Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 26 27 #include "globals.hh" 27 #include "globals.hh" 28 #include "G4PhysicalConstants.hh" 28 #include "G4PhysicalConstants.hh" 29 #include "G4SystemOfUnits.hh" 29 #include "G4SystemOfUnits.hh" 30 #include "G4Proton.hh" 30 #include "G4Proton.hh" 31 #include "G4Neutron.hh" 31 #include "G4Neutron.hh" 32 #include "G4LorentzRotation.hh" 32 #include "G4LorentzRotation.hh" 33 #include "G4BinaryCascade.hh" 33 #include "G4BinaryCascade.hh" 34 #include "G4KineticTrackVector.hh" 34 #include "G4KineticTrackVector.hh" 35 #include "G4DecayKineticTracks.hh" 35 #include "G4DecayKineticTracks.hh" 36 #include "G4ReactionProductVector.hh" 36 #include "G4ReactionProductVector.hh" 37 #include "G4Track.hh" 37 #include "G4Track.hh" 38 #include "G4V3DNucleus.hh" 38 #include "G4V3DNucleus.hh" 39 #include "G4Fancy3DNucleus.hh" 39 #include "G4Fancy3DNucleus.hh" 40 #include "G4Scatterer.hh" 40 #include "G4Scatterer.hh" 41 #include "G4MesonAbsorption.hh" 41 #include "G4MesonAbsorption.hh" 42 #include "G4ping.hh" 42 #include "G4ping.hh" 43 #include "G4Delete.hh" 43 #include "G4Delete.hh" 44 44 45 #include "G4CollisionManager.hh" 45 #include "G4CollisionManager.hh" 46 #include "G4Absorber.hh" 46 #include "G4Absorber.hh" 47 47 48 #include "G4CollisionInitialState.hh" 48 #include "G4CollisionInitialState.hh" 49 #include "G4ListOfCollisions.hh" 49 #include "G4ListOfCollisions.hh" 50 #include "G4Fragment.hh" 50 #include "G4Fragment.hh" 51 #include "G4RKPropagation.hh" 51 #include "G4RKPropagation.hh" 52 52 53 #include "G4NuclearShellModelDensity.hh" 53 #include "G4NuclearShellModelDensity.hh" 54 #include "G4NuclearFermiDensity.hh" 54 #include "G4NuclearFermiDensity.hh" 55 #include "G4FermiMomentum.hh" 55 #include "G4FermiMomentum.hh" 56 56 57 #include "G4PreCompoundModel.hh" 57 #include "G4PreCompoundModel.hh" 58 #include "G4ExcitationHandler.hh" 58 #include "G4ExcitationHandler.hh" 59 #include "G4HadronicInteractionRegistry.hh" 59 #include "G4HadronicInteractionRegistry.hh" 60 60 61 #include "G4FermiPhaseSpaceDecay.hh" 61 #include "G4FermiPhaseSpaceDecay.hh" 62 62 63 #include "G4PreCompoundModel.hh" 63 #include "G4PreCompoundModel.hh" 64 #include "G4HadronicParameters.hh" << 65 64 66 #include <algorithm> 65 #include <algorithm> 67 #include "G4ShortLivedConstructor.hh" 66 #include "G4ShortLivedConstructor.hh" 68 #include <typeinfo> 67 #include <typeinfo> 69 68 70 #include "G4PhysicsModelCatalog.hh" 69 #include "G4PhysicsModelCatalog.hh" 71 70 72 // turn on general debugging info, and consi 71 // turn on general debugging info, and consistency checks 73 72 74 //#define debug_G4BinaryCascade 1 73 //#define debug_G4BinaryCascade 1 75 74 76 // more detailed debugging -- deprecated 75 // more detailed debugging -- deprecated 77 //#define debug_H1_BinaryCascade 1 76 //#define debug_H1_BinaryCascade 1 78 77 79 // specific debugging info per method or func 78 // specific debugging info per method or functionality 80 //#define debug_BIC_ApplyCollision 1 79 //#define debug_BIC_ApplyCollision 1 81 //#define debug_BIC_CheckPauli 1 80 //#define debug_BIC_CheckPauli 1 82 //#define debug_BIC_CorrectFinalPandE 1 81 //#define debug_BIC_CorrectFinalPandE 1 83 //#define debug_BIC_Propagate 1 82 //#define debug_BIC_Propagate 1 84 //#define debug_BIC_Propagate_Excitation 1 83 //#define debug_BIC_Propagate_Excitation 1 85 //#define debug_BIC_Propagate_Collisions 1 84 //#define debug_BIC_Propagate_Collisions 1 86 //#define debug_BIC_Propagate_finals 1 85 //#define debug_BIC_Propagate_finals 1 87 //#define debug_BIC_DoTimeStep 1 86 //#define debug_BIC_DoTimeStep 1 88 //#define debug_BIC_CorrectBarionsOnBoundary 1 87 //#define debug_BIC_CorrectBarionsOnBoundary 1 89 //#define debug_BIC_GetExcitationEnergy 1 88 //#define debug_BIC_GetExcitationEnergy 1 90 //#define debug_BIC_DeexcitationProducts 1 89 //#define debug_BIC_DeexcitationProducts 1 91 //#define debug_BIC_FinalNucleusMomentum 1 90 //#define debug_BIC_FinalNucleusMomentum 1 92 //#define debug_BIC_Final4Momentum 1 91 //#define debug_BIC_Final4Momentum 1 93 //#define debug_BIC_FillVoidnucleus 1 92 //#define debug_BIC_FillVoidnucleus 1 94 //#define debug_BIC_FindFragments 1 93 //#define debug_BIC_FindFragments 1 95 //#define debug_BIC_BuildTargetList 1 94 //#define debug_BIC_BuildTargetList 1 96 //#define debug_BIC_FindCollision 1 95 //#define debug_BIC_FindCollision 1 97 //#define debug_BIC_return 1 96 //#define debug_BIC_return 1 98 97 99 //------- 98 //------- 100 //#if defined(debug_G4BinaryCascade) 99 //#if defined(debug_G4BinaryCascade) 101 #if 0 100 #if 0 102 #define _CheckChargeAndBaryonNumber_(val) Ch 101 #define _CheckChargeAndBaryonNumber_(val) CheckChargeAndBaryonNumber(val) 103 //#define debugCheckChargeAndBaryonNumberver 102 //#define debugCheckChargeAndBaryonNumberverbose 1 104 #else 103 #else 105 #define _CheckChargeAndBaryonNumber_(val) 104 #define _CheckChargeAndBaryonNumber_(val) 106 #endif 105 #endif 107 //#if defined(debug_G4BinaryCascade) 106 //#if defined(debug_G4BinaryCascade) 108 #if 0 107 #if 0 109 #define _DebugEpConservation(val) DebugEpCo 108 #define _DebugEpConservation(val) DebugEpConservation(val) 110 //#define debugCheckChargeAndBaryonNumberver 109 //#define debugCheckChargeAndBaryonNumberverbose 1 111 #else 110 #else 112 #define _DebugEpConservation(val) 111 #define _DebugEpConservation(val) 113 #endif 112 #endif 114 113 115 G4int G4BinaryCascade::theBIC_ID = -1; 114 G4int G4BinaryCascade::theBIC_ID = -1; 116 115 117 // 116 // 118 // C O N S T R U C T O R S A N D D E S T 117 // C O N S T R U C T O R S A N D D E S T R U C T O R S 119 // 118 // 120 G4BinaryCascade::G4BinaryCascade(G4VPreCompoun 119 G4BinaryCascade::G4BinaryCascade(G4VPreCompoundModel* ptr) : 121 G4VIntraNuclearTransportModel("Binary Cascade" 120 G4VIntraNuclearTransportModel("Binary Cascade", ptr) 122 { 121 { 123 // initialise the resonance sector 122 // initialise the resonance sector 124 G4ShortLivedConstructor ShortLived; 123 G4ShortLivedConstructor ShortLived; 125 ShortLived.ConstructParticle(); 124 ShortLived.ConstructParticle(); 126 125 127 theCollisionMgr = new G4CollisionManager; 126 theCollisionMgr = new G4CollisionManager; 128 theDecay=new G4BCDecay; 127 theDecay=new G4BCDecay; 129 theImR.push_back(theDecay); 128 theImR.push_back(theDecay); 130 theLateParticle= new G4BCLateParticle; 129 theLateParticle= new G4BCLateParticle; 131 G4MesonAbsorption * aAb=new G4MesonAbsorpt 130 G4MesonAbsorption * aAb=new G4MesonAbsorption; 132 theImR.push_back(aAb); 131 theImR.push_back(aAb); 133 G4Scatterer * aSc=new G4Scatterer; 132 G4Scatterer * aSc=new G4Scatterer; 134 theH1Scatterer = new G4Scatterer; 133 theH1Scatterer = new G4Scatterer; 135 theImR.push_back(aSc); 134 theImR.push_back(aSc); 136 135 137 thePropagator = new G4RKPropagation; 136 thePropagator = new G4RKPropagation; 138 theCurrentTime = 0.; 137 theCurrentTime = 0.; 139 theBCminP = 45*MeV; 138 theBCminP = 45*MeV; 140 theCutOnP = 90*MeV; 139 theCutOnP = 90*MeV; 141 theCutOnPAbsorb= 0*MeV; // No Absorption 140 theCutOnPAbsorb= 0*MeV; // No Absorption of slow Mesons, other than above G4MesonAbsorption 142 141 143 // reuse existing pre-compound model 142 // reuse existing pre-compound model 144 if(!ptr) { 143 if(!ptr) { 145 G4HadronicInteraction* p = 144 G4HadronicInteraction* p = 146 G4HadronicInteractionRegistry::Instance()->F 145 G4HadronicInteractionRegistry::Instance()->FindModel("PRECO"); 147 G4VPreCompoundModel* pre = static_cast<G 146 G4VPreCompoundModel* pre = static_cast<G4VPreCompoundModel*>(p); 148 if(!pre) { pre = new G4PreCompoundModel( 147 if(!pre) { pre = new G4PreCompoundModel(); } 149 SetDeExcitation(pre); 148 SetDeExcitation(pre); 150 } 149 } 151 theExcitationHandler = GetDeExcitation()-> 150 theExcitationHandler = GetDeExcitation()->GetExcitationHandler(); 152 SetMinEnergy(0.0*GeV); 151 SetMinEnergy(0.0*GeV); 153 SetMaxEnergy(10.1*GeV); 152 SetMaxEnergy(10.1*GeV); 154 //PrintWelcomeMessage(); 153 //PrintWelcomeMessage(); 155 thePrimaryEscape = true; 154 thePrimaryEscape = true; 156 thePrimaryType = 0; 155 thePrimaryType = 0; 157 156 158 SetEnergyMomentumCheckLevels(1.0*perCent, 157 SetEnergyMomentumCheckLevels(1.0*perCent, 1.0*MeV); 159 158 160 // init data members 159 // init data members 161 currentA=currentZ=0; 160 currentA=currentZ=0; 162 lateA=lateZ=0; 161 lateA=lateZ=0; 163 initialA=initialZ=0; 162 initialA=initialZ=0; 164 projectileA=projectileZ=0; 163 projectileA=projectileZ=0; 165 currentInitialEnergy=initial_nuclear_mass= 164 currentInitialEnergy=initial_nuclear_mass=0.; 166 massInNucleus=0.; 165 massInNucleus=0.; 167 theOuterRadius=0.; 166 theOuterRadius=0.; 168 theBIC_ID = G4PhysicsModelCatalog::GetMode 167 theBIC_ID = G4PhysicsModelCatalog::GetModelID("model_G4BinaryCascade"); 169 fBCDEBUG = G4HadronicParameters::Instance( << 170 } 168 } 171 169 172 G4BinaryCascade::~G4BinaryCascade() 170 G4BinaryCascade::~G4BinaryCascade() 173 { 171 { 174 ClearAndDestroy(&theTargetList); 172 ClearAndDestroy(&theTargetList); 175 ClearAndDestroy(&theSecondaryList); 173 ClearAndDestroy(&theSecondaryList); 176 ClearAndDestroy(&theCapturedList); 174 ClearAndDestroy(&theCapturedList); 177 delete thePropagator; 175 delete thePropagator; 178 delete theCollisionMgr; 176 delete theCollisionMgr; 179 for(auto & ptr : theImR) { delete ptr; } 177 for(auto & ptr : theImR) { delete ptr; } 180 theImR.clear(); 178 theImR.clear(); 181 delete theLateParticle; 179 delete theLateParticle; 182 delete theH1Scatterer; 180 delete theH1Scatterer; 183 } 181 } 184 182 185 void G4BinaryCascade::ModelDescription(std::os 183 void G4BinaryCascade::ModelDescription(std::ostream& outFile) const 186 { 184 { 187 outFile << "G4BinaryCascade is an intra-nu 185 outFile << "G4BinaryCascade is an intra-nuclear cascade model in which\n" 188 << "an incident hadron collides wi 186 << "an incident hadron collides with a nucleon, forming two\n" 189 << "final-state particles, one or 187 << "final-state particles, one or both of which may be resonances.\n" 190 << "The resonances then decay hadr 188 << "The resonances then decay hadronically and the decay products\n" 191 << "are then propagated through th 189 << "are then propagated through the nuclear potential along curved\n" 192 << "trajectories until they re-int 190 << "trajectories until they re-interact or leave the nucleus.\n" 193 << "This model is valid for incide 191 << "This model is valid for incident pions up to 1.5 GeV and\n" 194 << "nucleons up to 10 GeV.\n" 192 << "nucleons up to 10 GeV.\n" 195 << "The remaining excited nucleus 193 << "The remaining excited nucleus is handed on to "; 196 if (theDeExcitation) 194 if (theDeExcitation) // pre-compound 197 { 195 { 198 outFile << theDeExcitation->GetM 196 outFile << theDeExcitation->GetModelName() << " : \n "; 199 theDeExcitation->DeExciteModelDe 197 theDeExcitation->DeExciteModelDescription(outFile); 200 } 198 } 201 else if (theExcitationHandler) 199 else if (theExcitationHandler) // de-excitation 202 { 200 { 203 outFile << "G4ExcitationHandler 201 outFile << "G4ExcitationHandler"; //theExcitationHandler->GetModelName(); 204 theExcitationHandler->ModelDesc 202 theExcitationHandler->ModelDescription(outFile); 205 } 203 } 206 else 204 else 207 { 205 { 208 outFile << "void.\n"; 206 outFile << "void.\n"; 209 } 207 } 210 outFile<< " \n"; 208 outFile<< " \n"; 211 } 209 } 212 void G4BinaryCascade::PropagateModelDescriptio 210 void G4BinaryCascade::PropagateModelDescription(std::ostream& outFile) const 213 { 211 { 214 outFile << "G4BinaryCascade propagtes seco 212 outFile << "G4BinaryCascade propagtes secondaries produced by a high\n" 215 << "energy model through the wound 213 << "energy model through the wounded nucleus.\n" 216 << "Secondaries are followed after 214 << "Secondaries are followed after the formation time and if\n" 217 << "within the nucleus are propaga 215 << "within the nucleus are propagated through the nuclear\n" 218 << "potential along curved traject 216 << "potential along curved trajectories until they interact\n" 219 << "with a nucleon, decay, or leav 217 << "with a nucleon, decay, or leave the nucleus.\n" 220 << "An interaction of a secondary 218 << "An interaction of a secondary with a nucleon produces two\n" 221 << "final-state particles, one or 219 << "final-state particles, one or both of which may be resonances.\n" 222 << "Resonances decay hadronically 220 << "Resonances decay hadronically and the decay products\n" 223 << "are in turn propagated through 221 << "are in turn propagated through the nuclear potential along curved\n" 224 << "trajectories until they re-int 222 << "trajectories until they re-interact or leave the nucleus.\n" 225 << "This model is valid for pions 223 << "This model is valid for pions up to 1.5 GeV and\n" 226 << "nucleons up to about 3.5 GeV.\ 224 << "nucleons up to about 3.5 GeV.\n" 227 << "The remaining excited nucleus 225 << "The remaining excited nucleus is handed on to "; 228 if (theDeExcitation) // pre 226 if (theDeExcitation) // pre-compound 229 { 227 { 230 outFile << theDeExcitation->GetModelName 228 outFile << theDeExcitation->GetModelName() << " : \n "; 231 theDeExcitation->DeExciteModelDescriptio 229 theDeExcitation->DeExciteModelDescription(outFile); 232 } 230 } 233 else if (theExcitationHandler) // de-ex 231 else if (theExcitationHandler) // de-excitation 234 { 232 { 235 outFile << "G4ExcitationHandler"; // 233 outFile << "G4ExcitationHandler"; //theExcitationHandler->GetModelName(); 236 theExcitationHandler->ModelDescription( 234 theExcitationHandler->ModelDescription(outFile); 237 } 235 } 238 else 236 else 239 { 237 { 240 outFile << "void.\n"; 238 outFile << "void.\n"; 241 } 239 } 242 outFile<< " \n"; 240 outFile<< " \n"; 243 } 241 } 244 242 245 //-------------------------------------------- 243 //---------------------------------------------------------------------------- 246 244 247 // 245 // 248 // I M P L E M E N T A T I O N 246 // I M P L E M E N T A T I O N 249 // 247 // 250 248 251 249 252 //-------------------------------------------- 250 //---------------------------------------------------------------------------- 253 G4HadFinalState * G4BinaryCascade::ApplyYourse 251 G4HadFinalState * G4BinaryCascade::ApplyYourself(const G4HadProjectile & aTrack, 254 G4Nucleus & aNucleus) 252 G4Nucleus & aNucleus) 255 //-------------------------------------------- 253 //---------------------------------------------------------------------------- 256 { 254 { 257 if(fBCDEBUG) G4cerr << " ######### Binary << 255 if(std::getenv("BCDEBUG") ) G4cerr << " ######### Binary Cascade Reaction starts ######### "<< G4endl; 258 256 259 G4LorentzVector initial4Momentum = aTrack. 257 G4LorentzVector initial4Momentum = aTrack.Get4Momentum(); 260 const G4ParticleDefinition * definition = 258 const G4ParticleDefinition * definition = aTrack.GetDefinition(); 261 259 262 if(initial4Momentum.e()-initial4Momentum.m 260 if(initial4Momentum.e()-initial4Momentum.m()<theBCminP && 263 ( definition==G4Neutron::NeutronDe 261 ( definition==G4Neutron::NeutronDefinition() || definition==G4Proton::ProtonDefinition() ) ) 264 { 262 { 265 return theDeExcitation->ApplyYourself( 263 return theDeExcitation->ApplyYourself(aTrack, aNucleus); 266 } 264 } 267 265 268 theParticleChange.Clear(); 266 theParticleChange.Clear(); 269 // initialize the G4V3DNucleus from G4Nucl 267 // initialize the G4V3DNucleus from G4Nucleus 270 the3DNucleus = new G4Fancy3DNucleus; 268 the3DNucleus = new G4Fancy3DNucleus; 271 269 272 // Build a KineticTrackVector with the G4T 270 // Build a KineticTrackVector with the G4Track 273 G4KineticTrackVector * secondaries;// = ne 271 G4KineticTrackVector * secondaries;// = new G4KineticTrackVector; 274 G4ThreeVector initialPosition(0., 0., 0.); 272 G4ThreeVector initialPosition(0., 0., 0.); // will be set later 275 273 276 if(!fBCDEBUG) << 274 if(!std::getenv("I_Am_G4BinaryCascade_Developer") ) 277 { 275 { 278 if(definition!=G4Neutron::NeutronDefin 276 if(definition!=G4Neutron::NeutronDefinition() && 279 definition!=G4Proton::ProtonDe 277 definition!=G4Proton::ProtonDefinition() && 280 definition!=G4PionPlus::PionPl 278 definition!=G4PionPlus::PionPlusDefinition() && 281 definition!=G4PionMinus::PionM 279 definition!=G4PionMinus::PionMinusDefinition() ) 282 { 280 { 283 G4cerr << "You are trying to use G 281 G4cerr << "You are trying to use G4BinaryCascade with " <<definition->GetParticleName()<<" as projectile."<<G4endl; 284 G4cerr << "G4BinaryCascade should 282 G4cerr << "G4BinaryCascade should not be used for projectiles other than nucleons or pions."<<G4endl; 285 G4cerr << "If you want to continue 283 G4cerr << "If you want to continue, please switch on the developer environment: "<<G4endl; 286 G4cerr << "setenv I_Am_G4BinaryCas 284 G4cerr << "setenv I_Am_G4BinaryCascade_Developer 1 "<<G4endl<<G4endl; 287 throw G4HadronicException(__FILE__ 285 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade - used for unvalid particle type - Fatal"); 288 } 286 } 289 } 287 } 290 288 291 // keep primary 289 // keep primary 292 thePrimaryType = definition; 290 thePrimaryType = definition; 293 thePrimaryEscape = false; 291 thePrimaryEscape = false; 294 292 295 G4double timePrimary=aTrack.GetGlobalTime( 293 G4double timePrimary=aTrack.GetGlobalTime(); 296 294 297 // try until an interaction will happen 295 // try until an interaction will happen 298 G4ReactionProductVector * products = nullp << 296 G4ReactionProductVector * products=0; 299 G4int interactionCounter = 0,collisionLoop 297 G4int interactionCounter = 0,collisionLoopMaxCount; 300 do 298 do 301 { 299 { 302 // reset status that could be changed 300 // reset status that could be changed in previous loop event 303 theCollisionMgr->ClearAndDestroy(); 301 theCollisionMgr->ClearAndDestroy(); 304 302 305 if(products != nullptr) << 303 if(products != 0) 306 { // free memory from previous loop e 304 { // free memory from previous loop event 307 ClearAndDestroy(products); 305 ClearAndDestroy(products); 308 delete products; 306 delete products; >> 307 products=0; 309 } 308 } 310 309 311 G4int massNumber=aNucleus.GetA_asInt() 310 G4int massNumber=aNucleus.GetA_asInt(); 312 the3DNucleus->Init(massNumber, aNucleu 311 the3DNucleus->Init(massNumber, aNucleus.GetZ_asInt()); 313 thePropagator->Init(the3DNucleus); 312 thePropagator->Init(the3DNucleus); 314 G4KineticTrack * kt; 313 G4KineticTrack * kt; 315 collisionLoopMaxCount = 200; 314 collisionLoopMaxCount = 200; 316 do // sample impact p 315 do // sample impact parameter until collisions are found 317 { 316 { 318 theCurrentTime=0; 317 theCurrentTime=0; 319 G4double radius = the3DNucleus->Ge 318 G4double radius = the3DNucleus->GetOuterRadius()+3*fermi; 320 initialPosition=GetSpherePoint(1.1 319 initialPosition=GetSpherePoint(1.1*radius, initial4Momentum); // get random position 321 kt = new G4KineticTrack(definition 320 kt = new G4KineticTrack(definition, 0., initialPosition, initial4Momentum); 322 kt->SetState(G4KineticTrack::outsi 321 kt->SetState(G4KineticTrack::outside); 323 // secondaries has been cleared by 322 // secondaries has been cleared by Propagate() in the previous loop event 324 secondaries= new G4KineticTrackVec 323 secondaries= new G4KineticTrackVector; 325 secondaries->push_back(kt); 324 secondaries->push_back(kt); 326 if(massNumber > 1) // 1H1 is speci 325 if(massNumber > 1) // 1H1 is special case 327 { 326 { 328 products = Propagate(secondari 327 products = Propagate(secondaries, the3DNucleus); 329 } else { 328 } else { 330 products = Propagate1H1(second 329 products = Propagate1H1(secondaries,the3DNucleus); 331 } 330 } 332 // until we FIND a collision ... o 331 // until we FIND a collision ... or give up 333 } while(! products && --collisionLoopM 332 } while(! products && --collisionLoopMaxCount>0); /* Loop checking, 31.08.2015, G.Folger */ 334 333 335 if(++interactionCounter>99) break; 334 if(++interactionCounter>99) break; 336 // ...until we find an ALLOWED collisi 335 // ...until we find an ALLOWED collision ... or give up 337 } while(products && products->size() == 0) 336 } while(products && products->size() == 0); /* Loop checking, 31.08.2015, G.Folger */ 338 337 339 if(products && products->size()>0) 338 if(products && products->size()>0) 340 { 339 { 341 // G4cout << "BIC Applyyourself: numb 340 // G4cout << "BIC Applyyourself: number of products " << products->size() << G4endl; 342 341 343 // Fill the G4ParticleChange * with pr 342 // Fill the G4ParticleChange * with products 344 theParticleChange.SetStatusChange(stop 343 theParticleChange.SetStatusChange(stopAndKill); 345 G4ReactionProductVector::iterator iter 344 G4ReactionProductVector::iterator iter; 346 345 347 for(iter = products->begin(); iter != 346 for(iter = products->begin(); iter != products->end(); ++iter) 348 { 347 { 349 G4DynamicParticle * aNewDP = 348 G4DynamicParticle * aNewDP = 350 new G4DynamicParticle((*it 349 new G4DynamicParticle((*iter)->GetDefinition(), 351 (*iter)->GetTotalE 350 (*iter)->GetTotalEnergy(), 352 (*iter)->GetMoment 351 (*iter)->GetMomentum()); 353 G4HadSecondary aNew = G4HadSecondary 352 G4HadSecondary aNew = G4HadSecondary(aNewDP); 354 G4double time=(*iter)->GetFormatio 353 G4double time=(*iter)->GetFormationTime(); 355 if(time < 0.0) { time = 0.0; } 354 if(time < 0.0) { time = 0.0; } 356 aNew.SetTime(timePrimary + time); 355 aNew.SetTime(timePrimary + time); 357 aNew.SetCreatorModelID((*iter)->Ge 356 aNew.SetCreatorModelID((*iter)->GetCreatorModelID()); 358 aNew.SetParentResonanceDef((*iter) 357 aNew.SetParentResonanceDef((*iter)->GetParentResonanceDef()); 359 aNew.SetParentResonanceID((*iter)- 358 aNew.SetParentResonanceID((*iter)->GetParentResonanceID()); 360 theParticleChange.AddSecondary(aNe 359 theParticleChange.AddSecondary(aNew); 361 } 360 } 362 361 363 //DebugFinalEpConservation(aTrack, pr 362 //DebugFinalEpConservation(aTrack, products); 364 363 365 364 366 } else { // no interaction, return primar 365 } else { // no interaction, return primary 367 if(fBCDEBUG) G4cerr << " ######### Bin << 366 if(std::getenv("BCDEBUG") ) G4cerr << " ######### Binary Cascade Reaction void, return initial state ######### "<< G4endl; 368 theParticleChange.SetStatusChange(isAl 367 theParticleChange.SetStatusChange(isAlive); 369 theParticleChange.SetEnergyChange(aTra 368 theParticleChange.SetEnergyChange(aTrack.GetKineticEnergy()); 370 theParticleChange.SetMomentumChange(aT 369 theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit()); 371 } 370 } 372 371 373 if ( products ) 372 if ( products ) 374 { 373 { 375 ClearAndDestroy(products); 374 ClearAndDestroy(products); 376 delete products; 375 delete products; 377 } 376 } 378 377 379 delete the3DNucleus; 378 delete the3DNucleus; 380 the3DNucleus = nullptr; << 379 the3DNucleus = NULL; 381 380 382 if(fBCDEBUG) G4cerr << " ######### Binary << 381 if(std::getenv("BCDEBUG") ) G4cerr << " ######### Binary Cascade Reaction ends ######### "<< G4endl; 383 382 384 return &theParticleChange; 383 return &theParticleChange; 385 } 384 } 386 //-------------------------------------------- 385 //---------------------------------------------------------------------------- 387 G4ReactionProductVector * G4BinaryCascade::Pro 386 G4ReactionProductVector * G4BinaryCascade::Propagate( 388 G4KineticTrackVector * secondaries, G4 387 G4KineticTrackVector * secondaries, G4V3DNucleus * aNucleus) 389 //-------------------------------------------- 388 //---------------------------------------------------------------------------- 390 { 389 { 391 G4ping debug("debug_G4BinaryCascade"); 390 G4ping debug("debug_G4BinaryCascade"); 392 #ifdef debug_BIC_Propagate 391 #ifdef debug_BIC_Propagate 393 G4cout << "G4BinaryCascade Propagate start 392 G4cout << "G4BinaryCascade Propagate starting -------------------------------------------------------" <<G4endl; 394 #endif 393 #endif 395 394 396 the3DNucleus=aNucleus; 395 the3DNucleus=aNucleus; 397 G4ReactionProductVector * products = new G 396 G4ReactionProductVector * products = new G4ReactionProductVector; 398 theOuterRadius = the3DNucleus->GetOuterRad 397 theOuterRadius = the3DNucleus->GetOuterRadius(); 399 theCurrentTime=0; 398 theCurrentTime=0; 400 theProjectile4Momentum=G4LorentzVector(0,0 399 theProjectile4Momentum=G4LorentzVector(0,0,0,0); 401 theMomentumTransfer=G4ThreeVector(0,0,0); 400 theMomentumTransfer=G4ThreeVector(0,0,0); 402 // build theSecondaryList, theProjectileLi 401 // build theSecondaryList, theProjectileList and theCapturedList 403 ClearAndDestroy(&theCapturedList); 402 ClearAndDestroy(&theCapturedList); 404 ClearAndDestroy(&theSecondaryList); 403 ClearAndDestroy(&theSecondaryList); 405 theSecondaryList.clear(); 404 theSecondaryList.clear(); 406 ClearAndDestroy(&theFinalState); 405 ClearAndDestroy(&theFinalState); 407 std::vector<G4KineticTrack *>::iterator it 406 std::vector<G4KineticTrack *>::iterator iter; 408 theCollisionMgr->ClearAndDestroy(); 407 theCollisionMgr->ClearAndDestroy(); 409 408 410 theCutOnP=90*MeV; 409 theCutOnP=90*MeV; 411 if(the3DNucleus->GetMass()>30) theCutOnP = 410 if(the3DNucleus->GetMass()>30) theCutOnP = 70*MeV; 412 if(the3DNucleus->GetMass()>60) theCutOnP = 411 if(the3DNucleus->GetMass()>60) theCutOnP = 50*MeV; 413 if(the3DNucleus->GetMass()>120) theCutOnP 412 if(the3DNucleus->GetMass()>120) theCutOnP = 45*MeV; 414 413 415 414 416 BuildTargetList(); 415 BuildTargetList(); 417 416 418 #ifdef debug_BIC_GetExcitationEnergy 417 #ifdef debug_BIC_GetExcitationEnergy 419 G4cout << "ExcitationEnergy0 " << GetExcit 418 G4cout << "ExcitationEnergy0 " << GetExcitationEnergy() << G4endl; 420 #endif 419 #endif 421 420 422 thePropagator->Init(the3DNucleus); 421 thePropagator->Init(the3DNucleus); 423 422 424 G4bool success = BuildLateParticleCollisio 423 G4bool success = BuildLateParticleCollisions(secondaries); 425 if (! success ) // fails if no excitatio 424 if (! success ) // fails if no excitation energy left.... 426 { 425 { 427 products=HighEnergyModelFSProducts(prod 426 products=HighEnergyModelFSProducts(products, secondaries); 428 ClearAndDestroy(secondaries); 427 ClearAndDestroy(secondaries); 429 delete secondaries; 428 delete secondaries; 430 429 431 #ifdef debug_G4BinaryCascade 430 #ifdef debug_G4BinaryCascade 432 G4cout << "G4BinaryCascade::Propagate: 431 G4cout << "G4BinaryCascade::Propagate: warning - high energy model failed energy conservation, returning unchanged high energy final state" << G4endl; 433 #endif 432 #endif 434 433 435 return products; 434 return products; 436 } 435 } 437 // check baryon and charge ... 436 // check baryon and charge ... 438 437 439 _CheckChargeAndBaryonNumber_("lateparticle 438 _CheckChargeAndBaryonNumber_("lateparticles"); 440 _DebugEpConservation(" be4 findcollisions" 439 _DebugEpConservation(" be4 findcollisions"); 441 440 442 // if called stand alone find first collis 441 // if called stand alone find first collisions 443 FindCollisions(&theSecondaryList); 442 FindCollisions(&theSecondaryList); 444 443 445 444 446 if(theCollisionMgr->Entries() == 0 ) 445 if(theCollisionMgr->Entries() == 0 ) //late particles ALWAYS create Entries 447 { 446 { 448 //G4cout << " no collsions -> return 0 447 //G4cout << " no collsions -> return 0" << G4endl; 449 delete products; 448 delete products; 450 #ifdef debug_BIC_return 449 #ifdef debug_BIC_return 451 G4cout << "return @ begin2, no collis 450 G4cout << "return @ begin2, no collisions "<< G4endl; 452 #endif 451 #endif 453 return nullptr; << 452 return 0; 454 } 453 } 455 454 456 // end of initialization: do the job now 455 // end of initialization: do the job now 457 // loop until there are no more collisions 456 // loop until there are no more collisions 458 457 459 458 460 G4bool haveProducts = false; 459 G4bool haveProducts = false; 461 #ifdef debug_BIC_Propagate_Collisions 460 #ifdef debug_BIC_Propagate_Collisions 462 G4int collisionCount=0; 461 G4int collisionCount=0; 463 #endif 462 #endif 464 G4int collisionLoopMaxCount=1000000; 463 G4int collisionLoopMaxCount=1000000; 465 while(theCollisionMgr->Entries() > 0 && cu 464 while(theCollisionMgr->Entries() > 0 && currentZ && --collisionLoopMaxCount>0) /* Loop checking, 31.08.2015, G.Folger */ 466 { 465 { 467 if(Absorb()) { // absorb secondaries, p 466 if(Absorb()) { // absorb secondaries, pions only 468 haveProducts = true; 467 haveProducts = true; 469 } 468 } 470 if(Capture()) { // capture secondaries, 469 if(Capture()) { // capture secondaries, nucleons only 471 haveProducts = true; 470 haveProducts = true; 472 } 471 } 473 472 474 // propagate to the next collision if 473 // propagate to the next collision if any (collisions could have been deleted 475 // by previous absorption or capture) 474 // by previous absorption or capture) 476 if(theCollisionMgr->Entries() > 0) 475 if(theCollisionMgr->Entries() > 0) 477 { 476 { 478 G4CollisionInitialState * 477 G4CollisionInitialState * 479 nextCollision = theCollisionMgr->G 478 nextCollision = theCollisionMgr->GetNextCollision(); 480 #ifdef debug_BIC_Propagate_Collisions 479 #ifdef debug_BIC_Propagate_Collisions 481 G4cout << " NextCollision * , Tim 480 G4cout << " NextCollision * , Time, curtime = " << nextCollision << " " 482 <<nextCollision->GetCollis 481 <<nextCollision->GetCollisionTime()<< " " << 483 theCurrentTime<< G4endl; 482 theCurrentTime<< G4endl; 484 #endif 483 #endif 485 if (!DoTimeStep(nextCollision->Get 484 if (!DoTimeStep(nextCollision->GetCollisionTime()-theCurrentTime) ) 486 { 485 { 487 // Check if nextCollision is s 486 // Check if nextCollision is still valid, ie. particle did not leave nucleus 488 if (theCollisionMgr->GetNextCo 487 if (theCollisionMgr->GetNextCollision() != nextCollision ) 489 { 488 { 490 nextCollision = nullptr; << 489 nextCollision = 0; 491 } 490 } 492 } 491 } 493 //_DebugEpConservation("Stepped"); 492 //_DebugEpConservation("Stepped"); 494 493 495 if( nextCollision ) 494 if( nextCollision ) 496 { 495 { 497 if (ApplyCollision(nextCollisi 496 if (ApplyCollision(nextCollision)) 498 { 497 { 499 //G4cerr << "ApplyCollisio 498 //G4cerr << "ApplyCollision success " << G4endl; 500 haveProducts = true; 499 haveProducts = true; 501 #ifdef debug_BIC_Propagate_Collisions 500 #ifdef debug_BIC_Propagate_Collisions 502 collisionCount++; 501 collisionCount++; 503 #endif 502 #endif 504 503 505 } else { 504 } else { 506 //G4cerr << "ApplyCollisio 505 //G4cerr << "ApplyCollision failure " << G4endl; 507 theCollisionMgr->RemoveCol 506 theCollisionMgr->RemoveCollision(nextCollision); 508 } 507 } 509 } 508 } 510 } 509 } 511 } 510 } 512 511 513 //--------- end of on Collisions 512 //--------- end of on Collisions 514 //G4cout << "currentZ @ end loop " << curr 513 //G4cout << "currentZ @ end loop " << currentZ << G4endl; 515 G4int nProtons(0); 514 G4int nProtons(0); 516 for(iter = theTargetList.begin(); iter != 515 for(iter = theTargetList.begin(); iter != theTargetList.end(); ++iter) 517 { 516 { 518 if ( (*iter)->GetDefinition() == G4Proto 517 if ( (*iter)->GetDefinition() == G4Proton::Proton() ) ++nProtons; 519 } 518 } 520 if ( ! theTargetList.size() || ! nProtons 519 if ( ! theTargetList.size() || ! nProtons ){ 521 // nucleus completely destroyed, fill 520 // nucleus completely destroyed, fill in ReactionProductVector 522 products = FillVoidNucleusProducts(prod 521 products = FillVoidNucleusProducts(products); 523 #ifdef debug_BIC_return 522 #ifdef debug_BIC_return 524 G4cout << "return @ Z=0 after collisio 523 G4cout << "return @ Z=0 after collision loop "<< G4endl; 525 PrintKTVector(&theSecondaryList,std::s 524 PrintKTVector(&theSecondaryList,std::string(" theSecondaryList")); 526 G4cout << "theTargetList size: " << th 525 G4cout << "theTargetList size: " << theTargetList.size() << G4endl; 527 PrintKTVector(&theTargetList,std::stri 526 PrintKTVector(&theTargetList,std::string(" theTargetList")); 528 PrintKTVector(&theCapturedList,std::st 527 PrintKTVector(&theCapturedList,std::string(" theCapturedList")); 529 528 530 G4cout << " ExcitE be4 Correct : " <<G 529 G4cout << " ExcitE be4 Correct : " <<GetExcitationEnergy() << G4endl; 531 G4cout << " Mom Transfered to nucleus 530 G4cout << " Mom Transfered to nucleus : " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; 532 PrintKTVector(&theFinalState,std::stri 531 PrintKTVector(&theFinalState,std::string(" FinalState uncorrected")); 533 G4cout << "returned products: " << pro 532 G4cout << "returned products: " << products->size() << G4endl; 534 _CheckChargeAndBaryonNumber_("destroye 533 _CheckChargeAndBaryonNumber_("destroyed Nucleus"); 535 _DebugEpConservation("destroyed Nucleu 534 _DebugEpConservation("destroyed Nucleus"); 536 #endif 535 #endif 537 536 538 return products; 537 return products; 539 } 538 } 540 539 541 // No more collisions: absorb, capture and 540 // No more collisions: absorb, capture and propagate the secondaries out of the nucleus 542 if(Absorb()) { 541 if(Absorb()) { 543 haveProducts = true; 542 haveProducts = true; 544 // G4cout << "Absorb sucess " << G4end 543 // G4cout << "Absorb sucess " << G4endl; 545 } 544 } 546 545 547 if(Capture()) { 546 if(Capture()) { 548 haveProducts = true; 547 haveProducts = true; 549 // G4cout << "Capture sucess " << G4en 548 // G4cout << "Capture sucess " << G4endl; 550 } 549 } 551 550 552 if(!haveProducts) // no collisions happen 551 if(!haveProducts) // no collisions happened. Return an empty vector. 553 { 552 { 554 #ifdef debug_BIC_return 553 #ifdef debug_BIC_return 555 G4cout << "return 3, no products "<< G 554 G4cout << "return 3, no products "<< G4endl; 556 #endif 555 #endif 557 return products; 556 return products; 558 } 557 } 559 558 560 559 561 #ifdef debug_BIC_Propagate 560 #ifdef debug_BIC_Propagate 562 G4cout << " Momentum transfer to Nucleus " 561 G4cout << " Momentum transfer to Nucleus " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; 563 G4cout << " Stepping particles out...... 562 G4cout << " Stepping particles out...... " << G4endl; 564 #endif 563 #endif 565 564 566 StepParticlesOut(); 565 StepParticlesOut(); 567 _DebugEpConservation("stepped out"); 566 _DebugEpConservation("stepped out"); 568 567 569 568 570 if ( theSecondaryList.size() > 0 ) 569 if ( theSecondaryList.size() > 0 ) 571 { 570 { 572 #ifdef debug_G4BinaryCascade 571 #ifdef debug_G4BinaryCascade 573 G4cerr << "G4BinaryCascade: Warning, h 572 G4cerr << "G4BinaryCascade: Warning, have active particles at end" << G4endl; 574 PrintKTVector(&theSecondaryList, "acti 573 PrintKTVector(&theSecondaryList, "active particles @ end added to theFinalState"); 575 #endif 574 #endif 576 // add left secondaries to FinalSate 575 // add left secondaries to FinalSate 577 for ( iter =theSecondaryList.begin(); 576 for ( iter =theSecondaryList.begin(); iter != theSecondaryList.end(); ++iter) 578 { 577 { 579 theFinalState.push_back(*iter); 578 theFinalState.push_back(*iter); 580 } 579 } 581 theSecondaryList.clear(); 580 theSecondaryList.clear(); 582 581 583 } 582 } 584 while ( theCollisionMgr->Entries() > 0 ) 583 while ( theCollisionMgr->Entries() > 0 ) /* Loop checking, 31.08.2015, G.Folger */ 585 { 584 { 586 #ifdef debug_G4BinaryCascade 585 #ifdef debug_G4BinaryCascade 587 G4cerr << " Warning: remove left over 586 G4cerr << " Warning: remove left over collision(s) " << G4endl; 588 #endif 587 #endif 589 theCollisionMgr->RemoveCollision(theCo 588 theCollisionMgr->RemoveCollision(theCollisionMgr->GetNextCollision()); 590 } 589 } 591 590 592 #ifdef debug_BIC_Propagate_Excitation 591 #ifdef debug_BIC_Propagate_Excitation 593 592 594 PrintKTVector(&theSecondaryList,std::strin 593 PrintKTVector(&theSecondaryList,std::string(" theSecondaryList")); 595 G4cout << "theTargetList size: " << theTar 594 G4cout << "theTargetList size: " << theTargetList.size() << G4endl; 596 // PrintKTVector(&theTargetList,std::stri 595 // PrintKTVector(&theTargetList,std::string(" theTargetList")); 597 PrintKTVector(&theCapturedList,std::string 596 PrintKTVector(&theCapturedList,std::string(" theCapturedList")); 598 597 599 G4cout << " ExcitE be4 Correct : " <<GetEx 598 G4cout << " ExcitE be4 Correct : " <<GetExcitationEnergy() << G4endl; 600 G4cout << " Mom Transfered to nucleus : " 599 G4cout << " Mom Transfered to nucleus : " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; 601 PrintKTVector(&theFinalState,std::string(" 600 PrintKTVector(&theFinalState,std::string(" FinalState uncorrected")); 602 #endif 601 #endif 603 602 604 // 603 // 605 604 606 605 607 G4double ExcitationEnergy=GetExcitationEne 606 G4double ExcitationEnergy=GetExcitationEnergy(); 608 607 609 #ifdef debug_BIC_Propagate_finals 608 #ifdef debug_BIC_Propagate_finals 610 PrintKTVector(&theFinalState,std::string(" 609 PrintKTVector(&theFinalState,std::string(" FinalState be4 corr")); 611 G4cout << " Excitation Energy prefinal, # 610 G4cout << " Excitation Energy prefinal, #collisions:, out, captured " 612 << ExcitationEnergy << " " 611 << ExcitationEnergy << " " 613 << collisionCount << " " 612 << collisionCount << " " 614 << theFinalState.size() << " " 613 << theFinalState.size() << " " 615 << theCapturedList.size()<<G4endl; 614 << theCapturedList.size()<<G4endl; 616 #endif 615 #endif 617 616 618 if (ExcitationEnergy < 0 ) 617 if (ExcitationEnergy < 0 ) 619 { 618 { 620 G4int maxtry=5, ntry=0; 619 G4int maxtry=5, ntry=0; 621 do { 620 do { 622 CorrectFinalPandE(); 621 CorrectFinalPandE(); 623 ExcitationEnergy=GetExcitationEner 622 ExcitationEnergy=GetExcitationEnergy(); 624 } while ( ++ntry < maxtry && Excitatio 623 } while ( ++ntry < maxtry && ExcitationEnergy < 0 ); /* Loop checking, 31.08.2015, G.Folger */ 625 } 624 } 626 _DebugEpConservation("corrected"); 625 _DebugEpConservation("corrected"); 627 626 628 #ifdef debug_BIC_Propagate_finals 627 #ifdef debug_BIC_Propagate_finals 629 PrintKTVector(&theFinalState,std::string(" 628 PrintKTVector(&theFinalState,std::string(" FinalState corrected")); 630 G4cout << " Excitation Energy final, #col 629 G4cout << " Excitation Energy final, #collisions:, out, captured " 631 << ExcitationEnergy << " " 630 << ExcitationEnergy << " " 632 << collisionCount << " " 631 << collisionCount << " " 633 << theFinalState.size() << " " 632 << theFinalState.size() << " " 634 << theCapturedList.size()<<G4endl; 633 << theCapturedList.size()<<G4endl; 635 #endif 634 #endif 636 635 637 636 638 if ( ExcitationEnergy < 0. ) 637 if ( ExcitationEnergy < 0. ) 639 { 638 { 640 #ifdef debug_G4BinaryCascade 639 #ifdef debug_G4BinaryCascade 641 G4cerr << "G4BinaryCascade-W 640 G4cerr << "G4BinaryCascade-Warning: negative excitation energy "; 642 G4cerr <<ExcitationEnergy<<G 641 G4cerr <<ExcitationEnergy<<G4endl; 643 PrintKTVector(&theFinalState, 642 PrintKTVector(&theFinalState,std::string("FinalState")); 644 PrintKTVector(&theCapturedLis 643 PrintKTVector(&theCapturedList,std::string("captured")); 645 G4cout << "negative ExE:Final 644 G4cout << "negative ExE:Final 4Momentum .mag: " << GetFinal4Momentum() 646 << " "<< GetFinal4Mome 645 << " "<< GetFinal4Momentum().mag()<< G4endl 647 << "negative ExE:Final 646 << "negative ExE:FinalNucleusMom .mag: " << GetFinalNucleusMomentum() 648 << " "<< GetFinalNucleusMome 647 << " "<< GetFinalNucleusMomentum().mag()<< G4endl; 649 #endif 648 #endif 650 #ifdef debug_BIC_return 649 #ifdef debug_BIC_return 651 G4cout << " negative Exci 650 G4cout << " negative Excitation E return empty products " << products << G4endl; 652 G4cout << "return 4, excit 651 G4cout << "return 4, excit < 0 "<< G4endl; 653 #endif 652 #endif 654 653 655 ClearAndDestroy(products); 654 ClearAndDestroy(products); 656 return products; // return empty pro 655 return products; // return empty products- FixMe 657 } 656 } 658 657 659 G4ReactionProductVector * precompoundProdu 658 G4ReactionProductVector * precompoundProducts=DeExcite(); 660 659 661 660 662 G4DecayKineticTracks decay(&theFinalState) 661 G4DecayKineticTracks decay(&theFinalState); 663 _DebugEpConservation("decayed"); 662 _DebugEpConservation("decayed"); 664 663 665 products= ProductsAddFinalState(products, 664 products= ProductsAddFinalState(products, theFinalState); 666 665 667 products= ProductsAddPrecompound(products, 666 products= ProductsAddPrecompound(products, precompoundProducts); 668 667 669 // products=ProductsAddFakeGamma(products); 668 // products=ProductsAddFakeGamma(products); 670 669 671 670 672 thePrimaryEscape = true; 671 thePrimaryEscape = true; 673 672 674 #ifdef debug_BIC_return 673 #ifdef debug_BIC_return 675 G4cout << "BIC: return @end, all ok "<< G4 674 G4cout << "BIC: return @end, all ok "<< G4endl; 676 //G4cout << " return products " << produc 675 //G4cout << " return products " << products << G4endl; 677 #endif 676 #endif 678 677 679 return products; 678 return products; 680 } 679 } 681 680 682 //-------------------------------------------- 681 //---------------------------------------------------------------------------- 683 G4double G4BinaryCascade::GetExcitationEnergy( 682 G4double G4BinaryCascade::GetExcitationEnergy() 684 //-------------------------------------------- 683 //---------------------------------------------------------------------------- 685 { 684 { 686 685 687 // get A and Z for the residual nucleus 686 // get A and Z for the residual nucleus 688 #if defined(debug_G4BinaryCascade) || defined( 687 #if defined(debug_G4BinaryCascade) || defined(debug_BIC_GetExcitationEnergy) 689 G4int finalA = theTargetList.size()+theCap 688 G4int finalA = theTargetList.size()+theCapturedList.size(); 690 G4int finalZ = GetTotalCharge(theTargetLis 689 G4int finalZ = GetTotalCharge(theTargetList)+GetTotalCharge(theCapturedList); 691 if ( (currentA - finalA) != 0 || (currentZ 690 if ( (currentA - finalA) != 0 || (currentZ - finalZ) != 0 ) 692 { 691 { 693 G4cerr << "G4BIC:GetExcitationEnergy() 692 G4cerr << "G4BIC:GetExcitationEnergy(): Nucleon counting error current/final{A,Z} " 694 << "("<< currentA << "," << fi 693 << "("<< currentA << "," << finalA << ") ("<< currentZ << "," << finalZ << ")" << G4endl; 695 } 694 } 696 695 697 #endif 696 #endif 698 697 699 G4double excitationE(0); 698 G4double excitationE(0); 700 G4double nucleusMass(0); 699 G4double nucleusMass(0); 701 if(currentZ>.5) 700 if(currentZ>.5) 702 { 701 { 703 nucleusMass = GetIonMass(currentZ,curr 702 nucleusMass = GetIonMass(currentZ,currentA); 704 } 703 } 705 else if (currentZ==0 ) 704 else if (currentZ==0 ) 706 { 705 { 707 if(currentA == 1) {nucleusMass = G4Neu 706 if(currentA == 1) {nucleusMass = G4Neutron::Neutron()->GetPDGMass();} 708 else {nucleusMass = GetFi 707 else {nucleusMass = GetFinalNucleusMomentum().mag() - 3.*MeV*currentA;} 709 } 708 } 710 else 709 else 711 { 710 { 712 #ifdef debug_G4BinaryCascade 711 #ifdef debug_G4BinaryCascade 713 G4cout << "G4BinaryCascade::GetExcitat 712 G4cout << "G4BinaryCascade::GetExcitationEnergy(): Warning - invalid nucleus (A,Z)=(" 714 << currentA << "," << currentZ 713 << currentA << "," << currentZ << ")" << G4endl; 715 #endif 714 #endif 716 return 0; 715 return 0; 717 } 716 } 718 717 719 #ifdef debug_BIC_GetExcitationEnergy 718 #ifdef debug_BIC_GetExcitationEnergy 720 G4ping debug("debug_ExcitationEnergy"); 719 G4ping debug("debug_ExcitationEnergy"); 721 debug.push_back("====> current A, Z"); 720 debug.push_back("====> current A, Z"); 722 debug.push_back(currentZ); 721 debug.push_back(currentZ); 723 debug.push_back(currentA); 722 debug.push_back(currentA); 724 debug.push_back("====> final A, Z"); 723 debug.push_back("====> final A, Z"); 725 debug.push_back(finalZ); 724 debug.push_back(finalZ); 726 debug.push_back(finalA); 725 debug.push_back(finalA); 727 debug.push_back(nucleusMass); 726 debug.push_back(nucleusMass); 728 debug.push_back(GetFinalNucleusMomentum(). 727 debug.push_back(GetFinalNucleusMomentum().mag()); 729 debug.dump(); 728 debug.dump(); 730 // PrintKTVector(&theTargetList, std::str 729 // PrintKTVector(&theTargetList, std::string(" current target list info")); 731 //PrintKTVector(&theCapturedList, std::str 730 //PrintKTVector(&theCapturedList, std::string(" current captured list info")); 732 #endif 731 #endif 733 732 734 excitationE = GetFinalNucleusMomentum().ma 733 excitationE = GetFinalNucleusMomentum().mag() - nucleusMass; 735 734 736 //G4double exE2 = GetFinal4Momentum().mag( 735 //G4double exE2 = GetFinal4Momentum().mag() - nucleusMass; 737 736 738 //G4cout << "old/new excitE " << excitatio 737 //G4cout << "old/new excitE " << excitationE << " / "<< exE2 << G4endl; 739 738 740 #ifdef debug_BIC_GetExcitationEnergy 739 #ifdef debug_BIC_GetExcitationEnergy 741 // ------ debug 740 // ------ debug 742 if ( excitationE < 0 ) 741 if ( excitationE < 0 ) 743 { 742 { 744 G4cout << "negative ExE final Ion mass 743 G4cout << "negative ExE final Ion mass " <<nucleusMass<< G4endl; 745 G4LorentzVector Nucl_mom=GetFinalNucle 744 G4LorentzVector Nucl_mom=GetFinalNucleusMomentum(); 746 if(finalZ>.5) G4cout << " Final nuclmo 745 if(finalZ>.5) G4cout << " Final nuclmom/mass " << Nucl_mom << " " << Nucl_mom.mag() 747 << " (A,Z)=("<< finalA 746 << " (A,Z)=("<< finalA <<","<<finalZ <<")" 748 << " mass " << nucleusM 747 << " mass " << nucleusMass << " " 749 << " excitE " << excita 748 << " excitE " << excitationE << G4endl; 750 749 751 750 752 G4int A = the3DNucleus->GetMassNumber( 751 G4int A = the3DNucleus->GetMassNumber(); 753 G4int Z = the3DNucleus->GetCharge(); 752 G4int Z = the3DNucleus->GetCharge(); 754 G4double initialExc(0); 753 G4double initialExc(0); 755 if(Z>.5) 754 if(Z>.5) 756 { 755 { 757 initialExc = theInitial4Mom.mag()- 756 initialExc = theInitial4Mom.mag()- GetIonMass(Z, A); 758 G4cout << "GetExcitationEnergy: In 757 G4cout << "GetExcitationEnergy: Initial nucleus A Z " << A << " " << Z << " " << initialExc << G4endl; 759 } 758 } 760 } 759 } 761 760 762 #endif 761 #endif 763 762 764 return excitationE; 763 return excitationE; 765 } 764 } 766 765 767 766 768 //-------------------------------------------- 767 //---------------------------------------------------------------------------- 769 // 768 // 770 // P R I V A T E M E M B E R F U N C 769 // P R I V A T E M E M B E R F U N C T I O N S 771 // 770 // 772 //-------------------------------------------- 771 //---------------------------------------------------------------------------- 773 772 774 //-------------------------------------------- 773 //---------------------------------------------------------------------------- 775 void G4BinaryCascade::BuildTargetList() 774 void G4BinaryCascade::BuildTargetList() 776 //-------------------------------------------- 775 //---------------------------------------------------------------------------- 777 { 776 { 778 777 779 if(!the3DNucleus->StartLoop()) 778 if(!the3DNucleus->StartLoop()) 780 { 779 { 781 // G4cerr << "G4BinaryCascade::Buil 780 // G4cerr << "G4BinaryCascade::BuildTargetList(): StartLoop() error!" 782 // << G4endl; 781 // << G4endl; 783 return; 782 return; 784 } 783 } 785 784 786 ClearAndDestroy(&theTargetList); // clear 785 ClearAndDestroy(&theTargetList); // clear theTargetList before rebuilding 787 786 788 G4Nucleon * nucleon; 787 G4Nucleon * nucleon; 789 const G4ParticleDefinition * definition; 788 const G4ParticleDefinition * definition; 790 G4ThreeVector pos; 789 G4ThreeVector pos; 791 G4LorentzVector mom; 790 G4LorentzVector mom; 792 // if there are nucleon hit by higher ener 791 // if there are nucleon hit by higher energy models, then SUM(momenta) != 0 793 initialZ=the3DNucleus->GetCharge(); 792 initialZ=the3DNucleus->GetCharge(); 794 initialA=the3DNucleus->GetMassNumber(); 793 initialA=the3DNucleus->GetMassNumber(); 795 initial_nuclear_mass=GetIonMass(initialZ,i 794 initial_nuclear_mass=GetIonMass(initialZ,initialA); 796 theInitial4Mom = G4LorentzVector(0,0,0,ini 795 theInitial4Mom = G4LorentzVector(0,0,0,initial_nuclear_mass); 797 currentA=0; 796 currentA=0; 798 currentZ=0; 797 currentZ=0; 799 while((nucleon = the3DNucleus->GetNextNucl << 798 while((nucleon = the3DNucleus->GetNextNucleon()) != NULL) /* Loop checking, 31.08.2015, G.Folger */ 800 { 799 { 801 // check if nucleon is hit by higher e 800 // check if nucleon is hit by higher energy model. 802 if ( ! nucleon->AreYouHit() ) 801 if ( ! nucleon->AreYouHit() ) 803 { 802 { 804 definition = nucleon->GetDefinitio 803 definition = nucleon->GetDefinition(); 805 pos = nucleon->GetPosition(); 804 pos = nucleon->GetPosition(); 806 mom = nucleon->GetMomentum(); 805 mom = nucleon->GetMomentum(); 807 // G4cout << "Nucleus " << pos. 806 // G4cout << "Nucleus " << pos.mag()/fermi << " " << mom.e() << G4endl; 808 //theInitial4Mom += mom; 807 //theInitial4Mom += mom; 809 // the potential inside the 808 // the potential inside the nucleus is taken into account, and nucleons are on mass shell. 810 mom.setE( std::sqrt( mom.vect().ma 809 mom.setE( std::sqrt( mom.vect().mag2() + sqr(definition->GetPDGMass()) ) ); 811 G4KineticTrack * kt = new G4Kineti 810 G4KineticTrack * kt = new G4KineticTrack(definition, 0., pos, mom); 812 kt->SetState(G4KineticTrack::insid 811 kt->SetState(G4KineticTrack::inside); 813 kt->SetNucleon(nucleon); 812 kt->SetNucleon(nucleon); 814 theTargetList.push_back(kt); 813 theTargetList.push_back(kt); 815 ++currentA; 814 ++currentA; 816 if (definition->GetPDGCharge() > . 815 if (definition->GetPDGCharge() > .5 ) ++currentZ; 817 } 816 } 818 817 819 #ifdef debug_BIC_BuildTargetList 818 #ifdef debug_BIC_BuildTargetList 820 else { G4cout << "nucleon is hit" << n 819 else { G4cout << "nucleon is hit" << nucleon << G4endl;} 821 #endif 820 #endif 822 } 821 } 823 massInNucleus = 0; 822 massInNucleus = 0; 824 if(currentZ>.5) 823 if(currentZ>.5) 825 { 824 { 826 massInNucleus = GetIonMass(currentZ,cu 825 massInNucleus = GetIonMass(currentZ,currentA); 827 } else if (currentZ==0 && currentA>=1 ) 826 } else if (currentZ==0 && currentA>=1 ) 828 { 827 { 829 massInNucleus = currentA * G4Neutron:: 828 massInNucleus = currentA * G4Neutron::Neutron()->GetPDGMass(); 830 } else 829 } else 831 { 830 { 832 G4cerr << "G4BinaryCascade::BuildTarge 831 G4cerr << "G4BinaryCascade::BuildTargetList(): Fatal Error - invalid nucleus (A,Z)=(" 833 << currentA << "," << currentZ 832 << currentA << "," << currentZ << ")" << G4endl; 834 throw G4HadronicException(__FILE__, __ 833 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCasacde::BuildTargetList()"); 835 } 834 } 836 currentInitialEnergy= theInitial4Mom.e() + 835 currentInitialEnergy= theInitial4Mom.e() + theProjectile4Momentum.e(); 837 836 838 #ifdef debug_BIC_BuildTargetList 837 #ifdef debug_BIC_BuildTargetList 839 G4cout << "G4BinaryCascade::BuildTargetLis 838 G4cout << "G4BinaryCascade::BuildTargetList(): nucleus (A,Z)=(" 840 << currentA << "," << currentZ << 839 << currentA << "," << currentZ << ") mass: " << massInNucleus << 841 ", theInitial4Mom " << theInitial4 840 ", theInitial4Mom " << theInitial4Mom << 842 ", currentInitialEnergy " << curre 841 ", currentInitialEnergy " << currentInitialEnergy << G4endl; 843 #endif 842 #endif 844 843 845 } 844 } 846 845 847 //-------------------------------------------- 846 //---------------------------------------------------------------------------- 848 G4bool G4BinaryCascade::BuildLateParticleColl 847 G4bool G4BinaryCascade::BuildLateParticleCollisions(G4KineticTrackVector * secondaries) 849 //-------------------------------------------- 848 //---------------------------------------------------------------------------- 850 { 849 { 851 G4bool success(false); 850 G4bool success(false); 852 std::vector<G4KineticTrack *>::iterator ite 851 std::vector<G4KineticTrack *>::iterator iter; 853 852 854 lateA=lateZ=0; 853 lateA=lateZ=0; 855 projectileA=projectileZ=0; 854 projectileA=projectileZ=0; 856 855 857 G4double StartingTime=DBL_MAX; // Se 856 G4double StartingTime=DBL_MAX; // Search for minimal formation time 858 for(iter = secondaries->begin(); iter != se 857 for(iter = secondaries->begin(); iter != secondaries->end(); ++iter) 859 { 858 { 860 if((*iter)->GetFormationTime() < Startin 859 if((*iter)->GetFormationTime() < StartingTime) 861 StartingTime = (*iter)->GetFormationT 860 StartingTime = (*iter)->GetFormationTime(); 862 } 861 } 863 862 864 //PrintKTVector(secondaries, "initial late 863 //PrintKTVector(secondaries, "initial late particles "); 865 G4LorentzVector lateParticles4Momentum(0,0, 864 G4LorentzVector lateParticles4Momentum(0,0,0,0); 866 for(iter = secondaries->begin(); iter != se 865 for(iter = secondaries->begin(); iter != secondaries->end(); ++iter) 867 { 866 { 868 // G4cout << " Formation time : " << (* 867 // G4cout << " Formation time : " << (*iter)->GetDefinition()->GetParticleName() << " " 869 // << (*iter)->GetFormationTime() << G 868 // << (*iter)->GetFormationTime() << G4endl; 870 G4double FormTime = (*iter)->GetFormatio 869 G4double FormTime = (*iter)->GetFormationTime() - StartingTime; 871 (*iter)->SetFormationTime(FormTime); 870 (*iter)->SetFormationTime(FormTime); 872 if( (*iter)->GetState() == G4KineticTrac 871 if( (*iter)->GetState() == G4KineticTrack::undefined ) // particles from high energy generator 873 { 872 { 874 FindLateParticleCollision(*iter); 873 FindLateParticleCollision(*iter); 875 lateParticles4Momentum += (*iter)->Ge 874 lateParticles4Momentum += (*iter)->GetTrackingMomentum(); 876 lateA += (*iter)->GetDefinition()->Ge 875 lateA += (*iter)->GetDefinition()->GetBaryonNumber(); 877 lateZ += G4lrint((*iter)->GetDefiniti 876 lateZ += G4lrint((*iter)->GetDefinition()->GetPDGCharge()/eplus); 878 //PrintKTVector(*iter, "late particle 877 //PrintKTVector(*iter, "late particle "); 879 } else 878 } else 880 { 879 { 881 theSecondaryList.push_back(*iter); 880 theSecondaryList.push_back(*iter); 882 //PrintKTVector(*iter, "incoming part 881 //PrintKTVector(*iter, "incoming particle "); 883 theProjectile4Momentum += (*iter)->Ge 882 theProjectile4Momentum += (*iter)->GetTrackingMomentum(); 884 projectileA += (*iter)->GetDefinition 883 projectileA += (*iter)->GetDefinition()->GetBaryonNumber(); 885 projectileZ += G4lrint((*iter)->GetDe 884 projectileZ += G4lrint((*iter)->GetDefinition()->GetPDGCharge()/eplus); 886 #ifdef debug_BIC_Propagate 885 #ifdef debug_BIC_Propagate 887 G4cout << " Adding initial secondary 886 G4cout << " Adding initial secondary " << *iter 888 << " time" << (*iter)->GetForma 887 << " time" << (*iter)->GetFormationTime() 889 << ", state " << (*iter)->GetSt 888 << ", state " << (*iter)->GetState() << G4endl; 890 #endif 889 #endif 891 } 890 } 892 } 891 } 893 //theCollisionMgr->Print(); 892 //theCollisionMgr->Print(); 894 const G4HadProjectile * primary = GetPrimar 893 const G4HadProjectile * primary = GetPrimaryProjectile(); // check for primary from TheoHE model 895 894 896 if (primary){ 895 if (primary){ 897 G4LorentzVector mom=primary->Get4Momentu 896 G4LorentzVector mom=primary->Get4Momentum(); 898 theProjectile4Momentum += mom; 897 theProjectile4Momentum += mom; 899 projectileA = primary->GetDefinition()-> 898 projectileA = primary->GetDefinition()->GetBaryonNumber(); 900 projectileZ = G4lrint(primary->GetDefini 899 projectileZ = G4lrint(primary->GetDefinition()->GetPDGCharge()/eplus); 901 // now check if "excitation" energy left 900 // now check if "excitation" energy left by TheoHE model 902 G4double excitation= theProjectile4Momen 901 G4double excitation= theProjectile4Momentum.e() + initial_nuclear_mass - lateParticles4Momentum.e() - massInNucleus; 903 #ifdef debug_BIC_GetExcitationEnergy 902 #ifdef debug_BIC_GetExcitationEnergy 904 G4cout << "BIC: Proj.e, nucl initial, nu 903 G4cout << "BIC: Proj.e, nucl initial, nucl final, lateParticles" 905 << theProjectile4Momentum << ", " 904 << theProjectile4Momentum << ", " 906 << initial_nuclear_mass<< ", " << 905 << initial_nuclear_mass<< ", " << massInNucleus << ", " 907 << lateParticles4Momentum << G4end 906 << lateParticles4Momentum << G4endl; 908 G4cout << "BIC: Proj.e / initial excitat 907 G4cout << "BIC: Proj.e / initial excitation: " << theProjectile4Momentum.e() << " / " << excitation << G4endl; 909 #endif 908 #endif 910 success = excitation > 0; 909 success = excitation > 0; 911 #ifdef debug_G4BinaryCascade 910 #ifdef debug_G4BinaryCascade 912 if ( ! success ) { 911 if ( ! success ) { 913 G4cout << "G4BinaryCascade::BuildLate 912 G4cout << "G4BinaryCascade::BuildLateParticleCollisions(): Proj.e / initial excitation: " << theProjectile4Momentum.e() << " / " << excitation << G4endl; 914 //PrintKTVector(secondaries); 913 //PrintKTVector(secondaries); 915 } 914 } 916 #endif 915 #endif 917 } else { 916 } else { 918 // no primary from HE model -> cascade 917 // no primary from HE model -> cascade 919 success=true; 918 success=true; 920 } 919 } 921 920 922 if (success) { 921 if (success) { 923 secondaries->clear(); // Don't leave "G4 922 secondaries->clear(); // Don't leave "G4KineticTrack *"s in two vectors 924 delete secondaries; 923 delete secondaries; 925 } 924 } 926 return success; 925 return success; 927 } 926 } 928 927 929 //-------------------------------------------- 928 //---------------------------------------------------------------------------- 930 G4ReactionProductVector * G4BinaryCascade::De 929 G4ReactionProductVector * G4BinaryCascade::DeExcite() 931 //-------------------------------------------- 930 //---------------------------------------------------------------------------- 932 { 931 { 933 // find a fragment and call the precompound 932 // find a fragment and call the precompound model. 934 G4Fragment * fragment = nullptr; << 933 G4Fragment * fragment = 0; 935 G4ReactionProductVector * precompoundProduc << 934 G4ReactionProductVector * precompoundProducts = 0; 936 935 937 G4LorentzVector pFragment(0); 936 G4LorentzVector pFragment(0); 938 // G4cout << " final4mon " << GetFinal4Mome 937 // G4cout << " final4mon " << GetFinal4Momentum() /MeV << G4endl; 939 938 940 fragment = FindFragments(); 939 fragment = FindFragments(); 941 940 942 if(fragment) 941 if(fragment) 943 { 942 { 944 if(fragment->GetA_asInt() >1) 943 if(fragment->GetA_asInt() >1) 945 { 944 { 946 pFragment=fragment->GetMomentum(); 945 pFragment=fragment->GetMomentum(); 947 // G4cout << " going to preco with fr 946 // G4cout << " going to preco with fragment 4 mom " << pFragment << G4endl; 948 if (theDeExcitation) / 947 if (theDeExcitation) // pre-compound 949 { 948 { 950 precompoundProducts= theDeExcitati 949 precompoundProducts= theDeExcitation->DeExcite(*fragment); 951 } 950 } 952 else if (theExcitationHandler) // 951 else if (theExcitationHandler) // de-excitation 953 { 952 { 954 precompoundProducts=theExcitationH 953 precompoundProducts=theExcitationHandler->BreakItUp(*fragment); 955 } 954 } 956 955 957 } else 956 } else 958 { // f 957 { // fragment->GetA_asInt() <= 1, so a single proton, as a fragment must have Z>0 959 if (theTargetList.size() + theCapture 958 if (theTargetList.size() + theCapturedList.size() > 1 ) { 960 throw G4HadronicException(__FILE__ 959 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCasacde:: Invalid Fragment"); 961 } 960 } 962 961 963 std::vector<G4KineticTrack *>::iterat 962 std::vector<G4KineticTrack *>::iterator i; 964 if ( theTargetList.size() == 1 ) {i= 963 if ( theTargetList.size() == 1 ) {i=theTargetList.begin();} 965 if ( theCapturedList.size() == 1 ) {i 964 if ( theCapturedList.size() == 1 ) {i=theCapturedList.begin();} 966 G4ReactionProduct * aNew = new G4Reac 965 G4ReactionProduct * aNew = new G4ReactionProduct((*i)->GetDefinition()); 967 aNew->SetTotalEnergy((*i)->GetDefinit 966 aNew->SetTotalEnergy((*i)->GetDefinition()->GetPDGMass()); 968 aNew->SetCreatorModelID(theBIC_ID); 967 aNew->SetCreatorModelID(theBIC_ID); 969 aNew->SetParentResonanceDef((*i)->GetParent 968 aNew->SetParentResonanceDef((*i)->GetParentResonanceDef()); 970 aNew->SetParentResonanceID((*i)->GetParentR 969 aNew->SetParentResonanceID((*i)->GetParentResonanceID()); 971 aNew->SetMomentum(G4ThreeVector(0));/ 970 aNew->SetMomentum(G4ThreeVector(0));// see boost for preCompoundProducts below.. 972 precompoundProducts = new G4ReactionP 971 precompoundProducts = new G4ReactionProductVector(); 973 precompoundProducts->push_back(aNew); 972 precompoundProducts->push_back(aNew); 974 } // End of f 973 } // End of fragment->GetA() < 1.5 975 delete fragment; 974 delete fragment; 976 fragment=nullptr; << 975 fragment=0; 977 976 978 } else // End of 977 } else // End of if(fragment) 979 { // No fra 978 { // No fragment, can be neutrons only 980 979 981 precompoundProducts = DecayVoidNucleus() 980 precompoundProducts = DecayVoidNucleus(); 982 } 981 } 983 #ifdef debug_BIC_DeexcitationProducts 982 #ifdef debug_BIC_DeexcitationProducts 984 983 985 G4LorentzVector fragment_momentum=GetFi 984 G4LorentzVector fragment_momentum=GetFinalNucleusMomentum(); 986 G4LorentzVector Preco_momentum; 985 G4LorentzVector Preco_momentum; 987 if ( precompoundProducts ) 986 if ( precompoundProducts ) 988 { 987 { 989 std::vector<G4ReactionProduct *>::it 988 std::vector<G4ReactionProduct *>::iterator j; 990 for(j = precompoundProducts->begin() 989 for(j = precompoundProducts->begin(); j != precompoundProducts->end(); ++j) 991 { 990 { 992 G4LorentzVector pProduct((*j)->Ge 991 G4LorentzVector pProduct((*j)->GetMomentum(),(*j)->GetTotalEnergy()); 993 Preco_momentum += pProduct; 992 Preco_momentum += pProduct; 994 } 993 } 995 } 994 } 996 G4cout << "finalNuclMom / sum preco pro 995 G4cout << "finalNuclMom / sum preco products" << fragment_momentum << " / " << Preco_momentum 997 << " delta E "<< fragment_momentum. 996 << " delta E "<< fragment_momentum.e() - Preco_momentum.e() << G4endl; 998 997 999 #endif 998 #endif 1000 999 1001 return precompoundProducts; 1000 return precompoundProducts; 1002 } 1001 } 1003 1002 1004 //------------------------------------------- 1003 //---------------------------------------------------------------------------- 1005 G4ReactionProductVector * G4BinaryCascade::D 1004 G4ReactionProductVector * G4BinaryCascade::DecayVoidNucleus() 1006 //------------------------------------------- 1005 //---------------------------------------------------------------------------- 1007 { 1006 { 1008 G4ReactionProductVector * result = nullptr << 1007 G4ReactionProductVector * result=0; 1009 if ( (theTargetList.size()+theCapturedList 1008 if ( (theTargetList.size()+theCapturedList.size()) > 0 ) 1010 { 1009 { 1011 result = new G4ReactionProductVector; 1010 result = new G4ReactionProductVector; 1012 std::vector<G4KineticTrack *>::iterator 1011 std::vector<G4KineticTrack *>::iterator aNuc; 1013 G4LorentzVector aVec; 1012 G4LorentzVector aVec; 1014 std::vector<G4double> masses; 1013 std::vector<G4double> masses; 1015 G4double sumMass(0); 1014 G4double sumMass(0); 1016 1015 1017 if ( theTargetList.size() != 0) 1016 if ( theTargetList.size() != 0) 1018 { 1017 { 1019 for ( aNuc=theTargetList.begin(); aN 1018 for ( aNuc=theTargetList.begin(); aNuc != theTargetList.end(); aNuc++) 1020 { 1019 { 1021 G4double mass=(*aNuc)->GetDefinit 1020 G4double mass=(*aNuc)->GetDefinition()->GetPDGMass(); 1022 masses.push_back(mass); 1021 masses.push_back(mass); 1023 sumMass += mass; 1022 sumMass += mass; 1024 } 1023 } 1025 } 1024 } 1026 1025 1027 if ( theCapturedList.size() != 0) 1026 if ( theCapturedList.size() != 0) 1028 { 1027 { 1029 for(aNuc = theCapturedList.begin(); 1028 for(aNuc = theCapturedList.begin(); aNuc != theCapturedList.end(); aNuc++) 1030 { 1029 { 1031 G4double mass=(*aNuc)->GetDefinit 1030 G4double mass=(*aNuc)->GetDefinition()->GetPDGMass(); 1032 masses.push_back(mass); 1031 masses.push_back(mass); 1033 sumMass += mass; 1032 sumMass += mass; 1034 } 1033 } 1035 } 1034 } 1036 1035 1037 G4LorentzVector finalP=GetFinal4Momentu 1036 G4LorentzVector finalP=GetFinal4Momentum(); 1038 G4FermiPhaseSpaceDecay decay; 1037 G4FermiPhaseSpaceDecay decay; 1039 // G4cout << " some neutrons? " << mass 1038 // G4cout << " some neutrons? " << masses.size() <<" " ; 1040 // G4cout<< theTargetList.size()<<" "<< 1039 // G4cout<< theTargetList.size()<<" "<<finalP <<" " << finalP.mag()<<G4endl; 1041 1040 1042 G4double eCMS=finalP.mag(); 1041 G4double eCMS=finalP.mag(); 1043 if ( eCMS < sumMass ) 1042 if ( eCMS < sumMass ) // @@GF --- Cheat!! 1044 { 1043 { 1045 eCMS=sumMass + 2*MeV*masses.size(); 1044 eCMS=sumMass + 2*MeV*masses.size(); 1046 finalP.setE(std::sqrt(finalP.vect(). 1045 finalP.setE(std::sqrt(finalP.vect().mag2() + sqr(eCMS))); 1047 } 1046 } 1048 1047 1049 precompoundLorentzboost.set(finalP.boos 1048 precompoundLorentzboost.set(finalP.boostVector()); 1050 std::vector<G4LorentzVector*> * momenta 1049 std::vector<G4LorentzVector*> * momenta=decay.Decay(eCMS,masses); 1051 std::vector<G4LorentzVector*>::iterator 1050 std::vector<G4LorentzVector*>::iterator aMom=momenta->begin(); 1052 1051 1053 1052 1054 if ( theTargetList.size() != 0) 1053 if ( theTargetList.size() != 0) 1055 { 1054 { 1056 for ( aNuc=theTargetList.begin(); 1055 for ( aNuc=theTargetList.begin(); 1057 (aNuc != theTargetList.end()) 1056 (aNuc != theTargetList.end()) && (aMom!=momenta->end()); 1058 aNuc++, aMom++ ) 1057 aNuc++, aMom++ ) 1059 { 1058 { 1060 G4ReactionProduct * aNew = new G4 1059 G4ReactionProduct * aNew = new G4ReactionProduct((*aNuc)->GetDefinition()); 1061 aNew->SetTotalEnergy((*aMom)->e() 1060 aNew->SetTotalEnergy((*aMom)->e()); 1062 aNew->SetMomentum((*aMom)->vect() 1061 aNew->SetMomentum((*aMom)->vect()); 1063 aNew->SetCreatorModelID(theBIC_ID 1062 aNew->SetCreatorModelID(theBIC_ID); 1064 aNew->SetParentResonanceDef((*aNuc)->Ge 1063 aNew->SetParentResonanceDef((*aNuc)->GetParentResonanceDef()); 1065 aNew->SetParentResonanceID((*aNuc)->Get 1064 aNew->SetParentResonanceID((*aNuc)->GetParentResonanceID()); 1066 result->push_back(aNew); 1065 result->push_back(aNew); 1067 delete *aMom; 1066 delete *aMom; 1068 } 1067 } 1069 } 1068 } 1070 1069 1071 if ( theCapturedList.size() != 0) 1070 if ( theCapturedList.size() != 0) 1072 { 1071 { 1073 for ( aNuc=theCapturedList.begin(); 1072 for ( aNuc=theCapturedList.begin(); 1074 (aNuc != theCapturedList.end() 1073 (aNuc != theCapturedList.end()) && (aMom!=momenta->end()); 1075 aNuc++, aMom++ ) 1074 aNuc++, aMom++ ) 1076 { 1075 { 1077 G4ReactionProduct * aNew = new G4 1076 G4ReactionProduct * aNew = new G4ReactionProduct((*aNuc)->GetDefinition()); 1078 aNew->SetTotalEnergy((*aMom)->e() 1077 aNew->SetTotalEnergy((*aMom)->e()); 1079 aNew->SetMomentum((*aMom)->vect() 1078 aNew->SetMomentum((*aMom)->vect()); 1080 aNew->SetCreatorModelID(theBIC_ID 1079 aNew->SetCreatorModelID(theBIC_ID); 1081 aNew->SetParentResonanceDef((*aNu 1080 aNew->SetParentResonanceDef((*aNuc)->GetParentResonanceDef()); 1082 aNew->SetParentResonanceID((*aNuc 1081 aNew->SetParentResonanceID((*aNuc)->GetParentResonanceID()); 1083 result->push_back(aNew); 1082 result->push_back(aNew); 1084 delete *aMom; 1083 delete *aMom; 1085 } 1084 } 1086 } 1085 } 1087 1086 1088 delete momenta; 1087 delete momenta; 1089 } 1088 } 1090 return result; 1089 return result; 1091 } // End if(!fragment) 1090 } // End if(!fragment) 1092 1091 1093 //------------------------------------------- 1092 //---------------------------------------------------------------------------- 1094 G4ReactionProductVector * G4BinaryCascade::Pr 1093 G4ReactionProductVector * G4BinaryCascade::ProductsAddFinalState(G4ReactionProductVector * products, G4KineticTrackVector & fs) 1095 //------------------------------------------- 1094 //---------------------------------------------------------------------------- 1096 { 1095 { 1097 // fill in products the outgoing particles 1096 // fill in products the outgoing particles 1098 std::size_t i(0); << 1097 size_t i(0); 1099 #ifdef debug_BIC_Propagate_finals 1098 #ifdef debug_BIC_Propagate_finals 1100 G4LorentzVector mom_fs; 1099 G4LorentzVector mom_fs; 1101 #endif 1100 #endif 1102 for(i = 0; i< fs.size(); i++) 1101 for(i = 0; i< fs.size(); i++) 1103 { 1102 { 1104 G4KineticTrack * kt = fs[i]; 1103 G4KineticTrack * kt = fs[i]; 1105 G4ReactionProduct * aNew = new G4Reac 1104 G4ReactionProduct * aNew = new G4ReactionProduct(kt->GetDefinition()); 1106 aNew->SetMomentum(kt->Get4Momentum(). 1105 aNew->SetMomentum(kt->Get4Momentum().vect()); 1107 aNew->SetTotalEnergy(kt->Get4Momentum 1106 aNew->SetTotalEnergy(kt->Get4Momentum().e()); 1108 aNew->SetNewlyAdded(kt->IsParticipant 1107 aNew->SetNewlyAdded(kt->IsParticipant()); 1109 aNew->SetCreatorModelID(theBIC_ID); 1108 aNew->SetCreatorModelID(theBIC_ID); 1110 aNew->SetParentResonanceDef(kt->GetPa 1109 aNew->SetParentResonanceDef(kt->GetParentResonanceDef()); 1111 aNew->SetParentResonanceID(kt->GetPar 1110 aNew->SetParentResonanceID(kt->GetParentResonanceID()); 1112 products->push_back(aNew); 1111 products->push_back(aNew); 1113 1112 1114 #ifdef debug_BIC_Propagate_finals 1113 #ifdef debug_BIC_Propagate_finals 1115 mom_fs += kt->Get4Momentum(); 1114 mom_fs += kt->Get4Momentum(); 1116 G4cout <<kt->GetDefinition()->GetPart 1115 G4cout <<kt->GetDefinition()->GetParticleName(); 1117 G4cout << " Particle Ekin " << aNew-> 1116 G4cout << " Particle Ekin " << aNew->GetKineticEnergy(); 1118 G4cout << ", is " << (kt->GetDefiniti 1117 G4cout << ", is " << (kt->GetDefinition()->GetPDGStable() ? "stable" : 1119 (kt->GetDefinition()->IsShort 1118 (kt->GetDefinition()->IsShortLived() ? "short lived " : "non stable")) ; 1120 G4cout << G4endl; 1119 G4cout << G4endl; 1121 #endif 1120 #endif 1122 1121 1123 } 1122 } 1124 #ifdef debug_BIC_Propagate_finals 1123 #ifdef debug_BIC_Propagate_finals 1125 G4cout << " Final state momentum " << mom 1124 G4cout << " Final state momentum " << mom_fs << G4endl; 1126 #endif 1125 #endif 1127 1126 1128 return products; 1127 return products; 1129 } 1128 } 1130 //------------------------------------------- 1129 //---------------------------------------------------------------------------- 1131 G4ReactionProductVector * G4BinaryCascade::Pr 1130 G4ReactionProductVector * G4BinaryCascade::ProductsAddPrecompound(G4ReactionProductVector * products, G4ReactionProductVector * precompoundProducts) 1132 //------------------------------------------- 1131 //---------------------------------------------------------------------------- 1133 { 1132 { 1134 G4LorentzVector pSumPreco(0), pPreco(0); 1133 G4LorentzVector pSumPreco(0), pPreco(0); 1135 1134 1136 if ( precompoundProducts ) 1135 if ( precompoundProducts ) 1137 { 1136 { 1138 for(auto j = precompoundProducts->cbegi << 1137 std::vector<G4ReactionProduct *>::iterator j; >> 1138 for(j = precompoundProducts->begin(); j != precompoundProducts->end(); ++j) 1139 { 1139 { 1140 // boost back to system of moving nu 1140 // boost back to system of moving nucleus 1141 G4LorentzVector pProduct((*j)->GetMo 1141 G4LorentzVector pProduct((*j)->GetMomentum(),(*j)->GetTotalEnergy()); 1142 pPreco+= pProduct; 1142 pPreco+= pProduct; 1143 #ifdef debug_BIC_Propagate_finals 1143 #ifdef debug_BIC_Propagate_finals 1144 G4cout << "BIC: pProduct be4 boost " 1144 G4cout << "BIC: pProduct be4 boost " <<pProduct << G4endl; 1145 #endif 1145 #endif 1146 pProduct *= precompoundLorentzboost; 1146 pProduct *= precompoundLorentzboost; 1147 #ifdef debug_BIC_Propagate_finals 1147 #ifdef debug_BIC_Propagate_finals 1148 G4cout << "BIC: pProduct aft boost " 1148 G4cout << "BIC: pProduct aft boost " <<pProduct << G4endl; 1149 #endif 1149 #endif 1150 pSumPreco += pProduct; 1150 pSumPreco += pProduct; 1151 (*j)->SetTotalEnergy(pProduct.e()); 1151 (*j)->SetTotalEnergy(pProduct.e()); 1152 (*j)->SetMomentum(pProduct.vect()); 1152 (*j)->SetMomentum(pProduct.vect()); 1153 (*j)->SetNewlyAdded(true); 1153 (*j)->SetNewlyAdded(true); 1154 products->push_back(*j); 1154 products->push_back(*j); 1155 } 1155 } 1156 // G4cout << " unboosted preco result m 1156 // G4cout << " unboosted preco result mom " << pPreco / MeV << " ..- fragmentMom " << (pPreco - pFragment)/MeV<< G4endl; 1157 // G4cout << " preco result mom " << pS 1157 // G4cout << " preco result mom " << pSumPreco / MeV << " ..-file4Mom " << (pSumPreco - GetFinal4Momentum())/MeV<< G4endl; 1158 precompoundProducts->clear(); 1158 precompoundProducts->clear(); 1159 delete precompoundProducts; 1159 delete precompoundProducts; 1160 } 1160 } 1161 return products; 1161 return products; 1162 } 1162 } 1163 //------------------------------------------- 1163 //---------------------------------------------------------------------------- 1164 void G4BinaryCascade::FindCollisions(G4Kinet 1164 void G4BinaryCascade::FindCollisions(G4KineticTrackVector * secondaries) 1165 //------------------------------------------- 1165 //---------------------------------------------------------------------------- 1166 { 1166 { 1167 for(auto i=secondaries->cbegin(); i!=seco << 1167 for(std::vector<G4KineticTrack *>::iterator i = secondaries->begin(); >> 1168 i != secondaries->end(); ++i) 1168 { 1169 { 1169 for(auto j=theImR.cbegin(); j!=theImR << 1170 for(std::vector<G4BCAction *>::iterator j = theImR.begin(); >> 1171 j!=theImR.end(); j++) 1170 { 1172 { 1171 // G4cout << "G4BinaryCascad 1173 // G4cout << "G4BinaryCascade::FindCollisions: at action " << *j << G4endl; 1172 const std::vector<G4CollisionInit 1174 const std::vector<G4CollisionInitialState *> & aCandList 1173 = (*j)->GetCollisions(*i, theTarg 1175 = (*j)->GetCollisions(*i, theTargetList, theCurrentTime); 1174 for(std::size_t count=0; count<aC << 1176 for(size_t count=0; count<aCandList.size(); count++) 1175 { 1177 { 1176 theCollisionMgr->AddCollision 1178 theCollisionMgr->AddCollision(aCandList[count]); 1177 //4cout << "================= 1179 //4cout << "====================== New Collision ================="<<G4endl; 1178 //theCollisionMgr->Print(); 1180 //theCollisionMgr->Print(); 1179 } 1181 } 1180 } 1182 } 1181 } 1183 } 1182 } 1184 } 1183 1185 1184 1186 1185 //------------------------------------------- 1187 //---------------------------------------------------------------------------- 1186 void G4BinaryCascade::FindDecayCollision(G4K 1188 void G4BinaryCascade::FindDecayCollision(G4KineticTrack * secondary) 1187 //------------------------------------------- 1189 //---------------------------------------------------------------------------- 1188 { 1190 { 1189 const auto& aCandList = theDecay->GetColl << 1191 const std::vector<G4CollisionInitialState *> & aCandList 1190 for(std::size_t count=0; count<aCandList. << 1192 = theDecay->GetCollisions(secondary, theTargetList, theCurrentTime); >> 1193 for(size_t count=0; count<aCandList.size(); count++) 1191 { 1194 { 1192 theCollisionMgr->AddCollision(aCandLi 1195 theCollisionMgr->AddCollision(aCandList[count]); 1193 } 1196 } 1194 } 1197 } 1195 1198 1196 //------------------------------------------- 1199 //---------------------------------------------------------------------------- 1197 void G4BinaryCascade::FindLateParticleCollis 1200 void G4BinaryCascade::FindLateParticleCollision(G4KineticTrack * secondary) 1198 //------------------------------------------- 1201 //---------------------------------------------------------------------------- 1199 { 1202 { 1200 1203 1201 G4double tin=0., tout=0.; 1204 G4double tin=0., tout=0.; 1202 if (((G4RKPropagation*)thePropagator)->Ge 1205 if (((G4RKPropagation*)thePropagator)->GetSphereIntersectionTimes(secondary,tin,tout)) 1203 { 1206 { 1204 if ( tin > 0 ) 1207 if ( tin > 0 ) 1205 { 1208 { 1206 secondary->SetState(G4KineticTrac 1209 secondary->SetState(G4KineticTrack::outside); 1207 } else if ( tout > 0 ) 1210 } else if ( tout > 0 ) 1208 { 1211 { 1209 secondary->SetState(G4KineticTrac 1212 secondary->SetState(G4KineticTrack::inside); 1210 } else { 1213 } else { 1211 //G4cout << "G4BC set miss , tin, 1214 //G4cout << "G4BC set miss , tin, tout " << tin << " , " << tout <<G4endl; 1212 secondary->SetState(G4KineticTrac 1215 secondary->SetState(G4KineticTrack::miss_nucleus); 1213 } 1216 } 1214 } else { 1217 } else { 1215 secondary->SetState(G4KineticTrack::m 1218 secondary->SetState(G4KineticTrack::miss_nucleus); 1216 //G4cout << "G4BC set miss ,no inters 1219 //G4cout << "G4BC set miss ,no intersect tin, tout " << tin << " , " << tout <<G4endl; 1217 } 1220 } 1218 1221 1219 1222 1220 #ifdef debug_BIC_FindCollision 1223 #ifdef debug_BIC_FindCollision 1221 G4cout << "FindLateP Particle, 4-mom, tim 1224 G4cout << "FindLateP Particle, 4-mom, times newState " 1222 << secondary->GetDefinition()->Ge 1225 << secondary->GetDefinition()->GetParticleName() << " " 1223 << secondary->Get4Momentum() 1226 << secondary->Get4Momentum() 1224 << " times " << tin << " " << to 1227 << " times " << tin << " " << tout << " " 1225 << secondary->GetState() << G4end 1228 << secondary->GetState() << G4endl; 1226 #endif 1229 #endif 1227 1230 1228 const auto& aCandList = theLateParticle-> << 1231 const std::vector<G4CollisionInitialState *> & aCandList 1229 for(std::size_t count=0; count<aCandList. << 1232 = theLateParticle->GetCollisions(secondary, theTargetList, theCurrentTime); >> 1233 for(size_t count=0; count<aCandList.size(); count++) 1230 { 1234 { 1231 #ifdef debug_BIC_FindCollision 1235 #ifdef debug_BIC_FindCollision 1232 G4cout << " Adding a late Col : " << 1236 G4cout << " Adding a late Col : " << aCandList[count] << G4endl; 1233 #endif 1237 #endif 1234 theCollisionMgr->AddCollision(aCandLi 1238 theCollisionMgr->AddCollision(aCandList[count]); 1235 } 1239 } 1236 } 1240 } 1237 1241 1238 1242 1239 //------------------------------------------- 1243 //---------------------------------------------------------------------------- 1240 G4bool G4BinaryCascade::ApplyCollision(G4Coll 1244 G4bool G4BinaryCascade::ApplyCollision(G4CollisionInitialState * collision) 1241 //------------------------------------------- 1245 //---------------------------------------------------------------------------- 1242 { 1246 { 1243 G4KineticTrack * primary = collision->Get 1247 G4KineticTrack * primary = collision->GetPrimary(); 1244 1248 1245 #ifdef debug_BIC_ApplyCollision 1249 #ifdef debug_BIC_ApplyCollision 1246 G4cerr << "G4BinaryCascade::ApplyCollisio 1250 G4cerr << "G4BinaryCascade::ApplyCollision start"<<G4endl; 1247 theCollisionMgr->Print(); 1251 theCollisionMgr->Print(); 1248 G4cout << "ApplyCollisions : projte 4mom 1252 G4cout << "ApplyCollisions : projte 4mom " << primary->GetTrackingMomentum()<< G4endl; 1249 #endif 1253 #endif 1250 1254 1251 G4KineticTrackVector target_collection=co 1255 G4KineticTrackVector target_collection=collision->GetTargetCollection(); 1252 G4bool haveTarget=target_collection.size( 1256 G4bool haveTarget=target_collection.size()>0; 1253 if( haveTarget && (primary->GetState() != 1257 if( haveTarget && (primary->GetState() != G4KineticTrack::inside) ) 1254 { 1258 { 1255 #ifdef debug_G4BinaryCascade 1259 #ifdef debug_G4BinaryCascade 1256 G4cout << "G4BinaryCasacde::ApplyColl 1260 G4cout << "G4BinaryCasacde::ApplyCollision(): StateError " << primary << G4endl; 1257 PrintKTVector(primary,std::string("pr 1261 PrintKTVector(primary,std::string("primay- ...")); 1258 PrintKTVector(&target_collection,std: 1262 PrintKTVector(&target_collection,std::string("... targets")); 1259 collision->Print(); 1263 collision->Print(); 1260 G4cout << G4endl; 1264 G4cout << G4endl; 1261 theCollisionMgr->Print(); 1265 theCollisionMgr->Print(); 1262 //*GF* throw G4HadronicException( 1266 //*GF* throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCasacde::ApplyCollision()"); 1263 #endif 1267 #endif 1264 return false; 1268 return false; 1265 // } else { 1269 // } else { 1266 // G4cout << "G4BinaryCasacde::ApplyCol 1270 // G4cout << "G4BinaryCasacde::ApplyCollision(): decay " << G4endl; 1267 // PrintKTVector(primary,std::string("p 1271 // PrintKTVector(primary,std::string("primay- ...")); 1268 // G4double tin=0., tout=0.; 1272 // G4double tin=0., tout=0.; 1269 // if (((G4RKPropagation*)thePropagator 1273 // if (((G4RKPropagation*)thePropagator)->GetSphereIntersectionTimes(primary,tin,tout)) 1270 // { 1274 // { 1271 // G4cout << "tin tout: " << tin << 1275 // G4cout << "tin tout: " << tin << " " << tout << G4endl; 1272 // } 1276 // } 1273 1277 1274 } 1278 } 1275 1279 1276 G4LorentzVector mom4Primary=primary->Get4 1280 G4LorentzVector mom4Primary=primary->Get4Momentum(); 1277 1281 1278 G4int initialBaryon(0); 1282 G4int initialBaryon(0); 1279 G4int initialCharge(0); 1283 G4int initialCharge(0); 1280 if (primary->GetState() == G4KineticTrack 1284 if (primary->GetState() == G4KineticTrack::inside) 1281 { 1285 { 1282 initialBaryon = primary->GetDefinitio 1286 initialBaryon = primary->GetDefinition()->GetBaryonNumber(); 1283 initialCharge = G4lrint(primary->GetD 1287 initialCharge = G4lrint(primary->GetDefinition()->GetPDGCharge()/eplus); 1284 } 1288 } 1285 1289 1286 // for primary resonances, subtract neutr 1290 // for primary resonances, subtract neutron ( = proton) field ( ie. add std::abs(field)) 1287 G4double initial_Efermi=CorrectShortlived << 1291 G4double initial_Efermi=CorrectShortlivedPrimaryForFermi(primary,target_collection); 1288 //*************************************** 1292 //**************************************** 1289 1293 1290 1294 1291 G4KineticTrackVector * products = collisi 1295 G4KineticTrackVector * products = collision->GetFinalState(); 1292 1296 1293 #ifdef debug_BIC_ApplyCollision 1297 #ifdef debug_BIC_ApplyCollision 1294 DebugApplyCollisionFail(collision, produc 1298 DebugApplyCollisionFail(collision, products); 1295 #endif 1299 #endif 1296 1300 1297 // reset primary to initial state, in cas 1301 // reset primary to initial state, in case there is a veto... 1298 primary->Set4Momentum(mom4Primary); 1302 primary->Set4Momentum(mom4Primary); 1299 1303 1300 G4bool lateParticleCollision= (!haveTarge 1304 G4bool lateParticleCollision= (!haveTarget) && products && products->size() == 1; 1301 G4bool decayCollision= (!haveTarget) && p 1305 G4bool decayCollision= (!haveTarget) && products && products->size() > 1; 1302 G4bool Success(true); 1306 G4bool Success(true); 1303 1307 1304 1308 1305 #ifdef debug_G4BinaryCascade 1309 #ifdef debug_G4BinaryCascade 1306 G4int lateBaryon(0), lateCharge(0); 1310 G4int lateBaryon(0), lateCharge(0); 1307 #endif 1311 #endif 1308 1312 1309 if ( lateParticleCollision ) 1313 if ( lateParticleCollision ) 1310 { // for late particles, reset charges 1314 { // for late particles, reset charges 1311 //G4cout << "lateP, initial B C state 1315 //G4cout << "lateP, initial B C state " << initialBaryon << " " 1312 // << initialCharge<< " " << p 1316 // << initialCharge<< " " << primary->GetState() << " "<< primary->GetDefinition()->GetParticleName()<< G4endl; 1313 #ifdef debug_G4BinaryCascade 1317 #ifdef debug_G4BinaryCascade 1314 lateBaryon = initialBaryon; 1318 lateBaryon = initialBaryon; 1315 lateCharge = initialCharge; 1319 lateCharge = initialCharge; 1316 #endif 1320 #endif 1317 initialBaryon=initialCharge=0; 1321 initialBaryon=initialCharge=0; 1318 lateA -= primary->GetDefinition()->Ge 1322 lateA -= primary->GetDefinition()->GetBaryonNumber(); 1319 lateZ -= G4lrint(primary->GetDefiniti 1323 lateZ -= G4lrint(primary->GetDefinition()->GetPDGCharge()/eplus); 1320 } 1324 } 1321 1325 1322 initialBaryon += collision->GetTargetBary 1326 initialBaryon += collision->GetTargetBaryonNumber(); 1323 initialCharge += G4lrint(collision->GetTa 1327 initialCharge += G4lrint(collision->GetTargetCharge()); 1324 if (!lateParticleCollision) 1328 if (!lateParticleCollision) 1325 { 1329 { 1326 if( !products || products->size()==0 | 1330 if( !products || products->size()==0 || !CheckPauliPrinciple(products) ) 1327 { 1331 { 1328 #ifdef debug_BIC_ApplyCollision 1332 #ifdef debug_BIC_ApplyCollision 1329 if (products) G4cout << " ======Fai 1333 if (products) G4cout << " ======Failed Pauli =====" << G4endl; 1330 G4cerr << "G4BinaryCascade::ApplyCo 1334 G4cerr << "G4BinaryCascade::ApplyCollision blocked"<<G4endl; 1331 #endif 1335 #endif 1332 Success=false; 1336 Success=false; 1333 } 1337 } 1334 1338 1335 1339 1336 1340 1337 if (Success && primary->GetState() == 1341 if (Success && primary->GetState() == G4KineticTrack::inside ) { // if the primary was outside, nothing to correct 1338 if (! CorrectShortlivedFinalsForFer 1342 if (! CorrectShortlivedFinalsForFermi(products, initial_Efermi)){ 1339 Success=false; 1343 Success=false; 1340 } 1344 } 1341 } 1345 } 1342 } 1346 } 1343 1347 1344 #ifdef debug_BIC_ApplyCollision 1348 #ifdef debug_BIC_ApplyCollision 1345 DebugApplyCollision(collision, products); 1349 DebugApplyCollision(collision, products); 1346 #endif 1350 #endif 1347 1351 1348 if ( ! Success ){ 1352 if ( ! Success ){ 1349 if (products) ClearAndDestroy(product 1353 if (products) ClearAndDestroy(products); 1350 if ( decayCollision ) FindDecayCollis 1354 if ( decayCollision ) FindDecayCollision(primary); // for decay, sample new decay 1351 delete products; 1355 delete products; 1352 products=nullptr; << 1356 products=0; 1353 return false; 1357 return false; 1354 } 1358 } 1355 1359 1356 G4int finalBaryon(0); 1360 G4int finalBaryon(0); 1357 G4int finalCharge(0); 1361 G4int finalCharge(0); 1358 G4KineticTrackVector toFinalState; 1362 G4KineticTrackVector toFinalState; 1359 for(auto i=products->cbegin(); i!=product << 1363 for(std::vector<G4KineticTrack *>::iterator i =products->begin(); i != products->end(); i++) 1360 { 1364 { 1361 if ( ! lateParticleCollision ) 1365 if ( ! lateParticleCollision ) 1362 { 1366 { 1363 (*i)->SetState(primary->GetState( 1367 (*i)->SetState(primary->GetState()); // decay may be anywhere! 1364 if ( (*i)->GetState() == G4Kineti 1368 if ( (*i)->GetState() == G4KineticTrack::inside ){ 1365 finalBaryon+=(*i)->GetDefinit 1369 finalBaryon+=(*i)->GetDefinition()->GetBaryonNumber(); 1366 finalCharge+=G4lrint((*i)->Ge 1370 finalCharge+=G4lrint((*i)->GetDefinition()->GetPDGCharge()/eplus); 1367 } else { 1371 } else { 1368 G4double tin=0., tout=0.; 1372 G4double tin=0., tout=0.; 1369 if (((G4RKPropagation*)theProp 1373 if (((G4RKPropagation*)thePropagator)->GetSphereIntersectionTimes((*i),tin,tout) && 1370 tin < 0 && tout > 0 ) 1374 tin < 0 && tout > 0 ) 1371 { 1375 { 1372 PrintKTVector((*i),"particl 1376 PrintKTVector((*i),"particle inside marked not-inside"); 1373 G4cout << "tin tout: " << 1377 G4cout << "tin tout: " << tin << " " << tout << G4endl; 1374 } 1378 } 1375 } 1379 } 1376 } else { 1380 } else { 1377 G4double tin=0., tout=0.; 1381 G4double tin=0., tout=0.; 1378 if (((G4RKPropagation*)thePropaga 1382 if (((G4RKPropagation*)thePropagator)->GetSphereIntersectionTimes((*i),tin,tout)) 1379 { 1383 { 1380 //G4cout << "tin tout: " << t 1384 //G4cout << "tin tout: " << tin << " " << tout << G4endl; 1381 if ( tin > 0 ) 1385 if ( tin > 0 ) 1382 { 1386 { 1383 (*i)->SetState(G4KineticT 1387 (*i)->SetState(G4KineticTrack::outside); 1384 } 1388 } 1385 else if ( tout > 0 ) 1389 else if ( tout > 0 ) 1386 { 1390 { 1387 (*i)->SetState(G4KineticT 1391 (*i)->SetState(G4KineticTrack::inside); 1388 finalBaryon+=(*i)->GetDef 1392 finalBaryon+=(*i)->GetDefinition()->GetBaryonNumber(); 1389 finalCharge+=G4lrint((*i) 1393 finalCharge+=G4lrint((*i)->GetDefinition()->GetPDGCharge()/eplus); 1390 } 1394 } 1391 else 1395 else 1392 { 1396 { 1393 (*i)->SetState(G4KineticT 1397 (*i)->SetState(G4KineticTrack::gone_out); 1394 toFinalState.push_back((* 1398 toFinalState.push_back((*i)); 1395 } 1399 } 1396 } else 1400 } else 1397 { 1401 { 1398 (*i)->SetState(G4KineticTrack 1402 (*i)->SetState(G4KineticTrack::miss_nucleus); 1399 //G4cout << " G4BC - miss -la 1403 //G4cout << " G4BC - miss -late Part- no intersection found " << G4endl; 1400 toFinalState.push_back((*i)); 1404 toFinalState.push_back((*i)); 1401 } 1405 } 1402 1406 1403 } 1407 } 1404 } 1408 } 1405 if(!toFinalState.empty()) 1409 if(!toFinalState.empty()) 1406 { 1410 { 1407 theFinalState.insert(theFinalState.ce << 1411 theFinalState.insert(theFinalState.end(), 1408 toFinalState.cbegin(),toFinal << 1412 toFinalState.begin(),toFinalState.end()); 1409 std::vector<G4KineticTrack *>::iterat << 1413 std::vector<G4KineticTrack *>::iterator iter1, iter2; 1410 for(auto iter1=toFinalState.cbegin(); << 1414 for(iter1 = toFinalState.begin(); iter1 != toFinalState.end(); 1411 { << 1415 ++iter1) 1412 iter2 = std::find(products->begin << 1416 { 1413 if ( iter2 != products->cend() ) << 1417 iter2 = std::find(products->begin(), products->end(), >> 1418 *iter1); >> 1419 if ( iter2 != products->end() ) products->erase(iter2); 1414 } 1420 } 1415 theCollisionMgr->RemoveTracksCollisio 1421 theCollisionMgr->RemoveTracksCollisions(&toFinalState); 1416 } 1422 } 1417 1423 1418 //G4cout << " currentA, Z be4: " << curre 1424 //G4cout << " currentA, Z be4: " << currentA << " " << currentZ << G4endl; 1419 currentA += finalBaryon-initialBaryon; 1425 currentA += finalBaryon-initialBaryon; 1420 currentZ += finalCharge-initialCharge; 1426 currentZ += finalCharge-initialCharge; 1421 //G4cout << " ApplyCollision currentA, Z 1427 //G4cout << " ApplyCollision currentA, Z aft: " << currentA << " " << currentZ << G4endl; 1422 1428 1423 G4KineticTrackVector oldSecondaries; 1429 G4KineticTrackVector oldSecondaries; 1424 oldSecondaries.push_back(primary); 1430 oldSecondaries.push_back(primary); 1425 primary->Hit(); 1431 primary->Hit(); 1426 1432 1427 #ifdef debug_G4BinaryCascade 1433 #ifdef debug_G4BinaryCascade 1428 if ( (finalBaryon-initialBaryon-lateBaryo 1434 if ( (finalBaryon-initialBaryon-lateBaryon) != 0 || (finalCharge-initialCharge-lateCharge) != 0 ) 1429 { 1435 { 1430 G4cout << "G4BinaryCascade: Error in 1436 G4cout << "G4BinaryCascade: Error in Balancing: " << G4endl; 1431 G4cout << "initial/final baryon numbe 1437 G4cout << "initial/final baryon number, initial/final Charge " 1432 << initialBaryon <<" "<< fina 1438 << initialBaryon <<" "<< finalBaryon <<" " 1433 << initialCharge <<" "<< fina 1439 << initialCharge <<" "<< finalCharge <<" " 1434 << " in Collision type: "<< t 1440 << " in Collision type: "<< typeid(*collision->GetGenerator()).name() 1435 << ", with number of products 1441 << ", with number of products: "<< products->size() <<G4endl; 1436 G4cout << G4endl<<"Initial condition 1442 G4cout << G4endl<<"Initial condition are these:"<<G4endl; 1437 G4cout << "proj: "<<collision->GetPri 1443 G4cout << "proj: "<<collision->GetPrimary()->GetDefinition()->GetParticleName()<<G4endl; 1438 for(std::size_t it=0; it<collision->G << 1444 for(size_t it=0; it<collision->GetTargetCollection().size(); it++) 1439 { 1445 { 1440 G4cout << "targ: " 1446 G4cout << "targ: " 1441 <<collision->GetTargetCol 1447 <<collision->GetTargetCollection()[it]->GetDefinition()->GetParticleName()<<G4endl; 1442 } 1448 } 1443 PrintKTVector(&collision->GetTargetCo 1449 PrintKTVector(&collision->GetTargetCollection(),std::string(" Target particles")); 1444 G4cout << G4endl<<G4endl; 1450 G4cout << G4endl<<G4endl; 1445 } 1451 } 1446 #endif 1452 #endif 1447 1453 1448 G4KineticTrackVector oldTarget = collisio 1454 G4KineticTrackVector oldTarget = collision->GetTargetCollection(); 1449 for(std::size_t ii=0; ii< oldTarget.size( << 1455 for(size_t ii=0; ii< oldTarget.size(); ii++) 1450 { 1456 { 1451 oldTarget[ii]->Hit(); 1457 oldTarget[ii]->Hit(); 1452 } 1458 } 1453 1459 1454 UpdateTracksAndCollisions(&oldSecondaries 1460 UpdateTracksAndCollisions(&oldSecondaries, &oldTarget, products); 1455 std::for_each(oldSecondaries.cbegin(), ol << 1461 std::for_each(oldSecondaries.begin(), oldSecondaries.end(), Delete<G4KineticTrack>()); 1456 std::for_each(oldTarget.cbegin(), oldTarg << 1462 std::for_each(oldTarget.begin(), oldTarget.end(), Delete<G4KineticTrack>()); 1457 1463 1458 delete products; 1464 delete products; 1459 return true; 1465 return true; 1460 } 1466 } 1461 1467 1462 1468 1463 //------------------------------------------- 1469 //---------------------------------------------------------------------------- 1464 G4bool G4BinaryCascade::Absorb() 1470 G4bool G4BinaryCascade::Absorb() 1465 //------------------------------------------- 1471 //---------------------------------------------------------------------------- 1466 { 1472 { 1467 // Do it in two step: cannot change theSe 1473 // Do it in two step: cannot change theSecondaryList inside the first loop. 1468 G4Absorber absorber(theCutOnPAbsorb); 1474 G4Absorber absorber(theCutOnPAbsorb); 1469 1475 1470 // Build the vector of G4KineticTracks th 1476 // Build the vector of G4KineticTracks that must be absorbed 1471 G4KineticTrackVector absorbList; 1477 G4KineticTrackVector absorbList; 1472 std::vector<G4KineticTrack *>::const_iter << 1478 std::vector<G4KineticTrack *>::iterator iter; 1473 // PrintKTVector(&theSecondaryList, " te 1479 // PrintKTVector(&theSecondaryList, " testing for Absorb" ); 1474 for(iter = theSecondaryList.cbegin(); << 1480 for(iter = theSecondaryList.begin(); 1475 iter != theSecondaryList.cend(); << 1481 iter != theSecondaryList.end(); ++iter) 1476 { 1482 { 1477 G4KineticTrack * kt = *iter; 1483 G4KineticTrack * kt = *iter; 1478 if(kt->GetState() == G4KineticTrack:: 1484 if(kt->GetState() == G4KineticTrack::inside)// absorption happens only inside the nucleus 1479 { 1485 { 1480 if(absorber.WillBeAbsorbed(*kt)) 1486 if(absorber.WillBeAbsorbed(*kt)) 1481 { 1487 { 1482 absorbList.push_back(kt); 1488 absorbList.push_back(kt); 1483 } 1489 } 1484 } 1490 } 1485 } 1491 } 1486 1492 1487 if(absorbList.empty()) 1493 if(absorbList.empty()) 1488 return false; 1494 return false; 1489 1495 1490 G4KineticTrackVector toDelete; 1496 G4KineticTrackVector toDelete; 1491 for(iter = absorbList.cbegin(); iter != a << 1497 for(iter = absorbList.begin(); iter != absorbList.end(); ++iter) 1492 { 1498 { 1493 G4KineticTrack * kt = *iter; 1499 G4KineticTrack * kt = *iter; 1494 if(!absorber.FindAbsorbers(*kt, theTa 1500 if(!absorber.FindAbsorbers(*kt, theTargetList)) 1495 throw G4HadronicException(__FILE_ 1501 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1496 1502 1497 if(!absorber.FindProducts(*kt)) 1503 if(!absorber.FindProducts(*kt)) 1498 throw G4HadronicException(__FILE_ 1504 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1499 1505 1500 G4KineticTrackVector * products = abs 1506 G4KineticTrackVector * products = absorber.GetProducts(); 1501 G4int maxLoopCount = 1000; 1507 G4int maxLoopCount = 1000; 1502 while(!CheckPauliPrinciple(products) 1508 while(!CheckPauliPrinciple(products) && --maxLoopCount>0) /* Loop checking, 31.08.2015, G.Folger */ 1503 { 1509 { 1504 ClearAndDestroy(products); 1510 ClearAndDestroy(products); 1505 if(!absorber.FindProducts(*kt)) 1511 if(!absorber.FindProducts(*kt)) 1506 throw G4HadronicException(__F 1512 throw G4HadronicException(__FILE__, __LINE__, 1507 "G4BinaryCascade::Abs 1513 "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1508 } 1514 } 1509 if ( --maxLoopCount < 0 ) throw G4Hadro 1515 if ( --maxLoopCount < 0 ) throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::Absorb(): Cannot absorb a particle."); 1510 // ------ debug 1516 // ------ debug 1511 // G4cerr << "Absorb CheckPauliPri 1517 // G4cerr << "Absorb CheckPauliPrinciple count= " << maxLoopCount << G4endl; 1512 // ------ end debug 1518 // ------ end debug 1513 G4KineticTrackVector toRemove; // bu 1519 G4KineticTrackVector toRemove; // build a vector for UpdateTrack... 1514 toRemove.push_back(kt); 1520 toRemove.push_back(kt); 1515 toDelete.push_back(kt); // delete th 1521 toDelete.push_back(kt); // delete the track later 1516 G4KineticTrackVector * absorbers = ab 1522 G4KineticTrackVector * absorbers = absorber.GetAbsorbers(); 1517 UpdateTracksAndCollisions(&toRemove, 1523 UpdateTracksAndCollisions(&toRemove, absorbers, products); 1518 ClearAndDestroy(absorbers); 1524 ClearAndDestroy(absorbers); 1519 } 1525 } 1520 ClearAndDestroy(&toDelete); 1526 ClearAndDestroy(&toDelete); 1521 return true; 1527 return true; 1522 } 1528 } 1523 1529 1524 1530 1525 1531 1526 // Capture all p and n with Energy < theCutOn 1532 // Capture all p and n with Energy < theCutOnP 1527 //------------------------------------------- 1533 //---------------------------------------------------------------------------- 1528 G4bool G4BinaryCascade::Capture(G4bool verbos 1534 G4bool G4BinaryCascade::Capture(G4bool verbose) 1529 //------------------------------------------- 1535 //---------------------------------------------------------------------------- 1530 { 1536 { 1531 G4KineticTrackVector captured; 1537 G4KineticTrackVector captured; 1532 G4bool capture = false; 1538 G4bool capture = false; 1533 std::vector<G4KineticTrack *>::const_iter << 1539 std::vector<G4KineticTrack *>::iterator i; 1534 1540 1535 G4RKPropagation * RKprop=(G4RKPropagation 1541 G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; 1536 1542 1537 G4double capturedEnergy = 0; 1543 G4double capturedEnergy = 0; 1538 G4int particlesAboveCut=0; 1544 G4int particlesAboveCut=0; 1539 G4int particlesBelowCut=0; 1545 G4int particlesBelowCut=0; 1540 if ( verbose ) G4cout << " Capture: secon 1546 if ( verbose ) G4cout << " Capture: secondaries " << theSecondaryList.size() << G4endl; 1541 for(i = theSecondaryList.cbegin(); i != t << 1547 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1542 { 1548 { 1543 G4KineticTrack * kt = *i; 1549 G4KineticTrack * kt = *i; 1544 if (verbose) G4cout << "Capture posit 1550 if (verbose) G4cout << "Capture position, radius, state " <<kt->GetPosition().mag()<<" "<<theOuterRadius<<" "<<kt->GetState()<<G4endl; 1545 if(kt->GetState() == G4KineticTrack:: 1551 if(kt->GetState() == G4KineticTrack::inside) // capture happens only inside the nucleus 1546 { 1552 { 1547 if((kt->GetDefinition() == G4Prot 1553 if((kt->GetDefinition() == G4Proton::Proton()) || 1548 (kt->GetDefinition() == G 1554 (kt->GetDefinition() == G4Neutron::Neutron())) 1549 { 1555 { 1550 //GF cut on kinetic energy 1556 //GF cut on kinetic energy if(kt->Get4Momentum().vect().mag() >= theCutOnP) 1551 G4double field=RKprop->GetFie 1557 G4double field=RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 1552 -RKprop->GetBarr 1558 -RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 1553 G4double energy= kt->Get4Mome 1559 G4double energy= kt->Get4Momentum().e() - kt->GetActualMass() + field; 1554 if (verbose ) G4cout << "Capt 1560 if (verbose ) G4cout << "Capture: .e(), mass, field, energy" << kt->Get4Momentum().e() <<" "<<kt->GetActualMass()<<" "<<field<<" "<<energy<< G4endl; 1555 // if( energy < theCutOnP ) 1561 // if( energy < theCutOnP ) 1556 // { 1562 // { 1557 capturedEnergy+=energy; 1563 capturedEnergy+=energy; 1558 ++particlesBelowCut; 1564 ++particlesBelowCut; 1559 // } else 1565 // } else 1560 // { 1566 // { 1561 // ++particlesAboveCut; 1567 // ++particlesAboveCut; 1562 // } 1568 // } 1563 } 1569 } 1564 } 1570 } 1565 } 1571 } 1566 if (verbose) G4cout << "Capture particles 1572 if (verbose) G4cout << "Capture particlesAboveCut,particlesBelowCut, capturedEnergy,capturedEnergy/particlesBelowCut <? 0.2*theCutOnP " 1567 << particlesAboveCut << " " << pa 1573 << particlesAboveCut << " " << particlesBelowCut << " " << capturedEnergy 1568 << " " << G4endl; 1574 << " " << G4endl; 1569 // << " " << (particlesBelowCut>0) ? (capt 1575 // << " " << (particlesBelowCut>0) ? (capturedEnergy/particlesBelowCut) : (capturedEnergy) << " " << 0.2*theCutOnP << G4endl; 1570 // if(particlesAboveCut==0 && particlesB 1576 // if(particlesAboveCut==0 && particlesBelowCut>0 && capturedEnergy/particlesBelowCut<0.2*theCutOnP) 1571 if(particlesBelowCut>0 && capturedEnergy/ 1577 if(particlesBelowCut>0 && capturedEnergy/particlesBelowCut<0.2*theCutOnP) 1572 { 1578 { 1573 capture=true; 1579 capture=true; 1574 for(i = theSecondaryList.cbegin(); i << 1580 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1575 { 1581 { 1576 G4KineticTrack * kt = *i; 1582 G4KineticTrack * kt = *i; 1577 if(kt->GetState() == G4KineticTra 1583 if(kt->GetState() == G4KineticTrack::inside) // capture happens only inside the nucleus 1578 { 1584 { 1579 if((kt->GetDefinition() == G4 1585 if((kt->GetDefinition() == G4Proton::Proton()) || 1580 (kt->GetDefinition() 1586 (kt->GetDefinition() == G4Neutron::Neutron())) 1581 { 1587 { 1582 captured.push_back(kt); 1588 captured.push_back(kt); 1583 kt->Hit(); // 1589 kt->Hit(); // 1584 theCapturedList.push_back 1590 theCapturedList.push_back(kt); 1585 } 1591 } 1586 } 1592 } 1587 } 1593 } 1588 UpdateTracksAndCollisions(&captured, << 1594 UpdateTracksAndCollisions(&captured, NULL, NULL); 1589 } 1595 } 1590 1596 1591 return capture; 1597 return capture; 1592 } 1598 } 1593 1599 1594 1600 1595 //------------------------------------------- 1601 //---------------------------------------------------------------------------- 1596 G4bool G4BinaryCascade::CheckPauliPrinciple(G 1602 G4bool G4BinaryCascade::CheckPauliPrinciple(G4KineticTrackVector * products) 1597 //------------------------------------------- 1603 //---------------------------------------------------------------------------- 1598 { 1604 { 1599 G4int A = the3DNucleus->GetMassNumber(); 1605 G4int A = the3DNucleus->GetMassNumber(); 1600 G4int Z = the3DNucleus->GetCharge(); 1606 G4int Z = the3DNucleus->GetCharge(); 1601 1607 1602 G4FermiMomentum fermiMom; 1608 G4FermiMomentum fermiMom; 1603 fermiMom.Init(A, Z); 1609 fermiMom.Init(A, Z); 1604 1610 1605 const G4VNuclearDensity * density=the3DNu 1611 const G4VNuclearDensity * density=the3DNucleus->GetNuclearDensity(); 1606 1612 1607 G4KineticTrackVector::const_iterator i; << 1613 G4KineticTrackVector::iterator i; 1608 const G4ParticleDefinition * definition; 1614 const G4ParticleDefinition * definition; 1609 1615 1610 // ------ debug 1616 // ------ debug 1611 G4bool myflag = true; 1617 G4bool myflag = true; 1612 // ------ end debug 1618 // ------ end debug 1613 // G4ThreeVector xpos(0); 1619 // G4ThreeVector xpos(0); 1614 for(i = products->cbegin(); i != products << 1620 for(i = products->begin(); i != products->end(); ++i) 1615 { 1621 { 1616 definition = (*i)->GetDefinition(); 1622 definition = (*i)->GetDefinition(); 1617 if((definition == G4Proton::Proton()) 1623 if((definition == G4Proton::Proton()) || 1618 (definition == G4Neutron::Neu 1624 (definition == G4Neutron::Neutron())) 1619 { 1625 { 1620 G4ThreeVector pos = (*i)->GetPosi 1626 G4ThreeVector pos = (*i)->GetPosition(); 1621 G4double d = density->GetDensity( 1627 G4double d = density->GetDensity(pos); 1622 // energy correspondiing to fermi 1628 // energy correspondiing to fermi momentum 1623 G4double eFermi = std::sqrt( sqr( 1629 G4double eFermi = std::sqrt( sqr(fermiMom.GetFermiMomentum(d)) + (*i)->Get4Momentum().mag2() ); 1624 if( definition == G4Proton::Proto 1630 if( definition == G4Proton::Proton() ) 1625 { 1631 { 1626 eFermi -= the3DNucleus->Coulo 1632 eFermi -= the3DNucleus->CoulombBarrier(); 1627 } 1633 } 1628 G4LorentzVector mom = (*i)->Get4M 1634 G4LorentzVector mom = (*i)->Get4Momentum(); 1629 // ------ debug 1635 // ------ debug 1630 /* 1636 /* 1631 * G4cout << "p:[" << (1/M 1637 * G4cout << "p:[" << (1/MeV)*mom.x() << " " << (1/MeV)*mom.y() << " " 1632 * << (1/MeV)*mom.z() 1638 * << (1/MeV)*mom.z() << "] |p3|:" 1633 * << (1/MeV)*mom.vect 1639 * << (1/MeV)*mom.vect().mag() << " E:" << (1/MeV)*mom.t() << " ] m: " 1634 * << (1/MeV)*mom.mag( 1640 * << (1/MeV)*mom.mag() << " pos[" 1635 * << (1/fermi)*pos.x( 1641 * << (1/fermi)*pos.x() << " "<< (1/fermi)*pos.y() << " " 1636 * << (1/fermi)*pos.z( 1642 * << (1/fermi)*pos.z() << "] |Dpos|: " 1637 * << (1/fermi)*(pos-x 1643 * << (1/fermi)*(pos-xpos).mag() << " Pfermi:" 1638 * << (1/MeV)*p << G4e 1644 * << (1/MeV)*p << G4endl; 1639 * xpos=pos; 1645 * xpos=pos; 1640 */ 1646 */ 1641 // ------ end debug 1647 // ------ end debug 1642 if(mom.e() < eFermi ) 1648 if(mom.e() < eFermi ) 1643 { 1649 { 1644 // ------ debug 1650 // ------ debug 1645 myflag = false; 1651 myflag = false; 1646 // ------ end debug 1652 // ------ end debug 1647 // return false; 1653 // return false; 1648 } 1654 } 1649 } 1655 } 1650 } 1656 } 1651 #ifdef debug_BIC_CheckPauli 1657 #ifdef debug_BIC_CheckPauli 1652 if ( myflag ) 1658 if ( myflag ) 1653 { 1659 { 1654 for(i = products->cbegin(); i != prod << 1660 for(i = products->begin(); i != products->end(); ++i) 1655 { 1661 { 1656 definition = (*i)->GetDefinition( 1662 definition = (*i)->GetDefinition(); 1657 if((definition == G4Proton::Proto 1663 if((definition == G4Proton::Proton()) || 1658 (definition == G4Neutron: 1664 (definition == G4Neutron::Neutron())) 1659 { 1665 { 1660 G4ThreeVector pos = (*i)->Get 1666 G4ThreeVector pos = (*i)->GetPosition(); 1661 G4double d = density->GetDens 1667 G4double d = density->GetDensity(pos); 1662 G4double pFermi = fermiMom.Ge 1668 G4double pFermi = fermiMom.GetFermiMomentum(d); 1663 G4LorentzVector mom = (*i)->G 1669 G4LorentzVector mom = (*i)->Get4Momentum(); 1664 G4double field =((G4RKPropaga 1670 G4double field =((G4RKPropagation*)thePropagator)->GetField(definition->GetPDGEncoding(),pos); 1665 if ( mom.e()-mom.mag()+field 1671 if ( mom.e()-mom.mag()+field > 160*MeV ) 1666 { 1672 { 1667 G4cout << "momentum probl 1673 G4cout << "momentum problem pFermi=" << pFermi 1668 << " mom, mom.m " 1674 << " mom, mom.m " << mom << " " << mom.mag() 1669 << " field " << f 1675 << " field " << field << G4endl; 1670 } 1676 } 1671 } 1677 } 1672 } 1678 } 1673 } 1679 } 1674 #endif 1680 #endif 1675 1681 1676 return myflag; 1682 return myflag; 1677 } 1683 } 1678 1684 1679 //------------------------------------------- 1685 //---------------------------------------------------------------------------- 1680 void G4BinaryCascade::StepParticlesOut() 1686 void G4BinaryCascade::StepParticlesOut() 1681 //------------------------------------------- 1687 //---------------------------------------------------------------------------- 1682 { 1688 { 1683 G4int counter=0; 1689 G4int counter=0; 1684 G4int countreset=0; 1690 G4int countreset=0; 1685 //G4cout << " nucl. Radius " << radius << 1691 //G4cout << " nucl. Radius " << radius << G4endl; 1686 // G4cerr <<"pre-while- theSecondaryList 1692 // G4cerr <<"pre-while- theSecondaryList "<<G4endl; 1687 while( theSecondaryList.size() > 0 ) 1693 while( theSecondaryList.size() > 0 ) /* Loop checking, 31.08.2015, G.Folger */ 1688 1694 // if countreset reaches limit, there is a break from while, see below. 1689 { 1695 { 1690 G4double minTimeStep = 1.e-12*ns; / 1696 G4double minTimeStep = 1.e-12*ns; // about 30*fermi/(0.1*c_light);1.e-12*ns 1691 / 1697 // i.e. a big step 1692 for(auto i = theSecondaryList.cbegin( << 1698 std::vector<G4KineticTrack *>::iterator i; >> 1699 for(i = theSecondaryList.begin(); i != theSecondaryList.end(); ++i) 1693 { 1700 { 1694 G4KineticTrack * kt = *i; 1701 G4KineticTrack * kt = *i; 1695 if( kt->GetState() == G4KineticTr 1702 if( kt->GetState() == G4KineticTrack::inside ) 1696 { 1703 { 1697 G4double tStep(0), tdummy(0); 1704 G4double tStep(0), tdummy(0); 1698 G4bool intersect = 1705 G4bool intersect = 1699 ((G4RKPropagation*)th 1706 ((G4RKPropagation*)thePropagator)->GetSphereIntersectionTimes(kt,tdummy,tStep); 1700 #ifdef debug_BIC_StepParticlesOut 1707 #ifdef debug_BIC_StepParticlesOut 1701 G4cout << " minTimeStep, tSte 1708 G4cout << " minTimeStep, tStep Particle " <<minTimeStep << " " <<tStep 1702 << " " <<kt->GetDefin 1709 << " " <<kt->GetDefinition()->GetParticleName() 1703 << " 4mom " << kt->Ge 1710 << " 4mom " << kt->GetTrackingMomentum()<<G4endl; 1704 if ( ! intersect ); 1711 if ( ! intersect ); 1705 { 1712 { 1706 PrintKTVector(&theSeconda 1713 PrintKTVector(&theSecondaryList, std::string(" state ERROR.....")); 1707 throw G4HadronicException 1714 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::StepParticlesOut() particle not in nucleus"); 1708 } 1715 } 1709 #endif 1716 #endif 1710 if(intersect && tStep<minTime 1717 if(intersect && tStep<minTimeStep && tStep> 0 ) 1711 { 1718 { 1712 minTimeStep = tStep; 1719 minTimeStep = tStep; 1713 } 1720 } 1714 } else if ( kt->GetState() != G4K 1721 } else if ( kt->GetState() != G4KineticTrack::outside ){ 1715 PrintKTVector(&theSecondaryLi 1722 PrintKTVector(&theSecondaryList, std::string(" state ERROR.....")); 1716 throw G4HadronicException(__F 1723 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::StepParticlesOut() particle not in nucleus"); 1717 } 1724 } 1718 } 1725 } 1719 minTimeStep *= 1.2; 1726 minTimeStep *= 1.2; 1720 G4double timeToCollision=DBL_MAX; 1727 G4double timeToCollision=DBL_MAX; 1721 G4CollisionInitialState * nextCollisi << 1728 G4CollisionInitialState * nextCollision=0; 1722 if(theCollisionMgr->Entries() > 0) 1729 if(theCollisionMgr->Entries() > 0) 1723 { 1730 { 1724 nextCollision = theCollisionMgr-> 1731 nextCollision = theCollisionMgr->GetNextCollision(); 1725 timeToCollision = nextCollision-> 1732 timeToCollision = nextCollision->GetCollisionTime()-theCurrentTime; 1726 // G4cout << " NextCollision * 1733 // G4cout << " NextCollision * , Time= " << nextCollision << " " <<timeToCollision<< G4endl; 1727 } 1734 } 1728 if ( timeToCollision > minTimeStep ) 1735 if ( timeToCollision > minTimeStep ) 1729 { 1736 { 1730 DoTimeStep(minTimeStep); 1737 DoTimeStep(minTimeStep); 1731 ++counter; 1738 ++counter; 1732 } else 1739 } else 1733 { 1740 { 1734 if (!DoTimeStep(timeToCollision) 1741 if (!DoTimeStep(timeToCollision) ) 1735 { 1742 { 1736 // Check if nextCollision is 1743 // Check if nextCollision is still valid, ie. partcile did not leave nucleus 1737 if (theCollisionMgr->GetNextC 1744 if (theCollisionMgr->GetNextCollision() != nextCollision ) 1738 { 1745 { 1739 nextCollision = nullptr; << 1746 nextCollision = 0; 1740 } 1747 } 1741 } 1748 } 1742 // G4cerr <<"post- DoTimeStep 3"< 1749 // G4cerr <<"post- DoTimeStep 3"<<G4endl; 1743 1750 1744 if(nextCollision) 1751 if(nextCollision) 1745 { 1752 { 1746 if ( ApplyCollision(nextColl 1753 if ( ApplyCollision(nextCollision)) 1747 { 1754 { 1748 // G4cout << "ApplyCollis 1755 // G4cout << "ApplyCollision sucess " << G4endl; 1749 } else 1756 } else 1750 { 1757 { 1751 theCollisionMgr->RemoveCo 1758 theCollisionMgr->RemoveCollision(nextCollision); 1752 } 1759 } 1753 } 1760 } 1754 } 1761 } 1755 1762 1756 if(countreset>100) 1763 if(countreset>100) 1757 { 1764 { 1758 #ifdef debug_G4BinaryCascade 1765 #ifdef debug_G4BinaryCascade 1759 G4cerr << "G4BinaryCascade.cc: Wa 1766 G4cerr << "G4BinaryCascade.cc: Warning - aborting looping particle(s)" << G4endl; 1760 PrintKTVector(&theSecondaryList," 1767 PrintKTVector(&theSecondaryList," looping particles added to theFinalState"); 1761 #endif 1768 #endif 1762 1769 1763 // add left secondaries to Final 1770 // add left secondaries to FinalSate 1764 for (auto iter=theSecondaryList.c << 1771 std::vector<G4KineticTrack *>::iterator iter; >> 1772 for ( iter =theSecondaryList.begin(); iter != theSecondaryList.end(); ++iter) 1765 { 1773 { 1766 theFinalState.push_back(*iter 1774 theFinalState.push_back(*iter); 1767 } 1775 } 1768 theSecondaryList.clear(); 1776 theSecondaryList.clear(); 1769 1777 1770 break; 1778 break; 1771 } 1779 } 1772 1780 1773 if(Absorb()) 1781 if(Absorb()) 1774 { 1782 { 1775 // haveProducts = true; 1783 // haveProducts = true; 1776 // G4cout << "Absorb sucess " << 1784 // G4cout << "Absorb sucess " << G4endl; 1777 } 1785 } 1778 1786 1779 if(Capture(false)) 1787 if(Capture(false)) 1780 { 1788 { 1781 // haveProducts = true; 1789 // haveProducts = true; 1782 #ifdef debug_BIC_StepParticlesOut 1790 #ifdef debug_BIC_StepParticlesOut 1783 G4cout << "Capture sucess " << G4 1791 G4cout << "Capture sucess " << G4endl; 1784 #endif 1792 #endif 1785 } 1793 } 1786 if ( counter > 100 && theCollisionMgr 1794 if ( counter > 100 && theCollisionMgr->Entries() == 0) // no collision, and stepping for some time.... 1787 { 1795 { 1788 #ifdef debug_BIC_StepParticlesOut 1796 #ifdef debug_BIC_StepParticlesOut 1789 PrintKTVector(&theSecondaryList,s 1797 PrintKTVector(&theSecondaryList,std::string("stepping 100 steps")); 1790 #endif 1798 #endif 1791 FindCollisions(&theSecondaryList) 1799 FindCollisions(&theSecondaryList); 1792 counter=0; 1800 counter=0; 1793 ++countreset; 1801 ++countreset; 1794 } 1802 } 1795 //G4cout << "currentZ @ end loop " << 1803 //G4cout << "currentZ @ end loop " << currentZ << G4endl; 1796 if ( ! currentZ ){ 1804 if ( ! currentZ ){ 1797 // nucleus completely destroyed, 1805 // nucleus completely destroyed, fill in ReactionProductVector 1798 // products = FillVoidNucleusProdu 1806 // products = FillVoidNucleusProducts(products); 1799 #ifdef debug_BIC_return 1807 #ifdef debug_BIC_return 1800 G4cout << "return @ Z=0 after col 1808 G4cout << "return @ Z=0 after collision loop "<< G4endl; 1801 PrintKTVector(&theSecondaryList,s 1809 PrintKTVector(&theSecondaryList,std::string(" theSecondaryList")); 1802 G4cout << "theTargetList size: " 1810 G4cout << "theTargetList size: " << theTargetList.size() << G4endl; 1803 PrintKTVector(&theTargetList,std: 1811 PrintKTVector(&theTargetList,std::string(" theTargetList")); 1804 PrintKTVector(&theCapturedList,st 1812 PrintKTVector(&theCapturedList,std::string(" theCapturedList")); 1805 1813 1806 G4cout << " ExcitE be4 Correct : 1814 G4cout << " ExcitE be4 Correct : " <<GetExcitationEnergy() << G4endl; 1807 G4cout << " Mom Transfered to nuc 1815 G4cout << " Mom Transfered to nucleus : " << theMomentumTransfer << " " << theMomentumTransfer.mag() << G4endl; 1808 PrintKTVector(&theFinalState,std: 1816 PrintKTVector(&theFinalState,std::string(" FinalState uncorrected")); 1809 // G4cout << "returned products: " 1817 // G4cout << "returned products: " << products->size() << G4endl; 1810 #endif 1818 #endif 1811 } 1819 } 1812 1820 1813 } 1821 } 1814 // G4cerr <<"Finished capture loop "<<G4 1822 // G4cerr <<"Finished capture loop "<<G4endl; 1815 1823 1816 //G4cerr <<"pre- DoTimeStep 4"<<G4endl; 1824 //G4cerr <<"pre- DoTimeStep 4"<<G4endl; 1817 DoTimeStep(DBL_MAX); 1825 DoTimeStep(DBL_MAX); 1818 //G4cerr <<"post- DoTimeStep 4"<<G4endl; 1826 //G4cerr <<"post- DoTimeStep 4"<<G4endl; >> 1827 >> 1828 1819 } 1829 } 1820 1830 1821 //------------------------------------------- 1831 //---------------------------------------------------------------------------- 1822 G4double G4BinaryCascade::CorrectShortlivedPr 1832 G4double G4BinaryCascade::CorrectShortlivedPrimaryForFermi( 1823 G4KineticTrack* primary,G4KineticTrac 1833 G4KineticTrack* primary,G4KineticTrackVector target_collection) 1824 //------------------------------------------- 1834 //---------------------------------------------------------------------------- 1825 { 1835 { 1826 G4double Efermi(0); 1836 G4double Efermi(0); 1827 if (primary->GetState() == G4KineticTrack 1837 if (primary->GetState() == G4KineticTrack::inside ) { 1828 G4int PDGcode=primary->GetDefinition( 1838 G4int PDGcode=primary->GetDefinition()->GetPDGEncoding(); 1829 Efermi=((G4RKPropagation *)thePropaga 1839 Efermi=((G4RKPropagation *)thePropagator)->GetField(PDGcode,primary->GetPosition()); 1830 1840 1831 if ( std::abs(PDGcode) > 1000 && PDGc 1841 if ( std::abs(PDGcode) > 1000 && PDGcode != 2112 && PDGcode != 2212 ) 1832 { 1842 { 1833 Efermi = ((G4RKPropagation *)theP 1843 Efermi = ((G4RKPropagation *)thePropagator)->GetField(G4Neutron::Neutron()->GetPDGEncoding(),primary->GetPosition()); 1834 G4LorentzVector mom4Primary=prima 1844 G4LorentzVector mom4Primary=primary->Get4Momentum(); 1835 primary->Update4Momentum(mom4Prim 1845 primary->Update4Momentum(mom4Primary.e() - Efermi); 1836 } 1846 } 1837 1847 1838 for (auto titer=target_collection.cbe << 1848 std::vector<G4KineticTrack *>::iterator titer; >> 1849 for ( titer=target_collection.begin() ; titer!=target_collection.end(); ++titer) 1839 { 1850 { 1840 const G4ParticleDefinition * aDef 1851 const G4ParticleDefinition * aDef=(*titer)->GetDefinition(); 1841 G4int aCode=aDef->GetPDGEncoding( 1852 G4int aCode=aDef->GetPDGEncoding(); 1842 G4ThreeVector aPos=(*titer)->GetP 1853 G4ThreeVector aPos=(*titer)->GetPosition(); 1843 Efermi+= ((G4RKPropagation *)theP 1854 Efermi+= ((G4RKPropagation *)thePropagator)->GetField(aCode, aPos); 1844 } 1855 } 1845 } 1856 } 1846 return Efermi; 1857 return Efermi; 1847 } 1858 } 1848 1859 1849 //------------------------------------------- 1860 //---------------------------------------------------------------------------- 1850 G4bool G4BinaryCascade::CorrectShortlivedFina 1861 G4bool G4BinaryCascade::CorrectShortlivedFinalsForFermi(G4KineticTrackVector * products, 1851 G4double initial_Efermi) 1862 G4double initial_Efermi) 1852 //------------------------------------------- 1863 //---------------------------------------------------------------------------- 1853 { 1864 { 1854 G4double final_Efermi(0); 1865 G4double final_Efermi(0); 1855 G4KineticTrackVector resonances; 1866 G4KineticTrackVector resonances; 1856 for (auto i =products->cbegin(); i != pro << 1867 for ( std::vector<G4KineticTrack *>::iterator i =products->begin(); i != products->end(); i++) 1857 { 1868 { 1858 G4int PDGcode=(*i)->GetDefinition()-> 1869 G4int PDGcode=(*i)->GetDefinition()->GetPDGEncoding(); 1859 // G4cout << " PDGcode, state " 1870 // G4cout << " PDGcode, state " << PDGcode << " " << (*i)->GetState()<<G4endl; 1860 final_Efermi+=((G4RKPropagation *)the 1871 final_Efermi+=((G4RKPropagation *)thePropagator)->GetField(PDGcode,(*i)->GetPosition()); 1861 if ( std::abs(PDGcode) > 1000 && PDGc 1872 if ( std::abs(PDGcode) > 1000 && PDGcode != 2112 && PDGcode != 2212 ) 1862 { 1873 { 1863 resonances.push_back(*i); 1874 resonances.push_back(*i); 1864 } 1875 } 1865 } 1876 } 1866 if ( resonances.size() > 0 ) 1877 if ( resonances.size() > 0 ) 1867 { 1878 { 1868 G4double delta_Fermi= (initial_Efermi 1879 G4double delta_Fermi= (initial_Efermi-final_Efermi)/resonances.size(); 1869 for (auto res=resonances.cbegin(); re << 1880 for (std::vector<G4KineticTrack *>::iterator res=resonances.begin(); res != resonances.end(); res++) 1870 { 1881 { 1871 G4LorentzVector mom=(*res)->Get4M 1882 G4LorentzVector mom=(*res)->Get4Momentum(); 1872 G4double mass2=mom.mag2(); 1883 G4double mass2=mom.mag2(); 1873 G4double newEnergy=mom.e() + delt 1884 G4double newEnergy=mom.e() + delta_Fermi; 1874 G4double newEnergy2= newEnergy*ne 1885 G4double newEnergy2= newEnergy*newEnergy; 1875 //G4cout << "mom = " << mom <<" n 1886 //G4cout << "mom = " << mom <<" newE " << newEnergy<< G4endl; 1876 if ( newEnergy2 < mass2 ) 1887 if ( newEnergy2 < mass2 ) 1877 { 1888 { 1878 return false; 1889 return false; 1879 } 1890 } 1880 G4ThreeVector mom3=std::sqrt(newE 1891 G4ThreeVector mom3=std::sqrt(newEnergy2 - mass2) * mom.vect().unit(); 1881 (*res)->Set4Momentum(G4LorentzVec 1892 (*res)->Set4Momentum(G4LorentzVector(mom3,newEnergy)); 1882 //G4cout << " correct resonan 1893 //G4cout << " correct resonance from /to " << mom.e() << " / " << newEnergy<< 1883 // " 3mom from/to " << 1894 // " 3mom from/to " << mom.vect() << " / " << mom3 << G4endl; 1884 } 1895 } 1885 } 1896 } 1886 return true; 1897 return true; 1887 } 1898 } 1888 1899 1889 //------------------------------------------- 1900 //---------------------------------------------------------------------------- 1890 void G4BinaryCascade::CorrectFinalPandE() 1901 void G4BinaryCascade::CorrectFinalPandE() 1891 //------------------------------------------- 1902 //---------------------------------------------------------------------------- 1892 // 1903 // 1893 // Modify momenta of outgoing particles. 1904 // Modify momenta of outgoing particles. 1894 // Assume two body decay, nucleus(@nominal 1905 // Assume two body decay, nucleus(@nominal mass) + sum of final state particles(SFSP). 1895 // momentum of SFSP shall be less than mome 1906 // momentum of SFSP shall be less than momentum for two body decay. 1896 // 1907 // 1897 { 1908 { 1898 #ifdef debug_BIC_CorrectFinalPandE 1909 #ifdef debug_BIC_CorrectFinalPandE 1899 G4cerr << "BIC: -CorrectFinalPandE called 1910 G4cerr << "BIC: -CorrectFinalPandE called" << G4endl; 1900 #endif 1911 #endif 1901 1912 1902 if ( theFinalState.size() == 0 ) return; 1913 if ( theFinalState.size() == 0 ) return; 1903 1914 1904 G4KineticTrackVector::const_iterator i; << 1915 G4KineticTrackVector::iterator i; 1905 G4LorentzVector pNucleus=GetFinal4Momentu 1916 G4LorentzVector pNucleus=GetFinal4Momentum(); 1906 if ( pNucleus.e() == 0 ) return; // ch 1917 if ( pNucleus.e() == 0 ) return; // check against explicit 0 from GetNucleus4Momentum() 1907 #ifdef debug_BIC_CorrectFinalPandE 1918 #ifdef debug_BIC_CorrectFinalPandE 1908 G4cerr << " -CorrectFinalPandE 3" << G4en 1919 G4cerr << " -CorrectFinalPandE 3" << G4endl; 1909 #endif 1920 #endif 1910 G4LorentzVector pFinals(0); 1921 G4LorentzVector pFinals(0); 1911 for(i = theFinalState.cbegin(); i != theF << 1922 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 1912 { 1923 { 1913 pFinals += (*i)->Get4Momentum(); 1924 pFinals += (*i)->Get4Momentum(); 1914 #ifdef debug_BIC_CorrectFinalPandE 1925 #ifdef debug_BIC_CorrectFinalPandE 1915 G4cout <<"CorrectFinalPandE a final " 1926 G4cout <<"CorrectFinalPandE a final " << (*i)->GetDefinition()->GetParticleName() 1916 << " 4mom " << (*i)->G 1927 << " 4mom " << (*i)->Get4Momentum()<< G4endl; 1917 #endif 1928 #endif 1918 } 1929 } 1919 #ifdef debug_BIC_CorrectFinalPandE 1930 #ifdef debug_BIC_CorrectFinalPandE 1920 G4cout << "CorrectFinalPandE pN pF: " <<p 1931 G4cout << "CorrectFinalPandE pN pF: " <<pNucleus << " " <<pFinals << G4endl; 1921 #endif 1932 #endif 1922 G4LorentzVector pCM=pNucleus + pFinals; 1933 G4LorentzVector pCM=pNucleus + pFinals; 1923 1934 1924 G4LorentzRotation toCMS(-pCM.boostVector( 1935 G4LorentzRotation toCMS(-pCM.boostVector()); 1925 pFinals *=toCMS; 1936 pFinals *=toCMS; 1926 #ifdef debug_BIC_CorrectFinalPandE 1937 #ifdef debug_BIC_CorrectFinalPandE 1927 G4cout << "CorrectFinalPandE pCM, CMS pCM 1938 G4cout << "CorrectFinalPandE pCM, CMS pCM " << pCM << " " <<toCMS*pCM<< G4endl; 1928 G4cout << "CorrectFinal CMS pN pF " <<toC 1939 G4cout << "CorrectFinal CMS pN pF " <<toCMS*pNucleus << " " 1929 <<pFinals << G4endl 1940 <<pFinals << G4endl 1930 << " nucleus initial mass : " <<G 1941 << " nucleus initial mass : " <<GetFinal4Momentum().mag() 1931 <<" massInNucleus m(nucleus) m(fi 1942 <<" massInNucleus m(nucleus) m(finals) std::sqrt(s): " << massInNucleus << " " <<pNucleus.mag()<< " " 1932 << pFinals.mag() << " " << pCM.ma 1943 << pFinals.mag() << " " << pCM.mag() << G4endl; 1933 #endif 1944 #endif 1934 1945 1935 G4LorentzRotation toLab = toCMS.inverse() 1946 G4LorentzRotation toLab = toCMS.inverse(); 1936 1947 1937 G4double s0 = pCM.mag2(); 1948 G4double s0 = pCM.mag2(); 1938 G4double m10 = GetIonMass(currentZ,curren 1949 G4double m10 = GetIonMass(currentZ,currentA); 1939 G4double m20 = pFinals.mag(); 1950 G4double m20 = pFinals.mag(); 1940 if( s0-(m10+m20)*(m10+m20) < 0 ) 1951 if( s0-(m10+m20)*(m10+m20) < 0 ) 1941 { 1952 { 1942 #ifdef debug_BIC_CorrectFinalPandE 1953 #ifdef debug_BIC_CorrectFinalPandE 1943 G4cout << "G4BinaryCascade::CorrectFi 1954 G4cout << "G4BinaryCascade::CorrectFinalPandE() : error! " << G4endl; 1944 1955 1945 G4cout << "not enough mass to correct 1956 G4cout << "not enough mass to correct: mass^2, A,Z, mass(nucl), mass(finals) " 1946 << (s0-(m10+m20)*(m10+m20)) < 1957 << (s0-(m10+m20)*(m10+m20)) << " " 1947 << currentA << " " << current 1958 << currentA << " " << currentZ << " " 1948 << m10 << " " << m20 1959 << m10 << " " << m20 1949 << G4endl; 1960 << G4endl; 1950 G4cerr << " -CorrectFinalPandE 4" << 1961 G4cerr << " -CorrectFinalPandE 4" << G4endl; 1951 1962 1952 PrintKTVector(&theFinalState," mass p 1963 PrintKTVector(&theFinalState," mass problem"); 1953 #endif 1964 #endif 1954 return; 1965 return; 1955 } 1966 } 1956 1967 1957 // Three momentum in cm system 1968 // Three momentum in cm system 1958 G4double pInCM = std::sqrt((s0-(m10+m20)* 1969 G4double pInCM = std::sqrt((s0-(m10+m20)*(m10+m20))*(s0-(m10-m20)*(m10-m20))/(4.*s0)); 1959 #ifdef debug_BIC_CorrectFinalPandE 1970 #ifdef debug_BIC_CorrectFinalPandE 1960 G4cout <<" CorrectFinalPandE pInCM new, 1971 G4cout <<" CorrectFinalPandE pInCM new, CURRENT, ratio : " << pInCM 1961 << " " << (pFinals).vect().mag()< 1972 << " " << (pFinals).vect().mag()<< " " << pInCM/(pFinals).vect().mag() << G4endl; 1962 #endif 1973 #endif 1963 if ( pFinals.vect().mag() > pInCM ) 1974 if ( pFinals.vect().mag() > pInCM ) 1964 { 1975 { 1965 G4ThreeVector p3finals=pInCM*pFinals. 1976 G4ThreeVector p3finals=pInCM*pFinals.vect().unit(); 1966 1977 1967 G4double factor=std::max(0.98,pInCM/p 1978 G4double factor=std::max(0.98,pInCM/pFinals.vect().mag()); // small correction 1968 G4LorentzVector qFinals(0); 1979 G4LorentzVector qFinals(0); 1969 for(i = theFinalState.cbegin(); i != << 1980 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 1970 { 1981 { 1971 // G4ThreeVector p3((toCMS*( 1982 // G4ThreeVector p3((toCMS*(*i)->Get4Momentum()).vect() + deltap); 1972 G4ThreeVector p3(factor*(toCMS*(* 1983 G4ThreeVector p3(factor*(toCMS*(*i)->Get4Momentum()).vect()); 1973 G4LorentzVector p(p3,std::sqrt((* 1984 G4LorentzVector p(p3,std::sqrt((*i)->Get4Momentum().mag2() + p3.mag2())); 1974 qFinals += p; 1985 qFinals += p; 1975 p *= toLab; 1986 p *= toLab; 1976 #ifdef debug_BIC_CorrectFinalPandE 1987 #ifdef debug_BIC_CorrectFinalPandE 1977 G4cout << " final p corrected: " 1988 G4cout << " final p corrected: " << p << G4endl; 1978 #endif 1989 #endif 1979 (*i)->Set4Momentum(p); 1990 (*i)->Set4Momentum(p); 1980 } 1991 } 1981 #ifdef debug_BIC_CorrectFinalPandE 1992 #ifdef debug_BIC_CorrectFinalPandE 1982 G4cout << "CorrectFinalPandE nucleus 1993 G4cout << "CorrectFinalPandE nucleus corrected mass : " << GetFinal4Momentum() << " " 1983 <<GetFinal4Momentum().mag() < 1994 <<GetFinal4Momentum().mag() << G4endl 1984 << " CMS pFinals , mag, 3.mag 1995 << " CMS pFinals , mag, 3.mag : " << qFinals << " " << qFinals.mag() << " " << qFinals.vect().mag()<< G4endl; 1985 G4cerr << " -CorrectFinalPandE 5 " << 1996 G4cerr << " -CorrectFinalPandE 5 " << factor << G4endl; 1986 #endif 1997 #endif 1987 } 1998 } 1988 #ifdef debug_BIC_CorrectFinalPandE 1999 #ifdef debug_BIC_CorrectFinalPandE 1989 else { G4cerr << " -CorrectFinalPandE 6 - 2000 else { G4cerr << " -CorrectFinalPandE 6 - no correction done" << G4endl; } 1990 #endif 2001 #endif 1991 2002 1992 } 2003 } 1993 2004 1994 //------------------------------------------- 2005 //---------------------------------------------------------------------------- 1995 void G4BinaryCascade::UpdateTracksAndCollisio 2006 void G4BinaryCascade::UpdateTracksAndCollisions( 1996 //----------------------------------- 2007 //---------------------------------------------------------------------------- 1997 G4KineticTrackVector * oldSecondaries 2008 G4KineticTrackVector * oldSecondaries, 1998 G4KineticTrackVector * oldTarget, 2009 G4KineticTrackVector * oldTarget, 1999 G4KineticTrackVector * newSecondaries 2010 G4KineticTrackVector * newSecondaries) 2000 { 2011 { 2001 std::vector<G4KineticTrack *>::const_iter << 2012 std::vector<G4KineticTrack *>::iterator iter1, iter2; 2002 2013 2003 // remove old secondaries from the second 2014 // remove old secondaries from the secondary list 2004 if(oldSecondaries) 2015 if(oldSecondaries) 2005 { 2016 { 2006 if(!oldSecondaries->empty()) 2017 if(!oldSecondaries->empty()) 2007 { 2018 { 2008 for(auto iter1=oldSecondaries->cb << 2019 for(iter1 = oldSecondaries->begin(); iter1 != oldSecondaries->end(); >> 2020 ++iter1) 2009 { 2021 { 2010 iter2 = std::find(theSecondar << 2022 iter2 = std::find(theSecondaryList.begin(), theSecondaryList.end(), 2011 if ( iter2 != theSecondaryLis << 2023 *iter1); >> 2024 if ( iter2 != theSecondaryList.end() ) theSecondaryList.erase(iter2); 2012 } 2025 } 2013 theCollisionMgr->RemoveTracksColl 2026 theCollisionMgr->RemoveTracksCollisions(oldSecondaries); 2014 } 2027 } 2015 } 2028 } 2016 2029 2017 // remove old target from the target list 2030 // remove old target from the target list 2018 if(oldTarget) 2031 if(oldTarget) 2019 { 2032 { 2020 // G4cout << "################## Debu 2033 // G4cout << "################## Debugging 0 "<<G4endl; 2021 if(oldTarget->size()!=0) 2034 if(oldTarget->size()!=0) 2022 { 2035 { 2023 2036 2024 // G4cout << "################## 2037 // G4cout << "################## Debugging 1 "<<oldTarget->size()<<G4endl; 2025 for(auto iter1 = oldTarget->cbegi << 2038 for(iter1 = oldTarget->begin(); iter1 != oldTarget->end(); ++iter1) 2026 { 2039 { 2027 iter2 = std::find(theTargetLi << 2040 iter2 = std::find(theTargetList.begin(), theTargetList.end(), >> 2041 *iter1); 2028 theTargetList.erase(iter2); 2042 theTargetList.erase(iter2); 2029 } 2043 } 2030 theCollisionMgr->RemoveTracksColl 2044 theCollisionMgr->RemoveTracksCollisions(oldTarget); 2031 } 2045 } 2032 } 2046 } 2033 2047 2034 if(newSecondaries) 2048 if(newSecondaries) 2035 { 2049 { 2036 if(!newSecondaries->empty()) 2050 if(!newSecondaries->empty()) 2037 { 2051 { 2038 // insert new secondaries in the 2052 // insert new secondaries in the secondary list 2039 for(auto iter1 = newSecondaries-> << 2053 for(iter1 = newSecondaries->begin(); iter1 != newSecondaries->end(); >> 2054 ++iter1) 2040 { 2055 { 2041 theSecondaryList.push_back(*i 2056 theSecondaryList.push_back(*iter1); 2042 if ((*iter1)->GetState() == G 2057 if ((*iter1)->GetState() == G4KineticTrack::undefined) 2043 { 2058 { 2044 PrintKTVector(*iter1, "und 2059 PrintKTVector(*iter1, "undefined in FindCollisions"); 2045 } 2060 } 2046 2061 2047 2062 2048 } 2063 } 2049 // look for collisions of new sec 2064 // look for collisions of new secondaries 2050 FindCollisions(newSecondaries); 2065 FindCollisions(newSecondaries); 2051 } 2066 } 2052 } 2067 } 2053 // G4cout << "Exiting ... "<<oldTarget<<G 2068 // G4cout << "Exiting ... "<<oldTarget<<G4endl; 2054 } 2069 } 2055 2070 2056 2071 2057 class SelectFromKTV 2072 class SelectFromKTV 2058 { 2073 { 2059 private: 2074 private: 2060 G4KineticTrackVector * ktv; 2075 G4KineticTrackVector * ktv; 2061 G4KineticTrack::CascadeState wanted_state 2076 G4KineticTrack::CascadeState wanted_state; 2062 public: 2077 public: 2063 SelectFromKTV(G4KineticTrackVector * out, 2078 SelectFromKTV(G4KineticTrackVector * out, G4KineticTrack::CascadeState astate) 2064 : 2079 : 2065 ktv(out), wanted_state(astate) 2080 ktv(out), wanted_state(astate) 2066 {}; 2081 {}; 2067 void operator() (G4KineticTrack *& kt) co 2082 void operator() (G4KineticTrack *& kt) const 2068 { 2083 { 2069 if ( (kt)->GetState() == wanted_state 2084 if ( (kt)->GetState() == wanted_state ) ktv->push_back(kt); 2070 }; 2085 }; 2071 }; 2086 }; 2072 2087 2073 2088 2074 2089 2075 //------------------------------------------- 2090 //---------------------------------------------------------------------------- 2076 G4bool G4BinaryCascade::DoTimeStep(G4double t 2091 G4bool G4BinaryCascade::DoTimeStep(G4double theTimeStep) 2077 //------------------------------------------- 2092 //---------------------------------------------------------------------------- 2078 { 2093 { 2079 2094 2080 #ifdef debug_BIC_DoTimeStep 2095 #ifdef debug_BIC_DoTimeStep 2081 G4ping debug("debug_G4BinaryCascade"); 2096 G4ping debug("debug_G4BinaryCascade"); 2082 debug.push_back("======> DoTimeStep 1"); 2097 debug.push_back("======> DoTimeStep 1"); debug.dump(); 2083 G4cerr <<"G4BinaryCascade::DoTimeStep: en 2098 G4cerr <<"G4BinaryCascade::DoTimeStep: enter step="<< theTimeStep 2084 << " , time="<<theCurrentTime << 2099 << " , time="<<theCurrentTime << G4endl; 2085 PrintKTVector(&theSecondaryList, std::str 2100 PrintKTVector(&theSecondaryList, std::string("DoTimeStep - theSecondaryList")); 2086 //PrintKTVector(&theTargetList, std::stri 2101 //PrintKTVector(&theTargetList, std::string("DoTimeStep - theTargetList")); 2087 #endif 2102 #endif 2088 2103 2089 G4bool success=true; 2104 G4bool success=true; 2090 std::vector<G4KineticTrack *>::const_iter << 2105 std::vector<G4KineticTrack *>::iterator iter; 2091 2106 2092 G4KineticTrackVector * kt_outside = new G 2107 G4KineticTrackVector * kt_outside = new G4KineticTrackVector; 2093 std::for_each( theSecondaryList.begin(),t 2108 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2094 SelectFromKTV(kt_outside,G4Kineti 2109 SelectFromKTV(kt_outside,G4KineticTrack::outside)); 2095 //PrintKTVector(kt_outside, std::string(" 2110 //PrintKTVector(kt_outside, std::string("DoTimeStep - found outside")); 2096 2111 2097 G4KineticTrackVector * kt_inside = new G4 2112 G4KineticTrackVector * kt_inside = new G4KineticTrackVector; 2098 std::for_each( theSecondaryList.begin(),t 2113 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2099 SelectFromKTV(kt_inside, G4Kineti 2114 SelectFromKTV(kt_inside, G4KineticTrack::inside)); 2100 // PrintKTVector(kt_inside, std::string( 2115 // PrintKTVector(kt_inside, std::string("DoTimeStep - found inside")); 2101 //----- 2116 //----- 2102 G4KineticTrackVector dummy; // needed f 2117 G4KineticTrackVector dummy; // needed for re-usability 2103 #ifdef debug_BIC_DoTimeStep 2118 #ifdef debug_BIC_DoTimeStep 2104 G4cout << "NOW WE ARE ENTERING THE TRANSP 2119 G4cout << "NOW WE ARE ENTERING THE TRANSPORT"<<G4endl; 2105 #endif 2120 #endif 2106 2121 2107 // =================== Here we move the p 2122 // =================== Here we move the particles =================== 2108 2123 2109 thePropagator->Transport(theSecondaryList 2124 thePropagator->Transport(theSecondaryList, dummy, theTimeStep); 2110 2125 2111 // =================== Here we move the p 2126 // =================== Here we move the particles =================== 2112 2127 2113 //------ 2128 //------ 2114 2129 2115 theMomentumTransfer += thePropagator->Get 2130 theMomentumTransfer += thePropagator->GetMomentumTransfer(); 2116 #ifdef debug_BIC_DoTimeStep 2131 #ifdef debug_BIC_DoTimeStep 2117 G4cout << "DoTimeStep : theMomentumTransf 2132 G4cout << "DoTimeStep : theMomentumTransfer = " << theMomentumTransfer << G4endl; 2118 PrintKTVector(&theSecondaryList, std::str 2133 PrintKTVector(&theSecondaryList, std::string("DoTimeStep - secondaries aft trsprt")); 2119 #endif 2134 #endif 2120 2135 2121 //_DebugEpConservation(" after stepping") 2136 //_DebugEpConservation(" after stepping"); 2122 2137 2123 // Partclies which went INTO nucleus 2138 // Partclies which went INTO nucleus 2124 2139 2125 G4KineticTrackVector * kt_gone_in = new G 2140 G4KineticTrackVector * kt_gone_in = new G4KineticTrackVector; 2126 std::for_each( kt_outside->begin(),kt_out 2141 std::for_each( kt_outside->begin(),kt_outside->end(), 2127 SelectFromKTV(kt_gone_in,G4Kineti 2142 SelectFromKTV(kt_gone_in,G4KineticTrack::inside)); 2128 // PrintKTVector(kt_gone_in, std::string 2143 // PrintKTVector(kt_gone_in, std::string("DoTimeStep - gone in")); 2129 2144 2130 2145 2131 // Partclies which went OUT OF nucleus 2146 // Partclies which went OUT OF nucleus 2132 G4KineticTrackVector * kt_gone_out = new 2147 G4KineticTrackVector * kt_gone_out = new G4KineticTrackVector; 2133 std::for_each( kt_inside->begin(),kt_insi 2148 std::for_each( kt_inside->begin(),kt_inside->end(), 2134 SelectFromKTV(kt_gone_out, G4Kine 2149 SelectFromKTV(kt_gone_out, G4KineticTrack::gone_out)); 2135 2150 2136 // PrintKTVector(kt_gone_out, std::strin 2151 // PrintKTVector(kt_gone_out, std::string("DoTimeStep - gone out")); 2137 2152 2138 G4KineticTrackVector *fail=CorrectBarions 2153 G4KineticTrackVector *fail=CorrectBarionsOnBoundary(kt_gone_in,kt_gone_out); 2139 2154 2140 if ( fail ) 2155 if ( fail ) 2141 { 2156 { 2142 // some particle(s) supposed to enter 2157 // some particle(s) supposed to enter/leave were miss_nucleus/captured by the correction 2143 kt_gone_in->clear(); 2158 kt_gone_in->clear(); 2144 std::for_each( kt_outside->begin(),kt 2159 std::for_each( kt_outside->begin(),kt_outside->end(), 2145 SelectFromKTV(kt_gone_in,G4Ki 2160 SelectFromKTV(kt_gone_in,G4KineticTrack::inside)); 2146 2161 2147 kt_gone_out->clear(); 2162 kt_gone_out->clear(); 2148 std::for_each( kt_inside->begin(),kt_ 2163 std::for_each( kt_inside->begin(),kt_inside->end(), 2149 SelectFromKTV(kt_gone_out, G4 2164 SelectFromKTV(kt_gone_out, G4KineticTrack::gone_out)); 2150 2165 2151 #ifdef debug_BIC_DoTimeStep 2166 #ifdef debug_BIC_DoTimeStep 2152 PrintKTVector(fail,std::string(" Fail 2167 PrintKTVector(fail,std::string(" Failed to go in/out -> miss_nucleus/captured")); 2153 PrintKTVector(kt_gone_in, std::string 2168 PrintKTVector(kt_gone_in, std::string("recreated kt_gone_in")); 2154 PrintKTVector(kt_gone_out, std::strin 2169 PrintKTVector(kt_gone_out, std::string("recreated kt_gone_out")); 2155 #endif 2170 #endif 2156 delete fail; 2171 delete fail; 2157 } 2172 } 2158 2173 2159 // Add tracks missing nucleus and tracks 2174 // Add tracks missing nucleus and tracks going straight though to addFinals 2160 std::for_each( kt_outside->begin(),kt_out 2175 std::for_each( kt_outside->begin(),kt_outside->end(), 2161 SelectFromKTV(kt_gone_out,G4Kinet 2176 SelectFromKTV(kt_gone_out,G4KineticTrack::miss_nucleus)); 2162 //PrintKTVector(kt_gone_out, std::string( 2177 //PrintKTVector(kt_gone_out, std::string("miss to append to final state..")); 2163 std::for_each( kt_outside->begin(),kt_out 2178 std::for_each( kt_outside->begin(),kt_outside->end(), 2164 SelectFromKTV(kt_gone_out,G4Kinet 2179 SelectFromKTV(kt_gone_out,G4KineticTrack::gone_out)); 2165 2180 2166 #ifdef debug_BIC_DoTimeStep 2181 #ifdef debug_BIC_DoTimeStep 2167 PrintKTVector(kt_gone_out, std::string("a 2182 PrintKTVector(kt_gone_out, std::string("append gone_outs to final state.. theFinalState")); 2168 #endif 2183 #endif 2169 2184 2170 theFinalState.insert(theFinalState.end(), 2185 theFinalState.insert(theFinalState.end(), 2171 kt_gone_out->begin(),kt_gone_out- 2186 kt_gone_out->begin(),kt_gone_out->end()); 2172 2187 2173 // Partclies which could not leave nucleu 2188 // Partclies which could not leave nucleus, captured... 2174 G4KineticTrackVector * kt_captured = new 2189 G4KineticTrackVector * kt_captured = new G4KineticTrackVector; 2175 std::for_each( theSecondaryList.begin(),t 2190 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2176 SelectFromKTV(kt_captured, G4Kine 2191 SelectFromKTV(kt_captured, G4KineticTrack::captured)); 2177 2192 2178 // Check no track is part in next collisi 2193 // Check no track is part in next collision, ie. 2179 // this step was to far, and collisions 2194 // this step was to far, and collisions should not occur any more 2180 2195 2181 if ( theCollisionMgr->Entries()> 0 ) 2196 if ( theCollisionMgr->Entries()> 0 ) 2182 { 2197 { 2183 if (kt_gone_out->size() ) 2198 if (kt_gone_out->size() ) 2184 { 2199 { 2185 G4KineticTrack * nextPrimary = th 2200 G4KineticTrack * nextPrimary = theCollisionMgr->GetNextCollision()->GetPrimary(); 2186 iter = std::find(kt_gone_out->beg 2201 iter = std::find(kt_gone_out->begin(),kt_gone_out->end(),nextPrimary); 2187 if ( iter != kt_gone_out->cend() << 2202 if ( iter != kt_gone_out->end() ) 2188 { 2203 { 2189 success=false; 2204 success=false; 2190 #ifdef debug_BIC_DoTimeStep 2205 #ifdef debug_BIC_DoTimeStep 2191 G4cout << " DoTimeStep - WARN 2206 G4cout << " DoTimeStep - WARNING: deleting current collision!" << G4endl; 2192 #endif 2207 #endif 2193 } 2208 } 2194 } 2209 } 2195 if ( kt_captured->size() ) 2210 if ( kt_captured->size() ) 2196 { 2211 { 2197 G4KineticTrack * nextPrimary = th 2212 G4KineticTrack * nextPrimary = theCollisionMgr->GetNextCollision()->GetPrimary(); 2198 iter = std::find(kt_captured->beg 2213 iter = std::find(kt_captured->begin(),kt_captured->end(),nextPrimary); 2199 if ( iter != kt_captured->cend() << 2214 if ( iter != kt_captured->end() ) 2200 { 2215 { 2201 success=false; 2216 success=false; 2202 #ifdef debug_BIC_DoTimeStep 2217 #ifdef debug_BIC_DoTimeStep 2203 G4cout << " DoTimeStep - WARN 2218 G4cout << " DoTimeStep - WARNING: deleting current collision!" << G4endl; 2204 #endif 2219 #endif 2205 } 2220 } 2206 } 2221 } 2207 2222 2208 } 2223 } 2209 // PrintKTVector(kt_gone_out," kt_gone_ou 2224 // PrintKTVector(kt_gone_out," kt_gone_out be4 updatetrack..."); 2210 UpdateTracksAndCollisions(kt_gone_out,0 , 2225 UpdateTracksAndCollisions(kt_gone_out,0 ,0); 2211 2226 2212 2227 2213 if ( kt_captured->size() ) 2228 if ( kt_captured->size() ) 2214 { 2229 { 2215 theCapturedList.insert(theCapturedLis 2230 theCapturedList.insert(theCapturedList.end(), 2216 kt_captured->begin(),kt_captu 2231 kt_captured->begin(),kt_captured->end()); 2217 //should be std::for_each(kt_cap 2232 //should be std::for_each(kt_captured->begin(),kt_captured->end(), 2218 // std::mem_fun(&G4Kinet 2233 // std::mem_fun(&G4KineticTrack::Hit)); 2219 // but VC 6 requires: 2234 // but VC 6 requires: 2220 for(auto i_captured=kt_captured->cbeg << 2235 std::vector<G4KineticTrack *>::iterator i_captured; >> 2236 for(i_captured=kt_captured->begin();i_captured!=kt_captured->end();i_captured++) 2221 { 2237 { 2222 (*i_captured)->Hit(); 2238 (*i_captured)->Hit(); 2223 } 2239 } 2224 // PrintKTVector(kt_captured," kt 2240 // PrintKTVector(kt_captured," kt_captured be4 updatetrack..."); 2225 UpdateTracksAndCollisions(kt_captured << 2241 UpdateTracksAndCollisions(kt_captured, NULL, NULL); 2226 } 2242 } 2227 2243 2228 #ifdef debug_G4BinaryCascade 2244 #ifdef debug_G4BinaryCascade 2229 delete kt_inside; 2245 delete kt_inside; 2230 kt_inside = new G4KineticTrackVector; 2246 kt_inside = new G4KineticTrackVector; 2231 std::for_each( theSecondaryList.begin(),t 2247 std::for_each( theSecondaryList.begin(),theSecondaryList.end(), 2232 SelectFromKTV(kt_inside, G4Kineti 2248 SelectFromKTV(kt_inside, G4KineticTrack::inside)); 2233 if ( currentZ != (GetTotalCharge(theTarge 2249 if ( currentZ != (GetTotalCharge(theTargetList) 2234 + GetTotalCharge(theCapturedList) 2250 + GetTotalCharge(theCapturedList) 2235 + GetTotalCharge(*kt_inside)) ) 2251 + GetTotalCharge(*kt_inside)) ) 2236 { 2252 { 2237 G4cout << " error-DoTimeStep aft, A, 2253 G4cout << " error-DoTimeStep aft, A, Z: " << currentA << " " << currentZ 2238 << " sum(tgt,capt,active) " 2254 << " sum(tgt,capt,active) " 2239 << GetTotalCharge(theTargetLi 2255 << GetTotalCharge(theTargetList) + GetTotalCharge(theCapturedList) + GetTotalCharge(*kt_inside) 2240 << " targets: " << GetTotalC 2256 << " targets: " << GetTotalCharge(theTargetList) 2241 << " captured: " << GetTotalC 2257 << " captured: " << GetTotalCharge(theCapturedList) 2242 << " active: " << GetTotalC 2258 << " active: " << GetTotalCharge(*kt_inside) 2243 << G4endl; 2259 << G4endl; 2244 } 2260 } 2245 #endif 2261 #endif 2246 2262 2247 delete kt_inside; 2263 delete kt_inside; 2248 delete kt_outside; 2264 delete kt_outside; 2249 delete kt_captured; 2265 delete kt_captured; 2250 delete kt_gone_in; 2266 delete kt_gone_in; 2251 delete kt_gone_out; 2267 delete kt_gone_out; 2252 2268 2253 // G4cerr <<"G4BinaryCascade::DoTimeStep 2269 // G4cerr <<"G4BinaryCascade::DoTimeStep: exit "<<G4endl; 2254 theCurrentTime += theTimeStep; 2270 theCurrentTime += theTimeStep; 2255 2271 2256 //debug.push_back("======> DoTimeStep 2") 2272 //debug.push_back("======> DoTimeStep 2"); debug.dump(); 2257 return success; 2273 return success; 2258 2274 2259 } 2275 } 2260 2276 2261 //------------------------------------------- 2277 //---------------------------------------------------------------------------- 2262 G4KineticTrackVector* G4BinaryCascade::Correc 2278 G4KineticTrackVector* G4BinaryCascade::CorrectBarionsOnBoundary( 2263 G4KineticTrackVector *in, 2279 G4KineticTrackVector *in, 2264 G4KineticTrackVector *out) 2280 G4KineticTrackVector *out) 2265 //------------------------------------------- 2281 //---------------------------------------------------------------------------- 2266 { 2282 { 2267 G4KineticTrackVector * kt_fail(nullptr); << 2283 G4KineticTrackVector * kt_fail(0); 2268 std::vector<G4KineticTrack *>::const_iter << 2284 std::vector<G4KineticTrack *>::iterator iter; 2269 // G4cout << "CorrectBarionsOnBoundary,c 2285 // G4cout << "CorrectBarionsOnBoundary,currentZ,currentA," 2270 // << currentZ << " "<< currentA 2286 // << currentZ << " "<< currentA << G4endl; 2271 if (in->size()) 2287 if (in->size()) 2272 { 2288 { 2273 G4int secondaries_in(0); 2289 G4int secondaries_in(0); 2274 G4int secondaryBarions_in(0); 2290 G4int secondaryBarions_in(0); 2275 G4int secondaryCharge_in(0); 2291 G4int secondaryCharge_in(0); 2276 G4double secondaryMass_in(0); 2292 G4double secondaryMass_in(0); 2277 2293 2278 for ( iter =in->cbegin(); iter != in- << 2294 for ( iter =in->begin(); iter != in->end(); ++iter) 2279 { 2295 { 2280 ++secondaries_in; 2296 ++secondaries_in; 2281 secondaryCharge_in += G4lrint((*i 2297 secondaryCharge_in += G4lrint((*iter)->GetDefinition()->GetPDGCharge()/eplus); 2282 if ((*iter)->GetDefinition()->Get 2298 if ((*iter)->GetDefinition()->GetBaryonNumber()!=0 ) 2283 { 2299 { 2284 secondaryBarions_in += (*iter 2300 secondaryBarions_in += (*iter)->GetDefinition()->GetBaryonNumber(); 2285 if((*iter)->GetDefinition() = 2301 if((*iter)->GetDefinition() == G4Neutron::Neutron() || 2286 (*iter)->GetDefinitio 2302 (*iter)->GetDefinition() == G4Proton::Proton() ) 2287 { 2303 { 2288 secondaryMass_in += (*ite 2304 secondaryMass_in += (*iter)->GetDefinition()->GetPDGMass(); 2289 } else { 2305 } else { 2290 secondaryMass_in += G4Pro 2306 secondaryMass_in += G4Proton::Proton()->GetPDGMass(); 2291 } 2307 } 2292 } 2308 } 2293 } 2309 } 2294 G4double mass_initial= GetIonMass(cur 2310 G4double mass_initial= GetIonMass(currentZ,currentA); 2295 2311 2296 currentZ += secondaryCharge_in; 2312 currentZ += secondaryCharge_in; 2297 currentA += secondaryBarions_in; 2313 currentA += secondaryBarions_in; 2298 2314 2299 // G4cout << "CorrectBarionsOnBounda 2315 // G4cout << "CorrectBarionsOnBoundary,secondaryCharge_in, secondaryBarions_in " 2300 // << secondaryCharge_in < 2316 // << secondaryCharge_in << " "<< secondaryBarions_in << G4endl; 2301 2317 2302 G4double mass_final= GetIonMass(curre 2318 G4double mass_final= GetIonMass(currentZ,currentA); 2303 2319 2304 G4double correction= secondaryMass_in 2320 G4double correction= secondaryMass_in + mass_initial - mass_final; 2305 if (secondaries_in>1) 2321 if (secondaries_in>1) 2306 {correction /= secondaries_in;} 2322 {correction /= secondaries_in;} 2307 2323 2308 #ifdef debug_BIC_CorrectBarionsOnBoundary 2324 #ifdef debug_BIC_CorrectBarionsOnBoundary 2309 G4cout << "CorrectBarionsOnBoundary,c 2325 G4cout << "CorrectBarionsOnBoundary,currentZ,currentA," 2310 << "secondaryCharge_in,second 2326 << "secondaryCharge_in,secondaryBarions_in," 2311 << "energy correction,m_secon 2327 << "energy correction,m_secondry,m_nucl_init,m_nucl_final " 2312 << currentZ << " "<< currentA 2328 << currentZ << " "<< currentA <<" " 2313 << secondaryCharge_in<<" "<<s 2329 << secondaryCharge_in<<" "<<secondaryBarions_in<<" " 2314 << correction << " " 2330 << correction << " " 2315 << secondaryMass_in << " " 2331 << secondaryMass_in << " " 2316 << mass_initial << " " 2332 << mass_initial << " " 2317 << mass_final << " " 2333 << mass_final << " " 2318 << G4endl; 2334 << G4endl; 2319 PrintKTVector(in,std::string("in be4 2335 PrintKTVector(in,std::string("in be4 correction")); 2320 #endif 2336 #endif 2321 for ( iter = in->cbegin(); iter != in << 2337 for ( iter = in->begin(); iter != in->end(); ++iter) 2322 { 2338 { 2323 if ((*iter)->GetTrackingMomentum( 2339 if ((*iter)->GetTrackingMomentum().e()+correction > (*iter)->GetActualMass()) 2324 { 2340 { 2325 (*iter)->UpdateTrackingMoment 2341 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() + correction); 2326 } else { 2342 } else { 2327 //particle cannot go in, put 2343 //particle cannot go in, put to miss_nucleus 2328 G4RKPropagation * RKprop=(G4R 2344 G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; 2329 (*iter)->SetState(G4KineticTr 2345 (*iter)->SetState(G4KineticTrack::miss_nucleus); 2330 // Undo correction for Colomb 2346 // Undo correction for Colomb Barrier 2331 G4double barrier=RKprop->GetB 2347 G4double barrier=RKprop->GetBarrier((*iter)->GetDefinition()->GetPDGEncoding()); 2332 (*iter)->UpdateTrackingMoment 2348 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() + barrier); 2333 if ( ! kt_fail ) kt_fail=new 2349 if ( ! kt_fail ) kt_fail=new G4KineticTrackVector; 2334 kt_fail->push_back(*iter); 2350 kt_fail->push_back(*iter); 2335 currentZ -= G4lrint((*iter)-> 2351 currentZ -= G4lrint((*iter)->GetDefinition()->GetPDGCharge()/eplus); 2336 currentA -= (*iter)->GetDefin 2352 currentA -= (*iter)->GetDefinition()->GetBaryonNumber(); 2337 2353 2338 } 2354 } 2339 2355 2340 } 2356 } 2341 #ifdef debug_BIC_CorrectBarionsOnBoundary 2357 #ifdef debug_BIC_CorrectBarionsOnBoundary 2342 G4cout << " CorrectBarionsOnBoundary, 2358 G4cout << " CorrectBarionsOnBoundary, aft, Z, A, sec-Z,A,m,m_in_nucleus " 2343 << currentZ << " " << current 2359 << currentZ << " " << currentA << " " 2344 << secondaryCharge_in << " " 2360 << secondaryCharge_in << " " << secondaryBarions_in << " " 2345 << secondaryMass_in << " " 2361 << secondaryMass_in << " " 2346 << G4endl; 2362 << G4endl; 2347 PrintKTVector(in,std::string("in AFT 2363 PrintKTVector(in,std::string("in AFT correction")); 2348 #endif 2364 #endif 2349 2365 2350 } 2366 } 2351 //--------------------------------------- 2367 //---------------------------------------------- 2352 if (out->size()) 2368 if (out->size()) 2353 { 2369 { 2354 G4int secondaries_out(0); 2370 G4int secondaries_out(0); 2355 G4int secondaryBarions_out(0); 2371 G4int secondaryBarions_out(0); 2356 G4int secondaryCharge_out(0); 2372 G4int secondaryCharge_out(0); 2357 G4double secondaryMass_out(0); 2373 G4double secondaryMass_out(0); 2358 2374 2359 for ( iter = out->cbegin(); iter != o << 2375 for ( iter =out->begin(); iter != out->end(); ++iter) 2360 { 2376 { 2361 ++secondaries_out; 2377 ++secondaries_out; 2362 secondaryCharge_out += G4lrint((* 2378 secondaryCharge_out += G4lrint((*iter)->GetDefinition()->GetPDGCharge()/eplus); 2363 if ((*iter)->GetDefinition()->Get 2379 if ((*iter)->GetDefinition()->GetBaryonNumber() !=0 ) 2364 { 2380 { 2365 secondaryBarions_out += (*ite 2381 secondaryBarions_out += (*iter)->GetDefinition()->GetBaryonNumber(); 2366 if((*iter)->GetDefinition() = 2382 if((*iter)->GetDefinition() == G4Neutron::Neutron() || 2367 (*iter)->GetDefinitio 2383 (*iter)->GetDefinition() == G4Proton::Proton() ) 2368 { 2384 { 2369 secondaryMass_out += (*it 2385 secondaryMass_out += (*iter)->GetDefinition()->GetPDGMass(); 2370 } else { 2386 } else { 2371 secondaryMass_out += G4Ne 2387 secondaryMass_out += G4Neutron::Neutron()->GetPDGMass(); 2372 } 2388 } 2373 } 2389 } 2374 } 2390 } 2375 2391 2376 G4double mass_initial= GetIonMass(cu 2392 G4double mass_initial= GetIonMass(currentZ,currentA); 2377 currentA -=secondaryBarions_out; 2393 currentA -=secondaryBarions_out; 2378 currentZ -=secondaryCharge_out; 2394 currentZ -=secondaryCharge_out; 2379 2395 2380 // G4cout << "CorrectBarionsOnBounda 2396 // G4cout << "CorrectBarionsOnBoundary,secondaryCharge_out, secondaryBarions_out " 2381 // << secondaryCharge_out 2397 // << secondaryCharge_out << " "<< secondaryBarions_out << G4endl; 2382 2398 2383 // a delta min 2399 // a delta minus will do currentZ < 0 in light nuclei 2384 // if (currentA < 0 || currentZ < 2400 // if (currentA < 0 || currentZ < 0 ) 2385 if (currentA < 0 ) 2401 if (currentA < 0 ) 2386 { 2402 { 2387 G4cerr << "G4BinaryCascade - seco 2403 G4cerr << "G4BinaryCascade - secondaryBarions_out,secondaryCharge_out " << 2388 secondaryBarions_out << " 2404 secondaryBarions_out << " " << secondaryCharge_out << G4endl; 2389 PrintKTVector(&theTargetList,"Cor 2405 PrintKTVector(&theTargetList,"CorrectBarionsOnBoundary Target"); 2390 PrintKTVector(&theCapturedList,"C 2406 PrintKTVector(&theCapturedList,"CorrectBarionsOnBoundary Captured"); 2391 PrintKTVector(&theSecondaryList," 2407 PrintKTVector(&theSecondaryList,"CorrectBarionsOnBoundary Secondaries"); 2392 G4cerr << "G4BinaryCascade - curr 2408 G4cerr << "G4BinaryCascade - currentA, currentZ " << currentA << " " << currentZ << G4endl; 2393 throw G4HadronicException(__FILE_ 2409 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::CorrectBarionsOnBoundary() - fatal error"); 2394 } 2410 } 2395 G4double mass_final=GetIonMass(curren 2411 G4double mass_final=GetIonMass(currentZ,currentA); 2396 G4double correction= mass_initial - m 2412 G4double correction= mass_initial - mass_final - secondaryMass_out; 2397 // G4cout << "G4BinaryCascade::Correc 2413 // G4cout << "G4BinaryCascade::CorrectBarionsOnBoundary() total out correction: " << correction << G4endl; 2398 2414 2399 if (secondaries_out>1) correction /= 2415 if (secondaries_out>1) correction /= secondaries_out; 2400 #ifdef debug_BIC_CorrectBarionsOnBoundary 2416 #ifdef debug_BIC_CorrectBarionsOnBoundary 2401 G4cout << "DoTimeStep,(current Z,A)," 2417 G4cout << "DoTimeStep,(current Z,A)," 2402 << "(secondaries out,Charge,B 2418 << "(secondaries out,Charge,Barions)," 2403 <<"* energy correction,(m_sec 2419 <<"* energy correction,(m_secondry,m_nucl_init,m_nucl_final) " 2404 << "("<< currentZ << ","<< cu 2420 << "("<< currentZ << ","<< currentA <<") (" 2405 << secondaries_out << "," 2421 << secondaries_out << "," 2406 << secondaryCharge_out<<","<< 2422 << secondaryCharge_out<<","<<secondaryBarions_out<<") * " 2407 << correction << " (" 2423 << correction << " (" 2408 << secondaryMass_out << ", " 2424 << secondaryMass_out << ", " 2409 << mass_initial << ", " 2425 << mass_initial << ", " 2410 << mass_final << ")" 2426 << mass_final << ")" 2411 << G4endl; 2427 << G4endl; 2412 PrintKTVector(out,std::string("out be 2428 PrintKTVector(out,std::string("out be4 correction")); 2413 #endif 2429 #endif 2414 2430 2415 for ( iter = out->cbegin(); iter != o << 2431 for ( iter = out->begin(); iter != out->end(); ++iter) 2416 { 2432 { 2417 if ((*iter)->GetTrackingMomentum( 2433 if ((*iter)->GetTrackingMomentum().e()+correction > (*iter)->GetActualMass()) 2418 { 2434 { 2419 (*iter)->UpdateTrackingMoment 2435 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() + correction); 2420 } else 2436 } else 2421 { 2437 { 2422 // particle cannot go out due 2438 // particle cannot go out due to change of nuclear potential! 2423 // capture protons and neutr 2439 // capture protons and neutrons; 2424 if(((*iter)->GetDefinition() 2440 if(((*iter)->GetDefinition() == G4Proton::Proton()) || 2425 ((*iter)->GetDefiniti 2441 ((*iter)->GetDefinition() == G4Neutron::Neutron())) 2426 { 2442 { 2427 (*iter)->SetState(G4Kinet 2443 (*iter)->SetState(G4KineticTrack::captured); 2428 // Undo correction for Co 2444 // Undo correction for Colomb Barrier 2429 G4double barrier=((G4RKPr 2445 G4double barrier=((G4RKPropagation *)thePropagator)->GetBarrier((*iter)->GetDefinition()->GetPDGEncoding()); 2430 (*iter)->UpdateTrackingMo 2446 (*iter)->UpdateTrackingMomentum((*iter)->GetTrackingMomentum().e() - barrier); 2431 if ( kt_fail == 0 ) kt_fa 2447 if ( kt_fail == 0 ) kt_fail=new G4KineticTrackVector; 2432 kt_fail->push_back(*iter) 2448 kt_fail->push_back(*iter); 2433 currentZ += G4lrint((*ite 2449 currentZ += G4lrint((*iter)->GetDefinition()->GetPDGCharge()/eplus); 2434 currentA += (*iter)->GetD 2450 currentA += (*iter)->GetDefinition()->GetBaryonNumber(); 2435 } 2451 } 2436 #ifdef debug_BIC_CorrectBarionsOnBoundary 2452 #ifdef debug_BIC_CorrectBarionsOnBoundary 2437 else 2453 else 2438 { 2454 { 2439 G4cout << "Not correcting 2455 G4cout << "Not correcting outgoing " << *iter << " " 2440 << (*iter)->GetDe 2456 << (*iter)->GetDefinition()->GetPDGEncoding() << " " 2441 << (*iter)->GetDe 2457 << (*iter)->GetDefinition()->GetParticleName() << G4endl; 2442 PrintKTVector(out,std::st 2458 PrintKTVector(out,std::string("outgoing, one not corrected")); 2443 } 2459 } 2444 #endif 2460 #endif 2445 } 2461 } 2446 } 2462 } 2447 2463 2448 #ifdef debug_BIC_CorrectBarionsOnBoundary 2464 #ifdef debug_BIC_CorrectBarionsOnBoundary 2449 PrintKTVector(out,std::string("out AF 2465 PrintKTVector(out,std::string("out AFTER correction")); 2450 G4cout << " DoTimeStep, nucl-update, 2466 G4cout << " DoTimeStep, nucl-update, A, Z, sec-Z,A,m,m_in_nucleus, table-mass, delta " 2451 << currentA << " "<< currentZ 2467 << currentA << " "<< currentZ << " " 2452 << secondaryCharge_out << " " 2468 << secondaryCharge_out << " "<< secondaryBarions_out << " "<< 2453 secondaryMass_out << " " 2469 secondaryMass_out << " " 2454 << massInNucleus << " " 2470 << massInNucleus << " " 2455 << GetIonMass(currentZ,curren 2471 << GetIonMass(currentZ,currentA) 2456 << " " << massInNucleus - Get 2472 << " " << massInNucleus - GetIonMass(currentZ,currentA) 2457 << G4endl; 2473 << G4endl; 2458 #endif 2474 #endif 2459 } 2475 } 2460 2476 2461 return kt_fail; 2477 return kt_fail; 2462 } 2478 } 2463 2479 2464 2480 2465 //------------------------------------------- 2481 //---------------------------------------------------------------------------- 2466 2482 2467 G4Fragment * G4BinaryCascade::FindFragments() 2483 G4Fragment * G4BinaryCascade::FindFragments() 2468 //------------------------------------------- 2484 //---------------------------------------------------------------------------- 2469 { 2485 { 2470 2486 2471 #ifdef debug_BIC_FindFragments 2487 #ifdef debug_BIC_FindFragments 2472 G4cout << "target, captured, secondary: " 2488 G4cout << "target, captured, secondary: " 2473 << theTargetList.size() << " " 2489 << theTargetList.size() << " " 2474 << theCapturedList.size()<< " " 2490 << theCapturedList.size()<< " " 2475 << theSecondaryList.size() 2491 << theSecondaryList.size() 2476 << G4endl; 2492 << G4endl; 2477 #endif 2493 #endif 2478 2494 2479 G4int a = G4int(theTargetList.size()+theC 2495 G4int a = G4int(theTargetList.size()+theCapturedList.size()); 2480 G4int zTarget = 0; 2496 G4int zTarget = 0; 2481 for(auto i = theTargetList.cbegin(); i != << 2497 G4KineticTrackVector::iterator i; >> 2498 for(i = theTargetList.begin(); i != theTargetList.end(); ++i) 2482 { 2499 { 2483 if(G4lrint((*i)->GetDefinition()->Get 2500 if(G4lrint((*i)->GetDefinition()->GetPDGCharge()/eplus) == 1 ) 2484 { 2501 { 2485 zTarget++; 2502 zTarget++; 2486 } 2503 } 2487 } 2504 } 2488 2505 2489 G4int zCaptured = 0; 2506 G4int zCaptured = 0; 2490 G4LorentzVector CapturedMomentum(0.,0.,0. 2507 G4LorentzVector CapturedMomentum(0.,0.,0.,0.); 2491 for(auto i = theCapturedList.cbegin(); i << 2508 for(i = theCapturedList.begin(); i != theCapturedList.end(); ++i) 2492 { 2509 { 2493 CapturedMomentum += (*i)->Get4Momentu 2510 CapturedMomentum += (*i)->Get4Momentum(); 2494 if(G4lrint((*i)->GetDefinition()->Get 2511 if(G4lrint((*i)->GetDefinition()->GetPDGCharge()/eplus) == 1 ) 2495 { 2512 { 2496 zCaptured++; 2513 zCaptured++; 2497 } 2514 } 2498 } 2515 } 2499 2516 2500 G4int z = zTarget+zCaptured; 2517 G4int z = zTarget+zCaptured; 2501 2518 2502 #ifdef debug_G4BinaryCascade 2519 #ifdef debug_G4BinaryCascade 2503 if ( z != (GetTotalCharge(theTargetList) 2520 if ( z != (GetTotalCharge(theTargetList) + GetTotalCharge(theCapturedList)) ) 2504 { 2521 { 2505 G4cout << " FindFragment Counting err 2522 G4cout << " FindFragment Counting error z a " << z << " " <<a << " " 2506 << GetTotalCharge(theTargetLi 2523 << GetTotalCharge(theTargetList) << " " << GetTotalCharge(theCapturedList)<< 2507 G4endl; 2524 G4endl; 2508 PrintKTVector(&theTargetList, std::st 2525 PrintKTVector(&theTargetList, std::string("theTargetList")); 2509 PrintKTVector(&theCapturedList, std:: 2526 PrintKTVector(&theCapturedList, std::string("theCapturedList")); 2510 } 2527 } 2511 #endif 2528 #endif 2512 //debug 2529 //debug 2513 /* 2530 /* 2514 * G4cout << " Fragment mass table / re 2531 * G4cout << " Fragment mass table / real " 2515 * << GetIonMass(z, a) 2532 * << GetIonMass(z, a) 2516 * << " / " << GetFinal4Momentum().mag( 2533 * << " / " << GetFinal4Momentum().mag() 2517 * << " difference " 2534 * << " difference " 2518 * << GetFinal4Momentum().mag() - GetI 2535 * << GetFinal4Momentum().mag() - GetIonMass(z, a) 2519 * << G4endl; 2536 * << G4endl; 2520 */ 2537 */ 2521 // 2538 // 2522 // if(fBCDEBUG) G4cerr << "Fragment A, Z << 2539 // if(getenv("BCDEBUG") ) G4cerr << "Fragment A, Z "<< a <<" "<< z<<G4endl; 2523 if ( z < 1 ) return 0; 2540 if ( z < 1 ) return 0; 2524 2541 2525 G4int holes = G4int(the3DNucleus->GetMass 2542 G4int holes = G4int(the3DNucleus->GetMassNumber() - theTargetList.size()); 2526 G4int excitons = (G4int)theCapturedList.s 2543 G4int excitons = (G4int)theCapturedList.size(); 2527 #ifdef debug_BIC_FindFragments 2544 #ifdef debug_BIC_FindFragments 2528 G4cout << "Fragment: a= " << a << " z= " 2545 G4cout << "Fragment: a= " << a << " z= " << z << " particles= " << excitons 2529 << " Charged= " << zCaptured << " 2546 << " Charged= " << zCaptured << " holes= " << holes 2530 << " excitE= " <<GetExcitationEne 2547 << " excitE= " <<GetExcitationEnergy() 2531 << " Final4Momentum= " << GetFina 2548 << " Final4Momentum= " << GetFinalNucleusMomentum() << " capturMomentum= " << CapturedMomentum 2532 << G4endl; 2549 << G4endl; 2533 #endif 2550 #endif 2534 2551 2535 G4Fragment * fragment = new G4Fragment(a, 2552 G4Fragment * fragment = new G4Fragment(a,z,GetFinalNucleusMomentum()); 2536 fragment->SetNumberOfHoles(holes); 2553 fragment->SetNumberOfHoles(holes); 2537 2554 2538 //GF fragment->SetNumberOfParticles(exci 2555 //GF fragment->SetNumberOfParticles(excitons-holes); 2539 fragment->SetNumberOfParticles(excitons); 2556 fragment->SetNumberOfParticles(excitons); 2540 fragment->SetNumberOfCharged(zCaptured); 2557 fragment->SetNumberOfCharged(zCaptured); 2541 fragment->SetCreatorModelID(theBIC_ID); 2558 fragment->SetCreatorModelID(theBIC_ID); 2542 2559 2543 return fragment; 2560 return fragment; 2544 } 2561 } 2545 2562 2546 //------------------------------------------- 2563 //---------------------------------------------------------------------------- 2547 2564 2548 G4LorentzVector G4BinaryCascade::GetFinal4Mom 2565 G4LorentzVector G4BinaryCascade::GetFinal4Momentum() 2549 //------------------------------------------- 2566 //---------------------------------------------------------------------------- 2550 // Return momentum of reminder nulceus; 2567 // Return momentum of reminder nulceus; 2551 // ie. difference of (initial state(primarie 2568 // ie. difference of (initial state(primaries+nucleus) - final state) particles, ignoring remnant nucleus 2552 { 2569 { 2553 G4LorentzVector final4Momentum = theIniti 2570 G4LorentzVector final4Momentum = theInitial4Mom + theProjectile4Momentum; 2554 G4LorentzVector finals(0,0,0,0); 2571 G4LorentzVector finals(0,0,0,0); 2555 for(auto i = theFinalState.cbegin(); i != << 2572 for(G4KineticTrackVector::iterator i = theFinalState.begin(); i != theFinalState.end(); ++i) 2556 { 2573 { 2557 final4Momentum -= (*i)->Get4Momentum( 2574 final4Momentum -= (*i)->Get4Momentum(); 2558 finals += (*i)->Get4Momentum(); 2575 finals += (*i)->Get4Momentum(); 2559 } 2576 } 2560 2577 2561 if(final4Momentum.e()> 0 && (final4Moment 2578 if(final4Momentum.e()> 0 && (final4Momentum.vect()/final4Momentum.e()).mag()>1.0 && currentA > 0) 2562 { 2579 { 2563 #ifdef debug_BIC_Final4Momentum 2580 #ifdef debug_BIC_Final4Momentum 2564 G4cerr << G4endl; 2581 G4cerr << G4endl; 2565 G4cerr << "G4BinaryCascade::GetFinal4 2582 G4cerr << "G4BinaryCascade::GetFinal4Momentum - Fatal"<<G4endl; 2566 G4KineticTrackVector::iterator i; 2583 G4KineticTrackVector::iterator i; 2567 G4cerr <<"Total initial 4-momentum " 2584 G4cerr <<"Total initial 4-momentum " << theProjectile4Momentum << G4endl; 2568 G4cerr <<" GetFinal4Momentum: Initial 2585 G4cerr <<" GetFinal4Momentum: Initial nucleus "<<theInitial4Mom<<G4endl; 2569 for(i = theFinalState.begin(); i != t 2586 for(i = theFinalState.begin(); i != theFinalState.end(); ++i) 2570 { 2587 { 2571 G4cerr <<" Final state: "<<(*i)-> 2588 G4cerr <<" Final state: "<<(*i)->Get4Momentum()<<(*i)->GetDefinition()->GetParticleName()<<G4endl; 2572 } 2589 } 2573 G4cerr << "Sum( 4-mom ) finals " << f 2590 G4cerr << "Sum( 4-mom ) finals " << finals << G4endl; 2574 G4cerr<< " Final4Momentum = "<<final4 2591 G4cerr<< " Final4Momentum = "<<final4Momentum <<" "<<final4Momentum.m()<<G4endl; 2575 G4cerr <<" current A, Z = "<< current 2592 G4cerr <<" current A, Z = "<< currentA<<", "<<currentZ<<G4endl; 2576 G4cerr << G4endl; 2593 G4cerr << G4endl; 2577 #endif 2594 #endif 2578 2595 2579 final4Momentum=G4LorentzVector(0,0,0, 2596 final4Momentum=G4LorentzVector(0,0,0,0); 2580 } 2597 } 2581 return final4Momentum; 2598 return final4Momentum; 2582 } 2599 } 2583 2600 2584 //------------------------------------------- 2601 //---------------------------------------------------------------------------- 2585 G4LorentzVector G4BinaryCascade::GetFinalNucl 2602 G4LorentzVector G4BinaryCascade::GetFinalNucleusMomentum() 2586 //------------------------------------------- 2603 //---------------------------------------------------------------------------- 2587 { 2604 { 2588 // return momentum of nucleus for use wit 2605 // return momentum of nucleus for use with precompound model; also keep transformation to 2589 // apply to precompoud products. 2606 // apply to precompoud products. 2590 2607 2591 G4LorentzVector CapturedMomentum(0,0,0,0) 2608 G4LorentzVector CapturedMomentum(0,0,0,0); >> 2609 G4KineticTrackVector::iterator i; 2592 // G4cout << "GetFinalNucleusMomentum Ca 2610 // G4cout << "GetFinalNucleusMomentum Captured size: " <<theCapturedList.size() << G4endl; 2593 for(auto i = theCapturedList.cbegin(); i << 2611 for(i = theCapturedList.begin(); i != theCapturedList.end(); ++i) 2594 { 2612 { 2595 CapturedMomentum += (*i)->Get4Momentu 2613 CapturedMomentum += (*i)->Get4Momentum(); 2596 } 2614 } 2597 //G4cout << "GetFinalNucleusMomentum Capt 2615 //G4cout << "GetFinalNucleusMomentum CapturedMomentum= " <<CapturedMomentum << G4endl; 2598 // G4cerr << "it 9"<<G4endl; 2616 // G4cerr << "it 9"<<G4endl; 2599 2617 2600 G4LorentzVector NucleusMomentum = GetFina 2618 G4LorentzVector NucleusMomentum = GetFinal4Momentum(); 2601 if ( NucleusMomentum.e() > 0 ) 2619 if ( NucleusMomentum.e() > 0 ) 2602 { 2620 { 2603 // G4cout << "GetFinalNucleusMomentum 2621 // G4cout << "GetFinalNucleusMomentum GetFinal4Momentum= " <<NucleusMomentum <<" "<<NucleusMomentum.mag()<<G4endl; 2604 // boost nucleus to a frame such that 2622 // boost nucleus to a frame such that the momentum of nucleus == momentum of Captured 2605 G4ThreeVector boost= (NucleusMomentum 2623 G4ThreeVector boost= (NucleusMomentum.vect() -CapturedMomentum.vect())/NucleusMomentum.e(); 2606 if(boost.mag2()>1.0) 2624 if(boost.mag2()>1.0) 2607 { 2625 { 2608 # ifdef debug_BIC_FinalNucleusMomentum 2626 # ifdef debug_BIC_FinalNucleusMomentum 2609 G4cerr << "G4BinaryCascade::GetFi 2627 G4cerr << "G4BinaryCascade::GetFinalNucleusMomentum - Fatal"<<G4endl; 2610 G4cerr << "it 0"<<boost <<G4endl; 2628 G4cerr << "it 0"<<boost <<G4endl; 2611 G4cerr << "it 01"<<NucleusMomentu 2629 G4cerr << "it 01"<<NucleusMomentum<<" "<<CapturedMomentum<<" "<<G4endl; 2612 G4cout <<" testing boost "<<boost 2630 G4cout <<" testing boost "<<boost<<" "<<boost.mag()<<G4endl; 2613 # endif 2631 # endif 2614 boost=G4ThreeVector(0,0,0); 2632 boost=G4ThreeVector(0,0,0); 2615 NucleusMomentum=G4LorentzVector(0 2633 NucleusMomentum=G4LorentzVector(0,0,0,0); 2616 } 2634 } 2617 G4LorentzRotation nucleusBoost( -boo 2635 G4LorentzRotation nucleusBoost( -boost ); 2618 precompoundLorentzboost.set( boost ); 2636 precompoundLorentzboost.set( boost ); 2619 #ifdef debug_debug_BIC_FinalNucleusMomentum 2637 #ifdef debug_debug_BIC_FinalNucleusMomentum 2620 G4cout << "GetFinalNucleusMomentum be 2638 G4cout << "GetFinalNucleusMomentum be4 boostNucleusMomentum, CapturedMomentum"<<NucleusMomentum<<" "<<CapturedMomentum<<" "<<G4endl; 2621 #endif 2639 #endif 2622 NucleusMomentum *= nucleusBoost; 2640 NucleusMomentum *= nucleusBoost; 2623 #ifdef debug_BIC_FinalNucleusMomentum 2641 #ifdef debug_BIC_FinalNucleusMomentum 2624 G4cout << "GetFinalNucleusMomentum af 2642 G4cout << "GetFinalNucleusMomentum aft boost GetFinal4Momentum= " <<NucleusMomentum <<G4endl; 2625 #endif 2643 #endif 2626 } 2644 } 2627 return NucleusMomentum; 2645 return NucleusMomentum; 2628 } 2646 } 2629 2647 2630 //------------------------------------------- 2648 //---------------------------------------------------------------------------- 2631 G4ReactionProductVector * G4BinaryCascade::Pr 2649 G4ReactionProductVector * G4BinaryCascade::Propagate1H1( 2632 //----------------------------------- 2650 //---------------------------------------------------------------------------- 2633 G4KineticTrackVector * secondaries, G 2651 G4KineticTrackVector * secondaries, G4V3DNucleus * nucleus) 2634 { 2652 { 2635 G4ReactionProductVector * products = new 2653 G4ReactionProductVector * products = new G4ReactionProductVector; 2636 const G4ParticleDefinition * aHTarg = G4P 2654 const G4ParticleDefinition * aHTarg = G4Proton::ProtonDefinition(); 2637 if (nucleus->GetCharge() == 0) aHTarg = G 2655 if (nucleus->GetCharge() == 0) aHTarg = G4Neutron::NeutronDefinition(); 2638 G4double mass = aHTarg->GetPDGMass(); 2656 G4double mass = aHTarg->GetPDGMass(); 2639 G4KineticTrackVector * secs = nullptr; << 2657 G4KineticTrackVector * secs = 0; 2640 G4ThreeVector pos(0,0,0); 2658 G4ThreeVector pos(0,0,0); 2641 G4LorentzVector mom(mass); 2659 G4LorentzVector mom(mass); 2642 G4KineticTrack aTarget(aHTarg, 0., pos, m 2660 G4KineticTrack aTarget(aHTarg, 0., pos, mom); 2643 G4bool done(false); 2661 G4bool done(false); >> 2662 std::vector<G4KineticTrack *>::iterator iter, jter; 2644 // data member static G4Scatterer theH 2663 // data member static G4Scatterer theH1Scatterer; 2645 //G4cout << " start 1H1 for " << (*second 2664 //G4cout << " start 1H1 for " << (*secondaries).front()->GetDefinition()->GetParticleName() 2646 // << " on " << aHTarg->GetParticle 2665 // << " on " << aHTarg->GetParticleName() << G4endl; 2647 G4int tryCount(0); 2666 G4int tryCount(0); 2648 while(!done && tryCount++ <200) 2667 while(!done && tryCount++ <200) /* Loop checking, 31.08.2015, G.Folger */ 2649 { 2668 { 2650 if(secs) 2669 if(secs) 2651 { 2670 { 2652 std::for_each(secs->begin(), secs 2671 std::for_each(secs->begin(), secs->end(), DeleteKineticTrack()); 2653 delete secs; 2672 delete secs; 2654 } 2673 } 2655 secs = theH1Scatterer->Scatter(*(*sec 2674 secs = theH1Scatterer->Scatter(*(*secondaries).front(), aTarget); 2656 #ifdef debug_H1_BinaryCascade 2675 #ifdef debug_H1_BinaryCascade 2657 PrintKTVector(secs," From Scatter"); 2676 PrintKTVector(secs," From Scatter"); 2658 #endif 2677 #endif 2659 for(std::size_t ss=0; secs && ss<secs << 2678 for(size_t ss=0; secs && ss<secs->size(); ss++) 2660 { 2679 { 2661 // must have one resonance in fin 2680 // must have one resonance in final state, or it was elastic, not allowed here. 2662 if((*secs)[ss]->GetDefinition()-> 2681 if((*secs)[ss]->GetDefinition()->IsShortLived()) done = true; 2663 } 2682 } 2664 } 2683 } 2665 2684 2666 ClearAndDestroy(&theFinalState); 2685 ClearAndDestroy(&theFinalState); 2667 ClearAndDestroy(secondaries); 2686 ClearAndDestroy(secondaries); 2668 delete secondaries; 2687 delete secondaries; 2669 2688 2670 for(std::size_t current=0; secs && curren << 2689 for(size_t current=0; secs && current<secs->size(); current++) 2671 { 2690 { 2672 if((*secs)[current]->GetDefinition()- 2691 if((*secs)[current]->GetDefinition()->IsShortLived()) 2673 { 2692 { 2674 done = true; // must have one re 2693 done = true; // must have one resonance in final state, elastic not allowed here! 2675 G4KineticTrackVector * dec = (*se 2694 G4KineticTrackVector * dec = (*secs)[current]->Decay(); 2676 for(auto jter=dec->cbegin(); jter << 2695 for(jter=dec->begin(); jter != dec->end(); jter++) 2677 { 2696 { 2678 //G4cout << "Decay"<<G4endl; 2697 //G4cout << "Decay"<<G4endl; 2679 secs->push_back(*jter); 2698 secs->push_back(*jter); 2680 //G4cout << "decay "<<(*jter) 2699 //G4cout << "decay "<<(*jter)->GetDefinition()->GetParticleName()<<G4endl; 2681 } 2700 } 2682 delete (*secs)[current]; 2701 delete (*secs)[current]; 2683 delete dec; 2702 delete dec; 2684 } 2703 } 2685 else 2704 else 2686 { 2705 { 2687 //G4cout << "FS "<<G4endl; 2706 //G4cout << "FS "<<G4endl; 2688 //G4cout << "FS "<<(*secs)[curren 2707 //G4cout << "FS "<<(*secs)[current]->GetDefinition()->GetParticleName()<<G4endl; 2689 theFinalState.push_back((*secs)[c 2708 theFinalState.push_back((*secs)[current]); 2690 } 2709 } 2691 } 2710 } 2692 2711 2693 delete secs; 2712 delete secs; 2694 #ifdef debug_H1_BinaryCascade 2713 #ifdef debug_H1_BinaryCascade 2695 PrintKTVector(&theFinalState," FinalState 2714 PrintKTVector(&theFinalState," FinalState"); 2696 #endif 2715 #endif 2697 for(auto iter = theFinalState.cbegin(); i << 2716 for(iter = theFinalState.begin(); iter != theFinalState.end(); ++iter) 2698 { 2717 { 2699 G4KineticTrack * kt = *iter; 2718 G4KineticTrack * kt = *iter; 2700 G4ReactionProduct * aNew = new G4Reac 2719 G4ReactionProduct * aNew = new G4ReactionProduct(kt->GetDefinition()); 2701 aNew->SetMomentum(kt->Get4Momentum(). 2720 aNew->SetMomentum(kt->Get4Momentum().vect()); 2702 aNew->SetTotalEnergy(kt->Get4Momentum 2721 aNew->SetTotalEnergy(kt->Get4Momentum().e()); 2703 aNew->SetCreatorModelID(theBIC_ID); 2722 aNew->SetCreatorModelID(theBIC_ID); 2704 aNew->SetParentResonanceDef(kt->GetPa 2723 aNew->SetParentResonanceDef(kt->GetParentResonanceDef()); 2705 aNew->SetParentResonanceID(kt->GetPar 2724 aNew->SetParentResonanceID(kt->GetParentResonanceID()); 2706 products->push_back(aNew); 2725 products->push_back(aNew); 2707 #ifdef debug_H1_BinaryCascade 2726 #ifdef debug_H1_BinaryCascade 2708 if (! kt->GetDefinition()->GetPDGStab 2727 if (! kt->GetDefinition()->GetPDGStable() ) 2709 { 2728 { 2710 if (kt->GetDefinition()->IsShortL 2729 if (kt->GetDefinition()->IsShortLived()) 2711 { 2730 { 2712 G4cout << "final shortlived : 2731 G4cout << "final shortlived : "; 2713 } else 2732 } else 2714 { 2733 { 2715 G4cout << "final un stable : 2734 G4cout << "final un stable : "; 2716 } 2735 } 2717 G4cout <<kt->GetDefinition()->Get 2736 G4cout <<kt->GetDefinition()->GetParticleName()<< G4endl; 2718 } 2737 } 2719 #endif 2738 #endif 2720 delete kt; 2739 delete kt; 2721 } 2740 } 2722 theFinalState.clear(); 2741 theFinalState.clear(); 2723 return products; 2742 return products; 2724 2743 2725 } 2744 } 2726 2745 2727 //------------------------------------------- 2746 //---------------------------------------------------------------------------- 2728 G4ThreeVector G4BinaryCascade::GetSpherePoint 2747 G4ThreeVector G4BinaryCascade::GetSpherePoint( 2729 G4double r, const G4LorentzVector & m 2748 G4double r, const G4LorentzVector & mom4) 2730 //------------------------------------------- 2749 //---------------------------------------------------------------------------- 2731 { 2750 { 2732 // Get a point outside radius. 2751 // Get a point outside radius. 2733 // point is random in plane (circle o 2752 // point is random in plane (circle of radius r) orthogonal to mom, 2734 // plus -1*r*mom->vect()->unit(); 2753 // plus -1*r*mom->vect()->unit(); 2735 G4ThreeVector o1, o2; 2754 G4ThreeVector o1, o2; 2736 G4ThreeVector mom = mom4.vect(); 2755 G4ThreeVector mom = mom4.vect(); 2737 2756 2738 o1= mom.orthogonal(); // we simply need 2757 o1= mom.orthogonal(); // we simply need any vector non parallel 2739 o2= mom.cross(o1); // o2 is now orth 2758 o2= mom.cross(o1); // o2 is now orthogonal to mom and o1, ie. o1 and o2 define plane. 2740 2759 2741 G4double x2, x1; 2760 G4double x2, x1; 2742 2761 2743 do 2762 do 2744 { 2763 { 2745 x1=(G4UniformRand()-.5)*2; 2764 x1=(G4UniformRand()-.5)*2; 2746 x2=(G4UniformRand()-.5)*2; 2765 x2=(G4UniformRand()-.5)*2; 2747 } while (sqr(x1) +sqr(x2) > 1.); 2766 } while (sqr(x1) +sqr(x2) > 1.); /* Loop checking, 31.08.2015, G.Folger */ // or random is badly broken..... 2748 2767 2749 return G4ThreeVector(r*(x1*o1.unit() + x2 2768 return G4ThreeVector(r*(x1*o1.unit() + x2*o2.unit() - 1.5* mom.unit())); 2750 2769 2751 2770 2752 2771 2753 /* 2772 /* 2754 * // Get a point uniformly distributed o 2773 * // Get a point uniformly distributed on the surface of a sphere, 2755 * // with z < 0. 2774 * // with z < 0. 2756 * G4double b = r*G4UniformRand(); // 2775 * G4double b = r*G4UniformRand(); // impact parameter 2757 * G4double phi = G4UniformRand()*2*pi; 2776 * G4double phi = G4UniformRand()*2*pi; 2758 * G4double x = b*std::cos(phi); 2777 * G4double x = b*std::cos(phi); 2759 * G4double y = b*std::sin(phi); 2778 * G4double y = b*std::sin(phi); 2760 * G4double z = -std::sqrt(r*r-b*b); 2779 * G4double z = -std::sqrt(r*r-b*b); 2761 * z *= 1.001; // Get position a little 2780 * z *= 1.001; // Get position a little bit out of the sphere... 2762 * point.setX(x); 2781 * point.setX(x); 2763 * point.setY(y); 2782 * point.setY(y); 2764 * point.setZ(z); 2783 * point.setZ(z); 2765 */ 2784 */ 2766 } 2785 } 2767 2786 2768 //------------------------------------------- 2787 //---------------------------------------------------------------------------- 2769 2788 2770 void G4BinaryCascade::ClearAndDestroy(G4Kinet 2789 void G4BinaryCascade::ClearAndDestroy(G4KineticTrackVector * ktv) 2771 //------------------------------------------- 2790 //---------------------------------------------------------------------------- 2772 { 2791 { 2773 for(auto i = ktv->cbegin(); i != ktv->cen << 2792 std::vector<G4KineticTrack *>::iterator i; >> 2793 for(i = ktv->begin(); i != ktv->end(); ++i) 2774 delete (*i); 2794 delete (*i); 2775 ktv->clear(); 2795 ktv->clear(); 2776 } 2796 } 2777 2797 2778 //------------------------------------------- 2798 //---------------------------------------------------------------------------- 2779 void G4BinaryCascade::ClearAndDestroy(G4React 2799 void G4BinaryCascade::ClearAndDestroy(G4ReactionProductVector * rpv) 2780 //------------------------------------------- 2800 //---------------------------------------------------------------------------- 2781 { 2801 { 2782 for(auto i = rpv->cbegin(); i != rpv->cen << 2802 std::vector<G4ReactionProduct *>::iterator i; >> 2803 for(i = rpv->begin(); i != rpv->end(); ++i) 2783 delete (*i); 2804 delete (*i); 2784 rpv->clear(); 2805 rpv->clear(); 2785 } 2806 } 2786 2807 2787 //------------------------------------------- 2808 //---------------------------------------------------------------------------- 2788 void G4BinaryCascade::PrintKTVector(G4Kinetic 2809 void G4BinaryCascade::PrintKTVector(G4KineticTrackVector * ktv, std::string comment) 2789 //------------------------------------------- 2810 //---------------------------------------------------------------------------- 2790 { 2811 { 2791 if (comment.size() > 0 ) G4cout << "G4Bin 2812 if (comment.size() > 0 ) G4cout << "G4BinaryCascade::PrintKTVector() " << comment << G4endl; 2792 if (ktv) { 2813 if (ktv) { 2793 G4cout << " vector: " << ktv << ", n 2814 G4cout << " vector: " << ktv << ", number of tracks: " << ktv->size() 2794 << G4endl; 2815 << G4endl; 2795 std::vector<G4KineticTrack *>::const_ << 2816 std::vector<G4KineticTrack *>::iterator i; 2796 G4int count; 2817 G4int count; 2797 2818 2798 for(count = 0, i = ktv->cbegin(); i ! << 2819 for(count = 0, i = ktv->begin(); i != ktv->end(); ++i, ++count) 2799 { 2820 { 2800 G4KineticTrack * kt = *i; 2821 G4KineticTrack * kt = *i; 2801 G4cout << " track n. " << count; 2822 G4cout << " track n. " << count; 2802 PrintKTVector(kt); 2823 PrintKTVector(kt); 2803 } 2824 } 2804 } else { 2825 } else { 2805 G4cout << "G4BinaryCascade::PrintKTVe 2826 G4cout << "G4BinaryCascade::PrintKTVector():No KineticTrackVector given " << G4endl; 2806 } 2827 } 2807 } 2828 } 2808 //------------------------------------------- 2829 //---------------------------------------------------------------------------- 2809 void G4BinaryCascade::PrintKTVector(G4Kinetic 2830 void G4BinaryCascade::PrintKTVector(G4KineticTrack * kt, std::string comment) 2810 //------------------------------------------- 2831 //---------------------------------------------------------------------------- 2811 { 2832 { 2812 if (comment.size() > 0 ) G4cout << "G4Bin 2833 if (comment.size() > 0 ) G4cout << "G4BinaryCascade::PrintKTVector() "<< comment << G4endl; 2813 if ( kt ){ 2834 if ( kt ){ 2814 G4cout << ", id: " << kt << G4endl; 2835 G4cout << ", id: " << kt << G4endl; 2815 G4ThreeVector pos = kt->GetPosition() 2836 G4ThreeVector pos = kt->GetPosition(); 2816 G4LorentzVector mom = kt->Get4Momentu 2837 G4LorentzVector mom = kt->Get4Momentum(); 2817 G4LorentzVector tmom = kt->GetTrackin 2838 G4LorentzVector tmom = kt->GetTrackingMomentum(); 2818 const G4ParticleDefinition * definiti 2839 const G4ParticleDefinition * definition = kt->GetDefinition(); 2819 G4cout << " definition: " << defin 2840 G4cout << " definition: " << definition->GetPDGEncoding() << " pos: " 2820 << 1/fermi*pos << " R: " << 1 2841 << 1/fermi*pos << " R: " << 1/fermi*pos.mag() << " 4mom: " 2821 << 1/MeV*mom <<"Tr_mom" << 1 2842 << 1/MeV*mom <<"Tr_mom" << 1/MeV*tmom << " P: " << 1/MeV*mom.vect().mag() 2822 << " M: " << 1/MeV*mom.mag() 2843 << " M: " << 1/MeV*mom.mag() << G4endl; 2823 G4cout <<" trackstatus: "<<kt->Get 2844 G4cout <<" trackstatus: "<<kt->GetState() << " isParticipant " << (kt->IsParticipant()?"T":"F") <<G4endl; 2824 } else { 2845 } else { 2825 G4cout << "G4BinaryCascade::PrintKTVe 2846 G4cout << "G4BinaryCascade::PrintKTVector(): No Kinetictrack given" << G4endl; 2826 } 2847 } 2827 } 2848 } 2828 2849 2829 2850 2830 //------------------------------------------- 2851 //---------------------------------------------------------------------------- 2831 G4double G4BinaryCascade::GetIonMass(G4int Z, 2852 G4double G4BinaryCascade::GetIonMass(G4int Z, G4int A) 2832 //------------------------------------------- 2853 //---------------------------------------------------------------------------- 2833 { 2854 { 2834 G4double mass(0); 2855 G4double mass(0); 2835 if ( Z > 0 && A >= Z ) 2856 if ( Z > 0 && A >= Z ) 2836 { 2857 { 2837 mass = G4ParticleTable::GetParticleTa 2858 mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(Z,A); 2838 2859 2839 } else if ( A > 0 && Z>0 ) 2860 } else if ( A > 0 && Z>0 ) 2840 { 2861 { 2841 // charge Z > A; will happen for ligh 2862 // charge Z > A; will happen for light nuclei with pions involved. 2842 mass = G4ParticleTable::GetParticleTa 2863 mass = G4ParticleTable::GetParticleTable()->GetIonTable()->GetIonMass(A,A); 2843 2864 2844 } else if ( A >= 0 && Z<=0 ) 2865 } else if ( A >= 0 && Z<=0 ) 2845 { 2866 { 2846 // all neutral, or empty nucleus 2867 // all neutral, or empty nucleus 2847 mass = A * G4Neutron::Neutron()->GetP 2868 mass = A * G4Neutron::Neutron()->GetPDGMass(); 2848 2869 2849 } else if ( A == 0 ) 2870 } else if ( A == 0 ) 2850 { 2871 { 2851 // empty nucleus, except maybe pions 2872 // empty nucleus, except maybe pions 2852 mass = 0; 2873 mass = 0; 2853 2874 2854 } else 2875 } else 2855 { 2876 { 2856 G4cerr << "G4BinaryCascade::GetIonMas 2877 G4cerr << "G4BinaryCascade::GetIonMass() - invalid (A,Z) = (" 2857 << A << "," << Z << ")" <<G4e 2878 << A << "," << Z << ")" <<G4endl; 2858 throw G4HadronicException(__FILE__, _ 2879 throw G4HadronicException(__FILE__, __LINE__, "G4BinaryCascade::GetIonMass() - giving up"); 2859 2880 2860 } 2881 } 2861 // G4cout << "G4BinaryCascade::GetIonMass 2882 // G4cout << "G4BinaryCascade::GetIonMass() Z, A, mass " << Z << " " << A << " " << mass << G4endl; 2862 return mass; 2883 return mass; 2863 } 2884 } 2864 G4ReactionProductVector * G4BinaryCascade::Fi 2885 G4ReactionProductVector * G4BinaryCascade::FillVoidNucleusProducts(G4ReactionProductVector * products) 2865 { 2886 { 2866 // return product when nucleus is destroy 2887 // return product when nucleus is destroyed, i.e. charge=0, or theTargetList.size()=0 2867 G4double Esecondaries(0.); 2888 G4double Esecondaries(0.); 2868 G4LorentzVector psecondaries; 2889 G4LorentzVector psecondaries; 2869 std::vector<G4KineticTrack *>::const_iter 2890 std::vector<G4KineticTrack *>::const_iterator iter; 2870 std::vector<G4ReactionProduct *>::const_i 2891 std::vector<G4ReactionProduct *>::const_iterator rpiter; 2871 decayKTV.Decay(&theFinalState); 2892 decayKTV.Decay(&theFinalState); 2872 2893 2873 for(iter = theFinalState.cbegin(); iter ! 2894 for(iter = theFinalState.cbegin(); iter != theFinalState.cend(); ++iter) 2874 { 2895 { 2875 G4ReactionProduct * aNew = new G4Reac 2896 G4ReactionProduct * aNew = new G4ReactionProduct((*iter)->GetDefinition()); 2876 aNew->SetMomentum((*iter)->Get4Moment 2897 aNew->SetMomentum((*iter)->Get4Momentum().vect()); 2877 aNew->SetTotalEnergy((*iter)->Get4Mom 2898 aNew->SetTotalEnergy((*iter)->Get4Momentum().e()); 2878 aNew->SetCreatorModelID(theBIC_ID); 2899 aNew->SetCreatorModelID(theBIC_ID); 2879 aNew->SetParentResonanceDef((*iter)->GetPar 2900 aNew->SetParentResonanceDef((*iter)->GetParentResonanceDef()); 2880 aNew->SetParentResonanceID((*iter)->GetPare 2901 aNew->SetParentResonanceID((*iter)->GetParentResonanceID()); 2881 Esecondaries +=(*iter)->Get4Momentum( 2902 Esecondaries +=(*iter)->Get4Momentum().e(); 2882 psecondaries +=(*iter)->Get4Momentum( 2903 psecondaries +=(*iter)->Get4Momentum(); 2883 aNew->SetNewlyAdded(true); 2904 aNew->SetNewlyAdded(true); 2884 //G4cout << " Particle Ekin " << aNew 2905 //G4cout << " Particle Ekin " << aNew->GetKineticEnergy() << G4endl; 2885 products->push_back(aNew); 2906 products->push_back(aNew); 2886 } 2907 } 2887 2908 2888 // pull out late particles from collision 2909 // pull out late particles from collisions 2889 //theCollisionMgr->Print(); 2910 //theCollisionMgr->Print(); 2890 while(theCollisionMgr->Entries() > 0) 2911 while(theCollisionMgr->Entries() > 0) /* Loop checking, 31.08.2015, G.Folger */ 2891 { 2912 { 2892 G4CollisionInitialState * 2913 G4CollisionInitialState * 2893 collision = theCollisionMgr->GetNextC 2914 collision = theCollisionMgr->GetNextCollision(); 2894 2915 2895 if ( ! collision->GetTargetCollection 2916 if ( ! collision->GetTargetCollection().size() ){ 2896 G4KineticTrackVector * lates = co 2917 G4KineticTrackVector * lates = collision->GetFinalState(); 2897 if ( lates->size() == 1 ) { 2918 if ( lates->size() == 1 ) { 2898 G4KineticTrack * atrack=*(lat 2919 G4KineticTrack * atrack=*(lates->begin()); 2899 //PrintKTVector(atrack, " lat 2920 //PrintKTVector(atrack, " late particle @ void Nucl "); 2900 2921 2901 G4ReactionProduct * aNew = ne 2922 G4ReactionProduct * aNew = new G4ReactionProduct(atrack->GetDefinition()); 2902 aNew->SetMomentum(atrack->Get 2923 aNew->SetMomentum(atrack->Get4Momentum().vect()); 2903 aNew->SetTotalEnergy(atrack-> 2924 aNew->SetTotalEnergy(atrack->Get4Momentum().e()); 2904 aNew->SetCreatorModelID(atrac 2925 aNew->SetCreatorModelID(atrack->GetCreatorModelID()); 2905 aNew->SetParentResonanceDef(atrack->GetPa 2926 aNew->SetParentResonanceDef(atrack->GetParentResonanceDef()); 2906 aNew->SetParentResonanceID(atrack->GetPar 2927 aNew->SetParentResonanceID(atrack->GetParentResonanceID()); 2907 Esecondaries +=atrack->Get4Mo 2928 Esecondaries +=atrack->Get4Momentum().e(); 2908 psecondaries +=atrack->Get4Mo 2929 psecondaries +=atrack->Get4Momentum(); 2909 aNew->SetNewlyAdded(true); 2930 aNew->SetNewlyAdded(true); 2910 products->push_back(aNew); 2931 products->push_back(aNew); 2911 2932 2912 } 2933 } 2913 } 2934 } 2914 theCollisionMgr->RemoveCollision(coll 2935 theCollisionMgr->RemoveCollision(collision); 2915 2936 2916 } 2937 } 2917 2938 2918 // decay must be after loop on Collisions 2939 // decay must be after loop on Collisions, and Decay() will delete entries in theSecondaryList, refered 2919 // to by Collisions. 2940 // to by Collisions. 2920 decayKTV.Decay(&theSecondaryList); 2941 decayKTV.Decay(&theSecondaryList); 2921 2942 2922 // Correct for momentum transfered to Nuc 2943 // Correct for momentum transfered to Nucleus 2923 G4ThreeVector transferCorrection(0); 2944 G4ThreeVector transferCorrection(0); 2924 if ( (theSecondaryList.size() + theCaptur 2945 if ( (theSecondaryList.size() + theCapturedList.size()) > 0) 2925 { 2946 { 2926 transferCorrection= theMomentumTransfer 2947 transferCorrection= theMomentumTransfer /(theSecondaryList.size() + theCapturedList.size()); 2927 } 2948 } 2928 2949 2929 for(iter = theSecondaryList.cbegin(); ite 2950 for(iter = theSecondaryList.cbegin(); iter != theSecondaryList.cend(); ++iter) 2930 { 2951 { 2931 G4ReactionProduct * aNew = new G4Reac 2952 G4ReactionProduct * aNew = new G4ReactionProduct((*iter)->GetDefinition()); 2932 (*iter)->Update4Momentum((*iter)->Get 2953 (*iter)->Update4Momentum((*iter)->Get4Momentum().vect()+transferCorrection); 2933 aNew->SetMomentum((*iter)->Get4Moment 2954 aNew->SetMomentum((*iter)->Get4Momentum().vect()); 2934 aNew->SetTotalEnergy((*iter)->Get4Mom 2955 aNew->SetTotalEnergy((*iter)->Get4Momentum().e()); 2935 aNew->SetCreatorModelID(theBIC_ID); 2956 aNew->SetCreatorModelID(theBIC_ID); 2936 aNew->SetParentResonanceDef((*iter)->GetPar 2957 aNew->SetParentResonanceDef((*iter)->GetParentResonanceDef()); 2937 aNew->SetParentResonanceID((*iter)->GetPare 2958 aNew->SetParentResonanceID((*iter)->GetParentResonanceID()); 2938 Esecondaries +=(*iter)->Get4Momentum( 2959 Esecondaries +=(*iter)->Get4Momentum().e(); 2939 psecondaries +=(*iter)->Get4Momentum( 2960 psecondaries +=(*iter)->Get4Momentum(); 2940 if ( (*iter)->IsParticipant() ) aNew- 2961 if ( (*iter)->IsParticipant() ) aNew->SetNewlyAdded(true); 2941 products->push_back(aNew); 2962 products->push_back(aNew); 2942 } 2963 } 2943 2964 2944 for(iter = theCapturedList.cbegin(); iter 2965 for(iter = theCapturedList.cbegin(); iter != theCapturedList.cend(); ++iter) 2945 { 2966 { 2946 G4ReactionProduct * aNew = new G4Reac 2967 G4ReactionProduct * aNew = new G4ReactionProduct((*iter)->GetDefinition()); 2947 (*iter)->Update4Momentum((*iter)->Get 2968 (*iter)->Update4Momentum((*iter)->Get4Momentum().vect()+transferCorrection); 2948 aNew->SetMomentum((*iter)->Get4Moment 2969 aNew->SetMomentum((*iter)->Get4Momentum().vect()); 2949 aNew->SetTotalEnergy((*iter)->Get4Mom 2970 aNew->SetTotalEnergy((*iter)->Get4Momentum().e()); 2950 aNew->SetCreatorModelID(theBIC_ID); 2971 aNew->SetCreatorModelID(theBIC_ID); 2951 aNew->SetParentResonanceDef((*iter)->GetPar 2972 aNew->SetParentResonanceDef((*iter)->GetParentResonanceDef()); 2952 aNew->SetParentResonanceID((*iter)->GetPare 2973 aNew->SetParentResonanceID((*iter)->GetParentResonanceID()); 2953 Esecondaries +=(*iter)->Get4Momentum( 2974 Esecondaries +=(*iter)->Get4Momentum().e(); 2954 psecondaries +=(*iter)->Get4Momentum( 2975 psecondaries +=(*iter)->Get4Momentum(); 2955 aNew->SetNewlyAdded(true); 2976 aNew->SetNewlyAdded(true); 2956 products->push_back(aNew); 2977 products->push_back(aNew); 2957 } 2978 } 2958 2979 2959 G4double SumMassNucleons(0.); 2980 G4double SumMassNucleons(0.); 2960 G4LorentzVector pNucleons(0.); 2981 G4LorentzVector pNucleons(0.); 2961 for(iter = theTargetList.cbegin(); iter ! 2982 for(iter = theTargetList.cbegin(); iter != theTargetList.cend(); ++iter) 2962 { 2983 { 2963 SumMassNucleons += (*iter)->GetDefini 2984 SumMassNucleons += (*iter)->GetDefinition()->GetPDGMass(); 2964 pNucleons += (*iter)->Get4Momentum(); 2985 pNucleons += (*iter)->Get4Momentum(); 2965 } 2986 } 2966 2987 2967 G4double Ekinetic=theProjectile4Momentum. 2988 G4double Ekinetic=theProjectile4Momentum.e() + initial_nuclear_mass - Esecondaries - SumMassNucleons; 2968 #ifdef debug_BIC_FillVoidnucleus 2989 #ifdef debug_BIC_FillVoidnucleus 2969 G4LorentzVector deltaP=theProjectile4 2990 G4LorentzVector deltaP=theProjectile4Momentum + G4LorentzVector(initial_nuclear_mass) - 2970 psecondaries - pNucle 2991 psecondaries - pNucleons; 2971 //G4cout << "BIC::FillVoidNucleus() n 2992 //G4cout << "BIC::FillVoidNucleus() nucleons : "<<theTargetList.size() << " , T: " << Ekinetic << 2972 // ", deltaP " << deltaP << " de 2993 // ", deltaP " << deltaP << " deltaPNoNucl " << deltaP + pNucleons << G4endl; 2973 #endif 2994 #endif 2974 if (Ekinetic > 0. && theTargetList.size() 2995 if (Ekinetic > 0. && theTargetList.size()){ 2975 Ekinetic /= theTargetList.size(); 2996 Ekinetic /= theTargetList.size(); 2976 } else { 2997 } else { 2977 G4double Ekineticrdm(0); 2998 G4double Ekineticrdm(0); 2978 if (theTargetList.size()) Ekineticrdm 2999 if (theTargetList.size()) Ekineticrdm = ( 0.1 + G4UniformRand()*5.) * MeV; // leave some Energy for Nucleons 2979 G4double TotalEkin(Ekineticrdm); 3000 G4double TotalEkin(Ekineticrdm); 2980 for (rpiter=products->cbegin(); rpite 3001 for (rpiter=products->cbegin(); rpiter!=products->cend(); ++rpiter){ 2981 TotalEkin+=(*rpiter)->GetKineticEne 3002 TotalEkin+=(*rpiter)->GetKineticEnergy(); 2982 } 3003 } 2983 G4double correction(1.); 3004 G4double correction(1.); 2984 if ( std::abs(Ekinetic) < 20*perCent 3005 if ( std::abs(Ekinetic) < 20*perCent * TotalEkin ){ 2985 correction=1. + (Ekinetic-Ekineticr 3006 correction=1. + (Ekinetic-Ekineticrdm)/TotalEkin; // Ekinetic < 0 == IS < FS, need to reduce energies 2986 } 3007 } 2987 #ifdef debug_G4BinaryCascade 3008 #ifdef debug_G4BinaryCascade 2988 else { 3009 else { 2989 G4cout << "BLIC::FillVoidNucleus() fa 3010 G4cout << "BLIC::FillVoidNucleus() fail correction, Ekinetic, TotalEkin " << Ekinetic << ""<< TotalEkin << G4endl; 2990 } 3011 } 2991 #endif 3012 #endif 2992 3013 2993 for (rpiter=products->cbegin(); rpite 3014 for (rpiter=products->cbegin(); rpiter!=products->cend(); ++rpiter){ 2994 (*rpiter)->SetKineticEnergy((*rpiter) 3015 (*rpiter)->SetKineticEnergy((*rpiter)->GetKineticEnergy()*correction); // this sets kinetic & total energy 2995 (*rpiter)->SetMomentum((*rpiter)->G 3016 (*rpiter)->SetMomentum((*rpiter)->GetTotalMomentum() * (*rpiter)->GetMomentum().unit()); 2996 3017 2997 } 3018 } 2998 3019 2999 Ekinetic=Ekineticrdm*correction; 3020 Ekinetic=Ekineticrdm*correction; 3000 if (theTargetList.size())Ekinetic /= 3021 if (theTargetList.size())Ekinetic /= theTargetList.size(); 3001 3022 3002 } 3023 } 3003 3024 3004 for(iter = theTargetList.cbegin(); iter ! 3025 for(iter = theTargetList.cbegin(); iter != theTargetList.cend(); ++iter) { 3005 // set Nucleon it to be hit - as it is 3026 // set Nucleon it to be hit - as it is in fact 3006 (*iter)->Hit(); 3027 (*iter)->Hit(); 3007 G4ReactionProduct * aNew = new G4Reac 3028 G4ReactionProduct * aNew = new G4ReactionProduct((*iter)->GetDefinition()); 3008 aNew->SetKineticEnergy(Ekinetic); 3029 aNew->SetKineticEnergy(Ekinetic); 3009 aNew->SetMomentum(aNew->GetTotalMomen 3030 aNew->SetMomentum(aNew->GetTotalMomentum() * ((*iter)->Get4Momentum().vect().unit())); 3010 aNew->SetNewlyAdded(true); 3031 aNew->SetNewlyAdded(true); 3011 aNew->SetCreatorModelID(theBIC_ID); 3032 aNew->SetCreatorModelID(theBIC_ID); 3012 aNew->SetParentResonanceDef((*iter)->GetPar 3033 aNew->SetParentResonanceDef((*iter)->GetParentResonanceDef()); 3013 aNew->SetParentResonanceID((*iter)->GetPare 3034 aNew->SetParentResonanceID((*iter)->GetParentResonanceID()); 3014 products->push_back(aNew); 3035 products->push_back(aNew); 3015 Esecondaries += aNew->GetTotalEnergy( 3036 Esecondaries += aNew->GetTotalEnergy(); 3016 psecondaries += G4LorentzVector(aNew- 3037 psecondaries += G4LorentzVector(aNew->GetMomentum(),aNew->GetTotalEnergy() ); 3017 } 3038 } 3018 psecondaries=G4LorentzVector(0); 3039 psecondaries=G4LorentzVector(0); 3019 for (rpiter=products->cbegin(); rpiter!=p 3040 for (rpiter=products->cbegin(); rpiter!=products->cend(); ++rpiter){ 3020 psecondaries += G4LorentzVector((*rpite 3041 psecondaries += G4LorentzVector((*rpiter)->GetMomentum(),(*rpiter)->GetTotalEnergy() ); 3021 } 3042 } 3022 3043 3023 G4LorentzVector initial4Mom=theProjectile 3044 G4LorentzVector initial4Mom=theProjectile4Momentum + G4LorentzVector(initial_nuclear_mass); 3024 3045 3025 //G4cout << "::FillVoidNucleus()final e/p 3046 //G4cout << "::FillVoidNucleus()final e/p conservation initial" <<initial4Mom 3026 // << " final " << psecondaries << " del 3047 // << " final " << psecondaries << " delta " << initial4Mom-psecondaries << G4endl; 3027 3048 3028 G4ThreeVector SumMom=psecondaries.vect(); 3049 G4ThreeVector SumMom=psecondaries.vect(); 3029 3050 3030 SumMom=initial4Mom.vect()-SumMom; 3051 SumMom=initial4Mom.vect()-SumMom; 3031 G4int loopcount(0); 3052 G4int loopcount(0); 3032 3053 3033 // reverse_iterator reverse - start to co 3054 // reverse_iterator reverse - start to correct last added first 3034 while ( SumMom.mag() > 0.1*MeV && loopcou 3055 while ( SumMom.mag() > 0.1*MeV && loopcount++ < 10) /* Loop checking, 31.08.2015, G.Folger */ 3035 { 3056 { 3036 G4int index=(G4int)products->size(); 3057 G4int index=(G4int)products->size(); 3037 for (auto reverse=products->crbegin(); 3058 for (auto reverse=products->crbegin(); reverse!=products->crend(); ++reverse, --index){ 3038 SumMom=initial4Mom.vect(); 3059 SumMom=initial4Mom.vect(); 3039 for (rpiter=products->cbegin(); rpite 3060 for (rpiter=products->cbegin(); rpiter!=products->cend(); ++rpiter){ 3040 SumMom-=(*rpiter)->GetMomentum(); 3061 SumMom-=(*rpiter)->GetMomentum(); 3041 } 3062 } 3042 G4double p=((*reverse)->GetMomentum() 3063 G4double p=((*reverse)->GetMomentum()).mag(); 3043 (*reverse)->SetMomentum( p*(((*rever 3064 (*reverse)->SetMomentum( p*(((*reverse)->GetMomentum()+SumMom).unit())); 3044 } 3065 } 3045 } 3066 } 3046 return products; 3067 return products; 3047 } 3068 } 3048 3069 3049 G4ReactionProductVector * G4BinaryCascade::Hi 3070 G4ReactionProductVector * G4BinaryCascade::HighEnergyModelFSProducts(G4ReactionProductVector * products, 3050 G4KineticTrackVector * secondaries) 3071 G4KineticTrackVector * secondaries) 3051 { 3072 { 3052 for(auto iter = secondaries->cbegin(); it << 3073 std::vector<G4KineticTrack *>::iterator iter; >> 3074 for(iter = secondaries->begin(); iter != secondaries->end(); ++iter) 3053 { 3075 { 3054 G4ReactionProduct * aNew = new G4Reac 3076 G4ReactionProduct * aNew = new G4ReactionProduct((*iter)->GetDefinition()); 3055 aNew->SetMomentum((*iter)->Get4Moment 3077 aNew->SetMomentum((*iter)->Get4Momentum().vect()); 3056 aNew->SetTotalEnergy((*iter)->Get4Mom 3078 aNew->SetTotalEnergy((*iter)->Get4Momentum().e()); 3057 aNew->SetNewlyAdded(true); 3079 aNew->SetNewlyAdded(true); 3058 aNew->SetCreatorModelID((*iter)->GetC 3080 aNew->SetCreatorModelID((*iter)->GetCreatorModelID()); 3059 aNew->SetParentResonanceDef((*iter)-> 3081 aNew->SetParentResonanceDef((*iter)->GetParentResonanceDef()); 3060 aNew->SetParentResonanceID((*iter)->G 3082 aNew->SetParentResonanceID((*iter)->GetParentResonanceID()); 3061 //G4cout << " Particle Ekin " << aNew 3083 //G4cout << " Particle Ekin " << aNew->GetKineticEnergy() << G4endl; 3062 products->push_back(aNew); 3084 products->push_back(aNew); 3063 } 3085 } 3064 const G4ParticleDefinition* fragment = 0; 3086 const G4ParticleDefinition* fragment = 0; 3065 if (currentA == 1 && currentZ == 0) { 3087 if (currentA == 1 && currentZ == 0) { 3066 fragment = G4Neutron::NeutronDefiniti 3088 fragment = G4Neutron::NeutronDefinition(); 3067 } else if (currentA == 1 && currentZ == 1 3089 } else if (currentA == 1 && currentZ == 1) { 3068 fragment = G4Proton::ProtonDefinition 3090 fragment = G4Proton::ProtonDefinition(); 3069 } else if (currentA == 2 && currentZ == 1 3091 } else if (currentA == 2 && currentZ == 1) { 3070 fragment = G4Deuteron::DeuteronDefini 3092 fragment = G4Deuteron::DeuteronDefinition(); 3071 } else if (currentA == 3 && currentZ == 1 3093 } else if (currentA == 3 && currentZ == 1) { 3072 fragment = G4Triton::TritonDefinition 3094 fragment = G4Triton::TritonDefinition(); 3073 } else if (currentA == 3 && currentZ == 2 3095 } else if (currentA == 3 && currentZ == 2) { 3074 fragment = G4He3::He3Definition(); 3096 fragment = G4He3::He3Definition(); 3075 } else if (currentA == 4 && currentZ == 2 3097 } else if (currentA == 4 && currentZ == 2) { 3076 fragment = G4Alpha::AlphaDefinition() 3098 fragment = G4Alpha::AlphaDefinition();; 3077 } else { 3099 } else { 3078 fragment = 3100 fragment = 3079 G4ParticleTable::GetParticleT 3101 G4ParticleTable::GetParticleTable()->GetIonTable()->GetIon(currentZ,currentA,0.0); 3080 } 3102 } 3081 if (fragment != 0) { 3103 if (fragment != 0) { 3082 G4ReactionProduct * theNew = new G4Re 3104 G4ReactionProduct * theNew = new G4ReactionProduct(fragment); 3083 theNew->SetMomentum(G4ThreeVector(0,0 3105 theNew->SetMomentum(G4ThreeVector(0,0,0)); 3084 theNew->SetTotalEnergy(massInNucleus) 3106 theNew->SetTotalEnergy(massInNucleus); 3085 theNew->SetCreatorModelID(theBIC_ID); 3107 theNew->SetCreatorModelID(theBIC_ID); 3086 //theNew->SetFormationTime(??0.??); 3108 //theNew->SetFormationTime(??0.??); 3087 //G4cout << " Nucleus (" << currentZ 3109 //G4cout << " Nucleus (" << currentZ << ","<< currentA << "), mass "<< massInNucleus << G4endl; 3088 products->push_back(theNew); 3110 products->push_back(theNew); 3089 } 3111 } 3090 return products; 3112 return products; 3091 } 3113 } 3092 3114 3093 void G4BinaryCascade::PrintWelcomeMessage() 3115 void G4BinaryCascade::PrintWelcomeMessage() 3094 { 3116 { 3095 G4cout <<"Thank you for using G4BinaryCas 3117 G4cout <<"Thank you for using G4BinaryCascade. "<<G4endl; 3096 } 3118 } 3097 3119 3098 //------------------------------------------- 3120 //---------------------------------------------------------------------------- 3099 void G4BinaryCascade::DebugApplyCollisionFail 3121 void G4BinaryCascade::DebugApplyCollisionFail(G4CollisionInitialState * collision, 3100 G4KineticTrackVector * products) 3122 G4KineticTrackVector * products) 3101 { 3123 { 3102 G4bool havePion=false; 3124 G4bool havePion=false; 3103 if (products) 3125 if (products) 3104 { 3126 { 3105 for ( auto i =products->cbegin(); i != << 3127 for ( std::vector<G4KineticTrack *>::iterator i =products->begin(); i != products->end(); i++) 3106 { 3128 { 3107 G4int PDGcode=std::abs((*i)->GetDefi 3129 G4int PDGcode=std::abs((*i)->GetDefinition()->GetPDGEncoding()); 3108 if (std::abs(PDGcode)==211 || PDGcod 3130 if (std::abs(PDGcode)==211 || PDGcode==111 ) havePion=true; 3109 } 3131 } 3110 } 3132 } 3111 if ( !products || havePion) 3133 if ( !products || havePion) 3112 { 3134 { 3113 const G4BCAction &action= *collision->G << 3135 const G4BCAction &action= *collision->GetGenerator(); 3114 G4cout << " Collision " << collision << 3136 G4cout << " Collision " << collision << ", type: "<< typeid(action).name() 3115 << ", with 3137 << ", with NO products! " <<G4endl; 3116 G4cout << G4endl<<"Initial condition ar 3138 G4cout << G4endl<<"Initial condition are these:"<<G4endl; 3117 G4cout << "proj: "<<collision->GetPrima 3139 G4cout << "proj: "<<collision->GetPrimary()->GetDefinition()->GetParticleName()<<G4endl; 3118 PrintKTVector(collision->GetPrimary()); 3140 PrintKTVector(collision->GetPrimary()); 3119 for(std::size_t it=0; it<collision->Get << 3141 for(size_t it=0; it<collision->GetTargetCollection().size(); it++) 3120 { 3142 { 3121 G4cout << "targ: " 3143 G4cout << "targ: " 3122 <<collision->GetTargetCollecti 3144 <<collision->GetTargetCollection()[it]->GetDefinition()->GetParticleName()<<G4endl; 3123 } 3145 } 3124 PrintKTVector(&collision->GetTargetColl 3146 PrintKTVector(&collision->GetTargetCollection(),std::string(" Target particles")); 3125 } 3147 } 3126 // if ( lateParticleCollision ) G4cout << 3148 // if ( lateParticleCollision ) G4cout << " Added late particle--------------------------"<<G4endl; 3127 // if ( lateParticleCollision && products 3149 // if ( lateParticleCollision && products ) PrintKTVector(products, " reaction products"); 3128 } 3150 } 3129 3151 3130 //------------------------------------------- 3152 //---------------------------------------------------------------------------- 3131 3153 3132 G4bool G4BinaryCascade::CheckChargeAndBaryonN << 3154 G4bool G4BinaryCascade::CheckChargeAndBaryonNumber(G4String where) 3133 { 3155 { 3134 static G4int lastdA(0), lastdZ(0); 3156 static G4int lastdA(0), lastdZ(0); 3135 G4int iStateA = the3DNucleus->GetMassNumbe 3157 G4int iStateA = the3DNucleus->GetMassNumber() + projectileA; 3136 G4int iStateZ = the3DNucleus->GetCharge() 3158 G4int iStateZ = the3DNucleus->GetCharge() + projectileZ; 3137 3159 3138 G4int fStateA(0); 3160 G4int fStateA(0); 3139 G4int fStateZ(0); 3161 G4int fStateZ(0); 3140 3162 >> 3163 std::vector<G4KineticTrack *>::iterator i; 3141 G4int CapturedA(0), CapturedZ(0); 3164 G4int CapturedA(0), CapturedZ(0); 3142 G4int secsA(0), secsZ(0); 3165 G4int secsA(0), secsZ(0); 3143 for (auto i=theCapturedList.cbegin(); i!=t << 3166 for ( i=theCapturedList.begin(); i!=theCapturedList.end(); ++i) { 3144 CapturedA += (*i)->GetDefinition()->Get 3167 CapturedA += (*i)->GetDefinition()->GetBaryonNumber(); 3145 CapturedZ += G4lrint((*i)->GetDefinitio 3168 CapturedZ += G4lrint((*i)->GetDefinition()->GetPDGCharge()/eplus); 3146 } 3169 } 3147 3170 3148 for (auto i=theSecondaryList.cbegin(); i!= << 3171 for ( i=theSecondaryList.begin(); i!=theSecondaryList.end(); ++i) { 3149 if ( (*i)->GetState() != G4KineticTrack 3172 if ( (*i)->GetState() != G4KineticTrack::inside ) { 3150 secsA += (*i)->GetDefinition()->GetB 3173 secsA += (*i)->GetDefinition()->GetBaryonNumber(); 3151 secsZ += G4lrint((*i)->GetDefinition 3174 secsZ += G4lrint((*i)->GetDefinition()->GetPDGCharge()/eplus); 3152 } 3175 } 3153 } 3176 } 3154 3177 3155 for (auto i=theFinalState.cbegin(); i!=the << 3178 for ( i=theFinalState.begin(); i!=theFinalState.end(); ++i) { 3156 fStateA += (*i)->GetDefinition()->GetBa 3179 fStateA += (*i)->GetDefinition()->GetBaryonNumber(); 3157 fStateZ += G4lrint((*i)->GetDefinition( 3180 fStateZ += G4lrint((*i)->GetDefinition()->GetPDGCharge()/eplus); 3158 } 3181 } 3159 3182 3160 G4int deltaA= iStateA - secsA - fStateA - 3183 G4int deltaA= iStateA - secsA - fStateA -currentA - lateA; 3161 G4int deltaZ= iStateZ - secsZ - fStateZ - 3184 G4int deltaZ= iStateZ - secsZ - fStateZ -currentZ - lateZ; 3162 3185 3163 #ifdef debugCheckChargeAndBaryonNumberverbose 3186 #ifdef debugCheckChargeAndBaryonNumberverbose 3164 G4cout << where <<" A: iState= "<< iStateA< 3187 G4cout << where <<" A: iState= "<< iStateA<<", secs= "<< secsA<< ", fState= "<< fStateA<< ", current= "<<currentA<< ", late= " <<lateA << G4endl; 3165 G4cout << where <<" Z: iState= "<< iStateZ< 3188 G4cout << where <<" Z: iState= "<< iStateZ<<", secs= "<< secsZ<< ", fState= "<< fStateZ<< ", current= "<<currentZ<< ", late= " <<lateZ << G4endl; 3166 #endif 3189 #endif 3167 3190 3168 if (deltaA != 0 || deltaZ!=0 ) { 3191 if (deltaA != 0 || deltaZ!=0 ) { 3169 if (deltaA != lastdA || deltaZ != lastd 3192 if (deltaA != lastdA || deltaZ != lastdZ ) { 3170 G4cout << "baryon/charge imbalance - 3193 G4cout << "baryon/charge imbalance - " << where << G4endl 3171 << "deltaA " <<deltaA<<", iSta 3194 << "deltaA " <<deltaA<<", iStateA "<<iStateA<< ", CapturedA "<<CapturedA <<", secsA "<<secsA 3172 << ", fStateA "<<fStateA << ", 3195 << ", fStateA "<<fStateA << ", currentA "<<currentA << ", lateA "<<lateA << G4endl 3173 << "deltaZ "<<deltaZ<<", iStat 3196 << "deltaZ "<<deltaZ<<", iStateZ "<<iStateZ<< ", CapturedZ "<<CapturedZ <<", secsZ "<<secsZ 3174 << ", fStateZ "<<fStateZ << ", 3197 << ", fStateZ "<<fStateZ << ", currentZ "<<currentZ << ", lateZ "<<lateZ << G4endl<< G4endl; 3175 lastdA=deltaA; 3198 lastdA=deltaA; 3176 lastdZ=deltaZ; 3199 lastdZ=deltaZ; 3177 } 3200 } 3178 } else { lastdA=lastdZ=0;} 3201 } else { lastdA=lastdZ=0;} 3179 3202 3180 return true; 3203 return true; 3181 } 3204 } 3182 //------------------------------------------- 3205 //---------------------------------------------------------------------------- 3183 void G4BinaryCascade::DebugApplyCollision(G4C 3206 void G4BinaryCascade::DebugApplyCollision(G4CollisionInitialState * collision, 3184 G4KineticTrackVector * products) 3207 G4KineticTrackVector * products) 3185 { 3208 { 3186 3209 3187 PrintKTVector(collision->GetPrimary(),std 3210 PrintKTVector(collision->GetPrimary(),std::string(" Primary particle")); 3188 PrintKTVector(&collision->GetTargetCollec 3211 PrintKTVector(&collision->GetTargetCollection(),std::string(" Target particles")); 3189 PrintKTVector(products,std::string(" Scat 3212 PrintKTVector(products,std::string(" Scatterer products")); 3190 3213 3191 #ifdef dontUse 3214 #ifdef dontUse 3192 G4double thisExcitation(0); 3215 G4double thisExcitation(0); 3193 // excitation energy from this collision 3216 // excitation energy from this collision 3194 // initial state: 3217 // initial state: 3195 G4double initial(0); 3218 G4double initial(0); 3196 G4KineticTrack * kt=collision->GetPrimary 3219 G4KineticTrack * kt=collision->GetPrimary(); 3197 initial += kt->Get4Momentum().e(); 3220 initial += kt->Get4Momentum().e(); 3198 3221 3199 G4RKPropagation * RKprop=(G4RKPropagation 3222 G4RKPropagation * RKprop=(G4RKPropagation *)thePropagator; 3200 3223 3201 initial += RKprop->GetField(kt->GetDefin 3224 initial += RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 3202 initial -= RKprop->GetBarrier(kt->GetDef 3225 initial -= RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 3203 G4cout << "prim. E/field/Barr/Sum " << kt 3226 G4cout << "prim. E/field/Barr/Sum " << kt->Get4Momentum().e() 3204 << " " << RKprop->GetFi 3227 << " " << RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 3205 << " " << RKprop->GetBa 3228 << " " << RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()) 3206 << " " << initial << G4 3229 << " " << initial << G4endl;; 3207 3230 3208 G4KineticTrackVector ktv=collision->GetTa 3231 G4KineticTrackVector ktv=collision->GetTargetCollection(); 3209 for ( unsigned int it=0; it < ktv.size(); << 3232 for ( unsigned int it=0; it < ktv.size(); it++) 3210 { 3233 { 3211 kt=ktv[it]; 3234 kt=ktv[it]; 3212 initial += kt->Get4Momentum().e(); 3235 initial += kt->Get4Momentum().e(); 3213 thisExcitation += kt->GetDefinition() 3236 thisExcitation += kt->GetDefinition()->GetPDGMass() 3214 - kt->Get4Momentum() 3237 - kt->Get4Momentum().e() 3215 - RKprop->GetField(k 3238 - RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 3216 // initial += RKprop->GetField(k 3239 // initial += RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 3217 // initial -= RKprop->GetBarrier 3240 // initial -= RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 3218 G4cout << "Targ. def/E/field/Barr/Sum 3241 G4cout << "Targ. def/E/field/Barr/Sum " << kt->GetDefinition()->GetPDGEncoding() 3219 << " " << kt->Get4Momentum( 3242 << " " << kt->Get4Momentum().e() 3220 << " " << RKprop->GetField( 3243 << " " << RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 3221 << " " << RKprop->GetBarrie 3244 << " " << RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()) 3222 << " " << initial <<" Excit 3245 << " " << initial <<" Excit " << thisExcitation << G4endl;; 3223 } 3246 } 3224 3247 3225 G4double fin(0); << 3248 G4double final(0); 3226 G4double mass_out(0); 3249 G4double mass_out(0); 3227 G4int product_barions(0); 3250 G4int product_barions(0); 3228 if ( products ) 3251 if ( products ) 3229 { 3252 { 3230 for ( unsigned int it=0; it < product << 3253 for ( unsigned int it=0; it < products->size(); it++) 3231 { 3254 { 3232 kt=(*products)[it]; 3255 kt=(*products)[it]; 3233 fin += kt->Get4Momentum().e(); << 3256 final += kt->Get4Momentum().e(); 3234 fin += RKprop->GetField(kt->GetD << 3257 final += RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()); 3235 fin += RKprop->GetBarrier(kt->Ge << 3258 final += RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()); 3236 if ( kt->GetDefinition()->GetBary 3259 if ( kt->GetDefinition()->GetBaryonNumber()==1 ) product_barions++; 3237 mass_out += kt->GetDefinition()-> 3260 mass_out += kt->GetDefinition()->GetPDGMass(); 3238 G4cout << "sec. def/E/field/Barr/ 3261 G4cout << "sec. def/E/field/Barr/Sum " << kt->GetDefinition()->GetPDGEncoding() 3239 << " " << kt->Get4Moment 3262 << " " << kt->Get4Momentum().e() 3240 << " " << RKprop->GetFie 3263 << " " << RKprop->GetField(kt->GetDefinition()->GetPDGEncoding(),kt->GetPosition()) 3241 << " " << RKprop->GetBar 3264 << " " << RKprop->GetBarrier(kt->GetDefinition()->GetPDGEncoding()) 3242 << " " << fin << G4endl; << 3265 << " " << final << G4endl;; 3243 } 3266 } 3244 } 3267 } 3245 3268 3246 3269 3247 G4int finalA = currentA; 3270 G4int finalA = currentA; 3248 G4int finalZ = currentZ; 3271 G4int finalZ = currentZ; 3249 if ( products ) 3272 if ( products ) 3250 { 3273 { 3251 finalA -= product_barions; 3274 finalA -= product_barions; 3252 finalZ -= GetTotalCharge(*products); 3275 finalZ -= GetTotalCharge(*products); 3253 } 3276 } 3254 G4double delta = GetIonMass(currentZ,curr 3277 G4double delta = GetIonMass(currentZ,currentA) - (GetIonMass(finalZ,finalA) + mass_out); 3255 G4cout << " current/final a,z " << curren 3278 G4cout << " current/final a,z " << currentA << " " << currentZ << " "<< finalA<< " "<< finalZ 3256 << " delta-mass " << delta<<G4en 3279 << " delta-mass " << delta<<G4endl; 3257 fin+=delta; << 3280 final+=delta; 3258 mass_out = GetIonMass(finalZ,finalA); 3281 mass_out = GetIonMass(finalZ,finalA); 3259 G4cout << " initE/ E_out/ Mfinal/ Excit " 3282 G4cout << " initE/ E_out/ Mfinal/ Excit " << currentInitialEnergy 3260 << " " << fin << " " << 3283 << " " << final << " " 3261 << mass_out<<" " 3284 << mass_out<<" " 3262 << currentInitialEnergy - fin - << 3285 << currentInitialEnergy - final - mass_out 3263 << G4endl; 3286 << G4endl; 3264 currentInitialEnergy-=fin; << 3287 currentInitialEnergy-=final; 3265 #endif 3288 #endif 3266 } 3289 } 3267 3290 3268 //------------------------------------------- 3291 //---------------------------------------------------------------------------- 3269 G4bool G4BinaryCascade::DebugFinalEpConservat 3292 G4bool G4BinaryCascade::DebugFinalEpConservation(const G4HadProjectile & aTrack, 3270 G4ReactionProductVector* products) 3293 G4ReactionProductVector* products) 3271 //------------------------------------------- 3294 //---------------------------------------------------------------------------- 3272 { 3295 { >> 3296 G4ReactionProductVector::iterator iter; 3273 G4double Efinal(0); 3297 G4double Efinal(0); 3274 G4ThreeVector pFinal(0); 3298 G4ThreeVector pFinal(0); 3275 if (std::abs(theParticleChange.GetWeightC 3299 if (std::abs(theParticleChange.GetWeightChange() -1 ) > 1e-5 ) 3276 { 3300 { 3277 G4cout <<" BIC-weight change " << the 3301 G4cout <<" BIC-weight change " << theParticleChange.GetWeightChange()<< G4endl; 3278 } 3302 } 3279 3303 3280 for(auto iter = products->cbegin(); iter << 3304 for(iter = products->begin(); iter != products->end(); ++iter) 3281 { 3305 { 3282 3306 3283 G4cout << " Secondary E - Ekin / p " << 3307 G4cout << " Secondary E - Ekin / p " << 3284 (*iter)->GetDefinition()->GetPa 3308 (*iter)->GetDefinition()->GetParticleName() << " " << 3285 (*iter)->GetTotalEnergy() << " 3309 (*iter)->GetTotalEnergy() << " - " << 3286 (*iter)->GetKineticEnergy()<< " 3310 (*iter)->GetKineticEnergy()<< " / " << 3287 (*iter)->GetMomentum().x() << " 3311 (*iter)->GetMomentum().x() << " " << 3288 (*iter)->GetMomentum().y() << " 3312 (*iter)->GetMomentum().y() << " " << 3289 (*iter)->GetMomentum().z() << G 3313 (*iter)->GetMomentum().z() << G4endl; 3290 Efinal += (*iter)->GetTotalEnergy(); 3314 Efinal += (*iter)->GetTotalEnergy(); 3291 pFinal += (*iter)->GetMomentum(); 3315 pFinal += (*iter)->GetMomentum(); 3292 } 3316 } 3293 3317 3294 G4cout << "e outgoing/ total : " << Efi 3318 G4cout << "e outgoing/ total : " << Efinal << " " << Efinal+GetFinal4Momentum().e()<< G4endl; 3295 G4cout << "BIC E/p delta " << 3319 G4cout << "BIC E/p delta " << 3296 (aTrack.Get4Momentum().e()+theIni 3320 (aTrack.Get4Momentum().e()+theInitial4Mom.e() - Efinal)/MeV << 3297 " MeV / mom " << (aTrack.Get4Mome 3321 " MeV / mom " << (aTrack.Get4Momentum() - pFinal ) /MeV << G4endl; 3298 3322 3299 return (aTrack.Get4Momentum().e() + theIn 3323 return (aTrack.Get4Momentum().e() + theInitial4Mom.e() - Efinal)/aTrack.Get4Momentum().e() < perCent; 3300 3324 3301 } 3325 } 3302 //------------------------------------------- 3326 //---------------------------------------------------------------------------- 3303 G4bool G4BinaryCascade::DebugEpConservation(c << 3327 G4bool G4BinaryCascade::DebugEpConservation(const G4String where) 3304 //------------------------------------------- 3328 //---------------------------------------------------------------------------- 3305 { 3329 { 3306 G4cout << where << G4endl; 3330 G4cout << where << G4endl; 3307 G4LorentzVector psecs, ptgts, pcpts 3331 G4LorentzVector psecs, ptgts, pcpts, pfins; 3308 if (std::abs(theParticleChange.GetWeightC 3332 if (std::abs(theParticleChange.GetWeightChange() -1 ) > 1e-5 ) 3309 { 3333 { 3310 G4cout <<" BIC-weight change " << the 3334 G4cout <<" BIC-weight change " << theParticleChange.GetWeightChange()<< G4endl; 3311 } 3335 } 3312 3336 3313 std::vector<G4KineticTrack *>::const_iter << 3337 std::vector<G4KineticTrack *>::iterator ktiter; 3314 for(ktiter = theSecondaryList.cbegin(); k << 3338 for(ktiter = theSecondaryList.begin(); ktiter != theSecondaryList.end(); ++ktiter) 3315 { 3339 { 3316 3340 3317 G4cout << " Secondary E - Ekin 3341 G4cout << " Secondary E - Ekin / p " << 3318 (*ktiter)->GetDefinition()-> 3342 (*ktiter)->GetDefinition()->GetParticleName() << " " << 3319 (*ktiter)->Get4Momentum().e( 3343 (*ktiter)->Get4Momentum().e() << " - " << 3320 (*ktiter)->Get4Momentum().e( 3344 (*ktiter)->Get4Momentum().e() - (*ktiter)->Get4Momentum().mag() << " / " << 3321 (*ktiter)->Get4Momentum().ve 3345 (*ktiter)->Get4Momentum().vect() << G4endl; 3322 psecs += (*ktiter)->Get4Momentum() 3346 psecs += (*ktiter)->Get4Momentum(); 3323 } 3347 } 3324 3348 3325 for(ktiter = theTargetList.cbegin(); ktit << 3349 for(ktiter = theTargetList.begin(); ktiter != theTargetList.end(); ++ktiter) 3326 { 3350 { 3327 3351 3328 G4cout << " Target E - Ekin / p 3352 G4cout << " Target E - Ekin / p " << 3329 (*ktiter)->GetDefinition()-> 3353 (*ktiter)->GetDefinition()->GetParticleName() << " " << 3330 (*ktiter)->Get4Momentum().e( 3354 (*ktiter)->Get4Momentum().e() << " - " << 3331 (*ktiter)->Get4Momentum().e( 3355 (*ktiter)->Get4Momentum().e() - (*ktiter)->Get4Momentum().mag() << " / " << 3332 (*ktiter)->Get4Momentum().ve 3356 (*ktiter)->Get4Momentum().vect() << G4endl; 3333 ptgts += (*ktiter)->Get4Momentum() 3357 ptgts += (*ktiter)->Get4Momentum(); 3334 } 3358 } 3335 3359 3336 for(ktiter = theCapturedList.cbegin(); kt << 3360 for(ktiter = theCapturedList.begin(); ktiter != theCapturedList.end(); ++ktiter) 3337 { 3361 { 3338 3362 3339 G4cout << " Captured E - Ekin 3363 G4cout << " Captured E - Ekin / p " << 3340 (*ktiter)->GetDefinition()- 3364 (*ktiter)->GetDefinition()->GetParticleName() << " " << 3341 (*ktiter)->Get4Momentum().e 3365 (*ktiter)->Get4Momentum().e() << " - " << 3342 (*ktiter)->Get4Momentum().e 3366 (*ktiter)->Get4Momentum().e() - (*ktiter)->Get4Momentum().mag() << " / " << 3343 (*ktiter)->Get4Momentum().v 3367 (*ktiter)->Get4Momentum().vect() << G4endl; 3344 pcpts += (*ktiter)->Get4Momentum( 3368 pcpts += (*ktiter)->Get4Momentum(); 3345 } 3369 } 3346 3370 3347 for(ktiter = theFinalState.cbegin(); ktit << 3371 for(ktiter = theFinalState.begin(); ktiter != theFinalState.end(); ++ktiter) 3348 { 3372 { 3349 3373 3350 G4cout << " Finals E - Ekin / 3374 G4cout << " Finals E - Ekin / p " << 3351 (*ktiter)->GetDefinition()- 3375 (*ktiter)->GetDefinition()->GetParticleName() << " " << 3352 (*ktiter)->Get4Momentum().e 3376 (*ktiter)->Get4Momentum().e() << " - " << 3353 (*ktiter)->Get4Momentum().e 3377 (*ktiter)->Get4Momentum().e() - (*ktiter)->Get4Momentum().mag() << " / " << 3354 (*ktiter)->Get4Momentum().v 3378 (*ktiter)->Get4Momentum().vect() << G4endl; 3355 pfins += (*ktiter)->Get4Momentum( 3379 pfins += (*ktiter)->Get4Momentum(); 3356 } 3380 } 3357 3381 3358 G4cout << " Secondaries " << psecs << " 3382 G4cout << " Secondaries " << psecs << ", Targets " << ptgts << G4endl 3359 <<" Captured " << pcpts << ", Fi 3383 <<" Captured " << pcpts << ", Finals " << pfins << G4endl 3360 <<" Sum " << psecs + ptgts + pcpts 3384 <<" Sum " << psecs + ptgts + pcpts + pfins << " PTransfer " << theMomentumTransfer 3361 <<" Sum+PTransfer " << psecs + ptgt 3385 <<" Sum+PTransfer " << psecs + ptgts + pcpts + pfins + theMomentumTransfer 3362 << G4endl<< G4endl; 3386 << G4endl<< G4endl; 3363 3387 3364 3388 3365 return true; 3389 return true; 3366 3390 3367 } 3391 } 3368 3392 3369 //------------------------------------------- 3393 //---------------------------------------------------------------------------- 3370 G4ReactionProductVector * G4BinaryCascade::Pr 3394 G4ReactionProductVector * G4BinaryCascade::ProductsAddFakeGamma(G4ReactionProductVector *products ) 3371 //------------------------------------------- 3395 //---------------------------------------------------------------------------- 3372 { 3396 { 3373 // else 3397 // else 3374 // { 3398 // { 3375 // G4ReactionProduct * aNew=0; 3399 // G4ReactionProduct * aNew=0; 3376 // // return nucleus e and p 3400 // // return nucleus e and p 3377 // if (fragment != 0 ) { 3401 // if (fragment != 0 ) { 3378 // aNew = new G4ReactionProduct(G4 3402 // aNew = new G4ReactionProduct(G4Gamma::GammaDefinition()); // we only want to pass e/p 3379 // aNew->SetMomentum(fragment->Get 3403 // aNew->SetMomentum(fragment->GetMomentum().vect()); 3380 // aNew->SetTotalEnergy(fragment-> 3404 // aNew->SetTotalEnergy(fragment->GetMomentum().e()); 3381 // delete fragment; 3405 // delete fragment; 3382 // fragment=0; 3406 // fragment=0; 3383 // } else if (products->size() == 0) { 3407 // } else if (products->size() == 0) { 3384 // // FixMe GF: for testing withou 3408 // // FixMe GF: for testing without precompound, return 1 gamma of 0.01 MeV in +x 3385 //#include "G4Gamma.hh" 3409 //#include "G4Gamma.hh" 3386 // aNew = new G4ReactionProduct(G4 3410 // aNew = new G4ReactionProduct(G4Gamma::GammaDefinition()); 3387 // aNew->SetMomentum(G4ThreeVector 3411 // aNew->SetMomentum(G4ThreeVector(0.01*MeV,0,0)); 3388 // aNew->SetTotalEnergy(0.01*MeV); 3412 // aNew->SetTotalEnergy(0.01*MeV); 3389 // } 3413 // } 3390 // if ( aNew != 0 ) products->push_bac 3414 // if ( aNew != 0 ) products->push_back(aNew); 3391 // } 3415 // } 3392 return products; 3416 return products; 3393 } 3417 } 3394 3418 3395 //------------------------------------------- 3419 //---------------------------------------------------------------------------- 3396 3420