetDefinition()->GetPDGCharge() == eplus) 2483 if(G4lrint((*i)->GetDefinition()->Get << 2045 { 2484 { << 2046 zTarget++; 2485 zTarget++; << 2047 } 2486 } << 2048 } 2487 } << 2488 2049 2489 G4int zCaptured = 0; << 2050 G4int zCaptured = 0; 2490 G4LorentzVector CapturedMomentum(0.,0.,0. << 2051 G4LorentzVector CapturedMomentum=0; 2491 for(auto i = theCapturedList.cbegin(); i << 2052 for(i = theCapturedList.begin(); i != theCapturedList.end(); ++i) 2492 { << 2053 { 2493 CapturedMomentum += (*i)->Get4Momentu << 2054 CapturedMomentum += (*i)->Get4Momentum(); 2494 if(G4lrint((*i)->GetDefinition()->Get << 2055 if((*i)->GetDefinition()->GetPDGCharge() == eplus) 2495 { << 2056 { 2496 zCaptured++; << 2057 zCaptured++; 2497 } << 2058 } 2498 } << 2059 } 2499 2060 2500 G4int z = zTarget+zCaptured; << 2061 G4int z = zTarget+zCaptured; 2501 2062 2502 #ifdef debug_G4BinaryCascade 2063 #ifdef debug_G4BinaryCascade 2503 if ( z != (GetTotalCharge(theTargetList) << 2064 if ( z != (GetTotalCharge(theTargetList) + GetTotalCharge(theCapturedList)) ) 2504 { << 2065 { 2505 G4cout << " FindFragment Counting err << 2066 G4cout << " FindFragment Counting error z a " << z << " " <<a << " " 2506 << GetTotalCharge(theTargetLi << 2067 << GetTotalCharge(theTargetList) << " " << GetTotalCharge(theCapturedList)<< 2507 G4endl; << 2068 G4endl; 2508 PrintKTVector(&theTargetList, std::st << 2069 PrintKTVector(&theTargetList, std::string("theTargetList")); 2509 PrintKTVector(&theCapturedList, std:: << 2070 PrintKTVector(&theCapturedList, std::string("theCapturedList")); 2510 } << 2071 } 2511 #endif << 2072 #endif 2512 //debug << 2073 //debug 2513 /* << 2074 /* 2514 * G4cout << " Fragment mass table / re << 2075 * G4cout << " Fragment mass table / real " 2515 * << GetIonMass(z, a) << 2076 * << G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(z, a) 2516 * << " / " << GetFinal4Momentum().mag( << 2077 * << " / " << GetFinal4Momentum().mag() 2517 * << " difference " << 2078 * << " difference " 2518 * << GetFinal4Momentum().mag() - GetI << 2079 * << GetFinal4Momentum().mag() - G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(z, a) 2519 * << G4endl; << 2080 * << G4endl; 2520 */ << 2081 */ 2521 // << 2082 // 2522 // if(fBCDEBUG) G4cerr << "Fragment A, Z << 2083 // if(getenv("BCDEBUG") ) G4cerr << "Fragment A, Z "<< a <<" "<< z<<G4endl; 2523 if ( z < 1 ) return 0; << 2084 if ( z < 1 ) return 0; 2524 << 2085 G4Fragment * fragment = new G4Fragment(a,z,GetFinalNucleusMomentum()); 2525 G4int holes = G4int(the3DNucleus->GetMass << 2086 2526 G4int excitons = (G4int)theCapturedList.s << 2087 G4int holes = the3DNucleus->GetMassNumber() - theTargetList.size(); >> 2088 fragment->SetNumberOfHoles(holes); >> 2089 >> 2090 G4int excitons = theCapturedList.size(); >> 2091 //GF fragment->SetNumberOfParticles(excitons-holes); >> 2092 fragment->SetNumberOfParticles(excitons); >> 2093 fragment->SetNumberOfCharged(zCaptured); >> 2094 G4ParticleDefinition * aIonDefinition = >> 2095 G4ParticleTable::GetParticleTable()->FindIon(a,z,0,z); >> 2096 fragment->SetParticleDefinition(aIonDefinition); 2527 #ifdef debug_BIC_FindFragments 2097 #ifdef debug_BIC_FindFragments 2528 G4cout << "Fragment: a= " << a << " z= " << 2098 G4cout << "Fragment: a= " << a 2529 << " Charged= " << zCaptured << " << 2099 << " z= " << z 2530 << " excitE= " <<GetExcitationEne << 2100 << " particles= " << excitons 2531 << " Final4Momentum= " << GetFina << 2101 << " Charged= " << zCaptured 2532 << G4endl; << 2102 << " holes= " << holes 2533 #endif << 2103 << " excitE= " <<GetExcitationEnergy() 2534 << 2104 << " Final4Momentum= " << GetFinalNucleusMomentum() 2535 G4Fragment * fragment = new G4Fragment(a, << 2105 << " capturMomentum= " << CapturedMomentum 2536 fragment->SetNumberOfHoles(holes); << 2106 << G4endl; 2537 << 2107 #endif 2538 //GF fragment->SetNumberOfParticles(exci << 2539 fragment->SetNumberOfParticles(excitons); << 2540 fragment->SetNumberOfCharged(zCaptured); << 2541 fragment->SetCreatorModelID(theBIC_ID); << 2542 2108 2543 return fragment; << 2109 return fragment; 2544 } 2110 } 2545 2111 2546 //------------------------------------------- 2112 //---------------------------------------------------------------------------- 2547 2113 2548 G4LorentzVector G4BinaryCascade::GetFinal4Mom 2114 G4LorentzVector G4BinaryCascade::GetFinal4Momentum() 2549 //------------------------------------------- 2115 //---------------------------------------------------------------------------- 2550 // Return momentum of reminder nulceus; << 2551 // ie. difference of (initial state(primarie << 2552 { 2116 { 2553 G4LorentzVector final4Momentum = theIniti << 2117 // the initial 3-momentum will differ from 0, if nucleus created by string model. 2554 G4LorentzVector finals(0,0,0,0); << 2118 G4LorentzVector final4Momentum = theInitial4Mom; 2555 for(auto i = theFinalState.cbegin(); i != << 2119 G4KineticTrackVector::iterator i; 2556 { << 2120 for(i = theProjectileList.begin() ; i != theProjectileList.end(); ++i) 2557 final4Momentum -= (*i)->Get4Momentum( << 2121 { 2558 finals += (*i)->Get4Momentum(); << 2122 final4Momentum += (*i)->GetTrackingMomentum(); 2559 } << 2123 //G4cout << "Initial state: "<<(*i)->Get4Momentum()<<G4endl; 2560 << 2124 } 2561 if(final4Momentum.e()> 0 && (final4Moment << 2125 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 2562 { << 2126 { 2563 #ifdef debug_BIC_Final4Momentum << 2127 final4Momentum -= (*i)->Get4Momentum(); 2564 G4cerr << G4endl; << 2128 } 2565 G4cerr << "G4BinaryCascade::GetFinal4 << 2129 2566 G4KineticTrackVector::iterator i; << 2130 if((final4Momentum.vect()/final4Momentum.e()).mag()>1.0 && currentA > 0) 2567 G4cerr <<"Total initial 4-momentum " << 2131 { 2568 G4cerr <<" GetFinal4Momentum: Initial << 2132 # ifdef debug_BIC_Final4Momentum 2569 for(i = theFinalState.begin(); i != t << 2133 G4cerr << G4endl; 2570 { << 2134 G4cerr << "G4BinaryCascade::GetFinal4Momentum - Fatal"<<G4endl; 2571 G4cerr <<" Final state: "<<(*i)-> << 2135 G4KineticTrackVector::iterator i; 2572 } << 2136 G4cerr <<" Initial nucleus "<<theInitial4Mom<<G4endl; 2573 G4cerr << "Sum( 4-mom ) finals " << f << 2137 for(i = theProjectileList.begin() ; i != theProjectileList.end(); ++i) 2574 G4cerr<< " Final4Momentum = "<<final4 << 2138 { 2575 G4cerr <<" current A, Z = "<< current << 2139 G4cerr << " Initial state (get4M), (trackingM): " 2576 G4cerr << G4endl; << 2140 <<(*i)->Get4Momentum()<<", " << (*i)->GetTrackingMomentum() <<"," 2577 #endif << 2141 <<(*i)->GetDefinition()->GetParticleName()<<G4endl; 2578 << 2142 } 2579 final4Momentum=G4LorentzVector(0,0,0, << 2143 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 2580 } << 2144 { 2581 return final4Momentum; << 2145 G4cerr <<" Final state: "<<(*i)->Get4Momentum()<<(*i)->GetDefinition()->GetParticleName()<<G4endl; >> 2146 } >> 2147 G4cerr<< " Final4Momentum = "<<final4Momentum <<" "<<final4Momentum.m()<<G4endl; >> 2148 G4cerr <<" current A, Z = "<< currentA<<", "<<currentZ<<G4endl; >> 2149 G4cerr << G4endl; >> 2150 # endif >> 2151 >> 2152 final4Momentum=G4LorentzVector(0); >> 2153 } >> 2154 return final4Momentum; 2582 } 2155 } 2583 2156 2584 //------------------------------------------- 2157 //---------------------------------------------------------------------------- 2585 G4LorentzVector G4BinaryCascade::GetFinalNucl 2158 G4LorentzVector G4BinaryCascade::GetFinalNucleusMomentum() 2586 //------------------------------------------- 2159 //---------------------------------------------------------------------------- 2587 { 2160 { 2588 // return momentum of nucleus for use wit << 2161 // return momentum of nucleus for use with precompound model; also keep transformation to 2589 // apply to precompoud products. << 2162 // apply to precompoud products. 2590 << 2591 G4LorentzVector CapturedMomentum(0,0,0,0) << 2592 // G4cout << "GetFinalNucleusMomentum Ca << 2593 for(auto i = theCapturedList.cbegin(); i << 2594 { << 2595 CapturedMomentum += (*i)->Get4Momentu << 2596 } << 2597 //G4cout << "GetFinalNucleusMomentum Capt << 2598 // G4cerr << "it 9"<<G4endl; << 2599 2163 2600 G4LorentzVector NucleusMomentum = GetFina << 2164 G4LorentzVector CapturedMomentum=0; 2601 if ( NucleusMomentum.e() > 0 ) << 2165 G4KineticTrackVector::iterator i; 2602 { << 2166 // G4cout << "GetFinalNucleusMomentum Captured size: " <<theCapturedList.size() << G4endl; 2603 // G4cout << "GetFinalNucleusMomentum << 2167 for(i = theCapturedList.begin(); i != theCapturedList.end(); ++i) 2604 // boost nucleus to a frame such that << 2168 { 2605 G4ThreeVector boost= (NucleusMomentum << 2169 CapturedMomentum += (*i)->Get4Momentum(); 2606 if(boost.mag2()>1.0) << 2170 } 2607 { << 2171 //G4cout << "GetFinalNucleusMomentum CapturedMomentum= " <<CapturedMomentum << G4endl; >> 2172 // G4cerr << "it 9"<<G4endl; >> 2173 >> 2174 G4LorentzVector NucleusMomentum = GetFinal4Momentum(); >> 2175 if ( NucleusMomentum.e() > 0 ) >> 2176 { >> 2177 // G4cout << "GetFinalNucleusMomentum GetFinal4Momentum= " <<NucleusMomentum <<" "<<NucleusMomentum.mag()<<G4endl; >> 2178 // boost nucleus to a frame such that the momentum of nucleus == momentum of Captured >> 2179 G4ThreeVector boost= (NucleusMomentum.vect() -CapturedMomentum.vect())/NucleusMomentum.e(); >> 2180 if(boost.mag2()>1.0) >> 2181 { 2608 # ifdef debug_BIC_FinalNucleusMomentum 2182 # ifdef debug_BIC_FinalNucleusMomentum 2609 G4cerr << "G4BinaryCascade::GetFi << 2183 G4cerr << "G4BinaryCascade::GetFinalNucleusMomentum - Fatal"<<G4endl; 2610 G4cerr << "it 0"<<boost <<G4endl; << 2184 G4cerr << "it 0"<<boost <<G4endl; 2611 G4cerr << "it 01"<<NucleusMomentu << 2185 G4cerr << "it 01"<<NucleusMomentum<<" "<<CapturedMomentum<<" "<<G4endl; 2612 G4cout <<" testing boost "<<boost << 2186 G4cout <<" testing boost "<<boost<<" "<<boost.mag()<<G4endl; 2613 # endif 2187 # endif 2614 boost=G4ThreeVector(0,0,0); << 2188 boost=G4ThreeVector(0); 2615 NucleusMomentum=G4LorentzVector(0 << 2189 NucleusMomentum=G4LorentzVector(0); 2616 } << 2190 } 2617 G4LorentzRotation nucleusBoost( -boo << 2191 G4LorentzRotation nucleusBoost( -boost ); 2618 precompoundLorentzboost.set( boost ); << 2192 precompoundLorentzboost.set( boost ); 2619 #ifdef debug_debug_BIC_FinalNucleusMomentum << 2193 #ifdef debug_debug_BIC_FinalNucleusMomentum 2620 G4cout << "GetFinalNucleusMomentum be << 2194 G4cout << "GetFinalNucleusMomentum be4 boostNucleusMomentum, CapturedMomentum"<<NucleusMomentum<<" "<<CapturedMomentum<<" "<<G4endl; 2621 #endif << 2195 #endif 2622 NucleusMomentum *= nucleusBoost; << 2196 NucleusMomentum *= nucleusBoost; 2623 #ifdef debug_BIC_FinalNucleusMomentum << 2197 #ifdef debug_BIC_FinalNucleusMomentum 2624 G4cout << "GetFinalNucleusMomentum af << 2198 G4cout << "GetFinalNucleusMomentum aft boost GetFinal4Momentum= " <<NucleusMomentum <<G4endl; 2625 #endif << 2199 #endif 2626 } << 2200 } 2627 return NucleusMomentum; << 2201 return NucleusMomentum; 2628 } 2202 } 2629 2203 2630 //------------------------------------------- 2204 //---------------------------------------------------------------------------- 2631 G4ReactionProductVector * G4BinaryCascade::Pr 2205 G4ReactionProductVector * G4BinaryCascade::Propagate1H1( 2632 //----------------------------------- << 2206 //---------------------------------------------------------------------------- 2633 G4KineticTrackVector * secondaries, G << 2207 G4KineticTrackVector * secondaries, G4V3DNucleus * nucleus) 2634 { 2208 { 2635 G4ReactionProductVector * products = new 2209 G4ReactionProductVector * products = new G4ReactionProductVector; 2636 const G4ParticleDefinition * aHTarg = G4P << 2210 G4ParticleDefinition * aHTarg = G4Proton::ProtonDefinition(); 2637 if (nucleus->GetCharge() == 0) aHTarg = G << 2638 G4double mass = aHTarg->GetPDGMass(); 2211 G4double mass = aHTarg->GetPDGMass(); 2639 G4KineticTrackVector * secs = nullptr; << 2212 if (nucleus->GetCharge() == 0) aHTarg = G4Neutron::NeutronDefinition(); >> 2213 mass = aHTarg->GetPDGMass(); >> 2214 G4KineticTrackVector * secs = 0; 2640 G4ThreeVector pos(0,0,0); 2215 G4ThreeVector pos(0,0,0); 2641 G4LorentzVector mom(mass); 2216 G4LorentzVector mom(mass); 2642 G4KineticTrack aTarget(aHTarg, 0., pos, m 2217 G4KineticTrack aTarget(aHTarg, 0., pos, mom); 2643 G4bool done(false); 2218 G4bool done(false); 2644 // data member static G4Scatterer theH << 2219 std::vector<G4KineticTrack *>::iterator iter, jter; 2645 //G4cout << " start 1H1 for " << (*second << 2220 static G4Scatterer theScatterer; 2646 // << " on " << aHTarg->GetParticle << 2221 //G4cout << " start 1H1 for " << (*secondaries).front()->GetDefinition()->GetParticleName() >> 2222 // << " on " << aHTarg->GetParticleName() << G4endl; 2647 G4int tryCount(0); 2223 G4int tryCount(0); 2648 while(!done && tryCount++ <200) << 2224 while(!done && tryCount++ <200) 2649 { 2225 { 2650 if(secs) << 2226 if(secs) 2651 { << 2227 { 2652 std::for_each(secs->begin(), secs << 2228 std::for_each(secs->begin(), secs->end(), DeleteKineticTrack()); 2653 delete secs; << 2229 delete secs; 2654 } << 2230 } 2655 secs = theH1Scatterer->Scatter(*(*sec << 2231 secs = theScatterer.Scatter(*(*secondaries).front(), aTarget); 2656 #ifdef debug_H1_BinaryCascade << 2232 for(size_t ss=0; secs && ss<secs->size(); ss++) 2657 PrintKTVector(secs," From Scatter"); << 2233 { 2658 #endif << 2234 // G4cout << "1H1 " << (*secs)[ss]->GetDefinition()->GetParticleName() 2659 for(std::size_t ss=0; secs && ss<secs << 2235 // << ", shortlived? "<< (*secs)[ss]->GetDefinition()->IsShortLived()<< G4endl; 2660 { << 2236 if((*secs)[ss]->GetDefinition()->IsShortLived()) done = true; 2661 // must have one resonance in fin << 2237 } 2662 if((*secs)[ss]->GetDefinition()-> << 2238 // G4cout << G4endl; 2663 } << 2664 } 2239 } 2665 << 2240 size_t current(0); 2666 ClearAndDestroy(&theFinalState); << 2241 for(current=0; current<secs->size(); current++) 2667 ClearAndDestroy(secondaries); << 2668 delete secondaries; << 2669 << 2670 for(std::size_t current=0; secs && curren << 2671 { 2242 { 2672 if((*secs)[current]->GetDefinition()- << 2243 if((*secs)[current]->GetDefinition()->IsShortLived()) 2673 { << 2244 { 2674 done = true; // must have one re << 2245 G4KineticTrackVector * dec = (*secs)[current]->Decay(); 2675 G4KineticTrackVector * dec = (*se << 2246 for(jter=dec->begin(); jter != dec->end(); jter++) 2676 for(auto jter=dec->cbegin(); jter << 2247 { 2677 { << 2248 //G4cout << "Decay"<<G4endl; 2678 //G4cout << "Decay"<<G4endl; << 2249 secs->push_back(*jter); 2679 secs->push_back(*jter); << 2250 //G4cout << "decay "<<(*jter)->GetDefinition()->GetParticleName()<<G4endl; 2680 //G4cout << "decay "<<(*jter) << 2251 } 2681 } << 2252 delete (*secs)[current]; 2682 delete (*secs)[current]; << 2253 delete dec; 2683 delete dec; << 2254 } 2684 } << 2255 else 2685 else << 2256 { 2686 { << 2257 //G4cout << "FS "<<G4endl; 2687 //G4cout << "FS "<<G4endl; << 2258 //G4cout << "FS "<<(*secs)[current]->GetDefinition()->GetParticleName()<<G4endl; 2688 //G4cout << "FS "<<(*secs)[curren << 2259 theFinalState.push_back((*secs)[current]); 2689 theFinalState.push_back((*secs)[c << 2260 } 2690 } << 2691 } 2261 } 2692 << 2262 //G4cout << "Through loop"<<G4endl; 2693 delete secs; 2263 delete secs; 2694 #ifdef debug_H1_BinaryCascade << 2264 for(iter = theFinalState.begin(); iter != theFinalState.end(); ++iter) 2695 PrintKTVector(&theFinalState," FinalState << 2696 #endif << 2697 for(auto iter = theFinalState.cbegin(); i << 2698 { 2265 { 2699 G4KineticTrack * kt = *iter; << 2266 G4KineticTrack * kt = *iter; 2700 G4ReactionProduct * aNew = new G4Reac << 2267 G4ReactionProduct * aNew = new G4ReactionProduct(kt->GetDefinition()); 2701 aNew->SetMomentum(kt->Get4Momentum(). << 2268 aNew->SetMomentum(kt->Get4Momentum().vect()); 2702 aNew->SetTotalEnergy(kt->Get4Momentum << 2269 aNew->SetTotalEnergy(kt->Get4Momentum().e()); 2703 aNew->SetCreatorModelID(theBIC_ID); << 2270 products->push_back(aNew); 2704 aNew->SetParentResonanceDef(kt->GetPa << 2271 #ifdef debug_1_BinaryCascade 2705 aNew->SetParentResonanceID(kt->GetPar << 2272 if (! kt->GetDefinition()->GetPDGStable() ) 2706 products->push_back(aNew); << 2273 { 2707 #ifdef debug_H1_BinaryCascade << 2274 if (kt->GetDefinition()->IsShortLived()) 2708 if (! kt->GetDefinition()->GetPDGStab << 2275 { 2709 { << 2276 G4cout << "final shortlived : "; 2710 if (kt->GetDefinition()->IsShortL << 2277 } else 2711 { << 2278 { 2712 G4cout << "final shortlived : << 2279 G4cout << "final un stable : "; 2713 } else << 2280 } 2714 { << 2281 G4cout <<kt->GetDefinition()->GetParticleName()<< G4endl; 2715 G4cout << "final un stable : << 2282 } 2716 } << 2283 #endif 2717 G4cout <<kt->GetDefinition()->Get << 2284 delete kt; 2718 } << 2719 #endif << 2720 delete kt; << 2721 } 2285 } 2722 theFinalState.clear(); 2286 theFinalState.clear(); 2723 return products; 2287 return products; 2724 2288 2725 } 2289 } 2726 2290 2727 //------------------------------------------- 2291 //---------------------------------------------------------------------------- 2728 G4ThreeVector G4BinaryCascade::GetSpherePoint 2292 G4ThreeVector G4BinaryCascade::GetSpherePoint( 2729 G4double r, const G4LorentzVector & m << 2293 G4double r, const G4LorentzVector & mom4) 2730 //------------------------------------------- 2294 //---------------------------------------------------------------------------- 2731 { 2295 { 2732 // Get a point outside radius. << 2296 // Get a point outside radius. 2733 // point is random in plane (circle o << 2297 // point is random in plane (circle of radius r) orthogonal to mom, 2734 // plus -1*r*mom->vect()->unit(); << 2298 // plus -1*r*mom->vect()->unit(); 2735 G4ThreeVector o1, o2; 2299 G4ThreeVector o1, o2; 2736 G4ThreeVector mom = mom4.vect(); 2300 G4ThreeVector mom = mom4.vect(); 2737 2301 2738 o1= mom.orthogonal(); // we simply need 2302 o1= mom.orthogonal(); // we simply need any vector non parallel 2739 o2= mom.cross(o1); // o2 is now orth 2303 o2= mom.cross(o1); // o2 is now orthogonal to mom and o1, ie. o1 and o2 define plane. 2740 2304 2741 G4double x2, x1; 2305 G4double x2, x1; 2742 2306 2743 do 2307 do 2744 { 2308 { 2745 x1=(G4UniformRand()-.5)*2; << 2309 x1=(G4UniformRand()-.5)*2; 2746 x2=(G4UniformRand()-.5)*2; << 2310 x2=(G4UniformRand()-.5)*2; 2747 } while (sqr(x1) +sqr(x2) > 1.); << 2311 } while (sqr(x1) +sqr(x2) > 1.); 2748 2312 2749 return G4ThreeVector(r*(x1*o1.unit() + x2 2313 return G4ThreeVector(r*(x1*o1.unit() + x2*o2.unit() - 1.5* mom.unit())); 2750 2314 2751 2315 2752 2316 2753 /* << 2317 /* 2754 * // Get a point uniformly distributed o << 2318 * // Get a point uniformly distributed on the surface of a sphere, 2755 * // with z < 0. << 2319 * // with z < 0. 2756 * G4double b = r*G4UniformRand(); // << 2320 * G4double b = r*G4UniformRand(); // impact parameter 2757 * G4double phi = G4UniformRand()*2*pi; << 2321 * G4double phi = G4UniformRand()*2*pi; 2758 * G4double x = b*std::cos(phi); << 2322 * G4double x = b*std::cos(phi); 2759 * G4double y = b*std::sin(phi); << 2323 * G4double y = b*std::sin(phi); 2760 * G4double z = -std::sqrt(r*r-b*b); << 2324 * G4double z = -std::sqrt(r*r-b*b); 2761 * z *= 1.001; // Get position a little << 2325 * z *= 1.001; // Get position a little bit out of the sphere... 2762 * point.setX(x); << 2326 * point.setX(x); 2763 * point.setY(y); << 2327 * point.setY(y); 2764 * point.setZ(z); << 2328 * point.setZ(z); 2765 */ << 2329 */ 2766 } 2330 } 2767 2331 2768 //------------------------------------------- 2332 //---------------------------------------------------------------------------- 2769 2333 2770 void G4BinaryCascade::ClearAndDestroy(G4Kinet 2334 void G4BinaryCascade::ClearAndDestroy(G4KineticTrackVector * ktv) 2771 //------------------------------------------- 2335 //---------------------------------------------------------------------------- 2772 { 2336 { 2773 for(auto i = ktv->cbegin(); i != ktv->cen << 2337 std::vector<G4KineticTrack *>::iterator i; 2774 delete (*i); << 2338 for(i = ktv->begin(); i != ktv->end(); ++i) 2775 ktv->clear(); << 2339 delete (*i); >> 2340 ktv->clear(); 2776 } 2341 } 2777 2342 2778 //------------------------------------------- 2343 //---------------------------------------------------------------------------- 2779 void G4BinaryCascade::ClearAndDestroy(G4React 2344 void G4BinaryCascade::ClearAndDestroy(G4ReactionProductVector * rpv) 2780 //------------------------------------------- 2345 //---------------------------------------------------------------------------- 2781 { 2346 { 2782 for(auto i = rpv->cbegin(); i != rpv->cen << 2347 std::vector<G4ReactionProduct *>::iterator i; 2783 delete (*i); << 2348 for(i = rpv->begin(); i != rpv->end(); ++i) 2784 rpv->clear(); << 2349 delete (*i); >> 2350 rpv->clear(); 2785 } 2351 } 2786 2352 2787 //------------------------------------------- 2353 //---------------------------------------------------------------------------- 2788 void G4BinaryCascade::PrintKTVector(G4Kinetic 2354 void G4BinaryCascade::PrintKTVector(G4KineticTrackVector * ktv, std::string comment) 2789 //------------------------------------------- 2355 //---------------------------------------------------------------------------- 2790 { 2356 { 2791 if (comment.size() > 0 ) G4cout << "G4Bin << 2357 if (comment.size() > 0 ) G4cout << comment << G4endl; 2792 if (ktv) { << 2358 G4cout << " vector: " << ktv << ", number of tracks: " << ktv->size() 2793 G4cout << " vector: " << ktv << ", n << 2359 << G4endl; 2794 << G4endl; << 2360 std::vector<G4KineticTrack *>::iterator i; 2795 std::vector<G4KineticTrack *>::const_ << 2361 G4int count; 2796 G4int count; << 2362 2797 << 2363 for(count = 0, i = ktv->begin(); i != ktv->end(); ++i, ++count) 2798 for(count = 0, i = ktv->cbegin(); i ! << 2364 { 2799 { << 2365 G4KineticTrack * kt = *i; 2800 G4KineticTrack * kt = *i; << 2366 G4cout << " track n. " << count << ", id: " << kt << G4endl; 2801 G4cout << " track n. " << count; << 2367 G4ThreeVector pos = kt->GetPosition(); 2802 PrintKTVector(kt); << 2368 G4LorentzVector mom = kt->Get4Momentum(); 2803 } << 2369 G4LorentzVector tmom = kt->GetTrackingMomentum(); 2804 } else { << 2370 G4ParticleDefinition * definition = kt->GetDefinition(); 2805 G4cout << "G4BinaryCascade::PrintKTVe << 2371 G4cout << " definition: " << definition->GetPDGEncoding() << " pos: " 2806 } << 2372 << 1/fermi*pos << " R: " << 1/fermi*pos.mag() << " 4mom: " 2807 } << 2373 << 1/MeV*mom <<"Tr_mom" << 1/MeV*tmom << " P: " << 1/MeV*mom.vect().mag() 2808 //------------------------------------------- << 2374 << " M: " << 1/MeV*mom.mag() << G4endl; 2809 void G4BinaryCascade::PrintKTVector(G4Kinetic << 2375 G4cout <<" trackstatus: "<<kt->GetState()<<G4endl; 2810 //------------------------------------------- << 2376 } 2811 { << 2377 } 2812 if (comment.size() > 0 ) G4cout << "G4Bin << 2378 2813 if ( kt ){ << 2379 //---------------------------------------------------------------------------- 2814 G4cout << ", id: " << kt << G4endl; << 2380 G4bool G4BinaryCascade::CheckDecay(G4KineticTrackVector * products) 2815 G4ThreeVector pos = kt->GetPosition() << 2381 //---------------------------------------------------------------------------- 2816 G4LorentzVector mom = kt->Get4Momentu << 2382 { 2817 G4LorentzVector tmom = kt->GetTrackin << 2383 G4int A = the3DNucleus->GetMassNumber(); 2818 const G4ParticleDefinition * definiti << 2384 G4int Z = the3DNucleus->GetCharge(); 2819 G4cout << " definition: " << defin << 2385 2820 << 1/fermi*pos << " R: " << 1 << 2386 G4FermiMomentum fermiMom; 2821 << 1/MeV*mom <<"Tr_mom" << 1 << 2387 fermiMom.Init(A, Z); 2822 << " M: " << 1/MeV*mom.mag() << 2388 2823 G4cout <<" trackstatus: "<<kt->Get << 2389 const G4VNuclearDensity * density=the3DNucleus->GetNuclearDensity(); 2824 } else { << 2390 2825 G4cout << "G4BinaryCascade::PrintKTVe << 2391 G4KineticTrackVector::iterator i; 2826 } << 2392 G4ParticleDefinition * definition; >> 2393 >> 2394 // ------ debug >> 2395 G4bool myflag = true; >> 2396 // ------ end debug >> 2397 for(i = products->begin(); i != products->end(); ++i) >> 2398 { >> 2399 definition = (*i)->GetDefinition(); >> 2400 if((definition->GetParticleName() != "delta++" )&& >> 2401 (definition->GetParticleName() != "delta+" )&& >> 2402 (definition->GetParticleName() != "delta0" )&& >> 2403 (definition->GetParticleName() != "delta-" )) >> 2404 continue; >> 2405 G4ThreeVector pos = (*i)->GetPosition(); >> 2406 G4double d = density->GetDensity(pos); >> 2407 G4double pFermi= fermiMom.GetFermiMomentum(d); >> 2408 G4LorentzVector mom = (*i)->Get4Momentum(); >> 2409 G4LorentzRotation boost(mom.boostVector()); >> 2410 G4ThreeVector pion3(227*MeV * mom.vect().unit()); // 227 is decay product in rest frame >> 2411 G4LorentzVector pion(pion3, std::sqrt(sqr(140*MeV) +pion3.mag())); >> 2412 // G4cout << "pi rest " << pion << G4endl; >> 2413 pion = boost * pion; >> 2414 // G4cout << "pi lab " << pion << G4endl; >> 2415 // ------ debug >> 2416 // G4cout << "p:[" << (1/MeV)*pion.x() << " " << (1/MeV)*pion.y() << " " >> 2417 // << (1/MeV)*pion.z() << "] |p3|:" >> 2418 // << (1/MeV)*pion.vect().mag() << " E:" << (1/MeV)*pion.t() << " ] m: " >> 2419 // << (1/MeV)*pion.mag() << " pos[" >> 2420 // << (1/fermi)*pos.x() << " "<< (1/fermi)*pos.y() << " " >> 2421 // << (1/fermi)*pos.z() << "] |Dpos|: " >> 2422 // << " Pfermi:" >> 2423 // << (1/MeV)*pFermi << G4endl; >> 2424 // ------ end debug >> 2425 >> 2426 if( pion.vect().mag() < pFermi ) >> 2427 { >> 2428 // ------ debug >> 2429 myflag = false; >> 2430 // ------ end debug >> 2431 } >> 2432 } >> 2433 return myflag; >> 2434 // return true; 2827 } 2435 } 2828 2436 2829 << 2830 //------------------------------------------- 2437 //---------------------------------------------------------------------------- 2831 G4double G4BinaryCascade::GetIonMass(G4int Z, 2438 G4double G4BinaryCascade::GetIonMass(G4int Z, G4int A) 2832 //------------------------------------------- 2439 //---------------------------------------------------------------------------- 2833 { 2440 { 2834 G4double mass(0); << 2441 G4double mass(0); 2835 if ( Z > 0 && A >= Z ) << 2442 if ( Z > 0 && A >= Z ) 2836 { << 2837 mass = G4ParticleTable::GetParticleTa << 2838 << 2839 } else if ( A > 0 && Z>0 ) << 2840 { << 2841 // charge Z > A; will happen for ligh << 2842 mass = G4ParticleTable::GetParticleTa << 2843 << 2844 } else if ( A >= 0 && Z<=0 ) << 2845 { << 2846 // all neutral, or empty nucleus << 2847 mass = A * G4Neutron::Neutron()->GetP << 2848 << 2849 } else if ( A == 0 ) << 2850 { << 2851 // empty nucleus, except maybe pions << 2852 mass = 0; << 2853 << 2854 } else << 2855 { << 2856 G4cerr << "G4BinaryCascade::GetIonMas << 2857 << A << "," << Z << ")" <<G4e << 2858 throw G4HadronicException(__FILE__, _ << 2859 << 2860 } << 2861 // G4cout << "G4BinaryCascade::GetIonMass << 2862 return mass; << 2863 } << 2864 G4ReactionProductVector * G4BinaryCascade::Fi << 2865 { << 2866 // return product when nucleus is destroy << 2867 G4double Esecondaries(0.); << 2868 G4LorentzVector psecondaries; << 2869 std::vector<G4KineticTrack *>::const_iter << 2870 std::vector<G4ReactionProduct *>::const_i << 2871 decayKTV.Decay(&theFinalState); << 2872 << 2873 for(iter = theFinalState.cbegin(); iter ! << 2874 { << 2875 G4ReactionProduct * aNew = new G4Reac << 2876 aNew->SetMomentum((*iter)->Get4Moment << 2877 aNew->SetTotalEnergy((*iter)->Get4Mom << 2878 aNew->SetCreatorModelID(theBIC_ID); << 2879 aNew->SetParentResonanceDef((*iter)->GetPar << 2880 aNew->SetParentResonanceID((*iter)->GetPare << 2881 Esecondaries +=(*iter)->Get4Momentum( << 2882 psecondaries +=(*iter)->Get4Momentum( << 2883 aNew->SetNewlyAdded(true); << 2884 //G4cout << " Particle Ekin " << aNew << 2885 products->push_back(aNew); << 2886 } << 2887 << 2888 // pull out late particles from collision << 2889 //theCollisionMgr->Print(); << 2890 while(theCollisionMgr->Entries() > 0) << 2891 { << 2892 G4CollisionInitialState * << 2893 collision = theCollisionMgr->GetNextC << 2894 << 2895 if ( ! collision->GetTargetCollection << 2896 G4KineticTrackVector * lates = co << 2897 if ( lates->size() == 1 ) { << 2898 G4KineticTrack * atrack=*(lat << 2899 //PrintKTVector(atrack, " lat << 2900 << 2901 G4ReactionProduct * aNew = ne << 2902 aNew->SetMomentum(atrack->Get << 2903 aNew->SetTotalEnergy(atrack-> << 2904 aNew->SetCreatorModelID(atrac << 2905 aNew->SetParentResonanceDef(atrack->GetPa << 2906 aNew->SetParentResonanceID(atrack->GetPar << 2907 Esecondaries +=atrack->Get4Mo << 2908 psecondaries +=atrack->Get4Mo << 2909 aNew->SetNewlyAdded(true); << 2910 products->push_back(aNew); << 2911 << 2912 } << 2913 } << 2914 theCollisionMgr->RemoveCollision(coll << 2915 << 2916 } << 2917 << 2918 // decay must be after loop on Collisions << 2919 // to by Collisions. << 2920 decayKTV.Decay(&theSecondaryList); << 2921 << 2922 // Correct for momentum transfered to Nuc << 2923 G4ThreeVector transferCorrection(0); << 2924 if ( (theSecondaryList.size() + theCaptur << 2925 { << 2926 transferCorrection= theMomentumTransfer << 2927 } << 2928 << 2929 for(iter = theSecondaryList.cbegin(); ite << 2930 { << 2931 G4ReactionProduct * aNew = new G4Reac << 2932 (*iter)->Update4Momentum((*iter)->Get << 2933 aNew->SetMomentum((*iter)->Get4Moment << 2934 aNew->SetTotalEnergy((*iter)->Get4Mom << 2935 aNew->SetCreatorModelID(theBIC_ID); << 2936 aNew->SetParentResonanceDef((*iter)->GetPar << 2937 aNew->SetParentResonanceID((*iter)->GetPare << 2938 Esecondaries +=(*iter)->Get4Momentum( << 2939 psecondaries +=(*iter)->Get4Momentum( << 2940 if ( (*iter)->IsParticipant() ) aNew- << 2941 products->push_back(aNew); << 2942 } << 2943 << 2944 for(iter = theCapturedList.cbegin(); iter << 2945 { << 2946 G4ReactionProduct * aNew = new G4Reac << 2947 (*iter)->Update4Momentum((*iter)->Get << 2948 aNew->SetMomentum((*iter)->Get4Moment << 2949 aNew->SetTotalEnergy((*iter)->Get4Mom << 2950 aNew->SetCreatorModelID(theBIC_ID); << 2951 aNew->SetParentResonanceDef((*iter)->GetPar << 2952 aNew->SetParentResonanceID((*iter)->GetPare << 2953 Esecondaries +=(*iter)->Get4Momentum( << 2954 psecondaries +=(*iter)->Get4Momentum( << 2955 aNew->SetNewlyAdded(true); << 2956 products->push_back(aNew); << 2957 } << 2958 << 2959 G4double SumMassNucleons(0.); << 2960 G4LorentzVector pNucleons(0.); << 2961 for(iter = theTargetList.cbegin(); iter ! << 2962 { << 2963 SumMassNucleons += (*iter)->GetDefini << 2964 pNucleons += (*iter)->Get4Momentum(); << 2965 } << 2966 << 2967 G4double Ekinetic=theProjectile4Momentum. << 2968 #ifdef debug_BIC_FillVoidnucleus << 2969 G4LorentzVector deltaP=theProjectile4 << 2970 psecondaries - pNucle << 2971 //G4cout << "BIC::FillVoidNucleus() n << 2972 // ", deltaP " << deltaP << " de << 2973 #endif << 2974 if (Ekinetic > 0. && theTargetList.size() << 2975 Ekinetic /= theTargetList.size(); << 2976 } else { << 2977 G4double Ekineticrdm(0); << 2978 if (theTargetList.size()) Ekineticrdm << 2979 G4double TotalEkin(Ekineticrdm); << 2980 for (rpiter=products->cbegin(); rpite << 2981 TotalEkin+=(*rpiter)->GetKineticEne << 2982 } << 2983 G4double correction(1.); << 2984 if ( std::abs(Ekinetic) < 20*perCent << 2985 correction=1. + (Ekinetic-Ekineticr << 2986 } << 2987 #ifdef debug_G4BinaryCascade << 2988 else { << 2989 G4cout << "BLIC::FillVoidNucleus() fa << 2990 } << 2991 #endif << 2992 << 2993 for (rpiter=products->cbegin(); rpite << 2994 (*rpiter)->SetKineticEnergy((*rpiter) << 2995 (*rpiter)->SetMomentum((*rpiter)->G << 2996 << 2997 } << 2998 << 2999 Ekinetic=Ekineticrdm*correction; << 3000 if (theTargetList.size())Ekinetic /= << 3001 << 3002 } << 3003 << 3004 for(iter = theTargetList.cbegin(); iter ! << 3005 // set Nucleon it to be hit - as it is << 3006 (*iter)->Hit(); << 3007 G4ReactionProduct * aNew = new G4Reac << 3008 aNew->SetKineticEnergy(Ekinetic); << 3009 aNew->SetMomentum(aNew->GetTotalMomen << 3010 aNew->SetNewlyAdded(true); << 3011 aNew->SetCreatorModelID(theBIC_ID); << 3012 aNew->SetParentResonanceDef((*iter)->GetPar << 3013 aNew->SetParentResonanceID((*iter)->GetPare << 3014 products->push_back(aNew); << 3015 Esecondaries += aNew->GetTotalEnergy( << 3016 psecondaries += G4LorentzVector(aNew- << 3017 } << 3018 psecondaries=G4LorentzVector(0); << 3019 for (rpiter=products->cbegin(); rpiter!=p << 3020 psecondaries += G4LorentzVector((*rpite << 3021 } << 3022 << 3023 G4LorentzVector initial4Mom=theProjectile << 3024 << 3025 //G4cout << "::FillVoidNucleus()final e/p << 3026 // << " final " << psecondaries << " del << 3027 << 3028 G4ThreeVector SumMom=psecondaries.vect(); << 3029 << 3030 SumMom=initial4Mom.vect()-SumMom; << 3031 G4int loopcount(0); << 3032 << 3033 // reverse_iterator reverse - start to co << 3034 while ( SumMom.mag() > 0.1*MeV && loopcou << 3035 { << 3036 G4int index=(G4int)products->size(); << 3037 for (auto reverse=products->crbegin(); << 3038 SumMom=initial4Mom.vect(); << 3039 for (rpiter=products->cbegin(); rpite << 3040 SumMom-=(*rpiter)->GetMomentum(); << 3041 } << 3042 G4double p=((*reverse)->GetMomentum() << 3043 (*reverse)->SetMomentum( p*(((*rever << 3044 } << 3045 } << 3046 return products; << 3047 } << 3048 << 3049 G4ReactionProductVector * G4BinaryCascade::Hi << 3050 G4KineticTrackVector * secondaries) << 3051 { << 3052 for(auto iter = secondaries->cbegin(); it << 3053 { << 3054 G4ReactionProduct * aNew = new G4Reac << 3055 aNew->SetMomentum((*iter)->Get4Moment << 3056 aNew->SetTotalEnergy((*iter)->Get4Mom << 3057 aNew->SetNewlyAdded(true); << 3058 aNew->SetCreatorModelID((*iter)->GetC << 3059 aNew->SetParentResonanceDef((*iter)-> << 3060 aNew->SetParentResonanceID((*iter)->G << 3061 //G4cout << " Particle Ekin " << aNew << 3062 products->push_back(aNew); << 3063 } << 3064 const G4ParticleDefinition* fragment = 0; << 3065 if (currentA == 1 && currentZ == 0) { << 3066 fragment = G4Neutron::NeutronDefiniti << 3067 } else if (currentA == 1 && currentZ == 1 << 3068 fragment = G4Proton::ProtonDefinition << 3069 } else if (currentA == 2 && currentZ == 1 << 3070 fragment = G4Deuteron::DeuteronDefini << 3071 } else if (currentA == 3 && currentZ == 1 << 3072 fragment = G4Triton::TritonDefinition << 3073 } else if (currentA == 3 && currentZ == 2 << 3074 fragment = G4He3::He3Definition(); << 3075 } else if (currentA == 4 && currentZ == 2 << 3076 fragment = G4Alpha::AlphaDefinition() << 3077 } else { << 3078 fragment = << 3079 G4ParticleTable::GetParticleT << 3080 } << 3081 if (fragment != 0) { << 3082 G4ReactionProduct * theNew = new G4Re << 3083 theNew->SetMomentum(G4ThreeVector(0,0 << 3084 theNew->SetTotalEnergy(massInNucleus) << 3085 theNew->SetCreatorModelID(theBIC_ID); << 3086 //theNew->SetFormationTime(??0.??); << 3087 //G4cout << " Nucleus (" << currentZ << 3088 products->push_back(theNew); << 3089 } << 3090 return products; << 3091 } << 3092 << 3093 void G4BinaryCascade::PrintWelcomeMessage() << 3094 { << 3095 G4cout <<"Thank you for using G4BinaryCas << 3096 } << 3097 << 3098 //------------------------------------------- << 3099 void G4BinaryCascade::DebugApplyCollisionFail << 3100 G4KineticTrackVector * products) << 3101 { << 3102 G4bool havePion=false; << 3103 if (products) << 3104 { 2443 { 3105 for ( auto i =products->cbegin(); i != << 2444 mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z,A); 3106 { << 2445 3107 G4int PDGcode=std::abs((*i)->GetDefi << 2446 } else if ( A > 0 && Z>0 ) 3108 if (std::abs(PDGcode)==211 || PDGcod << 3109 } << 3110 } << 3111 if ( !products || havePion) << 3112 { 2447 { 3113 const G4BCAction &action= *collision->G << 2448 // charge Z > A; will happen for light nuclei with pions involved. 3114 G4cout << " Collision " << collision << << 2449 mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(A,A); 3115 << ", with << 2450 3116 G4cout << G4endl<<"Initial condition ar << 2451 } else if ( A >= 0 && Z<=0 ) 3117 G4cout << "proj: "<<collision->GetPrima << 2452 { 3118 PrintKTVector(collision->GetPrimary()); << 2453 // all neutral, or empty nucleus 3119 for(std::size_t it=0; it<collision->Get << 2454 mass = A * G4Neutron::Neutron()->GetPDGMass(); 3120 { << 2455 3121 G4cout << "targ: " << 2456 } else if ( A == 0 && std::abs(Z)<2 ) 3122 <<collision->GetTargetCollecti << 2457 { 3123 } << 2458 // empty nucleus, except maybe pions 3124 PrintKTVector(&collision->GetTargetColl << 2459 mass = 0; 3125 } << 2460 3126 // if ( lateParticleCollision ) G4cout << << 2461 } else 3127 // if ( lateParticleCollision && products << 2462 { 3128 } << 2463 G4cerr << "G4BinaryCascade::GetIonMass() - invalid (A,Z) = (" 3129 << 2464 << A << "," << Z << ")" <<G4endl; 3130 //------------------------------------------- << 2465 G4Exception("G4BinaryCascade::GetIonMass() - giving up"); 3131 << 3132 G4bool G4BinaryCascade::CheckChargeAndBaryonN << 3133 { << 3134 static G4int lastdA(0), lastdZ(0); << 3135 G4int iStateA = the3DNucleus->GetMassNumbe << 3136 G4int iStateZ = the3DNucleus->GetCharge() << 3137 << 3138 G4int fStateA(0); << 3139 G4int fStateZ(0); << 3140 << 3141 G4int CapturedA(0), CapturedZ(0); << 3142 G4int secsA(0), secsZ(0); << 3143 for (auto i=theCapturedList.cbegin(); i!=t << 3144 CapturedA += (*i)->GetDefinition()->Get << 3145 CapturedZ += G4lrint((*i)->GetDefinitio << 3146 } << 3147 << 3148 for (auto i=theSecondaryList.cbegin(); i!= << 3149 if ( (*i)->GetState() != G4KineticTrack << 3150 secsA += (*i)->GetDefinition()->GetB << 3151 secsZ += G4lrint((*i)->GetDefinition << 3152 } << 3153 } << 3154 << 3155 for (auto i=theFinalState.cbegin(); i!=the << 3156 fStateA += (*i)->GetDefinition()->GetBa << 3157 fStateZ += G4lrint((*i)->GetDefinition( << 3158 } 2466 } 3159 << 2467 return mass; 3160 G4int deltaA= iStateA - secsA - fStateA - << 3161 G4int deltaZ= iStateZ - secsZ - fStateZ - << 3162 << 3163 #ifdef debugCheckChargeAndBaryonNumberverbose << 3164 G4cout << where <<" A: iState= "<< iStateA< << 3165 G4cout << where <<" Z: iState= "<< iStateZ< << 3166 #endif << 3167 << 3168 if (deltaA != 0 || deltaZ!=0 ) { << 3169 if (deltaA != lastdA || deltaZ != lastd << 3170 G4cout << "baryon/charge imbalance - << 3171 << "deltaA " <<deltaA<<", iSta << 3172 << ", fStateA "<<fStateA << ", << 3173 << "deltaZ "<<deltaZ<<", iStat << 3174 << ", fStateZ "<<fStateZ << ", << 3175 lastdA=deltaA; << 3176 lastdZ=deltaZ; << 3177 } << 3178 } else { lastdA=lastdZ=0;} << 3179 << 3180 return true; << 3181 } << 3182 //------------------------------------------- << 3183 void G4BinaryCascade::DebugApplyCollision(G4C << 3184 G4KineticTrackVector * products) << 3185 { << 3186 << 3187 PrintKTVector(collision->GetPrimary(),std << 3188 PrintKTVector(&collision->GetTargetCollec << 3189 PrintKTVector(products,std::string(" Scat << 3190 << 3191 #ifdef dontUse << 3192 G4double thisExcitation(0); << 3193 // excitation energy from this collision << 3194 // initial state: << 3195 G4double initial(0); << 3196 G4KineticTrack * kt=collision->GetPrimary << 3197 initial += kt->Get4Momentum().e(); << 3198 << 3199 G4RKPropagation * RKprop=(G4RKPropagation << 3200 << 3201 initial += RKprop->GetField(kt->GetDefin << 3202 initial -= RKprop->GetBarrier(kt->GetDef << 3203 G4cout << "prim. E/field/Barr/Sum " << kt << 3204 << " " << RKprop->GetFi << 3205 << " " << RKprop->GetBa << 3206 << " " << initial << G4 << 3207 << 3208 G4KineticTrackVector ktv=collision->GetTa << 3209 for ( unsigned int it=0; it < ktv.size(); << 3210 { << 3211 kt=ktv[it]; << 3212 initial += kt->Get4Momentum().e(); << 3213 thisExcitation += kt->GetDefinition() << 3214 - kt->Get4Momentum() << 3215 - RKprop->GetField(k << 3216 // initial += RKprop->GetField(k << 3217 // initial -= RKprop->GetBarrier << 3218 G4cout << "Targ. def/E/field/Barr/Sum << 3219 << " " << kt->Get4Momentum( << 3220 << " " << RKprop->GetField( << 3221 << " " << RKprop->GetBarrie << 3222 << " " << initial <<" Excit << 3223 } << 3224 << 3225 G4double fin(0); << 3226 G4double mass_out(0); << 3227 G4int product_barions(0); << 3228 if ( products ) << 3229 { << 3230 for ( unsigned int it=0; it < product << 3231 { << 3232 kt=(*products)[it]; << 3233 fin += kt->Get4Momentum().e(); << 3234 fin += RKprop->GetField(kt->GetD << 3235 fin += RKprop->GetBarrier(kt->Ge << 3236 if ( kt->GetDefinition()->GetBary << 3237 mass_out += kt->GetDefinition()-> << 3238 G4cout << "sec. def/E/field/Barr/ << 3239 << " " << kt->Get4Moment << 3240 << " " << RKprop->GetFie << 3241 << " " << RKprop->GetBar << 3242 << " " << fin << G4endl; << 3243 } << 3244 } << 3245 << 3246 << 3247 G4int finalA = currentA; << 3248 G4int finalZ = currentZ; << 3249 if ( products ) << 3250 { << 3251 finalA -= product_barions; << 3252 finalZ -= GetTotalCharge(*products); << 3253 } << 3254 G4double delta = GetIonMass(currentZ,curr << 3255 G4cout << " current/final a,z " << curren << 3256 << " delta-mass " << delta<<G4en << 3257 fin+=delta; << 3258 mass_out = GetIonMass(finalZ,finalA); << 3259 G4cout << " initE/ E_out/ Mfinal/ Excit " << 3260 << " " << fin << " " << 3261 << mass_out<<" " << 3262 << currentInitialEnergy - fin - << 3263 << G4endl; << 3264 currentInitialEnergy-=fin; << 3265 #endif << 3266 } 2468 } 3267 2469 3268 //------------------------------------------- << 2470 void G4BinaryCascade::PrintWelcomeMessage() 3269 G4bool G4BinaryCascade::DebugFinalEpConservat << 3270 G4ReactionProductVector* products) << 3271 //------------------------------------------- << 3272 { 2471 { 3273 G4double Efinal(0); << 2472 G4cout <<"Thank you for using G4BinaryCascade. "<<G4endl; 3274 G4ThreeVector pFinal(0); << 3275 if (std::abs(theParticleChange.GetWeightC << 3276 { << 3277 G4cout <<" BIC-weight change " << the << 3278 } << 3279 << 3280 for(auto iter = products->cbegin(); iter << 3281 { << 3282 << 3283 G4cout << " Secondary E - Ekin / p " << 3284 (*iter)->GetDefinition()->GetPa << 3285 (*iter)->GetTotalEnergy() << " << 3286 (*iter)->GetKineticEnergy()<< " << 3287 (*iter)->GetMomentum().x() << " << 3288 (*iter)->GetMomentum().y() << " << 3289 (*iter)->GetMomentum().z() << G << 3290 Efinal += (*iter)->GetTotalEnergy(); << 3291 pFinal += (*iter)->GetMomentum(); << 3292 } << 3293 << 3294 G4cout << "e outgoing/ total : " << Efi << 3295 G4cout << "BIC E/p delta " << << 3296 (aTrack.Get4Momentum().e()+theIni << 3297 " MeV / mom " << (aTrack.Get4Mome << 3298 << 3299 return (aTrack.Get4Momentum().e() + theIn << 3300 << 3301 } 2473 } 3302 //------------------------------------------- << 3303 G4bool G4BinaryCascade::DebugEpConservation(c << 3304 //------------------------------------------- << 3305 { << 3306 G4cout << where << G4endl; << 3307 G4LorentzVector psecs, ptgts, pcpts << 3308 if (std::abs(theParticleChange.GetWeightC << 3309 { << 3310 G4cout <<" BIC-weight change " << the << 3311 } << 3312 << 3313 std::vector<G4KineticTrack *>::const_iter << 3314 for(ktiter = theSecondaryList.cbegin(); k << 3315 { << 3316 2474 3317 G4cout << " Secondary E - Ekin << 3318 (*ktiter)->GetDefinition()-> << 3319 (*ktiter)->Get4Momentum().e( << 3320 (*ktiter)->Get4Momentum().e( << 3321 (*ktiter)->Get4Momentum().ve << 3322 psecs += (*ktiter)->Get4Momentum() << 3323 } << 3324 2475 3325 for(ktiter = theTargetList.cbegin(); ktit << 3326 { << 3327 2476 3328 G4cout << " Target E - Ekin / p << 3329 (*ktiter)->GetDefinition()-> << 3330 (*ktiter)->Get4Momentum().e( << 3331 (*ktiter)->Get4Momentum().e( << 3332 (*ktiter)->Get4Momentum().ve << 3333 ptgts += (*ktiter)->Get4Momentum() << 3334 } << 3335 2477 3336 for(ktiter = theCapturedList.cbegin(); kt << 3337 { << 3338 2478 3339 G4cout << " Captured E - Ekin << 3340 (*ktiter)->GetDefinition()- << 3341 (*ktiter)->Get4Momentum().e << 3342 (*ktiter)->Get4Momentum().e << 3343 (*ktiter)->Get4Momentum().v << 3344 pcpts += (*ktiter)->Get4Momentum( << 3345 } << 3346 2479 3347 for(ktiter = theFinalState.cbegin(); ktit << 3348 { << 3349 2480 3350 G4cout << " Finals E - Ekin / << 3351 (*ktiter)->GetDefinition()- << 3352 (*ktiter)->Get4Momentum().e << 3353 (*ktiter)->Get4Momentum().e << 3354 (*ktiter)->Get4Momentum().v << 3355 pfins += (*ktiter)->Get4Momentum( << 3356 } << 3357 << 3358 G4cout << " Secondaries " << psecs << " << 3359 <<" Captured " << pcpts << ", Fi << 3360 <<" Sum " << psecs + ptgts + pcpts << 3361 <<" Sum+PTransfer " << psecs + ptgt << 3362 << G4endl<< G4endl; << 3363 << 3364 << 3365 return true; << 3366 2481 3367 } << 3368 << 3369 //------------------------------------------- << 3370 G4ReactionProductVector * G4BinaryCascade::Pr << 3371 //------------------------------------------- << 3372 { << 3373 // else << 3374 // { << 3375 // G4ReactionProduct * aNew=0; << 3376 // // return nucleus e and p << 3377 // if (fragment != 0 ) { << 3378 // aNew = new G4ReactionProduct(G4 << 3379 // aNew->SetMomentum(fragment->Get << 3380 // aNew->SetTotalEnergy(fragment-> << 3381 // delete fragment; << 3382 // fragment=0; << 3383 // } else if (products->size() == 0) { << 3384 // // FixMe GF: for testing withou << 3385 //#include "G4Gamma.hh" << 3386 // aNew = new G4ReactionProduct(G4 << 3387 // aNew->SetMomentum(G4ThreeVector << 3388 // aNew->SetTotalEnergy(0.01*MeV); << 3389 // } << 3390 // if ( aNew != 0 ) products->push_bac << 3391 // } << 3392 return products; << 3393 } << 3394 << 3395 //------------------------------------------- << 3396 2482