Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer << 3 // * DISCLAIMER * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th << 5 // * The following disclaimer summarizes all the specific disclaimers * 6 // * the Geant4 Collaboration. It is provided << 6 // * of contributors to this software. The specific disclaimers,which * 7 // * conditions of the Geant4 Software License << 7 // * govern, are listed with their locations in: * 8 // * LICENSE and available at http://cern.ch/ << 8 // * http://cern.ch/geant4/license * 9 // * include a list of copyright holders. << 10 // * 9 // * * 11 // * Neither the authors of this software syst 10 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 11 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 12 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 13 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file << 14 // * use. * 16 // * for the full disclaimer and the limitatio << 17 // * 15 // * * 18 // * This code implementation is the result << 16 // * This code implementation is the intellectual property of the * 19 // * technical work of the GEANT4 collaboratio << 17 // * GEANT4 collaboration. * 20 // * By using, copying, modifying or distri << 18 // * By copying, distributing or modifying the Program (or any work * 21 // * any work based on the software) you ag << 19 // * based on the Program) you indicate your acceptance of this * 22 // * use in resulting scientific publicati << 20 // * statement, and all its terms. * 23 // * acceptance of all terms of the Geant4 Sof << 24 // ******************************************* 21 // ******************************************************************** 25 // 22 // 26 23 27 #include "globals.hh" 24 #include "globals.hh" 28 #include "G4PhysicalConstants.hh" << 29 #include "G4SystemOfUnits.hh" << 30 #include "G4Proton.hh" 25 #include "G4Proton.hh" 31 #include "G4Neutron.hh" 26 #include "G4Neutron.hh" 32 #include "G4LorentzRotation.hh" 27 #include "G4LorentzRotation.hh" 33 #include "G4BinaryCascade.hh" 28 #include "G4BinaryCascade.hh" 34 #include "G4KineticTrackVector.hh" 29 #include "G4KineticTrackVector.hh" 35 #include "G4DecayKineticTracks.hh" << 36 #include "G4ReactionProductVector.hh" 30 #include "G4ReactionProductVector.hh" 37 #include "G4Track.hh" 31 #include "G4Track.hh" 38 #include "G4V3DNucleus.hh" 32 #include "G4V3DNucleus.hh" 39 #include "G4Fancy3DNucleus.hh" 33 #include "G4Fancy3DNucleus.hh" 40 #include "G4Scatterer.hh" 34 #include "G4Scatterer.hh" 41 #include "G4MesonAbsorption.hh" 35 #include "G4MesonAbsorption.hh" 42 #include "G4ping.hh" 36 #include "G4ping.hh" 43 #include "G4Delete.hh" 37 #include "G4Delete.hh" 44 38 45 #include "G4CollisionManager.hh" 39 #include "G4CollisionManager.hh" 46 #include "G4Absorber.hh" 40 #include "G4Absorber.hh" 47 41 48 #include "G4CollisionInitialState.hh" 42 #include "G4CollisionInitialState.hh" 49 #include "G4ListOfCollisions.hh" 43 #include "G4ListOfCollisions.hh" 50 #include "G4Fragment.hh" 44 #include "G4Fragment.hh" 51 #include "G4RKPropagation.hh" 45 #include "G4RKPropagation.hh" 52 46 53 #include "G4NuclearShellModelDensity.hh" << 47 #include "G4NuclearShellModelDensity.hh" 54 #include "G4NuclearFermiDensity.hh" 48 #include "G4NuclearFermiDensity.hh" 55 #include "G4FermiMomentum.hh" 49 #include "G4FermiMomentum.hh" 56 50 57 #include "G4PreCompoundModel.hh" 51 #include "G4PreCompoundModel.hh" 58 #include "G4ExcitationHandler.hh" 52 #include "G4ExcitationHandler.hh" 59 #include "G4HadronicInteractionRegistry.hh" << 60 53 61 #include "G4FermiPhaseSpaceDecay.hh" 54 #include "G4FermiPhaseSpaceDecay.hh" 62 55 63 #include "G4PreCompoundModel.hh" << 64 #include "G4HadronicParameters.hh" << 65 << 66 #include <algorithm> 56 #include <algorithm> 67 #include "G4ShortLivedConstructor.hh" 57 #include "G4ShortLivedConstructor.hh" 68 #include <typeinfo> 58 #include <typeinfo> 69 59 70 #include "G4PhysicsModelCatalog.hh" << 60 // #define debug_1_BinaryCascade 1 71 << 61 // #define debug_G4BinaryCascade 1 72 // turn on general debugging info, and consi << 73 << 74 //#define debug_G4BinaryCascade 1 << 75 << 76 // more detailed debugging -- deprecated << 77 //#define debug_H1_BinaryCascade 1 << 78 << 79 // specific debugging info per method or func << 80 //#define debug_BIC_ApplyCollision 1 << 81 //#define debug_BIC_CheckPauli 1 << 82 //#define debug_BIC_CorrectFinalPandE 1 << 83 //#define debug_BIC_Propagate 1 << 84 //#define debug_BIC_Propagate_Excitation 1 << 85 //#define debug_BIC_Propagate_Collisions 1 << 86 //#define debug_BIC_Propagate_finals 1 << 87 //#define debug_BIC_DoTimeStep 1 << 88 //#define debug_BIC_CorrectBarionsOnBoundary 1 << 89 //#define debug_BIC_GetExcitationEnergy 1 << 90 //#define debug_BIC_DeexcitationProducts 1 << 91 //#define debug_BIC_FinalNucleusMomentum 1 << 92 //#define debug_BIC_Final4Momentum 1 << 93 //#define debug_BIC_FillVoidnucleus 1 << 94 //#define debug_BIC_FindFragments 1 << 95 //#define debug_BIC_BuildTargetList 1 << 96 //#define debug_BIC_FindCollision 1 << 97 //#define debug_BIC_return 1 << 98 << 99 //------- << 100 //#if defined(debug_G4BinaryCascade) << 101 #if 0 << 102 #define _CheckChargeAndBaryonNumber_(val) Ch << 103 //#define debugCheckChargeAndBaryonNumberver << 104 #else << 105 #define _CheckChargeAndBaryonNumber_(val) << 106 #endif << 107 //#if defined(debug_G4BinaryCascade) << 108 #if 0 << 109 #define _DebugEpConservation(val) DebugEpCo << 110 //#define debugCheckChargeAndBaryonNumberver << 111 #else << 112 #define _DebugEpConservation(val) << 113 #endif << 114 << 115 G4int G4BinaryCascade::theBIC_ID = -1; << 116 << 117 // 62 // 118 // C O N S T R U C T O R S A N D D E S T 63 // C O N S T R U C T O R S A N D D E S T R U C T O R S 119 // 64 // 120 G4BinaryCascade::G4BinaryCascade(G4VPreCompoun << 65 121 G4VIntraNuclearTransportModel("Binary Cascade" << 66 G4BinaryCascade::G4BinaryCascade() : G4VIntraNuclearTransportModel() >> 67 { >> 68 // initialise the resonance sector >> 69 G4ShortLivedConstructor ShortLived; >> 70 ShortLived.ConstructParticle(); >> 71 >> 72 theCollisionMgr = new G4CollisionManager; >> 73 >> 74 theImR.push_back(new G4BCDecay); >> 75 theImR.push_back(new G4Scatterer); >> 76 theImR.push_back(new G4MesonAbsorption); >> 77 thePropagator = new G4RKPropagation; >> 78 theCurrentTime = 0.; >> 79 theCutOnP = 90*MeV; >> 80 theCutOnPAbsorb= 0*MeV; >> 81 // G4ExcitationHandler * >> 82 theExcitationHandler = new G4ExcitationHandler; >> 83 SetDeExcitation(new G4PreCompoundModel(theExcitationHandler)); >> 84 SetMinEnergy(0.0*GeV); >> 85 SetMaxEnergy(10.1*GeV); >> 86 PrintWelcomeMessage(); >> 87 thePrimaryEscape = true; >> 88 thePrimaryType = 0; >> 89 } >> 90 >> 91 >> 92 G4BinaryCascade::G4BinaryCascade(const G4BinaryCascade& ) >> 93 : G4VIntraNuclearTransportModel() 122 { 94 { 123 // initialise the resonance sector << 124 G4ShortLivedConstructor ShortLived; << 125 ShortLived.ConstructParticle(); << 126 << 127 theCollisionMgr = new G4CollisionManager; << 128 theDecay=new G4BCDecay; << 129 theImR.push_back(theDecay); << 130 theLateParticle= new G4BCLateParticle; << 131 G4MesonAbsorption * aAb=new G4MesonAbsorpt << 132 theImR.push_back(aAb); << 133 G4Scatterer * aSc=new G4Scatterer; << 134 theH1Scatterer = new G4Scatterer; << 135 theImR.push_back(aSc); << 136 << 137 thePropagator = new G4RKPropagation; << 138 theCurrentTime = 0.; << 139 theBCminP = 45*MeV; << 140 theCutOnP = 90*MeV; << 141 theCutOnPAbsorb= 0*MeV; // No Absorption << 142 << 143 // reuse existing pre-compound model << 144 if(!ptr) { << 145 G4HadronicInteraction* p = << 146 G4HadronicInteractionRegistry::Instance()->F << 147 G4VPreCompoundModel* pre = static_cast<G << 148 if(!pre) { pre = new G4PreCompoundModel( << 149 SetDeExcitation(pre); << 150 } << 151 theExcitationHandler = GetDeExcitation()-> << 152 SetMinEnergy(0.0*GeV); << 153 SetMaxEnergy(10.1*GeV); << 154 //PrintWelcomeMessage(); << 155 thePrimaryEscape = true; << 156 thePrimaryType = 0; << 157 << 158 SetEnergyMomentumCheckLevels(1.0*perCent, << 159 << 160 // init data members << 161 currentA=currentZ=0; << 162 lateA=lateZ=0; << 163 initialA=initialZ=0; << 164 projectileA=projectileZ=0; << 165 currentInitialEnergy=initial_nuclear_mass= << 166 massInNucleus=0.; << 167 theOuterRadius=0.; << 168 theBIC_ID = G4PhysicsModelCatalog::GetMode << 169 fBCDEBUG = G4HadronicParameters::Instance( << 170 } 95 } 171 96 >> 97 172 G4BinaryCascade::~G4BinaryCascade() 98 G4BinaryCascade::~G4BinaryCascade() 173 { 99 { 174 ClearAndDestroy(&theTargetList); << 100 ClearAndDestroy(&theTargetList); 175 ClearAndDestroy(&theSecondaryList); << 101 ClearAndDestroy(&theSecondaryList); 176 ClearAndDestroy(&theCapturedList); << 102 ClearAndDestroy(&theCapturedList); 177 delete thePropagator; << 103 ClearAndDestroy(&theProjectileList); 178 delete theCollisionMgr; << 104 delete thePropagator; 179 for(auto & ptr : theImR) { delete ptr; } << 105 delete theCollisionMgr; 180 theImR.clear(); << 106 std::for_each(theImR.begin(), theImR.end(), Delete<G4BCAction>()); 181 delete theLateParticle; << 107 delete theExcitationHandler; 182 delete theH1Scatterer; << 183 } << 184 << 185 void G4BinaryCascade::ModelDescription(std::os << 186 { << 187 outFile << "G4BinaryCascade is an intra-nu << 188 << "an incident hadron collides wi << 189 << "final-state particles, one or << 190 << "The resonances then decay hadr << 191 << "are then propagated through th << 192 << "trajectories until they re-int << 193 << "This model is valid for incide << 194 << "nucleons up to 10 GeV.\n" << 195 << "The remaining excited nucleus << 196 if (theDeExcitation) << 197 { << 198 outFile << theDeExcitation->GetM << 199 theDeExcitation->DeExciteModelDe << 200 } << 201 else if (theExcitationHandler) << 202 { << 203 outFile << "G4ExcitationHandler << 204 theExcitationHandler->ModelDesc << 205 } << 206 else << 207 { << 208 outFile << "void.\n"; << 209 } << 210 outFile<< " \n"; << 211 } << 212 void G4BinaryCascade::PropagateModelDescriptio << 213 { << 214 outFile << "G4BinaryCascade propagtes seco << 215 << "energy model through the wound << 216 << "Secondaries are followed after << 217 << "within the nucleus are propaga << 218 << "potential along curved traject << 219 << "with a nucleon, decay, or leav << 220 << "An interaction of a secondary << 221 << "final-state particles, one or << 222 << "Resonances decay hadronically << 223 << "are in turn propagated through << 224 << "trajectories until they re-int << 225 << "This model is valid for pions << 226 << "nucleons up to about 3.5 GeV.\ << 227 << "The remaining excited nucleus << 228 if (theDeExcitation) // pre << 229 { << 230 outFile << theDeExcitation->GetModelName << 231 theDeExcitation->DeExciteModelDescriptio << 232 } << 233 else if (theExcitationHandler) // de-ex << 234 { << 235 outFile << "G4ExcitationHandler"; // << 236 theExcitationHandler->ModelDescription( << 237 } << 238 else << 239 { << 240 outFile << "void.\n"; << 241 } << 242 outFile<< " \n"; << 243 } 108 } 244 109 245 //-------------------------------------------- 110 //---------------------------------------------------------------------------- 246 111 247 // 112 // 248 // I M P L E M E N T A T I O N 113 // I M P L E M E N T A T I O N 249 // 114 // 250 115 251 116 252 //-------------------------------------------- 117 //---------------------------------------------------------------------------- 253 G4HadFinalState * G4BinaryCascade::ApplyYourse 118 G4HadFinalState * G4BinaryCascade::ApplyYourself(const G4HadProjectile & aTrack, 254 G4Nucleus & aNucleus) << 255 //-------------------------------------------- 119 //---------------------------------------------------------------------------- >> 120 G4Nucleus & aNucleus) 256 { 121 { 257 if(fBCDEBUG) G4cerr << " ######### Binary << 122 static G4int eventcounter=0; 258 << 123 //if(eventcounter == 100*(eventcounter/100) ) 259 G4LorentzVector initial4Momentum = aTrack. << 124 eventcounter++; 260 const G4ParticleDefinition * definition = << 125 if(getenv("BCDEBUG") ) G4cerr << " ######### Binary Cascade Reaction number starts ######### "<<eventcounter<<G4endl; 261 << 126 G4LorentzVector initial4Momentum = aTrack.Get4Momentum(); 262 if(initial4Momentum.e()-initial4Momentum.m << 127 if(initial4Momentum.e()-initial4Momentum.m()<theCutOnP/2.) 263 ( definition==G4Neutron::NeutronDe << 128 { 264 { << 129 return theDeExcitation->ApplyYourself(aTrack, aNucleus); 265 return theDeExcitation->ApplyYourself( << 130 } 266 } << 131 267 << 132 theParticleChange.Clear(); 268 theParticleChange.Clear(); << 133 // initialize the G4V3DNucleus from G4Nucleus 269 // initialize the G4V3DNucleus from G4Nucl << 134 the3DNucleus = new G4Fancy3DNucleus; 270 the3DNucleus = new G4Fancy3DNucleus; << 135 the3DNucleus->Init(aNucleus.GetN(), aNucleus.GetZ()); 271 << 136 272 // Build a KineticTrackVector with the G4T << 137 thePropagator->Init(the3DNucleus); 273 G4KineticTrackVector * secondaries;// = ne << 138 274 G4ThreeVector initialPosition(0., 0., 0.); << 139 // Build a KineticTrackVector with the G4Track 275 << 140 G4KineticTrackVector * secondaries = new G4KineticTrackVector; 276 if(!fBCDEBUG) << 141 G4ParticleDefinition * definition = const_cast<G4ParticleDefinition *>(aTrack.GetDefinition()); 277 { << 142 G4ThreeVector initialPosition(0., 0., 0.); // will be set later 278 if(definition!=G4Neutron::NeutronDefin << 143 279 definition!=G4Proton::ProtonDe << 144 if(!getenv("I_Am_G4BinaryCascade_Developer") ) 280 definition!=G4PionPlus::PionPl << 145 { 281 definition!=G4PionMinus::PionM << 146 if(definition!=G4Neutron::NeutronDefinition() && 282 { << 147 definition!=G4Proton::ProtonDefinition() && 283 G4cerr << "You are trying to use G << 148 definition!=G4PionPlus::PionPlusDefinition() && 284 G4cerr << "G4BinaryCascade should << 149 definition!=G4PionMinus::PionMinusDefinition() ) 285 G4cerr << "If you want to continue << 150 { 286 G4cerr << "setenv I_Am_G4BinaryCas << 151 G4cerr << "You are using G4BinaryCascade for projectiles other than nucleons or pions."<<G4endl; 287 throw G4HadronicException(__FILE__ << 152 G4cerr << "If you want to continue, please switch on the developer environment: "<<G4endl; 288 } << 153 G4cerr << "setenv I_Am_G4BinaryCascade_Developer 1 "<<G4endl<<G4endl; 289 } << 154 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade - used for unvalid particle type - Fatal"); 290 << 155 } 291 // keep primary << 156 } 292 thePrimaryType = definition; << 157 293 thePrimaryEscape = false; << 158 // keep primary 294 << 159 thePrimaryType = definition; 295 G4double timePrimary=aTrack.GetGlobalTime( << 160 thePrimaryEscape = false; 296 << 161 297 // try until an interaction will happen << 162 // try untill an interaction will happen 298 G4ReactionProductVector * products = nullp << 163 G4ReactionProductVector * products = 0; 299 G4int interactionCounter = 0,collisionLoop << 164 G4double radius = the3DNucleus->GetOuterRadius()+3*fermi; 300 do << 165 G4int interactionCounter = 0; 301 { << 166 do 302 // reset status that could be changed << 167 { 303 theCollisionMgr->ClearAndDestroy(); << 168 // reset status that could be changed in previous loop event 304 << 169 theCollisionMgr->ClearAndDestroy(); 305 if(products != nullptr) << 170 ClearAndDestroy(&theTargetList); // clear and rebuild theTargetList 306 { // free memory from previous loop e << 171 the3DNucleus->Init(aNucleus.GetN(), aNucleus.GetZ()); 307 ClearAndDestroy(products); << 172 BuildTargetList(); 308 delete products; << 173 G4KineticTrack * kt = new G4KineticTrack(definition, 0., initialPosition, 309 } << 174 initial4Momentum); 310 << 175 // Note: secondaries has been cleared by Propagate() in the previous loop event 311 G4int massNumber=aNucleus.GetA_asInt() << 176 secondaries->push_back(kt); 312 the3DNucleus->Init(massNumber, aNucleu << 177 313 thePropagator->Init(the3DNucleus); << 178 while(theCollisionMgr->Entries() == 0) // until we FIND a collision... 314 G4KineticTrack * kt; << 179 { 315 collisionLoopMaxCount = 200; << 180 theCurrentTime=0; 316 do // sample impact p << 181 initialPosition=GetSpherePoint(1.1*radius, initial4Momentum); // get random position 317 { << 182 kt->SetPosition(initialPosition); // kt is in secondaries!! 318 theCurrentTime=0; << 183 kt->SetState(G4KineticTrack::outside); 319 G4double radius = the3DNucleus->Ge << 184 FindCollisions(secondaries); 320 initialPosition=GetSpherePoint(1.1 << 185 } 321 kt = new G4KineticTrack(definition << 186 if(products != NULL) 322 kt->SetState(G4KineticTrack::outsi << 187 { // free memory from previous loop event 323 // secondaries has been cleared by << 188 ClearAndDestroy(products); 324 secondaries= new G4KineticTrackVec << 189 delete products; 325 secondaries->push_back(kt); << 190 } 326 if(massNumber > 1) // 1H1 is speci << 191 products = Propagate(secondaries, the3DNucleus); 327 { << 192 328 products = Propagate(secondari << 193 // --------- debug 329 } else { << 194 // untill Propagate will be able to return some product... 330 products = Propagate1H1(second << 195 // if(1) 331 } << 196 // return &theParticleChange; 332 // until we FIND a collision ... o << 197 // --------- end debug 333 } while(! products && --collisionLoopM << 198 if(++interactionCounter>99) break; 334 << 199 } while(products->size() == 0); // ...untill we find an ALLOWED collision 335 if(++interactionCounter>99) break; << 200 336 // ...until we find an ALLOWED collisi << 201 if(products->size()==0) 337 } while(products && products->size() == 0) << 202 { 338 << 203 theParticleChange.SetStatusChange(isAlive); 339 if(products && products->size()>0) << 204 theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy()); 340 { << 205 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 341 // G4cout << "BIC Applyyourself: numb << 206 return &theParticleChange; 342 << 207 } 343 // Fill the G4ParticleChange * with pr << 208 // G4cout << "HKM Applyyourself: number of products " << products->size() << G4endl; 344 theParticleChange.SetStatusChange(stop << 345 G4ReactionProductVector::iterator iter << 346 << 347 for(iter = products->begin(); iter != << 348 { << 349 G4DynamicParticle * aNewDP = << 350 new G4DynamicParticle((*it << 351 (*iter)->GetTotalE << 352 (*iter)->GetMoment << 353 G4HadSecondary aNew = G4HadSecondary << 354 G4double time=(*iter)->GetFormatio << 355 if(time < 0.0) { time = 0.0; } << 356 aNew.SetTime(timePrimary + time); << 357 aNew.SetCreatorModelID((*iter)->Ge << 358 aNew.SetParentResonanceDef((*iter) << 359 aNew.SetParentResonanceID((*iter)- << 360 theParticleChange.AddSecondary(aNe << 361 } << 362 << 363 //DebugFinalEpConservation(aTrack, pr << 364 << 365 << 366 } else { // no interaction, return primar << 367 if(fBCDEBUG) G4cerr << " ######### Bin << 368 theParticleChange.SetStatusChange(isAl << 369 theParticleChange.SetEnergyChange(aTra << 370 theParticleChange.SetMomentumChange(aT << 371 } << 372 << 373 if ( products ) << 374 { << 375 ClearAndDestroy(products); << 376 delete products; << 377 } << 378 << 379 delete the3DNucleus; << 380 the3DNucleus = nullptr; << 381 209 382 if(fBCDEBUG) G4cerr << " ######### Binary << 210 // Fill the G4ParticleChange * with products >> 211 theParticleChange.SetStatusChange(stopAndKill); >> 212 G4ReactionProductVector::iterator iter; >> 213 G4double Efinal=0; >> 214 if (abs(theParticleChange.GetWeightChange() -1 ) > 1e-5 ) >> 215 { >> 216 G4cout <<" BIC-weight change " << theParticleChange.GetWeightChange()<< G4endl; >> 217 } 383 218 384 return &theParticleChange; << 219 for(iter = products->begin(); iter != products->end(); ++iter) >> 220 { >> 221 G4DynamicParticle * aNew = >> 222 new G4DynamicParticle((*iter)->GetDefinition(), >> 223 (*iter)->GetTotalEnergy(), >> 224 (*iter)->GetMomentum()); >> 225 if(getenv("BCDEBUG") ) >> 226 { >> 227 if(abs(aNew->GetDefinition()->GetPDGEncoding()) >100 >> 228 && abs(aNew->GetDefinition()->GetPDGEncoding()) < 300) G4cout << "Pion info "<<aNew->GetDefinition()->GetPDGEncoding() <<" "<<aNew->GetKineticEnergy()<<G4endl; >> 229 } >> 230 // FixMe: should I use "position" or "time" specifyed AddSecondary() methods? >> 231 theParticleChange.AddSecondary(aNew); >> 232 >> 233 // G4cout << " Secondary E - Ekin / p " << >> 234 // (*iter)->GetDefinition()->GetParticleName() << " " << >> 235 // (*iter)->GetTotalEnergy() << " - " << >> 236 // (*iter)->GetKineticEnergy()<< " / " << >> 237 // (*iter)->GetMomentum().x() << " " << >> 238 // (*iter)->GetMomentum().y() << " " << >> 239 // (*iter)->GetMomentum().z() << G4endl; >> 240 Efinal += (*iter)->GetTotalEnergy(); >> 241 } >> 242 >> 243 // G4cout << "e outgoing/ total : " << Efinal << " " << Efinal+GetFinal4Momentum().e()<< G4endl; >> 244 >> 245 ClearAndDestroy(products); >> 246 delete products; >> 247 delete secondaries; >> 248 >> 249 delete the3DNucleus; >> 250 the3DNucleus = NULL; // protect from wrong usage... >> 251 >> 252 if(getenv("BCDEBUG") ) G4cerr << " ######### Binary Cascade Reaction number ends ######### "<<eventcounter<<G4endl; >> 253 if (abs(theParticleChange.GetWeightChange() -1 ) > 1e-5 ) >> 254 { >> 255 G4cout <<" BIC-fin-weight change " << theParticleChange.GetWeightChange()<< G4endl; >> 256 } >> 257 return &theParticleChange; 385 } 258 } >> 259 386 //-------------------------------------------- 260 //---------------------------------------------------------------------------- 387 G4ReactionProductVector * G4BinaryCascade::Pro 261 G4ReactionProductVector * G4BinaryCascade::Propagate( 388 G4KineticTrackVector * secondaries, G4 << 389 //-------------------------------------------- 262 //---------------------------------------------------------------------------- >> 263 G4KineticTrackVector * secondaries, G4V3DNucleus * nucleus) 390 { 264 { 391 G4ping debug("debug_G4BinaryCascade"); << 265 G4ping debug("debug_G4BinaryCascade"); 392 #ifdef debug_BIC_Propagate << 266 debug.push_back("trial"); 393 G4cout << "G4BinaryCascade Propagate start << 267 debug.dump(); >> 268 #ifdef debug_G4BinaryCascade >> 269 G4cout << "G4BinaryCascade Propagate starting -------------------------------------------------------" <<G4endl; 394 #endif 270 #endif 395 << 271 G4ReactionProductVector * products = new G4ReactionProductVector; 396 the3DNucleus=aNucleus; << 272 the3DNucleus = nucleus; 397 G4ReactionProductVector * products = new G << 273 theOuterRadius = the3DNucleus->GetOuterRadius(); 398 theOuterRadius = the3DNucleus->GetOuterRad << 274 theCurrentTime=0; 399 theCurrentTime=0; << 275 // build theSecondaryList, theProjectileList and theCapturedList 400 theProjectile4Momentum=G4LorentzVector(0,0 << 276 ClearAndDestroy(&theCapturedList); 401 theMomentumTransfer=G4ThreeVector(0,0,0); << 277 ClearAndDestroy(&theSecondaryList); 402 // build theSecondaryList, theProjectileLi << 278 ClearAndDestroy(&theProjectileList); 403 ClearAndDestroy(&theCapturedList); << 279 ClearAndDestroy(&theFinalState); 404 ClearAndDestroy(&theSecondaryList); << 280 std::vector<G4KineticTrack *>::iterator iter; 405 theSecondaryList.clear(); << 281 if(nucleus->GetMassNumber() == 1) // 1H1 is special case 406 ClearAndDestroy(&theFinalState); << 282 { 407 std::vector<G4KineticTrack *>::iterator it << 283 return Propagate1H1(secondaries,nucleus); 408 theCollisionMgr->ClearAndDestroy(); << 284 } 409 << 285 410 theCutOnP=90*MeV; << 286 for(iter = secondaries->begin(); iter != secondaries->end(); ++iter) 411 if(the3DNucleus->GetMass()>30) theCutOnP = << 287 { 412 if(the3DNucleus->GetMass()>60) theCutOnP = << 288 theSecondaryList.push_back(*iter); 413 if(the3DNucleus->GetMass()>120) theCutOnP << 289 theProjectileList.push_back(new G4KineticTrack(*(*iter))); 414 << 290 } 415 << 291 secondaries->clear(); // Don't leave "G4KineticTrack *"s in two vectors >> 292 >> 293 thePropagator->Init(the3DNucleus); >> 294 >> 295 // if called stand alone, build theTargetList and find first collisions >> 296 >> 297 if(nucleus->GetMass()>30) theCutOnP = 70*MeV; >> 298 if(nucleus->GetMass()>60) theCutOnP = 50*MeV; >> 299 if(nucleus->GetMass()>120) theCutOnP = 45*MeV; >> 300 if(theCollisionMgr->Entries() == 0) >> 301 { >> 302 the3DNucleus = nucleus; >> 303 ClearAndDestroy(&theTargetList); 416 BuildTargetList(); 304 BuildTargetList(); >> 305 FindCollisions(&theSecondaryList); >> 306 } 417 307 418 #ifdef debug_BIC_GetExcitationEnergy << 308 // thePropagator->Init(the3DNucleus); 419 G4cout << "ExcitationEnergy0 " << GetExcit << 420 #endif << 421 << 422 thePropagator->Init(the3DNucleus); << 423 309 424 G4bool success = BuildLateParticleCollisio << 310 // end of initialization: do the job now 425 if (! success ) // fails if no excitatio << 311 // loop untill there are collisions 426 { << 427 products=HighEnergyModelFSProducts(prod << 428 ClearAndDestroy(secondaries); << 429 delete secondaries; << 430 312 431 #ifdef debug_G4BinaryCascade << 432 G4cout << "G4BinaryCascade::Propagate: << 433 #endif << 434 313 435 return products; << 314 G4bool haveProducts = false; >> 315 G4int collisionCount=0; >> 316 theMomentumTransfer=0; >> 317 while(theCollisionMgr->Entries() > 0) >> 318 { >> 319 // G4cout << "Propagate Captured size: " << theCapturedList.size() << G4endl; >> 320 // FixMe: at the moment I absorb pi with mom < theCutOnp, and I capture >> 321 // p and n with mom < theCutOnP. What about antip, k and sigmas >> 322 // with mom < theCutOnP? >> 323 if(Absorb()) { // absorb secondaries >> 324 haveProducts = true; >> 325 //G4cout << "Absorb sucess " << G4endl; 436 } 326 } 437 // check baryon and charge ... << 438 327 439 _CheckChargeAndBaryonNumber_("lateparticle << 328 if(Capture()) { // capture secondaries (nucleons) 440 _DebugEpConservation(" be4 findcollisions" << 329 haveProducts = true; 441 << 330 //G4cout << "Capture sucess " << G4endl; 442 // if called stand alone find first collis << 443 FindCollisions(&theSecondaryList); << 444 << 445 << 446 if(theCollisionMgr->Entries() == 0 ) << 447 { << 448 //G4cout << " no collsions -> return 0 << 449 delete products; << 450 #ifdef debug_BIC_return << 451 G4cout << "return @ begin2, no collis << 452 #endif << 453 return nullptr; << 454 } 331 } 455 332 456 // end of initialization: do the job now << 333 // propagate to the next collision if any (collisions could have been deleted 457 // loop until there are no more collisions << 334 // by previous absorption or capture) 458 << 335 if(theCollisionMgr->Entries() > 0) 459 << 460 G4bool haveProducts = false; << 461 #ifdef debug_BIC_Propagate_Collisions << 462 G4int collisionCount=0; << 463 #endif << 464 G4int collisionLoopMaxCount=1000000; << 465 while(theCollisionMgr->Entries() > 0 && cu << 466 { 336 { 467 if(Absorb()) { // absorb secondaries, p << 337 G4CollisionInitialState * 468 haveProducts = true; << 338 nextCollision = theCollisionMgr->GetNextCollision(); 469 } << 470 if(Capture()) { // capture secondaries, << 471 haveProducts = true; << 472 } << 473 << 474 // propagate to the next collision if << 475 // by previous absorption or capture) << 476 if(theCollisionMgr->Entries() > 0) << 477 { << 478 G4CollisionInitialState * << 479 nextCollision = theCollisionMgr->G << 480 #ifdef debug_BIC_Propagate_Collisions << 481 G4cout << " NextCollision * , Tim << 482 <<nextCollision->GetCollis << 483 theCurrentTime<< G4endl; << 484 #endif << 485 if (!DoTimeStep(nextCollision->Get << 486 { << 487 // Check if nextCollision is s << 488 if (theCollisionMgr->GetNextCo << 489 { << 490 nextCollision = nullptr; << 491 } << 492 } << 493 //_DebugEpConservation("Stepped"); << 494 << 495 if( nextCollision ) << 496 { << 497 if (ApplyCollision(nextCollisi << 498 { << 499 //G4cerr << "ApplyCollisio << 500 haveProducts = true; << 501 #ifdef debug_BIC_Propagate_Collisions << 502 collisionCount++; << 503 #endif << 504 339 505 } else { << 340 debug.push_back("======> test 1"); debug.dump(); 506 //G4cerr << "ApplyCollisio << 341 if (!DoTimeStep(nextCollision->GetCollisionTime()-theCurrentTime) ) 507 theCollisionMgr->RemoveCol << 342 { 508 } << 343 // Check if nextCollision is still valid, ie. partcile did not leave nucleus 509 } << 344 if (theCollisionMgr->GetNextCollision() != nextCollision ) 510 } << 345 { 511 } << 346 nextCollision = 0; >> 347 } >> 348 } >> 349 debug.push_back("======> test 2"); debug.dump(); >> 350 // G4cerr <<"post- DoTimeStep 1"<<G4endl; 512 351 513 //--------- end of on Collisions << 352 if( nextCollision ) 514 //G4cout << "currentZ @ end loop " << curr << 353 { 515 G4int nProtons(0); << 354 // GF for testing only, must be removed otherwise! 516 for(iter = theTargetList.begin(); iter != << 355 // theCollisionMgr->RemoveCollision(nextCollision); 517 { << 356 debug.push_back("======> test 3"); debug.dump(); 518 if ( (*iter)->GetDefinition() == G4Proto << 357 if (ApplyCollision(nextCollision)) >> 358 // testing if ( true ) >> 359 { >> 360 // apply the collision >> 361 //G4cerr << "ApplyCollision sucess " << G4endl; >> 362 haveProducts = true; >> 363 collisionCount++; >> 364 debug.push_back("======> test 4.1"); debug.dump(); >> 365 } else { >> 366 //G4cerr << "ApplyCollision failure " << G4endl; >> 367 theCollisionMgr->RemoveCollision(nextCollision); >> 368 debug.push_back("======> test 4.2"); debug.dump(); >> 369 } >> 370 } >> 371 debug.push_back("======> test 5"); debug.dump(); >> 372 // G4cerr <<"post-post- DoTimeStep 1"<<G4endl; 519 } 373 } 520 if ( ! theTargetList.size() || ! nProtons << 374 } 521 // nucleus completely destroyed, fill << 522 products = FillVoidNucleusProducts(prod << 523 #ifdef debug_BIC_return << 524 G4cout << "return @ Z=0 after collisio << 525 PrintKTVector(&theSecondaryList,std::s << 526 G4cout << "theTargetList size: " << th << 527 PrintKTVector(&theTargetList,std::stri << 528 PrintKTVector(&theCapturedList,std::st << 529 375 530 G4cout << " ExcitE be4 Correct : " <<G << 376 debug.push_back("======> #### through the first loop"); debug.dump(); 531 G4cout << " Mom Transfered to nucleus << 377 // No more collisions: absorb, capture and propagate the secondaries out of the nucleus 532 PrintKTVector(&theFinalState,std::stri << 378 if(Absorb()) { 533 G4cout << "returned products: " << pro << 379 haveProducts = true; 534 _CheckChargeAndBaryonNumber_("destroye << 380 // G4cout << "Absorb sucess " << G4endl; 535 _DebugEpConservation("destroyed Nucleu << 381 } 536 #endif << 382 >> 383 if(Capture()) { >> 384 haveProducts = true; >> 385 // G4cout << "Capture sucess " << G4endl; >> 386 } 537 387 538 return products; << 388 if(!haveProducts) // no collisions happened. Return an empty vector. 539 } << 389 { >> 390 return products; >> 391 } 540 392 541 // No more collisions: absorb, capture and << 542 if(Absorb()) { << 543 haveProducts = true; << 544 // G4cout << "Absorb sucess " << G4end << 545 } << 546 393 547 if(Capture()) { << 394 #ifdef debug_G4BinaryCascade 548 haveProducts = true; << 395 G4cout << " Momentum transfer to Nucleus " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; 549 // G4cout << "Capture sucess " << G4en << 396 G4cout << " Stepping particles out...... " << G4endl; 550 } << 551 << 552 if(!haveProducts) // no collisions happen << 553 { << 554 #ifdef debug_BIC_return << 555 G4cout << "return 3, no products "<< G << 556 #endif 397 #endif 557 return products; << 558 } << 559 << 560 398 561 #ifdef debug_BIC_Propagate << 399 StepParticlesOut(); 562 G4cout << " Momentum transfer to Nucleus " << 400 563 G4cout << " Stepping particles out...... << 401 >> 402 if ( theSecondaryList.size() > 0 ) >> 403 { >> 404 #ifdef debug_G4BinaryCascade >> 405 G4cerr << "G4BinaryCascade: Warning, have active particles at end" << G4endl; 564 #endif 406 #endif >> 407 // add left secondaries to FinalSate >> 408 std::vector<G4KineticTrack *>::iterator iter; >> 409 for ( iter =theSecondaryList.begin(); iter != theSecondaryList.end(); ++iter) >> 410 { >> 411 theFinalState.push_back(*iter); >> 412 } >> 413 theSecondaryList.clear(); 565 414 566 StepParticlesOut(); << 415 } 567 _DebugEpConservation("stepped out"); << 416 while ( theCollisionMgr->Entries() > 0 ) 568 << 417 { 569 << 570 if ( theSecondaryList.size() > 0 ) << 571 { << 572 #ifdef debug_G4BinaryCascade 418 #ifdef debug_G4BinaryCascade 573 G4cerr << "G4BinaryCascade: Warning, h << 419 G4cerr << " Warning: remove left over collision " << G4endl; 574 PrintKTVector(&theSecondaryList, "acti << 575 #endif 420 #endif 576 // add left secondaries to FinalSate << 421 theCollisionMgr->RemoveCollision(theCollisionMgr->GetNextCollision()); 577 for ( iter =theSecondaryList.begin(); << 422 } 578 { << 579 theFinalState.push_back(*iter); << 580 } << 581 theSecondaryList.clear(); << 582 423 583 } << 584 while ( theCollisionMgr->Entries() > 0 ) << 585 { << 586 #ifdef debug_G4BinaryCascade 424 #ifdef debug_G4BinaryCascade 587 G4cerr << " Warning: remove left over << 425 >> 426 PrintKTVector(&theProjectileList,std::string(" theProjectileList")); >> 427 PrintKTVector(&theSecondaryList,std::string(" theSecondaryList")); >> 428 G4cout << "theTargetList size: " << theTargetList.size() << G4endl; >> 429 // PrintKTVector(&theTargetList,std::string(" theTargetList")); >> 430 PrintKTVector(&theCapturedList,std::string(" theCapturedList")); >> 431 >> 432 G4cout << " ExcitE be4 Correct : " <<GetExcitationEnergy() << G4endl; >> 433 G4cout << " Mom Transfered to nucleus : " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; >> 434 PrintKTVector(&theFinalState,std::string(" FinalState uncorrected")); 588 #endif 435 #endif 589 theCollisionMgr->RemoveCollision(theCo << 590 } << 591 436 592 #ifdef debug_BIC_Propagate_Excitation << 437 // 593 438 594 PrintKTVector(&theSecondaryList,std::strin << 595 G4cout << "theTargetList size: " << theTar << 596 // PrintKTVector(&theTargetList,std::stri << 597 PrintKTVector(&theCapturedList,std::string << 598 439 599 G4cout << " ExcitE be4 Correct : " <<GetEx << 600 G4cout << " Mom Transfered to nucleus : " << 601 PrintKTVector(&theFinalState,std::string(" << 602 #endif << 603 440 604 // << 605 441 606 442 607 G4double ExcitationEnergy=GetExcitationEne << 443 CorrectFinalPandE(); 608 444 609 #ifdef debug_BIC_Propagate_finals << 445 #ifdef debug_G4BinaryCascade 610 PrintKTVector(&theFinalState,std::string(" << 446 PrintKTVector(&theFinalState,std::string(" FinalState corrected")); 611 G4cout << " Excitation Energy prefinal, # << 447 G4cout << " ExcitE aft Correct : " <<GetExcitationEnergy() << G4endl; 612 << ExcitationEnergy << " " << 613 << collisionCount << " " << 614 << theFinalState.size() << " " << 615 << theCapturedList.size()<<G4endl; << 616 #endif 448 #endif 617 449 618 if (ExcitationEnergy < 0 ) << 450 // G4cerr <<"mon - all pushed to limit 1"<<G4endl; 619 { << 451 G4double ExcitationEnergy=GetExcitationEnergy(); 620 G4int maxtry=5, ntry=0; << 452 // G4cerr <<"mon - all pushed to limit 2"<<G4endl; 621 do { << 622 CorrectFinalPandE(); << 623 ExcitationEnergy=GetExcitationEner << 624 } while ( ++ntry < maxtry && Excitatio << 625 } << 626 _DebugEpConservation("corrected"); << 627 453 628 #ifdef debug_BIC_Propagate_finals << 454 #ifdef debug_G4BinaryCascade 629 PrintKTVector(&theFinalState,std::string(" << 455 G4cout << " Excitation Energy final, #collisions:, out, captured " 630 G4cout << " Excitation Energy final, #col << 456 << ExcitationEnergy << " " 631 << ExcitationEnergy << " " << 457 << collisionCount << " " 632 << collisionCount << " " << 458 << theFinalState.size() << " " 633 << theFinalState.size() << " " << 459 << theCapturedList.size()<<G4endl; 634 << theCapturedList.size()<<G4endl; << 635 #endif 460 #endif 636 461 637 462 638 if ( ExcitationEnergy < 0. ) << 463 if ( ExcitationEnergy < 0. ) 639 { << 464 { 640 #ifdef debug_G4BinaryCascade << 465 // if ( ExcitationEnergy < 0. ) 641 G4cerr << "G4BinaryCascade-W << 466 { 642 G4cerr <<ExcitationEnergy<<G << 467 //#ifdef debug_G4BinaryCascade 643 PrintKTVector(&theFinalState, << 468 // G4cerr << "G4BinaryCascade-Warning: negative excitation energy "; 644 PrintKTVector(&theCapturedLis << 469 // G4cerr <<ExcitationEnergy<<G4endl; 645 G4cout << "negative ExE:Final << 470 // PrintKTVector(&theFinalState,std::string("FinalState")); 646 << " "<< GetFinal4Mome << 471 // PrintKTVector(&theCapturedList,std::string("captured")); 647 << "negative ExE:Final << 472 // G4cout << "negative ExE:Final 4Momentum .mag: " << GetFinal4Momentum() 648 << " "<< GetFinalNucleusMome << 473 // << " "<< GetFinal4Momentum().mag()<< G4endl 649 #endif << 474 // << "negative ExE:FinalNucleusMom .mag: " << GetFinalNucleusMomentum() 650 #ifdef debug_BIC_return << 475 // << " "<< GetFinalNucleusMomentum().mag()<< G4endl; 651 G4cout << " negative Exci << 476 //#endif 652 G4cout << "return 4, excit << 477 } 653 #endif << 478 ClearAndDestroy(products); 654 << 479 return products; // return empty products 655 ClearAndDestroy(products); << 480 } 656 return products; // return empty pro << 657 } << 658 << 659 G4ReactionProductVector * precompoundProdu << 660 << 661 481 662 G4DecayKineticTracks decay(&theFinalState) << 663 _DebugEpConservation("decayed"); << 664 482 665 products= ProductsAddFinalState(products, << 483 // find a fragment and call the precompound model. >> 484 G4Fragment * fragment = 0; >> 485 G4ReactionProductVector * precompoundProducts = 0; >> 486 // G4cerr <<"mon - entering deexcitat "<<G4endl; >> 487 if ( ExcitationEnergy >= 0 ) // FixMe: GF temporary should we better re-start? >> 488 { >> 489 // G4Fragment * >> 490 fragment = FindFragments(); 666 491 667 products= ProductsAddPrecompound(products, << 492 // theDeExcitation =0; >> 493 if(fragment && fragment->GetA() >1.5) // hpw @@@@ still to add the nucleon, if one exists. >> 494 { >> 495 if (theDeExcitation) >> 496 { >> 497 precompoundProducts= theDeExcitation->DeExcite(*fragment); >> 498 delete fragment; >> 499 fragment=0; >> 500 } else if (theExcitationHandler) >> 501 { >> 502 precompoundProducts=theExcitationHandler->BreakItUp(*fragment); >> 503 delete fragment; >> 504 fragment=0; >> 505 } >> 506 } else { >> 507 if ( theTargetList.size() == 1 ) >> 508 { >> 509 precompoundProducts = new G4ReactionProductVector(); >> 510 std::vector<G4KineticTrack *>::iterator i=theTargetList.begin(); >> 511 G4ReactionProduct * aNew = new G4ReactionProduct((*i)->GetDefinition()); >> 512 aNew->SetTotalEnergy((*i)->GetDefinition()->GetPDGMass()); >> 513 aNew->SetMomentum(G4ThreeVector(0)); // see boost fro preCompoundProducts below.. >> 514 precompoundProducts->push_back(aNew); >> 515 } else if ( theTargetList.size() > 1) >> 516 { >> 517 precompoundProducts = new G4ReactionProductVector(); >> 518 std::vector<G4KineticTrack *>::iterator aNuc; >> 519 G4LorentzVector aVec; >> 520 std::vector<G4double> masses; >> 521 G4double sumMass(0); >> 522 for ( aNuc=theTargetList.begin(); aNuc != theTargetList.end(); aNuc++) >> 523 { >> 524 G4double mass=(*aNuc)->GetDefinition()->GetPDGMass(); >> 525 masses.push_back(mass); >> 526 sumMass += mass; >> 527 } >> 528 G4LorentzVector finalP=GetFinal4Momentum(); >> 529 G4FermiPhaseSpaceDecay decay; >> 530 // G4cout << " some neutrons? " << masses.size() <<" " << theTargetList.size()<<" "<<finalP <<" " << finalP.mag()<<G4endl; >> 531 G4double eCMS=finalP.mag(); >> 532 if ( eCMS < sumMass ) // @@GF --- Cheat!! >> 533 { >> 534 eCMS=sumMass + (2*MeV*masses.size()); >> 535 finalP.setE(sqrt(finalP.vect().mag2() + sqr(eCMS))); >> 536 } >> 537 precompoundLorentzboost.set(finalP.boostVector()); >> 538 std::vector<G4LorentzVector*> * momenta=decay.Decay(eCMS,masses); >> 539 std::vector<G4LorentzVector*>::iterator aMom=momenta->begin(); >> 540 for ( aNuc=theTargetList.begin(); >> 541 (aNuc != theTargetList.end()) && (aMom!=momenta->end()); >> 542 aNuc++, aMom++ ) >> 543 { >> 544 G4ReactionProduct * aNew = new G4ReactionProduct((*aNuc)->GetDefinition()); >> 545 aNew->SetTotalEnergy((*aMom)->e()); >> 546 aNew->SetMomentum((*aMom)->vect()); >> 547 precompoundProducts->push_back(aNew); >> 548 // G4cout << " only neutrons? " << (*aNuc)->GetDefinition()->GetParticleName() << G4endl; >> 549 delete *aMom; >> 550 } >> 551 delete momenta; >> 552 } >> 553 } 668 554 669 // products=ProductsAddFakeGamma(products); << 555 } >> 556 #ifdef debug_G4BinaryCascade >> 557 else { >> 558 G4cerr << "Binary Cascade Error: negative Excitation Energy "<< G4endl; >> 559 } >> 560 #endif >> 561 { >> 562 // fill in products the outgoing particles >> 563 G4double Ekinout=0; >> 564 size_t i(0); >> 565 for(i = 0; i< theFinalState.size(); i++) >> 566 { >> 567 G4KineticTrack * kt = theFinalState[i]; >> 568 if(kt->GetDefinition()->IsShortLived()) >> 569 { >> 570 G4KineticTrackVector * dec = kt->Decay(); >> 571 G4KineticTrackVector::const_iterator jter; >> 572 for(jter=dec->begin(); jter != dec->end(); jter++) >> 573 { >> 574 theFinalState.push_back(*jter); >> 575 } >> 576 delete dec; >> 577 } >> 578 else >> 579 { >> 580 G4ReactionProduct * aNew = new G4ReactionProduct(kt->GetDefinition()); >> 581 aNew->SetMomentum(kt->Get4Momentum().vect()); >> 582 aNew->SetTotalEnergy(kt->Get4Momentum().e()); >> 583 Ekinout += aNew->GetKineticEnergy(); >> 584 if(kt->IsParticipant()) >> 585 { >> 586 aNew->SetNewlyAdded(true); >> 587 } >> 588 else >> 589 { >> 590 aNew->SetNewlyAdded(false); >> 591 } >> 592 //G4cout << " Particle Ekin " << aNew->GetKineticEnergy() << G4endl; >> 593 products->push_back(aNew); 670 594 >> 595 #ifdef debug_1_BinaryCascade >> 596 if (! kt->GetDefinition()->GetPDGStable() ) >> 597 { >> 598 if (kt->GetDefinition()->IsShortLived()) >> 599 { >> 600 G4cout << "final shortlived : "; >> 601 } else >> 602 { >> 603 G4cout << "final un stable : "; >> 604 } >> 605 G4cout <<kt->GetDefinition()->GetParticleName()<< G4endl; >> 606 } >> 607 #endif >> 608 } 671 609 672 thePrimaryEscape = true; << 610 } >> 611 //G4cout << " Total Ekin " << Ekinout << G4endl; >> 612 } >> 613 // add precompound products to products >> 614 if ( precompoundProducts ) >> 615 { >> 616 std::vector<G4ReactionProduct *>::iterator j; >> 617 for(j = precompoundProducts->begin(); j != precompoundProducts->end(); ++j) >> 618 { >> 619 // boost back to system of moving nucleus >> 620 G4LorentzVector pProduct((*j)->GetMomentum(),(*j)->GetTotalEnergy()); >> 621 #ifdef debug_G4BinaryCascade >> 622 G4cout << " pProduct be4 boost " <<pProduct << G4endl; >> 623 #endif >> 624 pProduct *= precompoundLorentzboost; >> 625 #ifdef debug_G4BinaryCascade >> 626 G4cout << " pProduct aft boost " <<pProduct << G4endl; >> 627 #endif >> 628 (*j)->SetTotalEnergy(pProduct.e()); >> 629 (*j)->SetMomentum(pProduct.vect()); >> 630 (*j)->SetNewlyAdded(true); >> 631 products->push_back(*j); >> 632 } 673 633 674 #ifdef debug_BIC_return << 634 precompoundProducts->clear(); 675 G4cout << "BIC: return @end, all ok "<< G4 << 635 delete precompoundProducts; 676 //G4cout << " return products " << produc << 636 } 677 #endif << 637 else >> 638 { >> 639 G4ReactionProduct * aNew=0; >> 640 // return nucleus e and p >> 641 if (fragment != 0 ) { >> 642 aNew = new G4ReactionProduct(G4Gamma::GammaDefinition()); // we only want to pass e/p >> 643 aNew->SetMomentum(fragment->GetMomentum().vect()); >> 644 aNew->SetTotalEnergy(fragment->GetMomentum().e()); >> 645 delete fragment; >> 646 fragment=0; >> 647 } else if (products->size() == 0) { >> 648 // FixMe GF: for testing without precompound, return 1 gamma of 0.01 MeV in +x >> 649 #include "G4Gamma.hh" >> 650 aNew = new G4ReactionProduct(G4Gamma::GammaDefinition()); >> 651 aNew->SetMomentum(G4ThreeVector(0.01*MeV,0,0)); >> 652 aNew->SetTotalEnergy(0.01*MeV); >> 653 } >> 654 if ( aNew != 0 ) products->push_back(aNew); >> 655 } 678 656 679 return products; << 657 // G4cerr <<"mon - end of event "<<G4endl; >> 658 thePrimaryEscape = true; >> 659 return products; 680 } 660 } 681 661 >> 662 682 //-------------------------------------------- 663 //---------------------------------------------------------------------------- 683 G4double G4BinaryCascade::GetExcitationEnergy( 664 G4double G4BinaryCascade::GetExcitationEnergy() 684 //-------------------------------------------- 665 //---------------------------------------------------------------------------- 685 { 666 { 686 667 687 // get A and Z for the residual nucleus << 668 G4ping debug("debug_ExcitationEnergy"); 688 #if defined(debug_G4BinaryCascade) || defined( << 669 // get A and Z for the residual nucleus 689 G4int finalA = theTargetList.size()+theCap << 670 #ifdef debug_G4BinaryCascade 690 G4int finalZ = GetTotalCharge(theTargetLis << 671 G4int finalA = theTargetList.size()+theCapturedList.size(); 691 if ( (currentA - finalA) != 0 || (currentZ << 672 G4int finalZ = GetTotalCharge(theTargetList)+GetTotalCharge(theCapturedList); 692 { << 673 #endif 693 G4cerr << "G4BIC:GetExcitationEnergy() << 674 694 << "("<< currentA << "," << fi << 675 G4double excitationE(0); 695 } << 676 G4double nucleusMass(0); 696 << 677 if(currentZ>.5) 697 #endif << 678 { 698 << 679 nucleusMass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA); 699 G4double excitationE(0); << 680 } 700 G4double nucleusMass(0); << 681 else if (currentZ==0 && currentA==1 ) 701 if(currentZ>.5) << 682 { 702 { << 683 nucleusMass = G4Neutron::Neutron()->GetPDGMass(); 703 nucleusMass = GetIonMass(currentZ,curr << 684 } 704 } << 685 else 705 else if (currentZ==0 ) << 686 { 706 { << 687 #ifdef debug_1_BinaryCascade 707 if(currentA == 1) {nucleusMass = G4Neu << 688 G4cout << "G4BinaryCascade::GetExcitationEnergy(): Warning - invalid nucleus (A,Z)=(" 708 else {nucleusMass = GetFi << 689 << currentA << "," << currentZ << ")" << G4endl; 709 } << 690 #endif 710 else << 691 return 0; 711 { << 692 } 712 #ifdef debug_G4BinaryCascade << 713 G4cout << "G4BinaryCascade::GetExcitat << 714 << currentA << "," << currentZ << 715 #endif << 716 return 0; << 717 } << 718 << 719 #ifdef debug_BIC_GetExcitationEnergy << 720 G4ping debug("debug_ExcitationEnergy"); << 721 debug.push_back("====> current A, Z"); << 722 debug.push_back(currentZ); << 723 debug.push_back(currentA); << 724 debug.push_back("====> final A, Z"); << 725 debug.push_back(finalZ); << 726 debug.push_back(finalA); << 727 debug.push_back(nucleusMass); << 728 debug.push_back(GetFinalNucleusMomentum(). << 729 debug.dump(); << 730 // PrintKTVector(&theTargetList, std::str << 731 //PrintKTVector(&theCapturedList, std::str << 732 #endif << 733 693 734 excitationE = GetFinalNucleusMomentum().ma << 694 #ifdef debug_G4BinaryCascade >> 695 debug.push_back("====> current A, Z"); >> 696 debug.push_back(currentZ); >> 697 debug.push_back(currentA); >> 698 debug.push_back(finalZ); >> 699 debug.push_back(finalA); >> 700 debug.push_back(nucleusMass); >> 701 debug.push_back(GetFinalNucleusMomentum().mag()); >> 702 debug.dump(); >> 703 // PrintKTVector(&theTargetList, std::string(" current target list info")); >> 704 PrintKTVector(&theCapturedList, std::string(" current captured list info")); >> 705 #endif 735 706 736 //G4double exE2 = GetFinal4Momentum().mag( << 707 excitationE = GetFinalNucleusMomentum().mag() - nucleusMass; 737 708 738 //G4cout << "old/new excitE " << excitatio << 709 #ifdef debug_G4BinaryCascade >> 710 // ------ debug >> 711 if ( excitationE < 0 ) >> 712 { >> 713 G4cout << "negative ExE final Ion mass" <<nucleusMass<< G4endl; >> 714 if(finalZ>.5) G4cout << " Ecitation Energy, Finalnuclmom, nucl mass, excitE " >> 715 << GetFinalNucleusMomentum() << G4endl >> 716 <<excitationE << " " >> 717 << G4endl; >> 718 >> 719 if(finalZ>.5) G4cout << " final Excit : a,z, 4mom " >> 720 << finalA << " " << finalZ << " " >> 721 << GetFinalNucleusMomentum() <<G4endl; 739 722 740 #ifdef debug_BIC_GetExcitationEnergy << 723 G4int A = the3DNucleus->GetMassNumber(); 741 // ------ debug << 724 G4int Z = the3DNucleus->GetCharge(); 742 if ( excitationE < 0 ) << 725 G4double initialExc(0); >> 726 if(Z>.5) 743 { 727 { 744 G4cout << "negative ExE final Ion mass << 728 initialExc = theInitial4Mom.mag()- 745 G4LorentzVector Nucl_mom=GetFinalNucle << 729 G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z, A); 746 if(finalZ>.5) G4cout << " Final nuclmo << 730 } 747 << " (A,Z)=("<< finalA << 748 << " mass " << nucleusM << 749 << " excitE " << excita << 750 731 >> 732 //G4cout << " theInitial4Mom; 4.mag() " << theInitial4Mom << " "<< theInitial4Mom.mag() << G4endl; >> 733 if(finalZ>.5) G4cout << " finalNucleusMomentum; 4.mag() " << GetFinalNucleusMomentum() << " "<< GetFinalNucleusMomentum().mag() << G4endl; >> 734 } 751 735 752 G4int A = the3DNucleus->GetMassNumber( << 736 // G4cout << "theCapturedList" << theCapturedList.size() << G4endl 753 G4int Z = the3DNucleus->GetCharge(); << 737 // << "theSecondaryList" << theSecondaryList.size() << G4endl; 754 G4double initialExc(0); << 755 if(Z>.5) << 756 { << 757 initialExc = theInitial4Mom.mag()- << 758 G4cout << "GetExcitationEnergy: In << 759 } << 760 } << 761 738 >> 739 // ------ end debug 762 #endif 740 #endif 763 << 741 // return excitationE > 0 ? excitationE : 0.0; 764 return excitationE; << 742 return excitationE; 765 } 743 } 766 744 767 745 768 //-------------------------------------------- 746 //---------------------------------------------------------------------------- 769 // 747 // 770 // P R I V A T E M E M B E R F U N C 748 // P R I V A T E M E M B E R F U N C T I O N S 771 // 749 // 772 //-------------------------------------------- 750 //---------------------------------------------------------------------------- 773 751 774 //-------------------------------------------- 752 //---------------------------------------------------------------------------- 775 void G4BinaryCascade::BuildTargetList() 753 void G4BinaryCascade::BuildTargetList() 776 //-------------------------------------------- 754 //---------------------------------------------------------------------------- 777 { 755 { 778 756 779 if(!the3DNucleus->StartLoop()) << 757 if(!the3DNucleus->StartLoop()) 780 { << 758 { 781 // G4cerr << "G4BinaryCascade::Buil << 759 // G4cerr << "G4BinaryCascade::BuildTargetList(): StartLoop() error!" 782 // << G4endl; << 760 // << G4endl; 783 return; << 761 return; 784 } << 762 } 785 << 763 786 ClearAndDestroy(&theTargetList); // clear << 764 G4Nucleon * nucleon; 787 << 765 G4ParticleDefinition * definition; 788 G4Nucleon * nucleon; << 766 G4ThreeVector pos; 789 const G4ParticleDefinition * definition; << 767 G4LorentzVector mom; 790 G4ThreeVector pos; << 768 // if there are nucleon hit by higher energy models, then SUM(momenta) != 0 791 G4LorentzVector mom; << 769 theInitial4Mom = G4LorentzVector(0,0,0,0); 792 // if there are nucleon hit by higher ener << 770 currentA=0; 793 initialZ=the3DNucleus->GetCharge(); << 771 currentZ=0; 794 initialA=the3DNucleus->GetMassNumber(); << 772 // G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; 795 initial_nuclear_mass=GetIonMass(initialZ,i << 773 while((nucleon = the3DNucleus->GetNextNucleon()) != NULL) 796 theInitial4Mom = G4LorentzVector(0,0,0,ini << 774 { 797 currentA=0; << 775 // check if nucleon is hit by higher energy model. 798 currentZ=0; << 776 if ( ! nucleon->AreYouHit() ) 799 while((nucleon = the3DNucleus->GetNextNucl << 777 { 800 { << 778 definition = nucleon->GetDefinition(); 801 // check if nucleon is hit by higher e << 779 pos = nucleon->GetPosition(); 802 if ( ! nucleon->AreYouHit() ) << 780 mom = nucleon->GetMomentum(); 803 { << 781 // G4cout << "Nucleus " << pos.mag()/fermi << " " << mom.e() << G4endl; 804 definition = nucleon->GetDefinitio << 782 theInitial4Mom += mom; 805 pos = nucleon->GetPosition(); << 783 // In the kinetic Model, the potential inside the nucleus is taken into account, and nucleons 806 mom = nucleon->GetMomentum(); << 784 // are on mass shell. 807 // G4cout << "Nucleus " << pos. << 785 mom.setE( sqrt( mom.vect().mag2() + sqr(definition->GetPDGMass()) ) ); 808 //theInitial4Mom += mom; << 786 G4KineticTrack * kt = new G4KineticTrack(definition, 0., pos, mom); 809 // the potential inside the << 787 kt->SetState(G4KineticTrack::inside); 810 mom.setE( std::sqrt( mom.vect().ma << 788 kt->SetNucleon(nucleon); 811 G4KineticTrack * kt = new G4Kineti << 789 theTargetList.push_back(kt); 812 kt->SetState(G4KineticTrack::insid << 790 ++currentA; 813 kt->SetNucleon(nucleon); << 791 if (definition->GetPDGCharge() > .5 ) ++currentZ; 814 theTargetList.push_back(kt); << 792 } 815 ++currentA; << 793 } 816 if (definition->GetPDGCharge() > . << 794 massInNucleus = 0; 817 } << 795 if(currentZ>.5) 818 << 796 { 819 #ifdef debug_BIC_BuildTargetList << 797 massInNucleus = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA); 820 else { G4cout << "nucleon is hit" << n << 798 } else if (currentZ==0 && currentA==1 ) 821 #endif << 799 { 822 } << 800 massInNucleus = G4Neutron::Neutron()->GetPDGMass(); 823 massInNucleus = 0; << 801 } else 824 if(currentZ>.5) << 802 { 825 { << 803 //G4cout << "G4BinaryCascade::BuildTargetList(): Warning - invalid nucleus (A,Z)=(" 826 massInNucleus = GetIonMass(currentZ,cu << 804 // << currentA << "," << currentZ << ")" << G4endl; 827 } else if (currentZ==0 && currentA>=1 ) << 805 } 828 { << 806 // G4cout << "G4BinaryCascade::BuildTargetList(): nucleus (A,Z)=(" 829 massInNucleus = currentA * G4Neutron:: << 807 // << currentA << "," << currentZ << ")" << G4endl; 830 } else << 831 { << 832 G4cerr << "G4BinaryCascade::BuildTarge << 833 << currentA << "," << currentZ << 834 throw G4HadronicException(__FILE__, __ << 835 } << 836 currentInitialEnergy= theInitial4Mom.e() + << 837 << 838 #ifdef debug_BIC_BuildTargetList << 839 G4cout << "G4BinaryCascade::BuildTargetLis << 840 << currentA << "," << currentZ << << 841 ", theInitial4Mom " << theInitial4 << 842 ", currentInitialEnergy " << curre << 843 #endif << 844 808 845 } 809 } 846 810 >> 811 847 //-------------------------------------------- 812 //---------------------------------------------------------------------------- 848 G4bool G4BinaryCascade::BuildLateParticleColl << 813 void G4BinaryCascade::FindCollisions(G4KineticTrackVector * secondaries) 849 //-------------------------------------------- 814 //---------------------------------------------------------------------------- 850 { 815 { 851 G4bool success(false); << 816 for(std::vector<G4KineticTrack *>::iterator i = secondaries->begin(); 852 std::vector<G4KineticTrack *>::iterator ite << 817 i != secondaries->end(); ++i) 853 << 818 { 854 lateA=lateZ=0; << 819 if ( (*i)->GetTrackingMomentum().mag2() < -1.*eV ) 855 projectileA=projectileZ=0; << 820 { 856 << 821 G4cout << "G4BinaryCascade::FindCollisions(): negative m2:" << (*i)->GetTrackingMomentum().mag2() << G4endl; 857 G4double StartingTime=DBL_MAX; // Se << 822 } 858 for(iter = secondaries->begin(); iter != se << 823 for(std::vector<G4BCAction *>::iterator j = theImR.begin(); 859 { << 824 j!=theImR.end(); j++) 860 if((*iter)->GetFormationTime() < Startin << 825 { 861 StartingTime = (*iter)->GetFormationT << 826 const std::vector<G4CollisionInitialState *> & aCandList 862 } << 827 = (*j)->GetCollisions(*i, theTargetList, theCurrentTime); 863 << 828 for(size_t count=0; count<aCandList.size(); count++) 864 //PrintKTVector(secondaries, "initial late << 865 G4LorentzVector lateParticles4Momentum(0,0, << 866 for(iter = secondaries->begin(); iter != se << 867 { << 868 // G4cout << " Formation time : " << (* << 869 // << (*iter)->GetFormationTime() << G << 870 G4double FormTime = (*iter)->GetFormatio << 871 (*iter)->SetFormationTime(FormTime); << 872 if( (*iter)->GetState() == G4KineticTrac << 873 { 829 { 874 FindLateParticleCollision(*iter); << 830 theCollisionMgr->AddCollision(aCandList[count]); 875 lateParticles4Momentum += (*iter)->Ge << 876 lateA += (*iter)->GetDefinition()->Ge << 877 lateZ += G4lrint((*iter)->GetDefiniti << 878 //PrintKTVector(*iter, "late particle << 879 } else << 880 { << 881 theSecondaryList.push_back(*iter); << 882 //PrintKTVector(*iter, "incoming part << 883 theProjectile4Momentum += (*iter)->Ge << 884 projectileA += (*iter)->GetDefinition << 885 projectileZ += G4lrint((*iter)->GetDe << 886 #ifdef debug_BIC_Propagate << 887 G4cout << " Adding initial secondary << 888 << " time" << (*iter)->GetForma << 889 << ", state " << (*iter)->GetSt << 890 #endif << 891 } << 892 } << 893 //theCollisionMgr->Print(); << 894 const G4HadProjectile * primary = GetPrimar << 895 << 896 if (primary){ << 897 G4LorentzVector mom=primary->Get4Momentu << 898 theProjectile4Momentum += mom; << 899 projectileA = primary->GetDefinition()-> << 900 projectileZ = G4lrint(primary->GetDefini << 901 // now check if "excitation" energy left << 902 G4double excitation= theProjectile4Momen << 903 #ifdef debug_BIC_GetExcitationEnergy << 904 G4cout << "BIC: Proj.e, nucl initial, nu << 905 << theProjectile4Momentum << ", " << 906 << initial_nuclear_mass<< ", " << << 907 << lateParticles4Momentum << G4end << 908 G4cout << "BIC: Proj.e / initial excitat << 909 #endif << 910 success = excitation > 0; << 911 #ifdef debug_G4BinaryCascade << 912 if ( ! success ) { << 913 G4cout << "G4BinaryCascade::BuildLate << 914 //PrintKTVector(secondaries); << 915 } 831 } 916 #endif << 832 } 917 } else { << 833 } 918 // no primary from HE model -> cascade << 919 success=true; << 920 } << 921 << 922 if (success) { << 923 secondaries->clear(); // Don't leave "G4 << 924 delete secondaries; << 925 } << 926 return success; << 927 } 834 } 928 835 >> 836 929 //-------------------------------------------- 837 //---------------------------------------------------------------------------- 930 G4ReactionProductVector * G4BinaryCascade::De << 838 G4bool G4BinaryCascade::ApplyCollision(G4CollisionInitialState * collision) 931 //-------------------------------------------- 839 //---------------------------------------------------------------------------- 932 { 840 { 933 // find a fragment and call the precompound << 841 G4ping debug("debug_ApplyCollision"); 934 G4Fragment * fragment = nullptr; << 842 //G4cerr << "G4BinaryCascade::ApplyCollision start"<<G4endl; 935 G4ReactionProductVector * precompoundProduc << 843 G4KineticTrack * primary = collision->GetPrimary(); 936 << 844 if(primary->GetState() != G4KineticTrack::inside) 937 G4LorentzVector pFragment(0); << 845 { 938 // G4cout << " final4mon " << GetFinal4Mome << 846 #ifdef debug_BinaryCascade 939 << 847 G4cout << "G4BinaryCasacde::ApplyCollision(): StateError (ignored)" << primary << G4endl; 940 fragment = FindFragments(); << 848 G4KineticTrackVector debug; 941 << 849 debug.push_back(primary); 942 if(fragment) << 850 PrintKTVector(&debug,std::string("primay- target")); 943 { << 851 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCasacde::ApplyCollision()"); 944 if(fragment->GetA_asInt() >1) << 852 #else 945 { << 853 return false; 946 pFragment=fragment->GetMomentum(); << 854 #endif 947 // G4cout << " going to preco with fr << 855 } 948 if (theDeExcitation) / << 856 949 { << 857 #ifdef debug_G4BinaryCascade 950 precompoundProducts= theDeExcitati << 858 G4cout << "ApplyCollisions : projte 4mom " << primary->GetTrackingMomentum()<< G4endl; 951 } << 859 // if (target != 0 ) 952 else if (theExcitationHandler) // << 860 // { 953 { << 861 // G4cout << "ApplyCollisions : target 4mom " << target->Get4Momentum()<< G4endl; 954 precompoundProducts=theExcitationH << 862 // } 955 } << 863 #endif 956 << 864 957 } else << 865 G4int initialBaryon = primary->GetDefinition()->GetBaryonNumber(); 958 { // f << 866 G4int initialCharge(0); 959 if (theTargetList.size() + theCapture << 867 initialCharge+=G4lrint(primary->GetDefinition()->GetPDGCharge()); 960 throw G4HadronicException(__FILE__ << 868 961 } << 869 G4KineticTrackVector * products=0; 962 << 870 products = collision->GetFinalState(); 963 std::vector<G4KineticTrack *>::iterat << 871 initialBaryon += collision->GetTargetBaryonNumber(); 964 if ( theTargetList.size() == 1 ) {i= << 872 initialCharge+=G4lrint(collision->GetTargetCharge()); 965 if ( theCapturedList.size() == 1 ) {i << 873 966 G4ReactionProduct * aNew = new G4Reac << 874 if(!products || products->size()==0 || !CheckPauliPrinciple(products)) 967 aNew->SetTotalEnergy((*i)->GetDefinit << 875 { 968 aNew->SetCreatorModelID(theBIC_ID); << 876 #ifdef debug_G4BinaryCascade 969 aNew->SetParentResonanceDef((*i)->GetParent << 877 if (products) G4cout << " ======Failed Pauli =====" << G4endl; 970 aNew->SetParentResonanceID((*i)->GetParentR << 878 G4cerr << "G4BinaryCascade::ApplyCollision blocked"<<G4endl; 971 aNew->SetMomentum(G4ThreeVector(0));/ << 879 #endif 972 precompoundProducts = new G4ReactionP << 880 if (products) ClearAndDestroy(products); 973 precompoundProducts->push_back(aNew); << 881 delete products; 974 } // End of f << 882 return false; 975 delete fragment; << 883 } 976 fragment=nullptr; << 884 977 << 885 // debug block 978 } else // End of << 886 #ifdef debug_1_BinaryCascade 979 { // No fra << 887 G4KineticTrackVector debug1; 980 << 888 debug1.push_back(collision->GetPrimary()); 981 precompoundProducts = DecayVoidNucleus() << 889 PrintKTVector(&debug1,std::string(" Primary particle")); 982 } << 890 PrintKTVector(&collision->GetTargetCollection(),std::string(" Target particles")); 983 #ifdef debug_BIC_DeexcitationProducts << 891 PrintKTVector(products,std::string(" Scatterer products")); 984 << 892 #endif 985 G4LorentzVector fragment_momentum=GetFi << 893 986 G4LorentzVector Preco_momentum; << 894 G4int finalBaryon(0); 987 if ( precompoundProducts ) << 895 G4int finalCharge(0); >> 896 for(size_t ig=0;ig<products->size();ig++) >> 897 { >> 898 finalBaryon+=products->operator[](ig)->GetDefinition()->GetBaryonNumber(); >> 899 finalCharge+=G4lrint(products->operator[](ig)->GetDefinition()->GetPDGCharge()); >> 900 // secondaries are created inside nucleus >> 901 products->operator[](ig)->SetState(G4KineticTrack::inside); >> 902 } >> 903 >> 904 currentA += finalBaryon-initialBaryon; >> 905 currentZ += finalCharge-initialCharge; >> 906 >> 907 G4KineticTrackVector oldSecondaries; >> 908 oldSecondaries.push_back(primary); >> 909 //#ifdef debug_G4BinaryCascade >> 910 if ( (finalBaryon-initialBaryon) != 0 || (finalCharge-initialCharge) != 0 ) >> 911 { >> 912 G4cout << "G4BinaryCascade: Error in Balancing: " << G4endl; >> 913 G4cout << "initial/final baryon number, initial/final Charge " >> 914 << initialBaryon <<" "<< finalBaryon <<" " >> 915 << initialCharge <<" "<< finalCharge <<" " >> 916 << " in Collision type: "<< typeid(*collision->GetGenerator()).name() >> 917 << ", with number of products: "<< products->size() <<G4endl; >> 918 G4cout << G4endl<<"Initial condition are these:"<<G4endl; >> 919 G4cout << "proj: "<<collision->GetPrimary()->GetDefinition()->GetParticleName()<<G4endl; >> 920 for(size_t it=0; it<collision->GetTargetCollection().size(); it++) 988 { 921 { 989 std::vector<G4ReactionProduct *>::it << 922 G4cout << "targ: " 990 for(j = precompoundProducts->begin() << 923 <<collision->GetTargetCollection()[it]->GetDefinition()->GetParticleName()<<G4endl; 991 { << 992 G4LorentzVector pProduct((*j)->Ge << 993 Preco_momentum += pProduct; << 994 } << 995 } 924 } 996 G4cout << "finalNuclMom / sum preco pro << 925 PrintKTVector(&collision->GetTargetCollection(),std::string(" Target particles")); 997 << " delta E "<< fragment_momentum. << 926 G4cout << G4endl<<G4endl; >> 927 } >> 928 //#endif >> 929 >> 930 G4KineticTrackVector oldTarget = collision->GetTargetCollection(); >> 931 primary->Hit(); >> 932 for(size_t ii=0; ii< oldTarget.size(); ii++) >> 933 { >> 934 oldTarget[ii]->Hit(); >> 935 } >> 936 >> 937 debug.push_back("=======> we have hit nucleons <======="); >> 938 >> 939 UpdateTracksAndCollisions(&oldSecondaries, &oldTarget, products); >> 940 std::for_each(oldSecondaries.begin(), oldSecondaries.end(), Delete<G4KineticTrack>()); >> 941 std::for_each(oldTarget.begin(), oldTarget.end(), Delete<G4KineticTrack>()); 998 942 999 #endif << 943 delete products; 1000 << 944 return true; 1001 return precompoundProducts; << 1002 } 945 } 1003 946 >> 947 1004 //------------------------------------------- 948 //---------------------------------------------------------------------------- 1005 G4ReactionProductVector * G4BinaryCascade::D << 949 G4bool G4BinaryCascade::Absorb() 1006 //------------------------------------------- 950 //---------------------------------------------------------------------------- 1007 { 951 { 1008 G4ReactionProductVector * result = nullptr << 952 // Do it in two step: cannot change theSecondaryList inside the first loop. 1009 if ( (theTargetList.size()+theCapturedList << 953 G4Absorber absorber(theCutOnPAbsorb); 1010 { << 1011 result = new G4ReactionProductVector; << 1012 std::vector<G4KineticTrack *>::iterator << 1013 G4LorentzVector aVec; << 1014 std::vector<G4double> masses; << 1015 G4double sumMass(0); << 1016 << 1017 if ( theTargetList.size() != 0) << 1018 { << 1019 for ( aNuc=theTargetList.begin(); aN << 1020 { << 1021 G4double mass=(*aNuc)->GetDefinit << 1022 masses.push_back(mass); << 1023 sumMass += mass; << 1024 } << 1025 } << 1026 << 1027 if ( theCapturedList.size() != 0) << 1028 { << 1029 for(aNuc = theCapturedList.begin(); << 1030 { << 1031 G4double mass=(*aNuc)->GetDefinit << 1032 masses.push_back(mass); << 1033 sumMass += mass; << 1034 } << 1035 } << 1036 << 1037 G4LorentzVector finalP=GetFinal4Momentu << 1038 G4FermiPhaseSpaceDecay decay; << 1039 // G4cout << " some neutrons? " << mass << 1040 // G4cout<< theTargetList.size()<<" "<< << 1041 << 1042 G4double eCMS=finalP.mag(); << 1043 if ( eCMS < sumMass ) << 1044 { << 1045 eCMS=sumMass + 2*MeV*masses.size(); << 1046 finalP.setE(std::sqrt(finalP.vect(). << 1047 } << 1048 << 1049 precompoundLorentzboost.set(finalP.boos << 1050 std::vector<G4LorentzVector*> * momenta << 1051 std::vector<G4LorentzVector*>::iterator << 1052 954 >> 955 // Build the vector of G4KineticTracks that must be absorbed >> 956 G4KineticTrackVector absorbList; >> 957 std::vector<G4KineticTrack *>::iterator iter; >> 958 for(iter = theSecondaryList.begin(); >> 959 iter != theSecondaryList.end(); ++iter) >> 960 { >> 961 G4KineticTrack * kt = *iter; >> 962 if(kt->GetState() == G4KineticTrack::inside)// absorption happens only inside the nucleus >> 963 { >> 964 if(absorber.WillBeAbsorbed(*kt)) >> 965 { >> 966 absorbList.push_back(kt); >> 967 } >> 968 } >> 969 } 1053 970 1054 if ( theTargetList.size() != 0) << 971 if(absorbList.empty()) 1055 { << 972 return false; 1056 for ( aNuc=theTargetList.begin(); << 1057 (aNuc != theTargetList.end()) << 1058 aNuc++, aMom++ ) << 1059 { << 1060 G4ReactionProduct * aNew = new G4 << 1061 aNew->SetTotalEnergy((*aMom)->e() << 1062 aNew->SetMomentum((*aMom)->vect() << 1063 aNew->SetCreatorModelID(theBIC_ID << 1064 aNew->SetParentResonanceDef((*aNuc)->Ge << 1065 aNew->SetParentResonanceID((*aNuc)->Get << 1066 result->push_back(aNew); << 1067 delete *aMom; << 1068 } << 1069 } << 1070 973 1071 if ( theCapturedList.size() != 0) << 974 G4KineticTrackVector toDelete; 1072 { << 975 for(iter = absorbList.begin(); iter != absorbList.end(); ++iter) 1073 for ( aNuc=theCapturedList.begin(); << 976 { 1074 (aNuc != theCapturedList.end() << 977 G4KineticTrack * kt = *iter; 1075 aNuc++, aMom++ ) << 978 if(!absorber.FindAbsorbers(*kt, theTargetList)) 1076 { << 979 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1077 G4ReactionProduct * aNew = new G4 << 980 1078 aNew->SetTotalEnergy((*aMom)->e() << 981 if(!absorber.FindProducts(*kt)) 1079 aNew->SetMomentum((*aMom)->vect() << 982 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1080 aNew->SetCreatorModelID(theBIC_ID << 983 1081 aNew->SetParentResonanceDef((*aNu << 984 G4KineticTrackVector * products = absorber.GetProducts(); 1082 aNew->SetParentResonanceID((*aNuc << 985 // ------ debug 1083 result->push_back(aNew); << 986 G4int count = 0; 1084 delete *aMom; << 987 // ------ end debug 1085 } << 988 while(!CheckPauliPrinciple(products)) 1086 } << 989 { 1087 << 990 // ------ debug 1088 delete momenta; << 991 count++; 1089 } << 992 // ------ end debug 1090 return result; << 993 ClearAndDestroy(products); 1091 } // End if(!fragment) << 994 if(!absorber.FindProducts(*kt)) >> 995 throw G4HadronicException(__FILE__, __LINE__, >> 996 "G4BinaryCascade::Absorb(): Cannot absorb a particle."); >> 997 } >> 998 // ------ debug >> 999 // G4cerr << "Absorb CheckPauliPrinciple count= " << count << G4endl; >> 1000 // ------ end debug >> 1001 G4KineticTrackVector toRemove; // build a vector for UpdateTrack... >> 1002 toRemove.push_back(kt); >> 1003 toDelete.push_back(kt); // delete the track later >> 1004 G4KineticTrackVector * absorbers = absorber.GetAbsorbers(); >> 1005 UpdateTracksAndCollisions(&toRemove, absorbers, products); >> 1006 ClearAndDestroy(absorbers); >> 1007 } >> 1008 ClearAndDestroy(&toDelete); >> 1009 return true; >> 1010 } 1092 1011 1093 //------------------------------------------- << 1094 G4ReactionProductVector * G4BinaryCascade::Pr << 1095 //------------------------------------------- << 1096 { << 1097 // fill in products the outgoing particles << 1098 std::size_t i(0); << 1099 #ifdef debug_BIC_Propagate_finals << 1100 G4LorentzVector mom_fs; << 1101 #endif << 1102 for(i = 0; i< fs.size(); i++) << 1103 { << 1104 G4KineticTrack * kt = fs[i]; << 1105 G4ReactionProduct * aNew = new G4Reac << 1106 aNew->SetMomentum(kt->Get4Momentum(). << 1107 aNew->SetTotalEnergy(kt->Get4Momentum << 1108 aNew->SetNewlyAdded(kt->IsParticipant << 1109 aNew->SetCreatorModelID(theBIC_ID); << 1110 aNew->SetParentResonanceDef(kt->GetPa << 1111 aNew->SetParentResonanceID(kt->GetPar << 1112 products->push_back(aNew); << 1113 << 1114 #ifdef debug_BIC_Propagate_finals << 1115 mom_fs += kt->Get4Momentum(); << 1116 G4cout <<kt->GetDefinition()->GetPart << 1117 G4cout << " Particle Ekin " << aNew-> << 1118 G4cout << ", is " << (kt->GetDefiniti << 1119 (kt->GetDefinition()->IsShort << 1120 G4cout << G4endl; << 1121 #endif << 1122 1012 1123 } << 1124 #ifdef debug_BIC_Propagate_finals << 1125 G4cout << " Final state momentum " << mom << 1126 #endif << 1127 1013 1128 return products; << 1014 // Capture all p and n with Energy < theCutOnP 1129 } << 1130 //------------------------------------------- 1015 //---------------------------------------------------------------------------- 1131 G4ReactionProductVector * G4BinaryCascade::Pr << 1016 G4bool G4BinaryCascade::Capture(G4bool verbose) 1132 //------------------------------------------- 1017 //---------------------------------------------------------------------------- 1133 { 1018 { 1134 G4LorentzVector pSumPreco(0), pPreco(0); << 1019 G4KineticTrackVector captured; 1135 << 1020 G4bool capture = false; 1136 if ( precompoundProducts ) << 1021 std::vector<G4KineticTrack *>::iterator i; 1137 { << 1022 1138 for(auto j = precompoundProducts->cbegi << 1023 G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; >> 1024 >> 1025 G4double capturedEnergy = 0; >> 1026 G4int particlesAboveCut=0; >> 1027 G4int particlesBelowCut=0; >> 1028 if ( verbose ) G4cout << " Capture: secondaries " << theSecondaryList.size() << G4endl; >> 1029 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) >> 1030 { >> 1031 G4KineticTrack * kt = *i; >> 1032 if (verbose) G4cout << "Capture position, radius, state " <<kt->GetPosition().mag()<<" "<<theOuterRadius<<" "<<kt->GetState()<<G4endl; >> 1033 if(kt->GetState() == G4KineticTrack::inside) // capture happens only inside the nucleus >> 1034 { >> 1035 if((kt->GetDefinition() == G4Proton::Proton()) || >> 1036 (kt->GetDefinition() == G4Neutron::Neutron())) 1139 { 1037 { 1140 // boost back to system of moving nu << 1038 //GF cut on kinetic energy if(kt->Get4Momentum().vect().mag() >= theCutOnP) 1141 G4LorentzVector pProduct((*j)->GetMo << 1039 G4double field=RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 1142 pPreco+= pProduct; << 1040 -RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 1143 #ifdef debug_BIC_Propagate_finals << 1041 G4double energy= kt->Get4Momentum().e() - kt->GetActualMass() + field; 1144 G4cout << "BIC: pProduct be4 boost " << 1042 if (verbose ) G4cout << "Capture: .e(), mass, field, energy" << kt->Get4Momentum().e() <<" "<<kt->GetActualMass()<<" "<<field<<" "<<energy<< G4endl; 1145 #endif << 1043 // if( energy < theCutOnP ) 1146 pProduct *= precompoundLorentzboost; << 1044 // { 1147 #ifdef debug_BIC_Propagate_finals << 1045 capturedEnergy+=energy; 1148 G4cout << "BIC: pProduct aft boost " << 1046 ++particlesBelowCut; 1149 #endif << 1047 // } else 1150 pSumPreco += pProduct; << 1048 // { 1151 (*j)->SetTotalEnergy(pProduct.e()); << 1049 // ++particlesAboveCut; 1152 (*j)->SetMomentum(pProduct.vect()); << 1050 // } 1153 (*j)->SetNewlyAdded(true); << 1051 } 1154 products->push_back(*j); << 1052 } 1155 } << 1053 } 1156 // G4cout << " unboosted preco result m << 1054 if (verbose) G4cout << "Capture particlesAboveCut,particlesBelowCut, capturedEnergy,capturedEnergy/particlesBelowCut <? 0.2*theCutOnP " 1157 // G4cout << " preco result mom " << pS << 1055 << particlesAboveCut << " " << particlesBelowCut << " " << capturedEnergy 1158 precompoundProducts->clear(); << 1056 << " " << capturedEnergy/particlesBelowCut << " " << 0.2*theCutOnP << G4endl; 1159 delete precompoundProducts; << 1057 // if(particlesAboveCut==0 && particlesBelowCut>0 && capturedEnergy/particlesBelowCut<0.2*theCutOnP) 1160 } << 1058 if(capturedEnergy/particlesBelowCut<0.2*theCutOnP) 1161 return products; << 1059 { 1162 } << 1060 capture=true; 1163 //------------------------------------------- << 1061 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1164 void G4BinaryCascade::FindCollisions(G4Kinet << 1165 //------------------------------------------- << 1166 { << 1167 for(auto i=secondaries->cbegin(); i!=seco << 1168 { 1062 { 1169 for(auto j=theImR.cbegin(); j!=theImR << 1063 G4KineticTrack * kt = *i; >> 1064 if(kt->GetState() == G4KineticTrack::inside) // capture happens only inside the nucleus >> 1065 { >> 1066 if((kt->GetDefinition() == G4Proton::Proton()) || >> 1067 (kt->GetDefinition() == G4Neutron::Neutron())) 1170 { 1068 { 1171 // G4cout << "G4BinaryCascad << 1069 captured.push_back(kt); 1172 const std::vector<G4CollisionInit << 1070 kt->Hit(); // 1173 = (*j)->GetCollisions(*i, theTarg << 1071 theCapturedList.push_back(kt); 1174 for(std::size_t count=0; count<aC << 1072 } 1175 { << 1073 } 1176 theCollisionMgr->AddCollision << 1177 //4cout << "================= << 1178 //theCollisionMgr->Print(); << 1179 } << 1180 } << 1181 } 1074 } 1182 } << 1075 UpdateTracksAndCollisions(&captured, NULL, NULL); >> 1076 } 1183 1077 1184 << 1078 return capture; 1185 //------------------------------------------- << 1186 void G4BinaryCascade::FindDecayCollision(G4K << 1187 //------------------------------------------- << 1188 { << 1189 const auto& aCandList = theDecay->GetColl << 1190 for(std::size_t count=0; count<aCandList. << 1191 { << 1192 theCollisionMgr->AddCollision(aCandLi << 1193 } << 1194 } 1079 } 1195 1080 >> 1081 1196 //------------------------------------------- 1082 //---------------------------------------------------------------------------- 1197 void G4BinaryCascade::FindLateParticleCollis << 1083 G4bool G4BinaryCascade::CheckPauliPrinciple(G4KineticTrackVector * products) 1198 //------------------------------------------- 1084 //---------------------------------------------------------------------------- 1199 { 1085 { >> 1086 G4int A = the3DNucleus->GetMassNumber(); >> 1087 G4int Z = the3DNucleus->GetCharge(); 1200 1088 1201 G4double tin=0., tout=0.; << 1089 G4FermiMomentum fermiMom; 1202 if (((G4RKPropagation*)thePropagator)->Ge << 1090 fermiMom.Init(A, Z); 1203 { << 1204 if ( tin > 0 ) << 1205 { << 1206 secondary->SetState(G4KineticTrac << 1207 } else if ( tout > 0 ) << 1208 { << 1209 secondary->SetState(G4KineticTrac << 1210 } else { << 1211 //G4cout << "G4BC set miss , tin, << 1212 secondary->SetState(G4KineticTrac << 1213 } << 1214 } else { << 1215 secondary->SetState(G4KineticTrack::m << 1216 //G4cout << "G4BC set miss ,no inters << 1217 } << 1218 1091 >> 1092 const G4VNuclearDensity * density=the3DNucleus->GetNuclearDensity(); 1219 1093 1220 #ifdef debug_BIC_FindCollision << 1094 G4KineticTrackVector::iterator i; 1221 G4cout << "FindLateP Particle, 4-mom, tim << 1095 G4ParticleDefinition * definition; 1222 << secondary->GetDefinition()->Ge << 1096 1223 << secondary->Get4Momentum() << 1097 // ------ debug 1224 << " times " << tin << " " << to << 1098 G4bool myflag = true; 1225 << secondary->GetState() << G4end << 1099 // ------ end debug 1226 #endif << 1100 // G4ThreeVector xpos(0); >> 1101 for(i = products->begin(); i != products->end(); ++i) >> 1102 { >> 1103 definition = (*i)->GetDefinition(); >> 1104 if((definition == G4Proton::Proton()) || >> 1105 (definition == G4Neutron::Neutron())) >> 1106 { >> 1107 G4ThreeVector pos = (*i)->GetPosition(); >> 1108 G4double d = density->GetDensity(pos); >> 1109 // energy correspondiing to fermi momentum >> 1110 G4double eFermi = sqrt( sqr(fermiMom.GetFermiMomentum(d)) + (*i)->Get4Momentum().mag2() ); >> 1111 if( definition == G4Proton::Proton() ) >> 1112 { >> 1113 eFermi -= the3DNucleus->CoulombBarrier(); >> 1114 } >> 1115 G4LorentzVector mom = (*i)->Get4Momentum(); >> 1116 // ------ debug >> 1117 /* >> 1118 * G4cout << "p:[" << (1/MeV)*mom.x() << " " << (1/MeV)*mom.y() << " " >> 1119 * << (1/MeV)*mom.z() << "] |p3|:" >> 1120 * << (1/MeV)*mom.vect().mag() << " E:" << (1/MeV)*mom.t() << " ] m: " >> 1121 * << (1/MeV)*mom.mag() << " pos[" >> 1122 * << (1/fermi)*pos.x() << " "<< (1/fermi)*pos.y() << " " >> 1123 * << (1/fermi)*pos.z() << "] |Dpos|: " >> 1124 * << (1/fermi)*(pos-xpos).mag() << " Pfermi:" >> 1125 * << (1/MeV)*p << G4endl; >> 1126 * xpos=pos; >> 1127 */ >> 1128 // ------ end debug >> 1129 if(mom.e() < eFermi ) >> 1130 { >> 1131 // ------ debug >> 1132 myflag = false; >> 1133 // ------ end debug >> 1134 // return false; >> 1135 } >> 1136 } >> 1137 } >> 1138 #ifdef debug_G4BinaryCascade >> 1139 if ( myflag ) >> 1140 { >> 1141 for(i = products->begin(); i != products->end(); ++i) >> 1142 { >> 1143 definition = (*i)->GetDefinition(); >> 1144 if((definition == G4Proton::Proton()) || >> 1145 (definition == G4Neutron::Neutron())) >> 1146 { >> 1147 G4ThreeVector pos = (*i)->GetPosition(); >> 1148 G4double d = density->GetDensity(pos); >> 1149 G4double pFermi = fermiMom.GetFermiMomentum(d); >> 1150 G4LorentzVector mom = (*i)->Get4Momentum(); >> 1151 G4double field =((G4RKPropagation*)thePropagator)->GetField(definition->GetPDGEncoding(),pos); >> 1152 if ( mom.e()-mom.mag()+field > 160*MeV ) >> 1153 { >> 1154 G4cout << "momentum problem pFermi=" << pFermi >> 1155 << " mom, mom.m " << mom << " " << mom.mag() >> 1156 << " field " << field << G4endl; >> 1157 } >> 1158 } >> 1159 } >> 1160 } >> 1161 #endif 1227 1162 1228 const auto& aCandList = theLateParticle-> << 1163 return myflag; 1229 for(std::size_t count=0; count<aCandList. << 1230 { << 1231 #ifdef debug_BIC_FindCollision << 1232 G4cout << " Adding a late Col : " << << 1233 #endif << 1234 theCollisionMgr->AddCollision(aCandLi << 1235 } << 1236 } 1164 } 1237 1165 1238 << 1239 //------------------------------------------- 1166 //---------------------------------------------------------------------------- 1240 G4bool G4BinaryCascade::ApplyCollision(G4Coll << 1167 void G4BinaryCascade::StepParticlesOut() 1241 //------------------------------------------- 1168 //---------------------------------------------------------------------------- 1242 { 1169 { 1243 G4KineticTrack * primary = collision->Get << 1170 G4int counter=0; 1244 << 1171 G4int countreset=0; 1245 #ifdef debug_BIC_ApplyCollision << 1172 //G4cout << " nucl. Radius " << radius << G4endl; 1246 G4cerr << "G4BinaryCascade::ApplyCollisio << 1173 // G4cerr <<"pre-while- theSecondaryList "<<G4endl; 1247 theCollisionMgr->Print(); << 1174 while( theSecondaryList.size() > 0 ) 1248 G4cout << "ApplyCollisions : projte 4mom << 1175 { 1249 #endif << 1176 G4int nsec=0; 1250 << 1177 G4double minTimeStep = 1.e-12*ns; // about 30*fermi/(0.1*c_light);1.e-12*ns 1251 G4KineticTrackVector target_collection=co << 1178 // i.e. a big step 1252 G4bool haveTarget=target_collection.size( << 1179 std::vector<G4KineticTrack *>::iterator i; 1253 if( haveTarget && (primary->GetState() != << 1180 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1254 { 1181 { >> 1182 G4KineticTrack * kt = *i; >> 1183 if( kt->GetState() == G4KineticTrack::inside ) >> 1184 { >> 1185 nsec++; >> 1186 G4double tStep(0), tdummy(0); >> 1187 ((G4RKPropagation*)thePropagator)->GetSphereIntersectionTimes(kt,tdummy,tStep); 1255 #ifdef debug_G4BinaryCascade 1188 #ifdef debug_G4BinaryCascade 1256 G4cout << "G4BinaryCasacde::ApplyColl << 1189 G4cout << " minTimeStep, tStep Particle " <<minTimeStep << " " <<tStep 1257 PrintKTVector(primary,std::string("pr << 1190 << " " <<kt->GetDefinition()->GetParticleName() 1258 PrintKTVector(&target_collection,std: << 1191 << " 4mom " << kt->GetTrackingMomentum()<<G4endl; 1259 collision->Print(); << 1192 #endif 1260 G4cout << G4endl; << 1193 if(tStep<minTimeStep && tStep> 0 ) 1261 theCollisionMgr->Print(); << 1194 { 1262 //*GF* throw G4HadronicException( << 1195 minTimeStep = tStep; 1263 #endif << 1196 } 1264 return false; << 1197 } else if ( kt->GetState() != G4KineticTrack::outside ){ 1265 // } else { << 1198 PrintKTVector(&theSecondaryList, std::string(" state ERROR.....")); 1266 // G4cout << "G4BinaryCasacde::ApplyCol << 1199 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::StepParticlesOut() particle not in nucleus"); 1267 // PrintKTVector(primary,std::string("p << 1200 } 1268 // G4double tin=0., tout=0.; << 1269 // if (((G4RKPropagation*)thePropagator << 1270 // { << 1271 // G4cout << "tin tout: " << tin << << 1272 // } << 1273 << 1274 } 1201 } 1275 << 1202 minTimeStep *= 1.2; 1276 G4LorentzVector mom4Primary=primary->Get4 << 1203 // G4cerr << "CaptureCount = "<<counter<<" "<<nsec<<" "<<minTimeStep<<" "<<1*ns<<G4endl; 1277 << 1204 G4double timeToCollision=DBL_MAX; 1278 G4int initialBaryon(0); << 1205 G4CollisionInitialState * nextCollision=0; 1279 G4int initialCharge(0); << 1206 if(theCollisionMgr->Entries() > 0) 1280 if (primary->GetState() == G4KineticTrack << 1281 { 1207 { 1282 initialBaryon = primary->GetDefinitio << 1208 nextCollision = theCollisionMgr->GetNextCollision(); 1283 initialCharge = G4lrint(primary->GetD << 1209 timeToCollision = nextCollision->GetCollisionTime()-theCurrentTime; 1284 } 1210 } >> 1211 if ( timeToCollision > minTimeStep ) >> 1212 { >> 1213 DoTimeStep(minTimeStep); >> 1214 ++counter; >> 1215 } else >> 1216 { >> 1217 if (!DoTimeStep(timeToCollision) ) >> 1218 { >> 1219 // Check if nextCollision is still valid, ie. partcile did not leave nucleus >> 1220 if (theCollisionMgr->GetNextCollision() != nextCollision ) >> 1221 { >> 1222 nextCollision = 0; >> 1223 } >> 1224 } >> 1225 // G4cerr <<"post- DoTimeStep 3"<<G4endl; 1285 1226 1286 // for primary resonances, subtract neutr << 1227 if(nextCollision) 1287 G4double initial_Efermi=CorrectShortlived << 1228 { 1288 //*************************************** << 1229 if ( ApplyCollision(nextCollision)) 1289 << 1230 { 1290 << 1231 // G4cout << "ApplyCollision sucess " << G4endl; 1291 G4KineticTrackVector * products = collisi << 1232 } else 1292 << 1233 { 1293 #ifdef debug_BIC_ApplyCollision << 1234 theCollisionMgr->RemoveCollision(nextCollision); 1294 DebugApplyCollisionFail(collision, produc << 1235 } 1295 #endif << 1236 } 1296 << 1297 // reset primary to initial state, in cas << 1298 primary->Set4Momentum(mom4Primary); << 1299 << 1300 G4bool lateParticleCollision= (!haveTarge << 1301 G4bool decayCollision= (!haveTarget) && p << 1302 G4bool Success(true); << 1303 << 1304 << 1305 #ifdef debug_G4BinaryCascade << 1306 G4int lateBaryon(0), lateCharge(0); << 1307 #endif << 1308 << 1309 if ( lateParticleCollision ) << 1310 { // for late particles, reset charges << 1311 //G4cout << "lateP, initial B C state << 1312 // << initialCharge<< " " << p << 1313 #ifdef debug_G4BinaryCascade << 1314 lateBaryon = initialBaryon; << 1315 lateCharge = initialCharge; << 1316 #endif << 1317 initialBaryon=initialCharge=0; << 1318 lateA -= primary->GetDefinition()->Ge << 1319 lateZ -= G4lrint(primary->GetDefiniti << 1320 } 1237 } 1321 1238 1322 initialBaryon += collision->GetTargetBary << 1239 if(countreset>100) 1323 initialCharge += G4lrint(collision->GetTa << 1324 if (!lateParticleCollision) << 1325 { 1240 { 1326 if( !products || products->size()==0 | << 1241 //#ifdef debug_G4BinaryCascade >> 1242 G4cerr << "G4BinaryCascade.cc: Warning - aborting looping particle(s)" << G4endl; >> 1243 //#endif >> 1244 >> 1245 // add left secondaries to FinalSate >> 1246 std::vector<G4KineticTrack *>::iterator iter; >> 1247 for ( iter =theSecondaryList.begin(); iter != theSecondaryList.end(); ++iter) 1327 { 1248 { 1328 #ifdef debug_BIC_ApplyCollision << 1249 theFinalState.push_back(*iter); 1329 if (products) G4cout << " ======Fai << 1330 G4cerr << "G4BinaryCascade::ApplyCo << 1331 #endif << 1332 Success=false; << 1333 } 1250 } >> 1251 theSecondaryList.clear(); 1334 1252 1335 << 1253 break; 1336 << 1337 if (Success && primary->GetState() == << 1338 if (! CorrectShortlivedFinalsForFer << 1339 Success=false; << 1340 } << 1341 } << 1342 } << 1343 << 1344 #ifdef debug_BIC_ApplyCollision << 1345 DebugApplyCollision(collision, products); << 1346 #endif << 1347 << 1348 if ( ! Success ){ << 1349 if (products) ClearAndDestroy(product << 1350 if ( decayCollision ) FindDecayCollis << 1351 delete products; << 1352 products=nullptr; << 1353 return false; << 1354 } 1254 } 1355 1255 1356 G4int finalBaryon(0); << 1256 if(Absorb()) 1357 G4int finalCharge(0); << 1358 G4KineticTrackVector toFinalState; << 1359 for(auto i=products->cbegin(); i!=product << 1360 { 1257 { 1361 if ( ! lateParticleCollision ) << 1258 // haveProducts = true; 1362 { << 1259 // G4cout << "Absorb sucess " << G4endl; 1363 (*i)->SetState(primary->GetState( << 1364 if ( (*i)->GetState() == G4Kineti << 1365 finalBaryon+=(*i)->GetDefinit << 1366 finalCharge+=G4lrint((*i)->Ge << 1367 } else { << 1368 G4double tin=0., tout=0.; << 1369 if (((G4RKPropagation*)theProp << 1370 tin < 0 && tout > 0 ) << 1371 { << 1372 PrintKTVector((*i),"particl << 1373 G4cout << "tin tout: " << << 1374 } << 1375 } << 1376 } else { << 1377 G4double tin=0., tout=0.; << 1378 if (((G4RKPropagation*)thePropaga << 1379 { << 1380 //G4cout << "tin tout: " << t << 1381 if ( tin > 0 ) << 1382 { << 1383 (*i)->SetState(G4KineticT << 1384 } << 1385 else if ( tout > 0 ) << 1386 { << 1387 (*i)->SetState(G4KineticT << 1388 finalBaryon+=(*i)->GetDef << 1389 finalCharge+=G4lrint((*i) << 1390 } << 1391 else << 1392 { << 1393 (*i)->SetState(G4KineticT << 1394 toFinalState.push_back((* << 1395 } << 1396 } else << 1397 { << 1398 (*i)->SetState(G4KineticTrack << 1399 //G4cout << " G4BC - miss -la << 1400 toFinalState.push_back((*i)); << 1401 } << 1402 << 1403 } << 1404 } << 1405 if(!toFinalState.empty()) << 1406 { << 1407 theFinalState.insert(theFinalState.ce << 1408 toFinalState.cbegin(),toFinal << 1409 std::vector<G4KineticTrack *>::iterat << 1410 for(auto iter1=toFinalState.cbegin(); << 1411 { << 1412 iter2 = std::find(products->begin << 1413 if ( iter2 != products->cend() ) << 1414 } << 1415 theCollisionMgr->RemoveTracksCollisio << 1416 } 1260 } 1417 1261 1418 //G4cout << " currentA, Z be4: " << curre << 1262 if(Capture(false)) 1419 currentA += finalBaryon-initialBaryon; << 1420 currentZ += finalCharge-initialCharge; << 1421 //G4cout << " ApplyCollision currentA, Z << 1422 << 1423 G4KineticTrackVector oldSecondaries; << 1424 oldSecondaries.push_back(primary); << 1425 primary->Hit(); << 1426 << 1427 #ifdef debug_G4BinaryCascade << 1428 if ( (finalBaryon-initialBaryon-lateBaryo << 1429 { 1263 { 1430 G4cout << "G4BinaryCascade: Error in << 1264 // haveProducts = true; 1431 G4cout << "initial/final baryon numbe << 1265 #ifdef debug_G4BinaryCascade 1432 << initialBaryon <<" "<< fina << 1266 G4cout << "Capture sucess " << G4endl; 1433 << initialCharge <<" "<< fina << 1434 << " in Collision type: "<< t << 1435 << ", with number of products << 1436 G4cout << G4endl<<"Initial condition << 1437 G4cout << "proj: "<<collision->GetPri << 1438 for(std::size_t it=0; it<collision->G << 1439 { << 1440 G4cout << "targ: " << 1441 <<collision->GetTargetCol << 1442 } << 1443 PrintKTVector(&collision->GetTargetCo << 1444 G4cout << G4endl<<G4endl; << 1445 } << 1446 #endif 1267 #endif 1447 << 1448 G4KineticTrackVector oldTarget = collisio << 1449 for(std::size_t ii=0; ii< oldTarget.size( << 1450 { << 1451 oldTarget[ii]->Hit(); << 1452 } 1268 } 1453 << 1269 if ( counter > 100 && theCollisionMgr->Entries() == 0) // no collision, and stepping a while.... 1454 UpdateTracksAndCollisions(&oldSecondaries << 1455 std::for_each(oldSecondaries.cbegin(), ol << 1456 std::for_each(oldTarget.cbegin(), oldTarg << 1457 << 1458 delete products; << 1459 return true; << 1460 } << 1461 << 1462 << 1463 //------------------------------------------- << 1464 G4bool G4BinaryCascade::Absorb() << 1465 //------------------------------------------- << 1466 { << 1467 // Do it in two step: cannot change theSe << 1468 G4Absorber absorber(theCutOnPAbsorb); << 1469 << 1470 // Build the vector of G4KineticTracks th << 1471 G4KineticTrackVector absorbList; << 1472 std::vector<G4KineticTrack *>::const_iter << 1473 // PrintKTVector(&theSecondaryList, " te << 1474 for(iter = theSecondaryList.cbegin(); << 1475 iter != theSecondaryList.cend(); << 1476 { 1270 { 1477 G4KineticTrack * kt = *iter; << 1271 #ifdef debug_1_BinaryCascade 1478 if(kt->GetState() == G4KineticTrack:: << 1272 PrintKTVector(&theSecondaryList,std::string("stepping 100 steps")); 1479 { << 1273 #endif 1480 if(absorber.WillBeAbsorbed(*kt)) << 1274 FindCollisions(&theSecondaryList); 1481 { << 1275 counter=0; 1482 absorbList.push_back(kt); << 1276 ++countreset; 1483 } << 1484 } << 1485 } 1277 } >> 1278 } >> 1279 // G4cerr <<"Finished capture loop "<<G4endl; 1486 1280 1487 if(absorbList.empty()) << 1281 //G4cerr <<"pre- DoTimeStep 4"<<G4endl; 1488 return false; << 1282 DoTimeStep(DBL_MAX); 1489 << 1283 //G4cerr <<"post- DoTimeStep 4"<<G4endl; 1490 G4KineticTrackVector toDelete; << 1491 for(iter = absorbList.cbegin(); iter != a << 1492 { << 1493 G4KineticTrack * kt = *iter; << 1494 if(!absorber.FindAbsorbers(*kt, theTa << 1495 throw G4HadronicException(__FILE_ << 1496 1284 1497 if(!absorber.FindProducts(*kt)) << 1498 throw G4HadronicException(__FILE_ << 1499 1285 1500 G4KineticTrackVector * products = abs << 1501 G4int maxLoopCount = 1000; << 1502 while(!CheckPauliPrinciple(products) << 1503 { << 1504 ClearAndDestroy(products); << 1505 if(!absorber.FindProducts(*kt)) << 1506 throw G4HadronicException(__F << 1507 "G4BinaryCascade::Abs << 1508 } << 1509 if ( --maxLoopCount < 0 ) throw G4Hadro << 1510 // ------ debug << 1511 // G4cerr << "Absorb CheckPauliPri << 1512 // ------ end debug << 1513 G4KineticTrackVector toRemove; // bu << 1514 toRemove.push_back(kt); << 1515 toDelete.push_back(kt); // delete th << 1516 G4KineticTrackVector * absorbers = ab << 1517 UpdateTracksAndCollisions(&toRemove, << 1518 ClearAndDestroy(absorbers); << 1519 } << 1520 ClearAndDestroy(&toDelete); << 1521 return true; << 1522 } 1286 } 1523 1287 1524 << 1525 << 1526 // Capture all p and n with Energy < theCutOn << 1527 //------------------------------------------- 1288 //---------------------------------------------------------------------------- 1528 G4bool G4BinaryCascade::Capture(G4bool verbos << 1289 void G4BinaryCascade::CorrectFinalPandE() 1529 //------------------------------------------- << 1530 { << 1531 G4KineticTrackVector captured; << 1532 G4bool capture = false; << 1533 std::vector<G4KineticTrack *>::const_iter << 1534 << 1535 G4RKPropagation * RKprop=(G4RKPropagation << 1536 << 1537 G4double capturedEnergy = 0; << 1538 G4int particlesAboveCut=0; << 1539 G4int particlesBelowCut=0; << 1540 if ( verbose ) G4cout << " Capture: secon << 1541 for(i = theSecondaryList.cbegin(); i != t << 1542 { << 1543 G4KineticTrack * kt = *i; << 1544 if (verbose) G4cout << "Capture posit << 1545 if(kt->GetState() == G4KineticTrack:: << 1546 { << 1547 if((kt->GetDefinition() == G4Prot << 1548 (kt->GetDefinition() == G << 1549 { << 1550 //GF cut on kinetic energy << 1551 G4double field=RKprop->GetFie << 1552 -RKprop->GetBarr << 1553 G4double energy= kt->Get4Mome << 1554 if (verbose ) G4cout << "Capt << 1555 // if( energy < theCutOnP ) << 1556 // { << 1557 capturedEnergy+=energy; << 1558 ++particlesBelowCut; << 1559 // } else << 1560 // { << 1561 // ++particlesAboveCut; << 1562 // } << 1563 } << 1564 } << 1565 } << 1566 if (verbose) G4cout << "Capture particles << 1567 << particlesAboveCut << " " << pa << 1568 << " " << G4endl; << 1569 // << " " << (particlesBelowCut>0) ? (capt << 1570 // if(particlesAboveCut==0 && particlesB << 1571 if(particlesBelowCut>0 && capturedEnergy/ << 1572 { << 1573 capture=true; << 1574 for(i = theSecondaryList.cbegin(); i << 1575 { << 1576 G4KineticTrack * kt = *i; << 1577 if(kt->GetState() == G4KineticTra << 1578 { << 1579 if((kt->GetDefinition() == G4 << 1580 (kt->GetDefinition() << 1581 { << 1582 captured.push_back(kt); << 1583 kt->Hit(); // << 1584 theCapturedList.push_back << 1585 } << 1586 } << 1587 } << 1588 UpdateTracksAndCollisions(&captured, << 1589 } << 1590 << 1591 return capture; << 1592 } << 1593 << 1594 << 1595 //------------------------------------------- << 1596 G4bool G4BinaryCascade::CheckPauliPrinciple(G << 1597 //------------------------------------------- 1290 //---------------------------------------------------------------------------- 1598 { 1291 { 1599 G4int A = the3DNucleus->GetMassNumber(); << 1292 #ifdef debug_G4BinaryCascade 1600 G4int Z = the3DNucleus->GetCharge(); << 1293 G4cerr << " -CorrectFinalPandE 1" << G4endl; 1601 << 1602 G4FermiMomentum fermiMom; << 1603 fermiMom.Init(A, Z); << 1604 << 1605 const G4VNuclearDensity * density=the3DNu << 1606 << 1607 G4KineticTrackVector::const_iterator i; << 1608 const G4ParticleDefinition * definition; << 1609 << 1610 // ------ debug << 1611 G4bool myflag = true; << 1612 // ------ end debug << 1613 // G4ThreeVector xpos(0); << 1614 for(i = products->cbegin(); i != products << 1615 { << 1616 definition = (*i)->GetDefinition(); << 1617 if((definition == G4Proton::Proton()) << 1618 (definition == G4Neutron::Neu << 1619 { << 1620 G4ThreeVector pos = (*i)->GetPosi << 1621 G4double d = density->GetDensity( << 1622 // energy correspondiing to fermi << 1623 G4double eFermi = std::sqrt( sqr( << 1624 if( definition == G4Proton::Proto << 1625 { << 1626 eFermi -= the3DNucleus->Coulo << 1627 } << 1628 G4LorentzVector mom = (*i)->Get4M << 1629 // ------ debug << 1630 /* << 1631 * G4cout << "p:[" << (1/M << 1632 * << (1/MeV)*mom.z() << 1633 * << (1/MeV)*mom.vect << 1634 * << (1/MeV)*mom.mag( << 1635 * << (1/fermi)*pos.x( << 1636 * << (1/fermi)*pos.z( << 1637 * << (1/fermi)*(pos-x << 1638 * << (1/MeV)*p << G4e << 1639 * xpos=pos; << 1640 */ << 1641 // ------ end debug << 1642 if(mom.e() < eFermi ) << 1643 { << 1644 // ------ debug << 1645 myflag = false; << 1646 // ------ end debug << 1647 // return false; << 1648 } << 1649 } << 1650 } << 1651 #ifdef debug_BIC_CheckPauli << 1652 if ( myflag ) << 1653 { << 1654 for(i = products->cbegin(); i != prod << 1655 { << 1656 definition = (*i)->GetDefinition( << 1657 if((definition == G4Proton::Proto << 1658 (definition == G4Neutron: << 1659 { << 1660 G4ThreeVector pos = (*i)->Get << 1661 G4double d = density->GetDens << 1662 G4double pFermi = fermiMom.Ge << 1663 G4LorentzVector mom = (*i)->G << 1664 G4double field =((G4RKPropaga << 1665 if ( mom.e()-mom.mag()+field << 1666 { << 1667 G4cout << "momentum probl << 1668 << " mom, mom.m " << 1669 << " field " << f << 1670 } << 1671 } << 1672 } << 1673 } << 1674 #endif 1294 #endif 1675 1295 1676 return myflag; << 1296 if ( theFinalState.size() == 0 ) return; 1677 } << 1678 << 1679 //------------------------------------------- << 1680 void G4BinaryCascade::StepParticlesOut() << 1681 //------------------------------------------- << 1682 { << 1683 G4int counter=0; << 1684 G4int countreset=0; << 1685 //G4cout << " nucl. Radius " << radius << << 1686 // G4cerr <<"pre-while- theSecondaryList << 1687 while( theSecondaryList.size() > 0 ) << 1688 << 1689 { << 1690 G4double minTimeStep = 1.e-12*ns; / << 1691 / << 1692 for(auto i = theSecondaryList.cbegin( << 1693 { << 1694 G4KineticTrack * kt = *i; << 1695 if( kt->GetState() == G4KineticTr << 1696 { << 1697 G4double tStep(0), tdummy(0); << 1698 G4bool intersect = << 1699 ((G4RKPropagation*)th << 1700 #ifdef debug_BIC_StepParticlesOut << 1701 G4cout << " minTimeStep, tSte << 1702 << " " <<kt->GetDefin << 1703 << " 4mom " << kt->Ge << 1704 if ( ! intersect ); << 1705 { << 1706 PrintKTVector(&theSeconda << 1707 throw G4HadronicException << 1708 } << 1709 #endif << 1710 if(intersect && tStep<minTime << 1711 { << 1712 minTimeStep = tStep; << 1713 } << 1714 } else if ( kt->GetState() != G4K << 1715 PrintKTVector(&theSecondaryLi << 1716 throw G4HadronicException(__F << 1717 } << 1718 } << 1719 minTimeStep *= 1.2; << 1720 G4double timeToCollision=DBL_MAX; << 1721 G4CollisionInitialState * nextCollisi << 1722 if(theCollisionMgr->Entries() > 0) << 1723 { << 1724 nextCollision = theCollisionMgr-> << 1725 timeToCollision = nextCollision-> << 1726 // G4cout << " NextCollision * << 1727 } << 1728 if ( timeToCollision > minTimeStep ) << 1729 { << 1730 DoTimeStep(minTimeStep); << 1731 ++counter; << 1732 } else << 1733 { << 1734 if (!DoTimeStep(timeToCollision) << 1735 { << 1736 // Check if nextCollision is << 1737 if (theCollisionMgr->GetNextC << 1738 { << 1739 nextCollision = nullptr; << 1740 } << 1741 } << 1742 // G4cerr <<"post- DoTimeStep 3"< << 1743 << 1744 if(nextCollision) << 1745 { << 1746 if ( ApplyCollision(nextColl << 1747 { << 1748 // G4cout << "ApplyCollis << 1749 } else << 1750 { << 1751 theCollisionMgr->RemoveCo << 1752 } << 1753 } << 1754 } << 1755 1297 1756 if(countreset>100) << 1757 { << 1758 #ifdef debug_G4BinaryCascade 1298 #ifdef debug_G4BinaryCascade 1759 G4cerr << "G4BinaryCascade.cc: Wa << 1299 G4cerr << " -CorrectFinalPandE 2" << G4endl; 1760 PrintKTVector(&theSecondaryList," << 1761 #endif 1300 #endif 1762 1301 1763 // add left secondaries to Final << 1302 G4KineticTrackVector::iterator i; 1764 for (auto iter=theSecondaryList.c << 1303 G4LorentzVector pNucleus=GetFinal4Momentum(); 1765 { << 1304 if ( pNucleus.e() == 0 ) return; // check against explicit 0 from GetNucleus4Momentum() 1766 theFinalState.push_back(*iter << 1305 #ifdef debug_G4BinaryCascade 1767 } << 1306 G4cerr << " -CorrectFinalPandE 3" << G4endl; 1768 theSecondaryList.clear(); << 1769 << 1770 break; << 1771 } << 1772 << 1773 if(Absorb()) << 1774 { << 1775 // haveProducts = true; << 1776 // G4cout << "Absorb sucess " << << 1777 } << 1778 << 1779 if(Capture(false)) << 1780 { << 1781 // haveProducts = true; << 1782 #ifdef debug_BIC_StepParticlesOut << 1783 G4cout << "Capture sucess " << G4 << 1784 #endif 1307 #endif 1785 } << 1308 G4LorentzVector pFinals(0); 1786 if ( counter > 100 && theCollisionMgr << 1309 G4int nFinals(0); 1787 { << 1310 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 1788 #ifdef debug_BIC_StepParticlesOut << 1311 { 1789 PrintKTVector(&theSecondaryList,s << 1312 pFinals += (*i)->Get4Momentum(); >> 1313 ++nFinals; >> 1314 #ifdef debug_G4BinaryCascade >> 1315 G4cout <<"CorrectFinalPandE a final " << (*i)->GetDefinition()->GetParticleName() >> 1316 << " 4mom " << (*i)->Get4Momentum()<< G4endl; 1790 #endif 1317 #endif 1791 FindCollisions(&theSecondaryList) << 1318 } 1792 counter=0; << 1319 #ifdef debug_G4BinaryCascade 1793 ++countreset; << 1320 G4cout << "CorrectFinalPandE pN pF: " <<pNucleus << " " <<pFinals << G4endl; 1794 } << 1795 //G4cout << "currentZ @ end loop " << << 1796 if ( ! currentZ ){ << 1797 // nucleus completely destroyed, << 1798 // products = FillVoidNucleusProdu << 1799 #ifdef debug_BIC_return << 1800 G4cout << "return @ Z=0 after col << 1801 PrintKTVector(&theSecondaryList,s << 1802 G4cout << "theTargetList size: " << 1803 PrintKTVector(&theTargetList,std: << 1804 PrintKTVector(&theCapturedList,st << 1805 << 1806 G4cout << " ExcitE be4 Correct : << 1807 G4cout << " Mom Transfered to nuc << 1808 PrintKTVector(&theFinalState,std: << 1809 // G4cout << "returned products: " << 1810 #endif << 1811 } << 1812 << 1813 } << 1814 // G4cerr <<"Finished capture loop "<<G4 << 1815 << 1816 //G4cerr <<"pre- DoTimeStep 4"<<G4endl; << 1817 DoTimeStep(DBL_MAX); << 1818 //G4cerr <<"post- DoTimeStep 4"<<G4endl; << 1819 } << 1820 << 1821 //------------------------------------------- << 1822 G4double G4BinaryCascade::CorrectShortlivedPr << 1823 G4KineticTrack* primary,G4KineticTrac << 1824 //------------------------------------------- << 1825 { << 1826 G4double Efermi(0); << 1827 if (primary->GetState() == G4KineticTrack << 1828 G4int PDGcode=primary->GetDefinition( << 1829 Efermi=((G4RKPropagation *)thePropaga << 1830 << 1831 if ( std::abs(PDGcode) > 1000 && PDGc << 1832 { << 1833 Efermi = ((G4RKPropagation *)theP << 1834 G4LorentzVector mom4Primary=prima << 1835 primary->Update4Momentum(mom4Prim << 1836 } << 1837 << 1838 for (auto titer=target_collection.cbe << 1839 { << 1840 const G4ParticleDefinition * aDef << 1841 G4int aCode=aDef->GetPDGEncoding( << 1842 G4ThreeVector aPos=(*titer)->GetP << 1843 Efermi+= ((G4RKPropagation *)theP << 1844 } << 1845 } << 1846 return Efermi; << 1847 } << 1848 << 1849 //------------------------------------------- << 1850 G4bool G4BinaryCascade::CorrectShortlivedFina << 1851 G4double initial_Efermi) << 1852 //------------------------------------------- << 1853 { << 1854 G4double final_Efermi(0); << 1855 G4KineticTrackVector resonances; << 1856 for (auto i =products->cbegin(); i != pro << 1857 { << 1858 G4int PDGcode=(*i)->GetDefinition()-> << 1859 // G4cout << " PDGcode, state " << 1860 final_Efermi+=((G4RKPropagation *)the << 1861 if ( std::abs(PDGcode) > 1000 && PDGc << 1862 { << 1863 resonances.push_back(*i); << 1864 } << 1865 } << 1866 if ( resonances.size() > 0 ) << 1867 { << 1868 G4double delta_Fermi= (initial_Efermi << 1869 for (auto res=resonances.cbegin(); re << 1870 { << 1871 G4LorentzVector mom=(*res)->Get4M << 1872 G4double mass2=mom.mag2(); << 1873 G4double newEnergy=mom.e() + delt << 1874 G4double newEnergy2= newEnergy*ne << 1875 //G4cout << "mom = " << mom <<" n << 1876 if ( newEnergy2 < mass2 ) << 1877 { << 1878 return false; << 1879 } << 1880 G4ThreeVector mom3=std::sqrt(newE << 1881 (*res)->Set4Momentum(G4LorentzVec << 1882 //G4cout << " correct resonan << 1883 // " 3mom from/to " << << 1884 } << 1885 } << 1886 return true; << 1887 } << 1888 << 1889 //------------------------------------------- << 1890 void G4BinaryCascade::CorrectFinalPandE() << 1891 //------------------------------------------- << 1892 // << 1893 // Modify momenta of outgoing particles. << 1894 // Assume two body decay, nucleus(@nominal << 1895 // momentum of SFSP shall be less than mome << 1896 // << 1897 { << 1898 #ifdef debug_BIC_CorrectFinalPandE << 1899 G4cerr << "BIC: -CorrectFinalPandE called << 1900 #endif 1321 #endif >> 1322 G4LorentzVector pCM=pNucleus + pFinals; 1901 1323 1902 if ( theFinalState.size() == 0 ) return; << 1324 G4LorentzRotation toCMS(-pCM.boostVector()); >> 1325 pFinals *=toCMS; 1903 1326 1904 G4KineticTrackVector::const_iterator i; << 1327 #ifdef debug_G4BinaryCascade 1905 G4LorentzVector pNucleus=GetFinal4Momentu << 1328 G4cout << "CorrectFinalPandE pCM, CMS pCM " << pCM << " " <<toCMS*pCM<< G4endl; 1906 if ( pNucleus.e() == 0 ) return; // ch << 1329 G4cout << "CorrectFinal CMS pN pF " <<toCMS*pNucleus << " " 1907 #ifdef debug_BIC_CorrectFinalPandE << 1330 <<pFinals << G4endl 1908 G4cerr << " -CorrectFinalPandE 3" << G4en << 1331 << " nucleus initial mass : " <<GetFinal4Momentum().mag() 1909 #endif << 1332 <<" massInNucleus m(nucleus) m(finals) sqrt(s): " << massInNucleus << " " <<pNucleus.mag()<< " " 1910 G4LorentzVector pFinals(0); << 1333 << pFinals.mag() << " " << pCM.mag() << G4endl; 1911 for(i = theFinalState.cbegin(); i != theF << 1334 #endif 1912 { << 1335 1913 pFinals += (*i)->Get4Momentum(); << 1336 G4LorentzRotation toLab = toCMS.inverse(); 1914 #ifdef debug_BIC_CorrectFinalPandE << 1337 1915 G4cout <<"CorrectFinalPandE a final " << 1338 G4double s = pCM.mag2(); 1916 << " 4mom " << (*i)->G << 1339 // G4double m10 = massInNucleus; //pNucleus.mag(); 1917 #endif << 1340 G4double m10 = GetIonMass(currentZ,currentA); 1918 } << 1341 G4double m20 = pFinals.mag(); 1919 #ifdef debug_BIC_CorrectFinalPandE << 1342 if( s-(m10+m20)*(m10+m20) < 0 ) 1920 G4cout << "CorrectFinalPandE pN pF: " <<p << 1343 { 1921 #endif << 1344 #ifdef debug_G4BinaryCascade 1922 G4LorentzVector pCM=pNucleus + pFinals; << 1345 G4cout << "G4BinaryCascade::CorrectFinalPandE() : error! " << G4endl; 1923 1346 1924 G4LorentzRotation toCMS(-pCM.boostVector( << 1347 G4cout << "not enough mass to correct: mass, A,Z, mass(nucl), mass(finals) " 1925 pFinals *=toCMS; << 1348 << sqrt(-s+(m10+m20)*(m10+m20)) << " " 1926 #ifdef debug_BIC_CorrectFinalPandE << 1349 << currentA << " " << currentZ << " " 1927 G4cout << "CorrectFinalPandE pCM, CMS pCM << 1350 << m10 << " " << m20 1928 G4cout << "CorrectFinal CMS pN pF " <<toC << 1351 << G4endl; 1929 <<pFinals << G4endl << 1352 G4cerr << " -CorrectFinalPandE 4" << G4endl; 1930 << " nucleus initial mass : " <<G << 1353 1931 <<" massInNucleus m(nucleus) m(fi << 1354 PrintKTVector(&theFinalState," mass problem"); 1932 << pFinals.mag() << " " << pCM.ma << 1355 1933 #endif 1356 #endif >> 1357 return; >> 1358 } 1934 1359 1935 G4LorentzRotation toLab = toCMS.inverse() << 1360 // Three momentum in cm system 1936 << 1361 G4double pInCM = sqrt((s-(m10+m20)*(m10+m20))*(s-(m10-m20)*(m10-m20))/(4.*s)); 1937 G4double s0 = pCM.mag2(); << 1362 #ifdef debug_G4BinaryCascade 1938 G4double m10 = GetIonMass(currentZ,curren << 1363 G4cout <<" CorrectFinalPandE pInCM new, CURRENT, ratio : " << pInCM 1939 G4double m20 = pFinals.mag(); << 1364 << " " << (pFinals).vect().mag()<< " " << pInCM/(pFinals).vect().mag() << G4endl; 1940 if( s0-(m10+m20)*(m10+m20) < 0 ) << 1941 { << 1942 #ifdef debug_BIC_CorrectFinalPandE << 1943 G4cout << "G4BinaryCascade::CorrectFi << 1944 << 1945 G4cout << "not enough mass to correct << 1946 << (s0-(m10+m20)*(m10+m20)) < << 1947 << currentA << " " << current << 1948 << m10 << " " << m20 << 1949 << G4endl; << 1950 G4cerr << " -CorrectFinalPandE 4" << << 1951 << 1952 PrintKTVector(&theFinalState," mass p << 1953 #endif 1365 #endif 1954 return; << 1366 if ( pFinals.vect().mag() > pInCM ) 1955 } << 1367 { 1956 << 1368 #ifdef debug_G4BinaryCascade 1957 // Three momentum in cm system << 1369 G4cerr << " -CorrectFinalPandE 5" << G4endl; 1958 G4double pInCM = std::sqrt((s0-(m10+m20)* << 1959 #ifdef debug_BIC_CorrectFinalPandE << 1960 G4cout <<" CorrectFinalPandE pInCM new, << 1961 << " " << (pFinals).vect().mag()< << 1962 #endif 1370 #endif 1963 if ( pFinals.vect().mag() > pInCM ) << 1371 G4ThreeVector p3finals=pInCM*pFinals.vect().unit(); 1964 { << 1965 G4ThreeVector p3finals=pInCM*pFinals. << 1966 1372 1967 G4double factor=std::max(0.98,pInCM/p << 1373 // G4ThreeVector deltap=(p3finals - pFinals.vect() ) / nFinals; 1968 G4LorentzVector qFinals(0); << 1374 G4double factor=pInCM/pFinals.vect().mag(); 1969 for(i = theFinalState.cbegin(); i != << 1375 G4LorentzVector qFinals(0); 1970 { << 1376 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 1971 // G4ThreeVector p3((toCMS*( << 1377 { 1972 G4ThreeVector p3(factor*(toCMS*(* << 1378 // G4ThreeVector p3((toCMS*(*i)->Get4Momentum()).vect() + deltap); 1973 G4LorentzVector p(p3,std::sqrt((* << 1379 G4ThreeVector p3(factor*(toCMS*(*i)->Get4Momentum()).vect()); 1974 qFinals += p; << 1380 G4LorentzVector p(p3,sqrt((*i)->Get4Momentum().mag2() + p3.mag2())); 1975 p *= toLab; << 1381 qFinals += p; 1976 #ifdef debug_BIC_CorrectFinalPandE << 1382 p *= toLab; 1977 G4cout << " final p corrected: " << 1383 #ifdef debug_G4BinaryCascade 1978 #endif << 1384 G4cout << " final p corrected: " << p << G4endl; 1979 (*i)->Set4Momentum(p); << 1980 } << 1981 #ifdef debug_BIC_CorrectFinalPandE << 1982 G4cout << "CorrectFinalPandE nucleus << 1983 <<GetFinal4Momentum().mag() < << 1984 << " CMS pFinals , mag, 3.mag << 1985 G4cerr << " -CorrectFinalPandE 5 " << << 1986 #endif 1385 #endif >> 1386 (*i)->Set4Momentum(p); 1987 } 1387 } 1988 #ifdef debug_BIC_CorrectFinalPandE << 1388 #ifdef debug_G4BinaryCascade 1989 else { G4cerr << " -CorrectFinalPandE 6 - << 1389 G4cout << "CorrectFinalPandE nucleus corrected mass : " << GetFinal4Momentum() << " " >> 1390 <<GetFinal4Momentum().mag() << G4endl >> 1391 << " CMS pFinals , mag, 3.mag : " << qFinals << " " << qFinals.mag() << " " << qFinals.vect().mag()<< G4endl; 1990 #endif 1392 #endif 1991 << 1393 } >> 1394 #ifdef debug_G4BinaryCascade >> 1395 else { G4cerr << " -CorrectFinalPandE 6" << G4endl; } >> 1396 #endif >> 1397 1992 } 1398 } 1993 1399 1994 //------------------------------------------- 1400 //---------------------------------------------------------------------------- 1995 void G4BinaryCascade::UpdateTracksAndCollisio 1401 void G4BinaryCascade::UpdateTracksAndCollisions( 1996 //----------------------------------- << 1402 //---------------------------------------------------------------------------- 1997 G4KineticTrackVector * oldSecondaries << 1403 G4KineticTrackVector * oldSecondaries, 1998 G4KineticTrackVector * oldTarget, << 1404 G4KineticTrackVector * oldTarget, 1999 G4KineticTrackVector * newSecondaries << 1405 G4KineticTrackVector * newSecondaries) 2000 { << 1406 { 2001 std::vector<G4KineticTrack *>::const_iter << 1407 // G4cout << "Entering ... "<<oldTarget<<G4endl; 2002 << 1408 std::vector<G4KineticTrack *>::iterator iter1, iter2; 2003 // remove old secondaries from the second << 1409 2004 if(oldSecondaries) << 1410 // remove old secondaries from the secondary list >> 1411 if(oldSecondaries) >> 1412 { >> 1413 if(!oldSecondaries->empty()) 2005 { 1414 { 2006 if(!oldSecondaries->empty()) << 1415 for(iter1 = oldSecondaries->begin(); iter1 != oldSecondaries->end(); 2007 { << 1416 ++iter1) 2008 for(auto iter1=oldSecondaries->cb << 1417 { 2009 { << 1418 iter2 = std::find(theSecondaryList.begin(), theSecondaryList.end(), 2010 iter2 = std::find(theSecondar << 1419 *iter1); 2011 if ( iter2 != theSecondaryLis << 1420 theSecondaryList.erase(iter2); 2012 } << 1421 } 2013 theCollisionMgr->RemoveTracksColl << 1422 theCollisionMgr->RemoveTracksCollisions(oldSecondaries); 2014 } << 2015 } 1423 } >> 1424 } 2016 1425 2017 // remove old target from the target list << 1426 // remove old target from the target list 2018 if(oldTarget) << 1427 if(oldTarget) >> 1428 { >> 1429 // G4cout << "################## Debugging 0 "<<G4endl; >> 1430 if(oldTarget->size()!=0) 2019 { 1431 { 2020 // G4cout << "################## Debu << 1432 // G4cout << "################## Debugging 1 "<<oldTarget->size()<<G4endl; 2021 if(oldTarget->size()!=0) << 1433 for(iter1 = oldTarget->begin(); iter1 != oldTarget->end(); ++iter1) 2022 { << 1434 { 2023 << 1435 iter2 = std::find(theTargetList.begin(), theTargetList.end(), 2024 // G4cout << "################## << 1436 *iter1); 2025 for(auto iter1 = oldTarget->cbegi << 1437 theTargetList.erase(iter2); 2026 { << 1438 } 2027 iter2 = std::find(theTargetLi << 1439 theCollisionMgr->RemoveTracksCollisions(oldTarget); 2028 theTargetList.erase(iter2); << 2029 } << 2030 theCollisionMgr->RemoveTracksColl << 2031 } << 2032 } 1440 } >> 1441 } 2033 1442 2034 if(newSecondaries) << 1443 if(newSecondaries) >> 1444 { >> 1445 if(!newSecondaries->empty()) 2035 { 1446 { 2036 if(!newSecondaries->empty()) << 1447 // insert new secondaries in the secondary list 2037 { << 1448 for(iter1 = newSecondaries->begin(); iter1 != newSecondaries->end(); 2038 // insert new secondaries in the << 1449 ++iter1) 2039 for(auto iter1 = newSecondaries-> << 1450 { 2040 { << 1451 theSecondaryList.push_back(*iter1); 2041 theSecondaryList.push_back(*i << 1452 } 2042 if ((*iter1)->GetState() == G << 1453 // look for collisions of new secondaries 2043 { << 1454 FindCollisions(newSecondaries); 2044 PrintKTVector(*iter1, "und << 2045 } << 2046 << 2047 << 2048 } << 2049 // look for collisions of new sec << 2050 FindCollisions(newSecondaries); << 2051 } << 2052 } 1455 } 2053 // G4cout << "Exiting ... "<<oldTarget<<G << 1456 } >> 1457 // G4cout << "Exiting ... "<<oldTarget<<G4endl; 2054 } 1458 } 2055 1459 2056 1460 2057 class SelectFromKTV 1461 class SelectFromKTV 2058 { 1462 { 2059 private: << 1463 private: 2060 G4KineticTrackVector * ktv; << 1464 G4KineticTrackVector * ktv; 2061 G4KineticTrack::CascadeState wanted_state << 1465 G4KineticTrack::CascadeState wanted_state; 2062 public: << 1466 public: 2063 SelectFromKTV(G4KineticTrackVector * out, << 1467 SelectFromKTV(G4KineticTrackVector * out, G4KineticTrack::CascadeState astate) 2064 : << 1468 : 2065 ktv(out), wanted_state(astate) << 1469 ktv(out), wanted_state(astate) 2066 {}; << 1470 {}; 2067 void operator() (G4KineticTrack *& kt) co << 1471 void operator() (G4KineticTrack *& kt) const 2068 { << 1472 { 2069 if ( (kt)->GetState() == wanted_state << 1473 if ( (kt)->GetState() == wanted_state ) ktv->push_back(kt); 2070 }; << 1474 }; 2071 }; 1475 }; 2072 << 1476 2073 1477 2074 1478 2075 //------------------------------------------- 1479 //---------------------------------------------------------------------------- 2076 G4bool G4BinaryCascade::DoTimeStep(G4double t 1480 G4bool G4BinaryCascade::DoTimeStep(G4double theTimeStep) 2077 //------------------------------------------- 1481 //---------------------------------------------------------------------------- 2078 { 1482 { 2079 1483 2080 #ifdef debug_BIC_DoTimeStep << 1484 #ifdef debug_G4BinaryCascade 2081 G4ping debug("debug_G4BinaryCascade"); << 1485 G4ping debug("debug_G4BinaryCascade"); 2082 debug.push_back("======> DoTimeStep 1"); << 1486 debug.push_back("======> DoTimeStep 1"); debug.dump(); 2083 G4cerr <<"G4BinaryCascade::DoTimeStep: en << 1487 G4cerr <<"G4BinaryCascade::DoTimeStep: enter "<< theTimeStep << G4endl; 2084 << " , time="<<theCurrentTime << << 1488 PrintKTVector(&theSecondaryList, std::string("DoTimeStep - theSecondaryList")); 2085 PrintKTVector(&theSecondaryList, std::str << 1489 // PrintKTVector(&theTargetList, std::string("DoTimeStep - theTargetList")); 2086 //PrintKTVector(&theTargetList, std::stri << 1490 #endif 2087 #endif << 1491 2088 << 1492 G4bool success=true; 2089 G4bool success=true; << 1493 std::vector<G4KineticTrack *>::iterator iter; 2090 std::vector<G4KineticTrack *>::const_iter << 1494 // Count particles in nucleus 2091 << 1495 #ifdef debug_G4BinaryCascade 2092 G4KineticTrackVector * kt_outside = new G << 1496 G4int secondaryBarions=0; 2093 std::for_each( theSecondaryList.begin(),t << 1497 G4int secondaryCharge=0; 2094 SelectFromKTV(kt_outside,G4Kineti << 1498 G4double secondaryMass=0; 2095 //PrintKTVector(kt_outside, std::string(" << 1499 #endif 2096 << 1500 2097 G4KineticTrackVector * kt_inside = new G4 << 1501 G4KineticTrackVector * kt_outside = new G4KineticTrackVector; 2098 std::for_each( theSecondaryList.begin(),t << 1502 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2099 SelectFromKTV(kt_inside, G4Kineti << 1503 SelectFromKTV(kt_outside,G4KineticTrack::outside)); 2100 // PrintKTVector(kt_inside, std::string( << 1504 // PrintKTVector(kt_outside, std::string("DoTimeStep - found outside")); 2101 //----- << 1505 >> 1506 G4KineticTrackVector * kt_inside = new G4KineticTrackVector; >> 1507 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), >> 1508 SelectFromKTV(kt_inside, G4KineticTrack::inside)); >> 1509 // PrintKTVector(kt_inside, std::string("DoTimeStep - found inside")); >> 1510 //----- 2102 G4KineticTrackVector dummy; // needed f 1511 G4KineticTrackVector dummy; // needed for re-usability 2103 #ifdef debug_BIC_DoTimeStep << 1512 #ifdef debug_G4BinaryCascade 2104 G4cout << "NOW WE ARE ENTERING THE TRANSP 1513 G4cout << "NOW WE ARE ENTERING THE TRANSPORT"<<G4endl; 2105 #endif << 1514 #endif 2106 << 2107 // =================== Here we move the p << 2108 << 2109 thePropagator->Transport(theSecondaryList << 2110 1515 2111 // =================== Here we move the p << 1516 // =================== Here we move the particles =================== 2112 1517 2113 //------ << 1518 thePropagator->Transport(theSecondaryList, dummy, theTimeStep); >> 1519 >> 1520 // =================== Here we move the particles =================== 2114 1521 2115 theMomentumTransfer += thePropagator->Get << 1522 //------ 2116 #ifdef debug_BIC_DoTimeStep << 1523 #ifdef debug_G4BinaryCascade 2117 G4cout << "DoTimeStep : theMomentumTransf << 1524 PrintKTVector(&theSecondaryList, std::string("DoTimeStep - secondairies")); 2118 PrintKTVector(&theSecondaryList, std::str << 1525 debug.push_back("======> DoTimeStep 1.1.1"); debug.dump(); 2119 #endif 1526 #endif 2120 1527 2121 //_DebugEpConservation(" after stepping") << 1528 theMomentumTransfer += thePropagator->GetMomentumTransfer(); 2122 << 1529 #ifdef debug_G4BinaryCascade 2123 // Partclies which went INTO nucleus << 1530 G4cout << "DoTimeStep : theMomentumTransfer = " << theMomentumTransfer << G4endl; 2124 << 2125 G4KineticTrackVector * kt_gone_in = new G << 2126 std::for_each( kt_outside->begin(),kt_out << 2127 SelectFromKTV(kt_gone_in,G4Kineti << 2128 // PrintKTVector(kt_gone_in, std::string << 2129 << 2130 << 2131 // Partclies which went OUT OF nucleus << 2132 G4KineticTrackVector * kt_gone_out = new << 2133 std::for_each( kt_inside->begin(),kt_insi << 2134 SelectFromKTV(kt_gone_out, G4Kine << 2135 << 2136 // PrintKTVector(kt_gone_out, std::strin << 2137 << 2138 G4KineticTrackVector *fail=CorrectBarions << 2139 << 2140 if ( fail ) << 2141 { << 2142 // some particle(s) supposed to enter << 2143 kt_gone_in->clear(); << 2144 std::for_each( kt_outside->begin(),kt << 2145 SelectFromKTV(kt_gone_in,G4Ki << 2146 << 2147 kt_gone_out->clear(); << 2148 std::for_each( kt_inside->begin(),kt_ << 2149 SelectFromKTV(kt_gone_out, G4 << 2150 << 2151 #ifdef debug_BIC_DoTimeStep << 2152 PrintKTVector(fail,std::string(" Fail << 2153 PrintKTVector(kt_gone_in, std::string << 2154 PrintKTVector(kt_gone_out, std::strin << 2155 #endif 1531 #endif 2156 delete fail; << 1532 2157 } << 1533 // Partclies which went INTO nucleus 2158 << 2159 // Add tracks missing nucleus and tracks << 2160 std::for_each( kt_outside->begin(),kt_out << 2161 SelectFromKTV(kt_gone_out,G4Kinet << 2162 //PrintKTVector(kt_gone_out, std::string( << 2163 std::for_each( kt_outside->begin(),kt_out << 2164 SelectFromKTV(kt_gone_out,G4Kinet << 2165 1534 2166 #ifdef debug_BIC_DoTimeStep << 1535 G4KineticTrackVector * kt_gone_in = new G4KineticTrackVector; 2167 PrintKTVector(kt_gone_out, std::string("a << 1536 std::for_each( kt_outside->begin(),kt_outside->end(), 2168 #endif << 1537 SelectFromKTV(kt_gone_in,G4KineticTrack::inside)); >> 1538 // PrintKTVector(kt_gone_in, std::string("DoTimeStep - gone in")); >> 1539 >> 1540 //PrintKTVector(&theSecondaryList,std::string("aft trsprt.....")); >> 1541 >> 1542 // Partclies which went OUT OF nucleus >> 1543 G4KineticTrackVector * kt_gone_out = new G4KineticTrackVector; >> 1544 std::for_each( kt_inside->begin(),kt_inside->end(), >> 1545 SelectFromKTV(kt_gone_out, G4KineticTrack::gone_out)); >> 1546 >> 1547 // PrintKTVector(kt_gone_out, std::string("DoTimeStep - gone out")); >> 1548 >> 1549 CorrectBarionsOnBoundary(kt_gone_in,kt_gone_out); >> 1550 >> 1551 // Add track missing nucleus to addFinals >> 1552 std::for_each( kt_outside->begin(),kt_outside->end(), >> 1553 SelectFromKTV(kt_gone_out,G4KineticTrack::miss_nucleus)); >> 1554 // tracks going straight through in a single step.... >> 1555 std::for_each( kt_outside->begin(),kt_outside->end(), >> 1556 SelectFromKTV(kt_gone_out,G4KineticTrack::gone_out)); >> 1557 >> 1558 #ifdef debug_G4BinaryCascade >> 1559 PrintKTVector(kt_gone_out, std::string("append to final state..")); >> 1560 G4cout << "Here we are 1"<<G4endl; >> 1561 #endif 2169 1562 2170 theFinalState.insert(theFinalState.end(), << 1563 theFinalState.insert(theFinalState.end(), 2171 kt_gone_out->begin(),kt_gone_out- << 1564 kt_gone_out->begin(),kt_gone_out->end()); 2172 1565 2173 // Partclies which could not leave nucleu << 1566 //G4cout << "Here we are 2"<<G4endl; 2174 G4KineticTrackVector * kt_captured = new << 1567 // Partclies which could not leave nucleus, captured... >> 1568 G4KineticTrackVector * kt_captured = new G4KineticTrackVector; 2175 std::for_each( theSecondaryList.begin(),t 1569 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2176 SelectFromKTV(kt_captured, G4Kine << 1570 SelectFromKTV(kt_captured, G4KineticTrack::captured)); 2177 << 2178 // Check no track is part in next collisi << 2179 // this step was to far, and collisions << 2180 << 2181 if ( theCollisionMgr->Entries()> 0 ) << 2182 { << 2183 if (kt_gone_out->size() ) << 2184 { << 2185 G4KineticTrack * nextPrimary = th << 2186 iter = std::find(kt_gone_out->beg << 2187 if ( iter != kt_gone_out->cend() << 2188 { << 2189 success=false; << 2190 #ifdef debug_BIC_DoTimeStep << 2191 G4cout << " DoTimeStep - WARN << 2192 #endif << 2193 } << 2194 } << 2195 if ( kt_captured->size() ) << 2196 { << 2197 G4KineticTrack * nextPrimary = th << 2198 iter = std::find(kt_captured->beg << 2199 if ( iter != kt_captured->cend() << 2200 { << 2201 success=false; << 2202 #ifdef debug_BIC_DoTimeStep << 2203 G4cout << " DoTimeStep - WARN << 2204 #endif << 2205 } << 2206 } << 2207 << 2208 } << 2209 // PrintKTVector(kt_gone_out," kt_gone_ou << 2210 UpdateTracksAndCollisions(kt_gone_out,0 , << 2211 << 2212 << 2213 if ( kt_captured->size() ) << 2214 { << 2215 theCapturedList.insert(theCapturedLis << 2216 kt_captured->begin(),kt_captu << 2217 //should be std::for_each(kt_cap << 2218 // std::mem_fun(&G4Kinet << 2219 // but VC 6 requires: << 2220 for(auto i_captured=kt_captured->cbeg << 2221 { << 2222 (*i_captured)->Hit(); << 2223 } << 2224 // PrintKTVector(kt_captured," kt << 2225 UpdateTracksAndCollisions(kt_captured << 2226 } << 2227 1571 >> 1572 //G4cout << "Here we are 3"<<G4endl; >> 1573 // Check no track is part in next collision, ie. >> 1574 // this step was to far, and collisions should not occur any more >> 1575 >> 1576 if ( theCollisionMgr->Entries()> 0 ) >> 1577 { >> 1578 if (kt_gone_out->size() ) >> 1579 { >> 1580 G4KineticTrack * nextPrimary = theCollisionMgr->GetNextCollision()->GetPrimary(); >> 1581 iter = std::find(kt_gone_out->begin(),kt_gone_out->end(),nextPrimary); >> 1582 if ( iter != kt_gone_out->end() ) >> 1583 { >> 1584 success=false; 2228 #ifdef debug_G4BinaryCascade 1585 #ifdef debug_G4BinaryCascade 2229 delete kt_inside; << 1586 G4cout << " DoTimeStep - WARNING: deleting current collision!" << G4endl; 2230 kt_inside = new G4KineticTrackVector; << 1587 #endif 2231 std::for_each( theSecondaryList.begin(),t << 1588 } 2232 SelectFromKTV(kt_inside, G4Kineti << 1589 } 2233 if ( currentZ != (GetTotalCharge(theTarge << 1590 if ( kt_captured->size() ) 2234 + GetTotalCharge(theCapturedList) << 1591 { 2235 + GetTotalCharge(*kt_inside)) ) << 1592 G4KineticTrack * nextPrimary = theCollisionMgr->GetNextCollision()->GetPrimary(); 2236 { << 1593 iter = std::find(kt_captured->begin(),kt_captured->end(),nextPrimary); 2237 G4cout << " error-DoTimeStep aft, A, << 1594 if ( iter != kt_captured->end() ) 2238 << " sum(tgt,capt,active) " << 1595 { 2239 << GetTotalCharge(theTargetLi << 1596 success=false; 2240 << " targets: " << GetTotalC << 1597 #ifdef debug_G4BinaryCascade 2241 << " captured: " << GetTotalC << 1598 G4cout << " DoTimeStep - WARNING: deleting current collision!" << G4endl; 2242 << " active: " << GetTotalC << 2243 << G4endl; << 2244 } << 2245 #endif 1599 #endif >> 1600 } >> 1601 } 2246 1602 2247 delete kt_inside; << 1603 } 2248 delete kt_outside; << 1604 //G4cout << "Here we are 4 "<<kt_gone_out->size()<<G4endl; 2249 delete kt_captured; << 1605 UpdateTracksAndCollisions(kt_gone_out,0 ,0); 2250 delete kt_gone_in; << 1606 //G4cout << "Here we are 5"<<G4endl; 2251 delete kt_gone_out; << 1607 >> 1608 >> 1609 if ( kt_captured->size() ) >> 1610 { >> 1611 theCapturedList.insert(theCapturedList.end(), >> 1612 kt_captured->begin(),kt_captured->end()); >> 1613 //should be std::for_each(kt_captured->begin(),kt_captured->end(), >> 1614 // std::mem_fun(&G4KineticTrack::Hit)); >> 1615 // but VC 6 requires: >> 1616 std::vector<G4KineticTrack *>::iterator i_captured; >> 1617 for(i_captured=kt_captured->begin();i_captured!=kt_captured->end();i_captured++) >> 1618 { >> 1619 (*i_captured)->Hit(); >> 1620 } >> 1621 UpdateTracksAndCollisions(kt_captured, NULL, NULL); >> 1622 } >> 1623 >> 1624 #ifdef debug_G4BinaryCascade >> 1625 delete kt_inside; >> 1626 kt_inside = new G4KineticTrackVector; >> 1627 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), >> 1628 SelectFromKTV(kt_inside, G4KineticTrack::inside)); >> 1629 if ( currentZ != (GetTotalCharge(theTargetList) >> 1630 + GetTotalCharge(theCapturedList) >> 1631 + GetTotalCharge(*kt_inside)) ) >> 1632 { >> 1633 G4cout << " error-DoTimeStep, aft, A, Z, sec-Z,A,m, " >> 1634 << currentA << " " >> 1635 << currentZ << " " >> 1636 << GetTotalCharge(theTargetList) >> 1637 + GetTotalCharge(theCapturedList) >> 1638 + GetTotalCharge(*kt_inside) << " " >> 1639 << secondaryCharge << " " >> 1640 << secondaryBarions << " " >> 1641 << secondaryMass << " " >> 1642 << GetTotalCharge(theTargetList) << " " >> 1643 << GetTotalCharge(theCapturedList) << " " >> 1644 << GetTotalCharge(*kt_inside) << " " >> 1645 << G4endl; >> 1646 } >> 1647 #endif >> 1648 >> 1649 delete kt_inside; >> 1650 delete kt_outside; >> 1651 delete kt_captured; >> 1652 delete kt_gone_in; >> 1653 delete kt_gone_out; 2252 1654 2253 // G4cerr <<"G4BinaryCascade::DoTimeStep << 1655 // G4cerr <<"G4BinaryCascade::DoTimeStep: exit "<<G4endl; 2254 theCurrentTime += theTimeStep; << 1656 theCurrentTime += theTimeStep; 2255 1657 2256 //debug.push_back("======> DoTimeStep 2") << 1658 //debug.push_back("======> DoTimeStep 2"); debug.dump(); 2257 return success; << 1659 return success; 2258 1660 2259 } 1661 } 2260 1662 2261 //------------------------------------------- 1663 //---------------------------------------------------------------------------- 2262 G4KineticTrackVector* G4BinaryCascade::Correc 1664 G4KineticTrackVector* G4BinaryCascade::CorrectBarionsOnBoundary( 2263 G4KineticTrackVector *in, << 1665 G4KineticTrackVector *in, 2264 G4KineticTrackVector *out) << 1666 G4KineticTrackVector *out) 2265 //------------------------------------------- 1667 //---------------------------------------------------------------------------- 2266 { 1668 { 2267 G4KineticTrackVector * kt_fail(nullptr); << 1669 G4KineticTrackVector * kt_fail=NULL; 2268 std::vector<G4KineticTrack *>::const_iter << 1670 std::vector<G4KineticTrack *>::iterator iter; 2269 // G4cout << "CorrectBarionsOnBoundary,c << 1671 // G4cout << "CorrectBarionsOnBoundary,currentZ,currentA," 2270 // << currentZ << " "<< currentA << 1672 // << currentZ << " "<< currentA << G4endl; 2271 if (in->size()) << 1673 if (in->size()) 2272 { << 1674 { 2273 G4int secondaries_in(0); << 1675 G4int secondaries_in(0); 2274 G4int secondaryBarions_in(0); << 1676 G4int secondaryBarions_in(0); 2275 G4int secondaryCharge_in(0); << 1677 G4int secondaryCharge_in(0); 2276 G4double secondaryMass_in(0); << 1678 G4double secondaryMass_in(0); 2277 << 1679 2278 for ( iter =in->cbegin(); iter != in- << 1680 for ( iter =in->begin(); iter != in->end(); ++iter) 2279 { << 1681 { 2280 ++secondaries_in; << 1682 ++secondaries_in; 2281 secondaryCharge_in += G4lrint((*i << 1683 secondaryCharge_in += G4lrint((*iter)->GetDefinition()->GetPDGCharge()); 2282 if ((*iter)->GetDefinition()->Get << 1684 if ((*iter)->GetDefinition()->GetBaryonNumber()==1 ) 2283 { << 1685 { 2284 secondaryBarions_in += (*iter << 1686 ++secondaryBarions_in; 2285 if((*iter)->GetDefinition() = << 1687 if((*iter)->GetDefinition() == G4Neutron::Neutron() || 2286 (*iter)->GetDefinitio << 1688 (*iter)->GetDefinition() == G4Proton::Proton() ) 2287 { << 1689 { 2288 secondaryMass_in += (*ite << 1690 secondaryMass_in += (*iter)->GetDefinition()->GetPDGMass(); 2289 } else { << 1691 } else { 2290 secondaryMass_in += G4Pro << 1692 secondaryMass_in += G4Proton::Proton()->GetPDGMass(); 2291 } << 1693 } 2292 } << 1694 } 2293 } << 1695 } 2294 G4double mass_initial= GetIonMass(cur << 1696 G4double mass_initial= GetIonMass(currentZ,currentA); 2295 << 1697 2296 currentZ += secondaryCharge_in; << 1698 currentZ += secondaryCharge_in; 2297 currentA += secondaryBarions_in; << 1699 currentA += secondaryBarions_in; 2298 << 1700 2299 // G4cout << "CorrectBarionsOnBounda << 1701 // G4cout << "CorrectBarionsOnBoundary,secondaryCharge_in, secondaryBarions_in" 2300 // << secondaryCharge_in < << 1702 // << secondaryCharge_in << " "<< secondaryBarions_in << G4endl; 2301 << 1703 2302 G4double mass_final= GetIonMass(curre << 1704 G4double mass_final= GetIonMass(currentZ,currentA); 2303 << 1705 2304 G4double correction= secondaryMass_in << 1706 G4double correction= secondaryMass_in + mass_initial - mass_final; 2305 if (secondaries_in>1) << 1707 if (secondaries_in>1) 2306 {correction /= secondaries_in;} << 1708 {correction /= secondaries_in;} 2307 << 2308 #ifdef debug_BIC_CorrectBarionsOnBoundary << 2309 G4cout << "CorrectBarionsOnBoundary,c << 2310 << "secondaryCharge_in,second << 2311 << "energy correction,m_secon << 2312 << currentZ << " "<< currentA << 2313 << secondaryCharge_in<<" "<<s << 2314 << correction << " " << 2315 << secondaryMass_in << " " << 2316 << mass_initial << " " << 2317 << mass_final << " " << 2318 << G4endl; << 2319 PrintKTVector(in,std::string("in be4 << 2320 #endif << 2321 for ( iter = in->cbegin(); iter != in << 2322 { << 2323 if ((*iter)->GetTrackingMomentum( << 2324 { << 2325 (*iter)->UpdateTrackingMoment << 2326 } else { << 2327 //particle cannot go in, put << 2328 G4RKPropagation * RKprop=(G4R << 2329 (*iter)->SetState(G4KineticTr << 2330 // Undo correction for Colomb << 2331 G4double barrier=RKprop->GetB << 2332 (*iter)->UpdateTrackingMoment << 2333 if ( ! kt_fail ) kt_fail=new << 2334 kt_fail->push_back(*iter); << 2335 currentZ -= G4lrint((*iter)-> << 2336 currentA -= (*iter)->GetDefin << 2337 << 2338 } << 2339 << 2340 } << 2341 #ifdef debug_BIC_CorrectBarionsOnBoundary << 2342 G4cout << " CorrectBarionsOnBoundary, << 2343 << currentZ << " " << current << 2344 << secondaryCharge_in << " " << 2345 << secondaryMass_in << " " << 2346 << G4endl; << 2347 PrintKTVector(in,std::string("in AFT << 2348 #endif << 2349 << 2350 } << 2351 //--------------------------------------- << 2352 if (out->size()) << 2353 { << 2354 G4int secondaries_out(0); << 2355 G4int secondaryBarions_out(0); << 2356 G4int secondaryCharge_out(0); << 2357 G4double secondaryMass_out(0); << 2358 1709 2359 for ( iter = out->cbegin(); iter != o << 1710 #ifdef debug_G4BinaryCascade 2360 { << 1711 G4cout << "CorrectBarionsOnBoundary,currentZ,currentA," 2361 ++secondaries_out; << 1712 << "secondaryCharge_in,secondaryBarions_in," 2362 secondaryCharge_out += G4lrint((* << 1713 << "energy correction,m_secondry,m_nucl_init,m_nucl_final " 2363 if ((*iter)->GetDefinition()->Get << 1714 << currentZ << " "<< currentA <<" " 2364 { << 1715 << secondaryCharge_in<<" "<<secondaryBarions_in<<" " 2365 secondaryBarions_out += (*ite << 1716 << correction << " " 2366 if((*iter)->GetDefinition() = << 1717 << secondaryMass_in << " " 2367 (*iter)->GetDefinitio << 1718 << mass_initial << " " 2368 { << 1719 << mass_final << " " 2369 secondaryMass_out += (*it << 1720 << G4endl; 2370 } else { << 1721 PrintKTVector(in,std::string("in be4 correction")); 2371 secondaryMass_out += G4Ne << 1722 #endif 2372 } << 1723 2373 } << 1724 for ( iter = in->begin(); iter != in->end(); ++iter) 2374 } << 1725 { 2375 << 1726 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() + correction); 2376 G4double mass_initial= GetIonMass(cu << 1727 } 2377 currentA -=secondaryBarions_out; << 1728 #ifdef debug_G4BinaryCascade 2378 currentZ -=secondaryCharge_out; << 1729 G4cout << " CorrectBarionsOnBoundary, aft, A, Z, sec-Z,A,m,m_in_nucleus " 2379 << 1730 << currentA << " " << currentZ << " " 2380 // G4cout << "CorrectBarionsOnBounda << 1731 << secondaryCharge_in << " " << secondaryBarions_in << " " 2381 // << secondaryCharge_out << 1732 << secondaryMass_in << " " 2382 << 1733 << G4endl; 2383 // a delta min << 1734 PrintKTVector(in,std::string("in AFT correction")); 2384 // if (currentA < 0 || currentZ < << 1735 #endif 2385 if (currentA < 0 ) << 1736 2386 { << 1737 } 2387 G4cerr << "G4BinaryCascade - seco << 1738 //---------------------------------------------- 2388 secondaryBarions_out << " << 1739 if (out->size()) 2389 PrintKTVector(&theTargetList,"Cor << 1740 { 2390 PrintKTVector(&theCapturedList,"C << 1741 G4int secondaries_out(0); 2391 PrintKTVector(&theSecondaryList," << 1742 G4int secondaryBarions_out(0); 2392 G4cerr << "G4BinaryCascade - curr << 1743 G4int secondaryCharge_out(0); 2393 throw G4HadronicException(__FILE_ << 1744 G4double secondaryMass_out(0); 2394 } << 1745 2395 G4double mass_final=GetIonMass(curren << 1746 for ( iter =out->begin(); iter != out->end(); ++iter) 2396 G4double correction= mass_initial - m << 1747 { 2397 // G4cout << "G4BinaryCascade::Correc << 1748 ++secondaries_out; 2398 << 1749 secondaryCharge_out += G4lrint((*iter)->GetDefinition()->GetPDGCharge()); 2399 if (secondaries_out>1) correction /= << 1750 if ((*iter)->GetDefinition()->GetBaryonNumber()==1 ) 2400 #ifdef debug_BIC_CorrectBarionsOnBoundary << 1751 { 2401 G4cout << "DoTimeStep,(current Z,A)," << 1752 ++secondaryBarions_out; 2402 << "(secondaries out,Charge,B << 1753 if((*iter)->GetDefinition() == G4Neutron::Neutron() || 2403 <<"* energy correction,(m_sec << 1754 (*iter)->GetDefinition() == G4Proton::Proton() ) 2404 << "("<< currentZ << ","<< cu << 1755 { 2405 << secondaries_out << "," << 1756 secondaryMass_out += (*iter)->GetDefinition()->GetPDGMass(); 2406 << secondaryCharge_out<<","<< << 1757 } else { 2407 << correction << " (" << 1758 secondaryMass_out += G4Neutron::Neutron()->GetPDGMass(); 2408 << secondaryMass_out << ", " << 1759 } 2409 << mass_initial << ", " << 1760 } 2410 << mass_final << ")" << 1761 } 2411 << G4endl; << 1762 2412 PrintKTVector(out,std::string("out be << 1763 G4double mass_initial= GetIonMass(currentZ,currentA); 2413 #endif << 1764 currentA -=secondaryBarions_out; >> 1765 currentZ -=secondaryCharge_out; >> 1766 >> 1767 // G4cout << "CorrectBarionsOnBoundary,secondaryCharge_out, secondaryBarions_out" >> 1768 // << secondaryCharge_out << " "<< secondaryBarions_out << G4endl; >> 1769 >> 1770 // a delta minus will do currentZ < 0 in light nuclei >> 1771 // if (currentA < 0 || currentZ < 0 ) >> 1772 if (currentA < 0 ) >> 1773 { >> 1774 G4cerr << "G4BinaryCascade - secondaryBarions_out,secondaryCharge_out " << >> 1775 secondaryBarions_out << " " << secondaryCharge_out << G4endl; >> 1776 PrintKTVector(&theTargetList,"CorrectBarionsOnBoundary Target"); >> 1777 PrintKTVector(&theCapturedList,"CorrectBarionsOnBoundary Captured"); >> 1778 PrintKTVector(&theSecondaryList,"CorrectBarionsOnBoundary Secondaries"); >> 1779 G4cerr << "G4BinaryCascade - currentA, currentZ " << currentA << " " << currentZ << G4endl; >> 1780 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::CorrectBarionsOnBoundary() - fatal error"); >> 1781 } >> 1782 G4double mass_final=GetIonMass(currentZ,currentA); >> 1783 G4double correction= mass_initial - mass_final - secondaryMass_out; 2414 1784 2415 for ( iter = out->cbegin(); iter != o << 1785 if (secondaries_out>1) correction /= secondaries_out; 2416 { << 1786 #ifdef debug_G4BinaryCascade 2417 if ((*iter)->GetTrackingMomentum( << 1787 G4cout << "DoTimeStep,currentZ,currentA," 2418 { << 1788 << "secondaries_out," 2419 (*iter)->UpdateTrackingMoment << 1789 <<"secondaryCharge_out,secondaryBarions_out," 2420 } else << 1790 <<"energy correction,m_secondry,m_nucl_init,m_nucl_final " 2421 { << 1791 << " "<< currentZ << " "<< currentA <<" " 2422 // particle cannot go out due << 1792 << secondaries_out << " " 2423 // capture protons and neutr << 1793 << secondaryCharge_out<<" "<<secondaryBarions_out<<" " 2424 if(((*iter)->GetDefinition() << 1794 << correction << " " 2425 ((*iter)->GetDefiniti << 1795 << secondaryMass_out << " " 2426 { << 1796 << mass_initial << " " 2427 (*iter)->SetState(G4Kinet << 1797 << mass_final << " " 2428 // Undo correction for Co << 1798 << G4endl; 2429 G4double barrier=((G4RKPr << 1799 PrintKTVector(out,std::string("out be4 correction")); 2430 (*iter)->UpdateTrackingMo << 1800 #endif 2431 if ( kt_fail == 0 ) kt_fa << 1801 2432 kt_fail->push_back(*iter) << 1802 for ( iter = out->begin(); iter != out->end(); ++iter) 2433 currentZ += G4lrint((*ite << 1803 { 2434 currentA += (*iter)->GetD << 1804 if ((*iter)->GetTrackingMomentum().e()+correction > (*iter)->GetActualMass()) 2435 } << 1805 { 2436 #ifdef debug_BIC_CorrectBarionsOnBoundary << 1806 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() + correction); 2437 else << 1807 } else 2438 { << 1808 { 2439 G4cout << "Not correcting << 1809 // particle cannot go out due to change of nuclear potential! 2440 << (*iter)->GetDe << 1810 // @@GF@@ ignore for the moment. 2441 << (*iter)->GetDe << 1811 #ifdef debug_G4BinaryCascade 2442 PrintKTVector(out,std::st << 1812 G4cout << "Not correcting outgoing " << *iter << G4endl; 2443 } << 2444 #endif << 2445 } << 2446 } << 2447 << 2448 #ifdef debug_BIC_CorrectBarionsOnBoundary << 2449 PrintKTVector(out,std::string("out AF << 2450 G4cout << " DoTimeStep, nucl-update, << 2451 << currentA << " "<< currentZ << 2452 << secondaryCharge_out << " " << 2453 secondaryMass_out << " " << 2454 << massInNucleus << " " << 2455 << GetIonMass(currentZ,curren << 2456 << " " << massInNucleus - Get << 2457 << G4endl; << 2458 #endif 1813 #endif 2459 } << 1814 } >> 1815 } 2460 1816 2461 return kt_fail; << 1817 #ifdef debug_G4BinaryCascade >> 1818 PrintKTVector(out,std::string("out AFTER correction")); >> 1819 G4cout << " DoTimeStep, nucl-update, A, Z, sec-Z,A,m,m_in_nucleus, table-mass, delta " >> 1820 << currentA << " "<< currentZ << " " >> 1821 << secondaryCharge_out << " "<< secondaryBarions_out << " "<< >> 1822 secondaryMass_out << " " >> 1823 << massInNucleus << " " >> 1824 << G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA) >> 1825 << " " << massInNucleus -G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(currentZ,currentA) >> 1826 << G4endl; >> 1827 #endif >> 1828 } >> 1829 >> 1830 return kt_fail; 2462 } 1831 } 2463 1832 2464 << 1833 2465 //------------------------------------------- 1834 //---------------------------------------------------------------------------- 2466 1835 2467 G4Fragment * G4BinaryCascade::FindFragments() 1836 G4Fragment * G4BinaryCascade::FindFragments() 2468 //------------------------------------------- 1837 //---------------------------------------------------------------------------- 2469 { 1838 { 2470 1839 2471 #ifdef debug_BIC_FindFragments << 1840 G4int a = theTargetList.size()+theCapturedList.size(); 2472 G4cout << "target, captured, secondary: " << 1841 #ifdef debug_G4BinaryCascade 2473 << theTargetList.size() << " " << 1842 G4cout << "target, captured, secondary: " 2474 << theCapturedList.size()<< " " << 1843 << theTargetList.size() << " " 2475 << theSecondaryList.size() << 1844 << theCapturedList.size()<< " " 2476 << G4endl; << 1845 << theSecondaryList.size() 2477 #endif << 1846 << G4endl; 2478 << 1847 #endif 2479 G4int a = G4int(theTargetList.size()+theC << 1848 G4int zTarget = 0; 2480 G4int zTarget = 0; << 1849 G4KineticTrackVector::iterator i; 2481 for(auto i = theTargetList.cbegin(); i != << 1850 for(i = theTargetList.begin(); i != theTargetList.end(); ++i) 2482 { << 1851 { 2483 if(G4lrint((*i)->GetDefinition()->Get << 1852 if((*i)->GetDefinition()->GetPDGCharge() == eplus) 2484 { << 1853 { 2485 zTarget++; << 1854 zTarget++; 2486 } << 1855 } 2487 } << 1856 } 2488 1857 2489 G4int zCaptured = 0; << 1858 G4int zCaptured = 0; 2490 G4LorentzVector CapturedMomentum(0.,0.,0. << 1859 G4LorentzVector CapturedMomentum=0; 2491 for(auto i = theCapturedList.cbegin(); i << 1860 for(i = theCapturedList.begin(); i != theCapturedList.end(); ++i) 2492 { << 1861 { 2493 CapturedMomentum += (*i)->Get4Momentu << 1862 CapturedMomentum += (*i)->Get4Momentum(); 2494 if(G4lrint((*i)->GetDefinition()->Get << 1863 if((*i)->GetDefinition()->GetPDGCharge() == eplus) 2495 { << 1864 { 2496 zCaptured++; << 1865 zCaptured++; 2497 } << 1866 } 2498 } << 1867 } 2499 1868 2500 G4int z = zTarget+zCaptured; << 1869 G4int z = zTarget+zCaptured; 2501 1870 2502 #ifdef debug_G4BinaryCascade 1871 #ifdef debug_G4BinaryCascade 2503 if ( z != (GetTotalCharge(theTargetList) << 1872 if ( z != (GetTotalCharge(theTargetList) + GetTotalCharge(theCapturedList)) ) 2504 { << 1873 { 2505 G4cout << " FindFragment Counting err << 1874 G4cout << " FindFragment Counting error z a " << z << " " <<a << " " 2506 << GetTotalCharge(theTargetLi << 1875 << GetTotalCharge(theTargetList) << " " << GetTotalCharge(theCapturedList)<< 2507 G4endl; << 1876 G4endl; 2508 PrintKTVector(&theTargetList, std::st << 1877 PrintKTVector(&theTargetList, std::string("theTargetList")); 2509 PrintKTVector(&theCapturedList, std:: << 1878 PrintKTVector(&theCapturedList, std::string("theCapturedList")); 2510 } << 1879 } 2511 #endif << 1880 #endif 2512 //debug << 1881 //debug 2513 /* << 1882 /* 2514 * G4cout << " Fragment mass table / re << 1883 * G4cout << " Fragment mass table / real " 2515 * << GetIonMass(z, a) << 1884 * << G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(z, a) 2516 * << " / " << GetFinal4Momentum().mag( << 1885 * << " / " << GetFinal4Momentum().mag() 2517 * << " difference " << 1886 * << " difference " 2518 * << GetFinal4Momentum().mag() - GetI << 1887 * << GetFinal4Momentum().mag() - G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(z, a) 2519 * << G4endl; << 1888 * << G4endl; 2520 */ << 1889 */ 2521 // << 1890 // 2522 // if(fBCDEBUG) G4cerr << "Fragment A, Z << 1891 // if(getenv("BCDEBUG") ) G4cerr << "Fragment A, Z "<< a <<" "<< z<<G4endl; 2523 if ( z < 1 ) return 0; << 1892 if ( z < 1 ) return 0; 2524 << 1893 G4Fragment * fragment = new G4Fragment(a,z,GetFinalNucleusMomentum()); 2525 G4int holes = G4int(the3DNucleus->GetMass << 1894 2526 G4int excitons = (G4int)theCapturedList.s << 1895 G4int holes = the3DNucleus->GetMassNumber() - theTargetList.size(); 2527 #ifdef debug_BIC_FindFragments << 1896 fragment->SetNumberOfHoles(holes); 2528 G4cout << "Fragment: a= " << a << " z= " << 1897 2529 << " Charged= " << zCaptured << " << 1898 G4int excitons = theCapturedList.size(); 2530 << " excitE= " <<GetExcitationEne << 1899 //GF fragment->SetNumberOfParticles(excitons-holes); 2531 << " Final4Momentum= " << GetFina << 1900 fragment->SetNumberOfParticles(excitons); 2532 << G4endl; << 1901 fragment->SetNumberOfCharged(zCaptured); 2533 #endif << 1902 G4ParticleDefinition * aIonDefinition = 2534 << 1903 G4ParticleTable::GetParticleTable()->FindIon(a,z,0,z); 2535 G4Fragment * fragment = new G4Fragment(a, << 1904 fragment->SetParticleDefinition(aIonDefinition); 2536 fragment->SetNumberOfHoles(holes); << 1905 #ifdef debug_G4BinaryCascade 2537 << 1906 G4cout << "Fragment: a= " << a 2538 //GF fragment->SetNumberOfParticles(exci << 1907 << " z= " << z 2539 fragment->SetNumberOfParticles(excitons); << 1908 << " particles= " << excitons 2540 fragment->SetNumberOfCharged(zCaptured); << 1909 << " Charged= " << zCaptured 2541 fragment->SetCreatorModelID(theBIC_ID); << 1910 << " holes= " << holes >> 1911 << " excitE= " <<GetExcitationEnergy() >> 1912 << " Final4Momentum= " << GetFinalNucleusMomentum() >> 1913 << " capturMomentum= " << CapturedMomentum >> 1914 << G4endl; >> 1915 #endif 2542 1916 2543 return fragment; << 1917 return fragment; 2544 } 1918 } 2545 1919 2546 //------------------------------------------- 1920 //---------------------------------------------------------------------------- 2547 1921 2548 G4LorentzVector G4BinaryCascade::GetFinal4Mom 1922 G4LorentzVector G4BinaryCascade::GetFinal4Momentum() 2549 //------------------------------------------- 1923 //---------------------------------------------------------------------------- 2550 // Return momentum of reminder nulceus; << 2551 // ie. difference of (initial state(primarie << 2552 { 1924 { 2553 G4LorentzVector final4Momentum = theIniti << 1925 // the initial 3-momentum will differ from 0, if nucleus created by string model. 2554 G4LorentzVector finals(0,0,0,0); << 1926 G4LorentzVector final4Momentum = theInitial4Mom; 2555 for(auto i = theFinalState.cbegin(); i != << 1927 G4KineticTrackVector::iterator i; 2556 { << 1928 for(i = theProjectileList.begin() ; i != theProjectileList.end(); ++i) 2557 final4Momentum -= (*i)->Get4Momentum( << 1929 { 2558 finals += (*i)->Get4Momentum(); << 1930 final4Momentum += (*i)->GetTrackingMomentum(); 2559 } << 1931 //G4cerr << "Initial state: "<<(*i)->Get4Momentum()<<G4endl; 2560 << 1932 } 2561 if(final4Momentum.e()> 0 && (final4Moment << 1933 2562 { << 1934 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 2563 #ifdef debug_BIC_Final4Momentum << 1935 { 2564 G4cerr << G4endl; << 1936 final4Momentum -= (*i)->Get4Momentum(); 2565 G4cerr << "G4BinaryCascade::GetFinal4 << 1937 // G4cerr <<"Final state: "<<(*i)->Get4Momentum()<<G4endl; 2566 G4KineticTrackVector::iterator i; << 1938 } 2567 G4cerr <<"Total initial 4-momentum " << 1939 2568 G4cerr <<" GetFinal4Momentum: Initial << 1940 if((final4Momentum.vect()/final4Momentum.e()).mag()>1.0 && currentA > 0) 2569 for(i = theFinalState.begin(); i != t << 1941 { 2570 { << 1942 # ifdef debug_G4BinaryCascade 2571 G4cerr <<" Final state: "<<(*i)-> << 1943 G4cerr << G4endl; 2572 } << 1944 G4cerr << "G4BinaryCascade::GetFinal4Momentum - Fatal"<<G4endl; 2573 G4cerr << "Sum( 4-mom ) finals " << f << 1945 G4KineticTrackVector::iterator i; 2574 G4cerr<< " Final4Momentum = "<<final4 << 1946 G4cerr <<" Initial nucleus "<<theInitial4Mom<<G4endl; 2575 G4cerr <<" current A, Z = "<< current << 1947 for(i = theProjectileList.begin() ; i != theProjectileList.end(); ++i) 2576 G4cerr << G4endl; << 1948 { 2577 #endif << 1949 G4cerr << " Initial state (get4M), (trackingM): " 2578 << 1950 <<(*i)->Get4Momentum()<<", " << (*i)->GetTrackingMomentum() <<"," 2579 final4Momentum=G4LorentzVector(0,0,0, << 1951 <<(*i)->GetDefinition()->GetParticleName()<<G4endl; 2580 } << 1952 } 2581 return final4Momentum; << 1953 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) >> 1954 { >> 1955 G4cerr <<" Final state: "<<(*i)->Get4Momentum()<<(*i)->GetDefinition()->GetParticleName()<<G4endl; >> 1956 } >> 1957 G4cerr<< " Final4Momentum = "<<final4Momentum <<" "<<final4Momentum.m()<<G4endl; >> 1958 G4cerr <<" current A, Z = "<< currentA<<", "<<currentZ<<G4endl; >> 1959 G4cerr << G4endl; >> 1960 # endif >> 1961 >> 1962 final4Momentum=G4LorentzVector(0); >> 1963 } >> 1964 return final4Momentum; 2582 } 1965 } 2583 1966 2584 //------------------------------------------- 1967 //---------------------------------------------------------------------------- 2585 G4LorentzVector G4BinaryCascade::GetFinalNucl 1968 G4LorentzVector G4BinaryCascade::GetFinalNucleusMomentum() 2586 //------------------------------------------- 1969 //---------------------------------------------------------------------------- 2587 { 1970 { 2588 // return momentum of nucleus for use wit << 1971 // return momentum of nucleus for use with precompound model; also keep transformation to 2589 // apply to precompoud products. << 1972 // apply to precompoud products. 2590 1973 2591 G4LorentzVector CapturedMomentum(0,0,0,0) << 1974 G4LorentzVector CapturedMomentum=0; 2592 // G4cout << "GetFinalNucleusMomentum Ca << 1975 G4KineticTrackVector::iterator i; 2593 for(auto i = theCapturedList.cbegin(); i << 1976 // G4cout << "GetFinalNucleusMomentum Captured size: " <<theCapturedList.size() << G4endl; 2594 { << 1977 for(i = theCapturedList.begin(); i != theCapturedList.end(); ++i) 2595 CapturedMomentum += (*i)->Get4Momentu << 1978 { 2596 } << 1979 CapturedMomentum += (*i)->Get4Momentum(); 2597 //G4cout << "GetFinalNucleusMomentum Capt << 1980 } 2598 // G4cerr << "it 9"<<G4endl; << 1981 //G4cout << "GetFinalNucleusMomentum CapturedMomentum= " <<CapturedMomentum << G4endl; 2599 << 1982 // G4cerr << "it 9"<<G4endl; 2600 G4LorentzVector NucleusMomentum = GetFina << 1983 2601 if ( NucleusMomentum.e() > 0 ) << 1984 G4LorentzVector NucleusMomentum = GetFinal4Momentum(); 2602 { << 1985 if ( NucleusMomentum.e() > 0 ) 2603 // G4cout << "GetFinalNucleusMomentum << 1986 { 2604 // boost nucleus to a frame such that << 1987 // G4cout << "GetFinalNucleusMomentum GetFinal4Momentum= " <<NucleusMomentum <<" "<<NucleusMomentum.mag()<<G4endl; 2605 G4ThreeVector boost= (NucleusMomentum << 1988 // boost nucleus to a frame such that the momentum of nucleus == momentum of Captured 2606 if(boost.mag2()>1.0) << 1989 G4ThreeVector boost= (NucleusMomentum.vect() -CapturedMomentum.vect())/NucleusMomentum.e(); 2607 { << 1990 if(boost.mag2()>1.0) 2608 # ifdef debug_BIC_FinalNucleusMomentum << 1991 { 2609 G4cerr << "G4BinaryCascade::GetFi << 1992 # ifdef debug_G4BinaryCascade 2610 G4cerr << "it 0"<<boost <<G4endl; << 1993 G4cerr << "G4BinaryCascade::GetFinalNucleusMomentum - Fatal"<<G4endl; 2611 G4cerr << "it 01"<<NucleusMomentu << 1994 G4cerr << "it 0"<<boost <<G4endl; 2612 G4cout <<" testing boost "<<boost << 1995 G4cerr << "it 01"<<NucleusMomentum<<" "<<CapturedMomentum<<" "<<G4endl; >> 1996 G4cout <<" testing boost "<<boost<<" "<<boost.mag()<<G4endl; 2613 # endif 1997 # endif 2614 boost=G4ThreeVector(0,0,0); << 1998 boost=G4ThreeVector(0); 2615 NucleusMomentum=G4LorentzVector(0 << 1999 NucleusMomentum=G4LorentzVector(0); 2616 } << 2000 } 2617 G4LorentzRotation nucleusBoost( -boo << 2001 G4LorentzRotation nucleusBoost( -boost ); 2618 precompoundLorentzboost.set( boost ); << 2002 precompoundLorentzboost.set( boost ); 2619 #ifdef debug_debug_BIC_FinalNucleusMomentum << 2003 #ifdef debug_G4BinaryCascade 2620 G4cout << "GetFinalNucleusMomentum be << 2004 G4cout << "GetFinalNucleusMomentum be4 boostNucleusMomentum, CapturedMomentum"<<NucleusMomentum<<" "<<CapturedMomentum<<" "<<G4endl; 2621 #endif << 2005 #endif 2622 NucleusMomentum *= nucleusBoost; << 2006 NucleusMomentum *= nucleusBoost; 2623 #ifdef debug_BIC_FinalNucleusMomentum << 2007 #ifdef debug_G4BinaryCascade 2624 G4cout << "GetFinalNucleusMomentum af << 2008 G4cout << "GetFinalNucleusMomentum aft boost GetFinal4Momentum= " <<NucleusMomentum <<G4endl; 2625 #endif << 2009 #endif 2626 } << 2010 } 2627 return NucleusMomentum; << 2011 return NucleusMomentum; 2628 } 2012 } 2629 2013 2630 //------------------------------------------- 2014 //---------------------------------------------------------------------------- 2631 G4ReactionProductVector * G4BinaryCascade::Pr 2015 G4ReactionProductVector * G4BinaryCascade::Propagate1H1( 2632 //----------------------------------- << 2016 //---------------------------------------------------------------------------- 2633 G4KineticTrackVector * secondaries, G << 2017 G4KineticTrackVector * secondaries, G4V3DNucleus * nucleus) 2634 { 2018 { 2635 G4ReactionProductVector * products = new 2019 G4ReactionProductVector * products = new G4ReactionProductVector; 2636 const G4ParticleDefinition * aHTarg = G4P << 2020 G4ParticleDefinition * aHTarg = G4Proton::ProtonDefinition(); 2637 if (nucleus->GetCharge() == 0) aHTarg = G << 2638 G4double mass = aHTarg->GetPDGMass(); 2021 G4double mass = aHTarg->GetPDGMass(); 2639 G4KineticTrackVector * secs = nullptr; << 2022 if (nucleus->GetCharge() == 0) aHTarg = G4Neutron::NeutronDefinition(); >> 2023 mass = aHTarg->GetPDGMass(); >> 2024 G4KineticTrackVector * secs = 0; 2640 G4ThreeVector pos(0,0,0); 2025 G4ThreeVector pos(0,0,0); 2641 G4LorentzVector mom(mass); 2026 G4LorentzVector mom(mass); 2642 G4KineticTrack aTarget(aHTarg, 0., pos, m 2027 G4KineticTrack aTarget(aHTarg, 0., pos, mom); 2643 G4bool done(false); 2028 G4bool done(false); 2644 // data member static G4Scatterer theH << 2029 std::vector<G4KineticTrack *>::iterator iter, jter; 2645 //G4cout << " start 1H1 for " << (*second << 2030 static G4Scatterer theScatterer; 2646 // << " on " << aHTarg->GetParticle << 2031 //G4cout << " start 1H1 for " << (*secondaries).front()->GetDefinition()->GetParticleName() >> 2032 // << " on " << aHTarg->GetParticleName() << G4endl; 2647 G4int tryCount(0); 2033 G4int tryCount(0); 2648 while(!done && tryCount++ <200) << 2034 while(!done && tryCount++ <200) 2649 { 2035 { 2650 if(secs) << 2036 if(secs) 2651 { << 2037 { 2652 std::for_each(secs->begin(), secs << 2038 std::for_each(secs->begin(), secs->end(), DeleteKineticTrack()); 2653 delete secs; << 2039 delete secs; 2654 } << 2040 } 2655 secs = theH1Scatterer->Scatter(*(*sec << 2041 secs = theScatterer.Scatter(*(*secondaries).front(), aTarget); 2656 #ifdef debug_H1_BinaryCascade << 2042 for(size_t ss=0; secs && ss<secs->size(); ss++) 2657 PrintKTVector(secs," From Scatter"); << 2043 { 2658 #endif << 2044 // G4cout << "1H1 " << (*secs)[ss]->GetDefinition()->GetParticleName() 2659 for(std::size_t ss=0; secs && ss<secs << 2045 // << ", shortlived? "<< (*secs)[ss]->GetDefinition()->IsShortLived()<< G4endl; 2660 { << 2046 if((*secs)[ss]->GetDefinition()->IsShortLived()) done = true; 2661 // must have one resonance in fin << 2047 } 2662 if((*secs)[ss]->GetDefinition()-> << 2048 // G4cout << G4endl; 2663 } << 2664 } 2049 } 2665 << 2050 size_t current(0); 2666 ClearAndDestroy(&theFinalState); << 2051 for(current=0; current<secs->size(); current++) 2667 ClearAndDestroy(secondaries); << 2668 delete secondaries; << 2669 << 2670 for(std::size_t current=0; secs && curren << 2671 { 2052 { 2672 if((*secs)[current]->GetDefinition()- << 2053 if((*secs)[current]->GetDefinition()->IsShortLived()) 2673 { << 2054 { 2674 done = true; // must have one re << 2055 G4KineticTrackVector * dec = (*secs)[current]->Decay(); 2675 G4KineticTrackVector * dec = (*se << 2056 for(jter=dec->begin(); jter != dec->end(); jter++) 2676 for(auto jter=dec->cbegin(); jter << 2057 { 2677 { << 2058 //G4cout << "Decay"<<G4endl; 2678 //G4cout << "Decay"<<G4endl; << 2059 secs->push_back(*jter); 2679 secs->push_back(*jter); << 2060 //G4cout << "decay "<<(*jter)->GetDefinition()->GetParticleName()<<G4endl; 2680 //G4cout << "decay "<<(*jter) << 2061 } 2681 } << 2062 delete (*secs)[current]; 2682 delete (*secs)[current]; << 2063 delete dec; 2683 delete dec; << 2064 } 2684 } << 2065 else 2685 else << 2066 { 2686 { << 2067 //G4cout << "FS "<<G4endl; 2687 //G4cout << "FS "<<G4endl; << 2068 //G4cout << "FS "<<(*secs)[current]->GetDefinition()->GetParticleName()<<G4endl; 2688 //G4cout << "FS "<<(*secs)[curren << 2069 theFinalState.push_back((*secs)[current]); 2689 theFinalState.push_back((*secs)[c << 2070 } 2690 } << 2691 } 2071 } 2692 << 2072 //G4cout << "Through loop"<<G4endl; 2693 delete secs; 2073 delete secs; 2694 #ifdef debug_H1_BinaryCascade << 2074 for(iter = theFinalState.begin(); iter != theFinalState.end(); ++iter) 2695 PrintKTVector(&theFinalState," FinalState << 2696 #endif << 2697 for(auto iter = theFinalState.cbegin(); i << 2698 { 2075 { 2699 G4KineticTrack * kt = *iter; << 2076 G4KineticTrack * kt = *iter; 2700 G4ReactionProduct * aNew = new G4Reac << 2077 G4ReactionProduct * aNew = new G4ReactionProduct(kt->GetDefinition()); 2701 aNew->SetMomentum(kt->Get4Momentum(). << 2078 aNew->SetMomentum(kt->Get4Momentum().vect()); 2702 aNew->SetTotalEnergy(kt->Get4Momentum << 2079 aNew->SetTotalEnergy(kt->Get4Momentum().e()); 2703 aNew->SetCreatorModelID(theBIC_ID); << 2080 products->push_back(aNew); 2704 aNew->SetParentResonanceDef(kt->GetPa << 2081 #ifdef debug_1_BinaryCascade 2705 aNew->SetParentResonanceID(kt->GetPar << 2082 if (! kt->GetDefinition()->GetPDGStable() ) 2706 products->push_back(aNew); << 2083 { 2707 #ifdef debug_H1_BinaryCascade << 2084 if (kt->GetDefinition()->IsShortLived()) 2708 if (! kt->GetDefinition()->GetPDGStab << 2085 { 2709 { << 2086 G4cout << "final shortlived : "; 2710 if (kt->GetDefinition()->IsShortL << 2087 } else 2711 { << 2088 { 2712 G4cout << "final shortlived : << 2089 G4cout << "final un stable : "; 2713 } else << 2090 } 2714 { << 2091 G4cout <<kt->GetDefinition()->GetParticleName()<< G4endl; 2715 G4cout << "final un stable : << 2092 } 2716 } << 2093 #endif 2717 G4cout <<kt->GetDefinition()->Get << 2094 delete kt; 2718 } << 2719 #endif << 2720 delete kt; << 2721 } 2095 } 2722 theFinalState.clear(); 2096 theFinalState.clear(); 2723 return products; 2097 return products; 2724 2098 2725 } 2099 } 2726 2100 2727 //------------------------------------------- 2101 //---------------------------------------------------------------------------- 2728 G4ThreeVector G4BinaryCascade::GetSpherePoint 2102 G4ThreeVector G4BinaryCascade::GetSpherePoint( 2729 G4double r, const G4LorentzVector & m << 2103 G4double r, const G4LorentzVector & mom4) 2730 //------------------------------------------- 2104 //---------------------------------------------------------------------------- 2731 { 2105 { 2732 // Get a point outside radius. << 2106 // Get a point outside radius. 2733 // point is random in plane (circle o << 2107 // point is random in plane (circle of radius r) orthogonal to mom, 2734 // plus -1*r*mom->vect()->unit(); << 2108 // plus -1*r*mom->vect()->unit(); 2735 G4ThreeVector o1, o2; 2109 G4ThreeVector o1, o2; 2736 G4ThreeVector mom = mom4.vect(); 2110 G4ThreeVector mom = mom4.vect(); 2737 2111 2738 o1= mom.orthogonal(); // we simply need 2112 o1= mom.orthogonal(); // we simply need any vector non parallel 2739 o2= mom.cross(o1); // o2 is now orth 2113 o2= mom.cross(o1); // o2 is now orthogonal to mom and o1, ie. o1 and o2 define plane. 2740 2114 2741 G4double x2, x1; 2115 G4double x2, x1; 2742 2116 2743 do 2117 do 2744 { 2118 { 2745 x1=(G4UniformRand()-.5)*2; << 2119 x1=(G4UniformRand()-.5)*2; 2746 x2=(G4UniformRand()-.5)*2; << 2120 x2=(G4UniformRand()-.5)*2; 2747 } while (sqr(x1) +sqr(x2) > 1.); << 2121 } while (sqr(x1) +sqr(x2) > 1.); 2748 2122 2749 return G4ThreeVector(r*(x1*o1.unit() + x2 2123 return G4ThreeVector(r*(x1*o1.unit() + x2*o2.unit() - 1.5* mom.unit())); 2750 2124 2751 2125 2752 2126 2753 /* << 2127 /* 2754 * // Get a point uniformly distributed o << 2128 * // Get a point uniformly distributed on the surface of a sphere, 2755 * // with z < 0. << 2129 * // with z < 0. 2756 * G4double b = r*G4UniformRand(); // << 2130 * G4double b = r*G4UniformRand(); // impact parameter 2757 * G4double phi = G4UniformRand()*2*pi; << 2131 * G4double phi = G4UniformRand()*2*pi; 2758 * G4double x = b*std::cos(phi); << 2132 * G4double x = b*cos(phi); 2759 * G4double y = b*std::sin(phi); << 2133 * G4double y = b*sin(phi); 2760 * G4double z = -std::sqrt(r*r-b*b); << 2134 * G4double z = -sqrt(r*r-b*b); 2761 * z *= 1.001; // Get position a little << 2135 * z *= 1.001; // Get position a little bit out of the sphere... 2762 * point.setX(x); << 2136 * point.setX(x); 2763 * point.setY(y); << 2137 * point.setY(y); 2764 * point.setZ(z); << 2138 * point.setZ(z); 2765 */ << 2139 */ 2766 } 2140 } 2767 2141 2768 //------------------------------------------- 2142 //---------------------------------------------------------------------------- 2769 2143 2770 void G4BinaryCascade::ClearAndDestroy(G4Kinet 2144 void G4BinaryCascade::ClearAndDestroy(G4KineticTrackVector * ktv) 2771 //------------------------------------------- 2145 //---------------------------------------------------------------------------- 2772 { 2146 { 2773 for(auto i = ktv->cbegin(); i != ktv->cen << 2147 std::vector<G4KineticTrack *>::iterator i; 2774 delete (*i); << 2148 for(i = ktv->begin(); i != ktv->end(); ++i) 2775 ktv->clear(); << 2149 delete (*i); >> 2150 ktv->clear(); 2776 } 2151 } 2777 2152 2778 //------------------------------------------- 2153 //---------------------------------------------------------------------------- 2779 void G4BinaryCascade::ClearAndDestroy(G4React 2154 void G4BinaryCascade::ClearAndDestroy(G4ReactionProductVector * rpv) 2780 //------------------------------------------- 2155 //---------------------------------------------------------------------------- 2781 { 2156 { 2782 for(auto i = rpv->cbegin(); i != rpv->cen << 2157 std::vector<G4ReactionProduct *>::iterator i; 2783 delete (*i); << 2158 for(i = rpv->begin(); i != rpv->end(); ++i) 2784 rpv->clear(); << 2159 delete (*i); >> 2160 rpv->clear(); 2785 } 2161 } 2786 2162 2787 //------------------------------------------- 2163 //---------------------------------------------------------------------------- 2788 void G4BinaryCascade::PrintKTVector(G4Kinetic 2164 void G4BinaryCascade::PrintKTVector(G4KineticTrackVector * ktv, std::string comment) 2789 //------------------------------------------- 2165 //---------------------------------------------------------------------------- 2790 { 2166 { 2791 if (comment.size() > 0 ) G4cout << "G4Bin << 2167 if (comment.size() > 0 ) G4cout << comment << G4endl; 2792 if (ktv) { << 2168 G4cout << " vector: " << ktv << ", number of tracks: " << ktv->size() 2793 G4cout << " vector: " << ktv << ", n << 2169 << G4endl; 2794 << G4endl; << 2170 std::vector<G4KineticTrack *>::iterator i; 2795 std::vector<G4KineticTrack *>::const_ << 2171 G4int count; 2796 G4int count; << 2172 2797 << 2173 for(count = 0, i = ktv->begin(); i != ktv->end(); ++i, ++count) 2798 for(count = 0, i = ktv->cbegin(); i ! << 2174 { 2799 { << 2175 G4KineticTrack * kt = *i; 2800 G4KineticTrack * kt = *i; << 2176 G4cout << " track n. " << count << ", id: " << kt << G4endl; 2801 G4cout << " track n. " << count; << 2177 G4ThreeVector pos = kt->GetPosition(); 2802 PrintKTVector(kt); << 2178 G4LorentzVector mom = kt->Get4Momentum(); 2803 } << 2179 G4LorentzVector tmom = kt->GetTrackingMomentum(); 2804 } else { << 2180 G4ParticleDefinition * definition = kt->GetDefinition(); 2805 G4cout << "G4BinaryCascade::PrintKTVe << 2181 G4cout << " definition: " << definition->GetPDGEncoding() << " pos: " 2806 } << 2182 << 1/fermi*pos << " R: " << 1/fermi*pos.mag() << " 4mom: " 2807 } << 2183 << 1/MeV*mom <<"Tr_mom" << 1/MeV*tmom << " P: " << 1/MeV*mom.vect().mag() 2808 //------------------------------------------- << 2184 << " M: " << 1/MeV*mom.mag() << G4endl; 2809 void G4BinaryCascade::PrintKTVector(G4Kinetic << 2185 G4cout <<"trackstatus: "<<kt->GetState()<<G4endl; 2810 //------------------------------------------- << 2186 } 2811 { << 2187 } 2812 if (comment.size() > 0 ) G4cout << "G4Bin << 2188 2813 if ( kt ){ << 2189 //---------------------------------------------------------------------------- 2814 G4cout << ", id: " << kt << G4endl; << 2190 G4bool G4BinaryCascade::CheckDecay(G4KineticTrackVector * products) 2815 G4ThreeVector pos = kt->GetPosition() << 2191 //---------------------------------------------------------------------------- 2816 G4LorentzVector mom = kt->Get4Momentu << 2192 { 2817 G4LorentzVector tmom = kt->GetTrackin << 2193 G4int A = the3DNucleus->GetMassNumber(); 2818 const G4ParticleDefinition * definiti << 2194 G4int Z = the3DNucleus->GetCharge(); 2819 G4cout << " definition: " << defin << 2195 2820 << 1/fermi*pos << " R: " << 1 << 2196 G4FermiMomentum fermiMom; 2821 << 1/MeV*mom <<"Tr_mom" << 1 << 2197 fermiMom.Init(A, Z); 2822 << " M: " << 1/MeV*mom.mag() << 2198 2823 G4cout <<" trackstatus: "<<kt->Get << 2199 const G4VNuclearDensity * density=the3DNucleus->GetNuclearDensity(); 2824 } else { << 2200 2825 G4cout << "G4BinaryCascade::PrintKTVe << 2201 G4KineticTrackVector::iterator i; 2826 } << 2202 G4ParticleDefinition * definition; >> 2203 >> 2204 // ------ debug >> 2205 G4bool myflag = true; >> 2206 // ------ end debug >> 2207 for(i = products->begin(); i != products->end(); ++i) >> 2208 { >> 2209 definition = (*i)->GetDefinition(); >> 2210 if((definition->GetParticleName() != "delta++" )&& >> 2211 (definition->GetParticleName() != "delta+" )&& >> 2212 (definition->GetParticleName() != "delta0" )&& >> 2213 (definition->GetParticleName() != "delta-" )) >> 2214 continue; >> 2215 G4ThreeVector pos = (*i)->GetPosition(); >> 2216 G4double d = density->GetDensity(pos); >> 2217 G4double pFermi= fermiMom.GetFermiMomentum(d); >> 2218 G4LorentzVector mom = (*i)->Get4Momentum(); >> 2219 G4LorentzRotation boost(mom.boostVector()); >> 2220 G4ThreeVector pion3(227*MeV * mom.vect().unit()); // 227 is decay product in rest frame >> 2221 G4LorentzVector pion(pion3, sqrt(sqr(140*MeV) +pion3.mag())); >> 2222 // G4cout << "pi rest " << pion << G4endl; >> 2223 pion = boost * pion; >> 2224 // G4cout << "pi lab " << pion << G4endl; >> 2225 // ------ debug >> 2226 // G4cout << "p:[" << (1/MeV)*pion.x() << " " << (1/MeV)*pion.y() << " " >> 2227 // << (1/MeV)*pion.z() << "] |p3|:" >> 2228 // << (1/MeV)*pion.vect().mag() << " E:" << (1/MeV)*pion.t() << " ] m: " >> 2229 // << (1/MeV)*pion.mag() << " pos[" >> 2230 // << (1/fermi)*pos.x() << " "<< (1/fermi)*pos.y() << " " >> 2231 // << (1/fermi)*pos.z() << "] |Dpos|: " >> 2232 // << " Pfermi:" >> 2233 // << (1/MeV)*pFermi << G4endl; >> 2234 // ------ end debug >> 2235 >> 2236 if( pion.vect().mag() < pFermi ) >> 2237 { >> 2238 // ------ debug >> 2239 myflag = false; >> 2240 // ------ end debug >> 2241 } >> 2242 } >> 2243 return myflag; >> 2244 // return true; 2827 } 2245 } 2828 2246 2829 << 2830 //------------------------------------------- 2247 //---------------------------------------------------------------------------- 2831 G4double G4BinaryCascade::GetIonMass(G4int Z, 2248 G4double G4BinaryCascade::GetIonMass(G4int Z, G4int A) 2832 //------------------------------------------- 2249 //---------------------------------------------------------------------------- 2833 { 2250 { 2834 G4double mass(0); << 2251 G4double mass(0); 2835 if ( Z > 0 && A >= Z ) << 2252 if ( Z > 0 && A >= Z ) 2836 { << 2837 mass = G4ParticleTable::GetParticleTa << 2838 << 2839 } else if ( A > 0 && Z>0 ) << 2840 { << 2841 // charge Z > A; will happen for ligh << 2842 mass = G4ParticleTable::GetParticleTa << 2843 << 2844 } else if ( A >= 0 && Z<=0 ) << 2845 { << 2846 // all neutral, or empty nucleus << 2847 mass = A * G4Neutron::Neutron()->GetP << 2848 << 2849 } else if ( A == 0 ) << 2850 { << 2851 // empty nucleus, except maybe pions << 2852 mass = 0; << 2853 << 2854 } else << 2855 { << 2856 G4cerr << "G4BinaryCascade::GetIonMas << 2857 << A << "," << Z << ")" <<G4e << 2858 throw G4HadronicException(__FILE__, _ << 2859 << 2860 } << 2861 // G4cout << "G4BinaryCascade::GetIonMass << 2862 return mass; << 2863 } << 2864 G4ReactionProductVector * G4BinaryCascade::Fi << 2865 { << 2866 // return product when nucleus is destroy << 2867 G4double Esecondaries(0.); << 2868 G4LorentzVector psecondaries; << 2869 std::vector<G4KineticTrack *>::const_iter << 2870 std::vector<G4ReactionProduct *>::const_i << 2871 decayKTV.Decay(&theFinalState); << 2872 << 2873 for(iter = theFinalState.cbegin(); iter ! << 2874 { << 2875 G4ReactionProduct * aNew = new G4Reac << 2876 aNew->SetMomentum((*iter)->Get4Moment << 2877 aNew->SetTotalEnergy((*iter)->Get4Mom << 2878 aNew->SetCreatorModelID(theBIC_ID); << 2879 aNew->SetParentResonanceDef((*iter)->GetPar << 2880 aNew->SetParentResonanceID((*iter)->GetPare << 2881 Esecondaries +=(*iter)->Get4Momentum( << 2882 psecondaries +=(*iter)->Get4Momentum( << 2883 aNew->SetNewlyAdded(true); << 2884 //G4cout << " Particle Ekin " << aNew << 2885 products->push_back(aNew); << 2886 } << 2887 << 2888 // pull out late particles from collision << 2889 //theCollisionMgr->Print(); << 2890 while(theCollisionMgr->Entries() > 0) << 2891 { << 2892 G4CollisionInitialState * << 2893 collision = theCollisionMgr->GetNextC << 2894 << 2895 if ( ! collision->GetTargetCollection << 2896 G4KineticTrackVector * lates = co << 2897 if ( lates->size() == 1 ) { << 2898 G4KineticTrack * atrack=*(lat << 2899 //PrintKTVector(atrack, " lat << 2900 << 2901 G4ReactionProduct * aNew = ne << 2902 aNew->SetMomentum(atrack->Get << 2903 aNew->SetTotalEnergy(atrack-> << 2904 aNew->SetCreatorModelID(atrac << 2905 aNew->SetParentResonanceDef(atrack->GetPa << 2906 aNew->SetParentResonanceID(atrack->GetPar << 2907 Esecondaries +=atrack->Get4Mo << 2908 psecondaries +=atrack->Get4Mo << 2909 aNew->SetNewlyAdded(true); << 2910 products->push_back(aNew); << 2911 << 2912 } << 2913 } << 2914 theCollisionMgr->RemoveCollision(coll << 2915 << 2916 } << 2917 << 2918 // decay must be after loop on Collisions << 2919 // to by Collisions. << 2920 decayKTV.Decay(&theSecondaryList); << 2921 << 2922 // Correct for momentum transfered to Nuc << 2923 G4ThreeVector transferCorrection(0); << 2924 if ( (theSecondaryList.size() + theCaptur << 2925 { << 2926 transferCorrection= theMomentumTransfer << 2927 } << 2928 << 2929 for(iter = theSecondaryList.cbegin(); ite << 2930 { << 2931 G4ReactionProduct * aNew = new G4Reac << 2932 (*iter)->Update4Momentum((*iter)->Get << 2933 aNew->SetMomentum((*iter)->Get4Moment << 2934 aNew->SetTotalEnergy((*iter)->Get4Mom << 2935 aNew->SetCreatorModelID(theBIC_ID); << 2936 aNew->SetParentResonanceDef((*iter)->GetPar << 2937 aNew->SetParentResonanceID((*iter)->GetPare << 2938 Esecondaries +=(*iter)->Get4Momentum( << 2939 psecondaries +=(*iter)->Get4Momentum( << 2940 if ( (*iter)->IsParticipant() ) aNew- << 2941 products->push_back(aNew); << 2942 } << 2943 << 2944 for(iter = theCapturedList.cbegin(); iter << 2945 { << 2946 G4ReactionProduct * aNew = new G4Reac << 2947 (*iter)->Update4Momentum((*iter)->Get << 2948 aNew->SetMomentum((*iter)->Get4Moment << 2949 aNew->SetTotalEnergy((*iter)->Get4Mom << 2950 aNew->SetCreatorModelID(theBIC_ID); << 2951 aNew->SetParentResonanceDef((*iter)->GetPar << 2952 aNew->SetParentResonanceID((*iter)->GetPare << 2953 Esecondaries +=(*iter)->Get4Momentum( << 2954 psecondaries +=(*iter)->Get4Momentum( << 2955 aNew->SetNewlyAdded(true); << 2956 products->push_back(aNew); << 2957 } << 2958 << 2959 G4double SumMassNucleons(0.); << 2960 G4LorentzVector pNucleons(0.); << 2961 for(iter = theTargetList.cbegin(); iter ! << 2962 { << 2963 SumMassNucleons += (*iter)->GetDefini << 2964 pNucleons += (*iter)->Get4Momentum(); << 2965 } << 2966 << 2967 G4double Ekinetic=theProjectile4Momentum. << 2968 #ifdef debug_BIC_FillVoidnucleus << 2969 G4LorentzVector deltaP=theProjectile4 << 2970 psecondaries - pNucle << 2971 //G4cout << "BIC::FillVoidNucleus() n << 2972 // ", deltaP " << deltaP << " de << 2973 #endif << 2974 if (Ekinetic > 0. && theTargetList.size() << 2975 Ekinetic /= theTargetList.size(); << 2976 } else { << 2977 G4double Ekineticrdm(0); << 2978 if (theTargetList.size()) Ekineticrdm << 2979 G4double TotalEkin(Ekineticrdm); << 2980 for (rpiter=products->cbegin(); rpite << 2981 TotalEkin+=(*rpiter)->GetKineticEne << 2982 } << 2983 G4double correction(1.); << 2984 if ( std::abs(Ekinetic) < 20*perCent << 2985 correction=1. + (Ekinetic-Ekineticr << 2986 } << 2987 #ifdef debug_G4BinaryCascade << 2988 else { << 2989 G4cout << "BLIC::FillVoidNucleus() fa << 2990 } << 2991 #endif << 2992 << 2993 for (rpiter=products->cbegin(); rpite << 2994 (*rpiter)->SetKineticEnergy((*rpiter) << 2995 (*rpiter)->SetMomentum((*rpiter)->G << 2996 << 2997 } << 2998 << 2999 Ekinetic=Ekineticrdm*correction; << 3000 if (theTargetList.size())Ekinetic /= << 3001 << 3002 } << 3003 << 3004 for(iter = theTargetList.cbegin(); iter ! << 3005 // set Nucleon it to be hit - as it is << 3006 (*iter)->Hit(); << 3007 G4ReactionProduct * aNew = new G4Reac << 3008 aNew->SetKineticEnergy(Ekinetic); << 3009 aNew->SetMomentum(aNew->GetTotalMomen << 3010 aNew->SetNewlyAdded(true); << 3011 aNew->SetCreatorModelID(theBIC_ID); << 3012 aNew->SetParentResonanceDef((*iter)->GetPar << 3013 aNew->SetParentResonanceID((*iter)->GetPare << 3014 products->push_back(aNew); << 3015 Esecondaries += aNew->GetTotalEnergy( << 3016 psecondaries += G4LorentzVector(aNew- << 3017 } << 3018 psecondaries=G4LorentzVector(0); << 3019 for (rpiter=products->cbegin(); rpiter!=p << 3020 psecondaries += G4LorentzVector((*rpite << 3021 } << 3022 << 3023 G4LorentzVector initial4Mom=theProjectile << 3024 << 3025 //G4cout << "::FillVoidNucleus()final e/p << 3026 // << " final " << psecondaries << " del << 3027 << 3028 G4ThreeVector SumMom=psecondaries.vect(); << 3029 << 3030 SumMom=initial4Mom.vect()-SumMom; << 3031 G4int loopcount(0); << 3032 << 3033 // reverse_iterator reverse - start to co << 3034 while ( SumMom.mag() > 0.1*MeV && loopcou << 3035 { << 3036 G4int index=(G4int)products->size(); << 3037 for (auto reverse=products->crbegin(); << 3038 SumMom=initial4Mom.vect(); << 3039 for (rpiter=products->cbegin(); rpite << 3040 SumMom-=(*rpiter)->GetMomentum(); << 3041 } << 3042 G4double p=((*reverse)->GetMomentum() << 3043 (*reverse)->SetMomentum( p*(((*rever << 3044 } << 3045 } << 3046 return products; << 3047 } << 3048 << 3049 G4ReactionProductVector * G4BinaryCascade::Hi << 3050 G4KineticTrackVector * secondaries) << 3051 { << 3052 for(auto iter = secondaries->cbegin(); it << 3053 { << 3054 G4ReactionProduct * aNew = new G4Reac << 3055 aNew->SetMomentum((*iter)->Get4Moment << 3056 aNew->SetTotalEnergy((*iter)->Get4Mom << 3057 aNew->SetNewlyAdded(true); << 3058 aNew->SetCreatorModelID((*iter)->GetC << 3059 aNew->SetParentResonanceDef((*iter)-> << 3060 aNew->SetParentResonanceID((*iter)->G << 3061 //G4cout << " Particle Ekin " << aNew << 3062 products->push_back(aNew); << 3063 } << 3064 const G4ParticleDefinition* fragment = 0; << 3065 if (currentA == 1 && currentZ == 0) { << 3066 fragment = G4Neutron::NeutronDefiniti << 3067 } else if (currentA == 1 && currentZ == 1 << 3068 fragment = G4Proton::ProtonDefinition << 3069 } else if (currentA == 2 && currentZ == 1 << 3070 fragment = G4Deuteron::DeuteronDefini << 3071 } else if (currentA == 3 && currentZ == 1 << 3072 fragment = G4Triton::TritonDefinition << 3073 } else if (currentA == 3 && currentZ == 2 << 3074 fragment = G4He3::He3Definition(); << 3075 } else if (currentA == 4 && currentZ == 2 << 3076 fragment = G4Alpha::AlphaDefinition() << 3077 } else { << 3078 fragment = << 3079 G4ParticleTable::GetParticleT << 3080 } << 3081 if (fragment != 0) { << 3082 G4ReactionProduct * theNew = new G4Re << 3083 theNew->SetMomentum(G4ThreeVector(0,0 << 3084 theNew->SetTotalEnergy(massInNucleus) << 3085 theNew->SetCreatorModelID(theBIC_ID); << 3086 //theNew->SetFormationTime(??0.??); << 3087 //G4cout << " Nucleus (" << currentZ << 3088 products->push_back(theNew); << 3089 } << 3090 return products; << 3091 } << 3092 << 3093 void G4BinaryCascade::PrintWelcomeMessage() << 3094 { << 3095 G4cout <<"Thank you for using G4BinaryCas << 3096 } << 3097 << 3098 //------------------------------------------- << 3099 void G4BinaryCascade::DebugApplyCollisionFail << 3100 G4KineticTrackVector * products) << 3101 { << 3102 G4bool havePion=false; << 3103 if (products) << 3104 { 2253 { 3105 for ( auto i =products->cbegin(); i != << 2254 mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z,A); 3106 { << 2255 3107 G4int PDGcode=std::abs((*i)->GetDefi << 2256 } else if ( A > 0 && Z>0 ) 3108 if (std::abs(PDGcode)==211 || PDGcod << 3109 } << 3110 } << 3111 if ( !products || havePion) << 3112 { 2257 { 3113 const G4BCAction &action= *collision->G << 2258 // charge Z > A; will happen for light nuclei with pions involved. 3114 G4cout << " Collision " << collision << << 2259 mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(A,A); 3115 << ", with << 2260 3116 G4cout << G4endl<<"Initial condition ar << 2261 } else if ( A >= 0 && Z<=0 ) 3117 G4cout << "proj: "<<collision->GetPrima << 2262 { 3118 PrintKTVector(collision->GetPrimary()); << 2263 // all neutral, or empty nucleus 3119 for(std::size_t it=0; it<collision->Get << 2264 mass = A * G4Neutron::Neutron()->GetPDGMass(); 3120 { << 2265 3121 G4cout << "targ: " << 2266 } else if ( A == 0 && abs(Z)<2 ) 3122 <<collision->GetTargetCollecti << 2267 { 3123 } << 2268 // empty nucleus, except maybe pions 3124 PrintKTVector(&collision->GetTargetColl << 2269 mass = 0; >> 2270 >> 2271 } else >> 2272 { >> 2273 G4cerr << "G4BinaryCascade::GetIonMass() - invalid (A,Z) = (" >> 2274 << A << "," << Z << ")" <<G4endl; >> 2275 G4Exception("G4BinaryCascade::GetIonMass() - giving up"); 3125 } 2276 } 3126 // if ( lateParticleCollision ) G4cout << << 2277 return mass; 3127 // if ( lateParticleCollision && products << 3128 } 2278 } 3129 2279 3130 //------------------------------------------- << 2280 void G4BinaryCascade::PrintWelcomeMessage() 3131 << 3132 G4bool G4BinaryCascade::CheckChargeAndBaryonN << 3133 { << 3134 static G4int lastdA(0), lastdZ(0); << 3135 G4int iStateA = the3DNucleus->GetMassNumbe << 3136 G4int iStateZ = the3DNucleus->GetCharge() << 3137 << 3138 G4int fStateA(0); << 3139 G4int fStateZ(0); << 3140 << 3141 G4int CapturedA(0), CapturedZ(0); << 3142 G4int secsA(0), secsZ(0); << 3143 for (auto i=theCapturedList.cbegin(); i!=t << 3144 CapturedA += (*i)->GetDefinition()->Get << 3145 CapturedZ += G4lrint((*i)->GetDefinitio << 3146 } << 3147 << 3148 for (auto i=theSecondaryList.cbegin(); i!= << 3149 if ( (*i)->GetState() != G4KineticTrack << 3150 secsA += (*i)->GetDefinition()->GetB << 3151 secsZ += G4lrint((*i)->GetDefinition << 3152 } << 3153 } << 3154 << 3155 for (auto i=theFinalState.cbegin(); i!=the << 3156 fStateA += (*i)->GetDefinition()->GetBa << 3157 fStateZ += G4lrint((*i)->GetDefinition( << 3158 } << 3159 << 3160 G4int deltaA= iStateA - secsA - fStateA - << 3161 G4int deltaZ= iStateZ - secsZ - fStateZ - << 3162 << 3163 #ifdef debugCheckChargeAndBaryonNumberverbose << 3164 G4cout << where <<" A: iState= "<< iStateA< << 3165 G4cout << where <<" Z: iState= "<< iStateZ< << 3166 #endif << 3167 << 3168 if (deltaA != 0 || deltaZ!=0 ) { << 3169 if (deltaA != lastdA || deltaZ != lastd << 3170 G4cout << "baryon/charge imbalance - << 3171 << "deltaA " <<deltaA<<", iSta << 3172 << ", fStateA "<<fStateA << ", << 3173 << "deltaZ "<<deltaZ<<", iStat << 3174 << ", fStateZ "<<fStateZ << ", << 3175 lastdA=deltaA; << 3176 lastdZ=deltaZ; << 3177 } << 3178 } else { lastdA=lastdZ=0;} << 3179 << 3180 return true; << 3181 } << 3182 //------------------------------------------- << 3183 void G4BinaryCascade::DebugApplyCollision(G4C << 3184 G4KineticTrackVector * products) << 3185 { << 3186 << 3187 PrintKTVector(collision->GetPrimary(),std << 3188 PrintKTVector(&collision->GetTargetCollec << 3189 PrintKTVector(products,std::string(" Scat << 3190 << 3191 #ifdef dontUse << 3192 G4double thisExcitation(0); << 3193 // excitation energy from this collision << 3194 // initial state: << 3195 G4double initial(0); << 3196 G4KineticTrack * kt=collision->GetPrimary << 3197 initial += kt->Get4Momentum().e(); << 3198 << 3199 G4RKPropagation * RKprop=(G4RKPropagation << 3200 << 3201 initial += RKprop->GetField(kt->GetDefin << 3202 initial -= RKprop->GetBarrier(kt->GetDef << 3203 G4cout << "prim. E/field/Barr/Sum " << kt << 3204 << " " << RKprop->GetFi << 3205 << " " << RKprop->GetBa << 3206 << " " << initial << G4 << 3207 << 3208 G4KineticTrackVector ktv=collision->GetTa << 3209 for ( unsigned int it=0; it < ktv.size(); << 3210 { << 3211 kt=ktv[it]; << 3212 initial += kt->Get4Momentum().e(); << 3213 thisExcitation += kt->GetDefinition() << 3214 - kt->Get4Momentum() << 3215 - RKprop->GetField(k << 3216 // initial += RKprop->GetField(k << 3217 // initial -= RKprop->GetBarrier << 3218 G4cout << "Targ. def/E/field/Barr/Sum << 3219 << " " << kt->Get4Momentum( << 3220 << " " << RKprop->GetField( << 3221 << " " << RKprop->GetBarrie << 3222 << " " << initial <<" Excit << 3223 } << 3224 << 3225 G4double fin(0); << 3226 G4double mass_out(0); << 3227 G4int product_barions(0); << 3228 if ( products ) << 3229 { << 3230 for ( unsigned int it=0; it < product << 3231 { << 3232 kt=(*products)[it]; << 3233 fin += kt->Get4Momentum().e(); << 3234 fin += RKprop->GetField(kt->GetD << 3235 fin += RKprop->GetBarrier(kt->Ge << 3236 if ( kt->GetDefinition()->GetBary << 3237 mass_out += kt->GetDefinition()-> << 3238 G4cout << "sec. def/E/field/Barr/ << 3239 << " " << kt->Get4Moment << 3240 << " " << RKprop->GetFie << 3241 << " " << RKprop->GetBar << 3242 << " " << fin << G4endl; << 3243 } << 3244 } << 3245 << 3246 << 3247 G4int finalA = currentA; << 3248 G4int finalZ = currentZ; << 3249 if ( products ) << 3250 { << 3251 finalA -= product_barions; << 3252 finalZ -= GetTotalCharge(*products); << 3253 } << 3254 G4double delta = GetIonMass(currentZ,curr << 3255 G4cout << " current/final a,z " << curren << 3256 << " delta-mass " << delta<<G4en << 3257 fin+=delta; << 3258 mass_out = GetIonMass(finalZ,finalA); << 3259 G4cout << " initE/ E_out/ Mfinal/ Excit " << 3260 << " " << fin << " " << 3261 << mass_out<<" " << 3262 << currentInitialEnergy - fin - << 3263 << G4endl; << 3264 currentInitialEnergy-=fin; << 3265 #endif << 3266 } << 3267 << 3268 //------------------------------------------- << 3269 G4bool G4BinaryCascade::DebugFinalEpConservat << 3270 G4ReactionProductVector* products) << 3271 //------------------------------------------- << 3272 { 2281 { 3273 G4double Efinal(0); << 2282 G4cout <<"Thank you for using G4BinaryCascade. "<<G4endl; 3274 G4ThreeVector pFinal(0); << 3275 if (std::abs(theParticleChange.GetWeightC << 3276 { << 3277 G4cout <<" BIC-weight change " << the << 3278 } << 3279 << 3280 for(auto iter = products->cbegin(); iter << 3281 { << 3282 << 3283 G4cout << " Secondary E - Ekin / p " << 3284 (*iter)->GetDefinition()->GetPa << 3285 (*iter)->GetTotalEnergy() << " << 3286 (*iter)->GetKineticEnergy()<< " << 3287 (*iter)->GetMomentum().x() << " << 3288 (*iter)->GetMomentum().y() << " << 3289 (*iter)->GetMomentum().z() << G << 3290 Efinal += (*iter)->GetTotalEnergy(); << 3291 pFinal += (*iter)->GetMomentum(); << 3292 } << 3293 << 3294 G4cout << "e outgoing/ total : " << Efi << 3295 G4cout << "BIC E/p delta " << << 3296 (aTrack.Get4Momentum().e()+theIni << 3297 " MeV / mom " << (aTrack.Get4Mome << 3298 << 3299 return (aTrack.Get4Momentum().e() + theIn << 3300 << 3301 } 2283 } 3302 //------------------------------------------- << 3303 G4bool G4BinaryCascade::DebugEpConservation(c << 3304 //------------------------------------------- << 3305 { << 3306 G4cout << where << G4endl; << 3307 G4LorentzVector psecs, ptgts, pcpts << 3308 if (std::abs(theParticleChange.GetWeightC << 3309 { << 3310 G4cout <<" BIC-weight change " << the << 3311 } << 3312 << 3313 std::vector<G4KineticTrack *>::const_iter << 3314 for(ktiter = theSecondaryList.cbegin(); k << 3315 { << 3316 2284 3317 G4cout << " Secondary E - Ekin << 3318 (*ktiter)->GetDefinition()-> << 3319 (*ktiter)->Get4Momentum().e( << 3320 (*ktiter)->Get4Momentum().e( << 3321 (*ktiter)->Get4Momentum().ve << 3322 psecs += (*ktiter)->Get4Momentum() << 3323 } << 3324 2285 3325 for(ktiter = theTargetList.cbegin(); ktit << 3326 { << 3327 2286 3328 G4cout << " Target E - Ekin / p << 3329 (*ktiter)->GetDefinition()-> << 3330 (*ktiter)->Get4Momentum().e( << 3331 (*ktiter)->Get4Momentum().e( << 3332 (*ktiter)->Get4Momentum().ve << 3333 ptgts += (*ktiter)->Get4Momentum() << 3334 } << 3335 2287 3336 for(ktiter = theCapturedList.cbegin(); kt << 3337 { << 3338 2288 3339 G4cout << " Captured E - Ekin << 3340 (*ktiter)->GetDefinition()- << 3341 (*ktiter)->Get4Momentum().e << 3342 (*ktiter)->Get4Momentum().e << 3343 (*ktiter)->Get4Momentum().v << 3344 pcpts += (*ktiter)->Get4Momentum( << 3345 } << 3346 2289 3347 for(ktiter = theFinalState.cbegin(); ktit << 3348 { << 3349 2290 3350 G4cout << " Finals E - Ekin / << 3351 (*ktiter)->GetDefinition()- << 3352 (*ktiter)->Get4Momentum().e << 3353 (*ktiter)->Get4Momentum().e << 3354 (*ktiter)->Get4Momentum().v << 3355 pfins += (*ktiter)->Get4Momentum( << 3356 } << 3357 << 3358 G4cout << " Secondaries " << psecs << " << 3359 <<" Captured " << pcpts << ", Fi << 3360 <<" Sum " << psecs + ptgts + pcpts << 3361 <<" Sum+PTransfer " << psecs + ptgt << 3362 << G4endl<< G4endl; << 3363 << 3364 << 3365 return true; << 3366 2291 3367 } << 3368 << 3369 //------------------------------------------- << 3370 G4ReactionProductVector * G4BinaryCascade::Pr << 3371 //------------------------------------------- << 3372 { << 3373 // else << 3374 // { << 3375 // G4ReactionProduct * aNew=0; << 3376 // // return nucleus e and p << 3377 // if (fragment != 0 ) { << 3378 // aNew = new G4ReactionProduct(G4 << 3379 // aNew->SetMomentum(fragment->Get << 3380 // aNew->SetTotalEnergy(fragment-> << 3381 // delete fragment; << 3382 // fragment=0; << 3383 // } else if (products->size() == 0) { << 3384 // // FixMe GF: for testing withou << 3385 //#include "G4Gamma.hh" << 3386 // aNew = new G4ReactionProduct(G4 << 3387 // aNew->SetMomentum(G4ThreeVector << 3388 // aNew->SetTotalEnergy(0.01*MeV); << 3389 // } << 3390 // if ( aNew != 0 ) products->push_bac << 3391 // } << 3392 return products; << 3393 } << 3394 << 3395 //------------------------------------------- << 3396 2292