Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // Implementation of G4UExtrudedSolid wrapper 26 // Implementation of G4UExtrudedSolid wrapper class 27 // 27 // 28 // 17.11.17 G.Cosmo, CERN 28 // 17.11.17 G.Cosmo, CERN 29 // ------------------------------------------- 29 // -------------------------------------------------------------------- 30 30 31 #include "G4ExtrudedSolid.hh" 31 #include "G4ExtrudedSolid.hh" 32 #include "G4UExtrudedSolid.hh" 32 #include "G4UExtrudedSolid.hh" 33 33 34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G 34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G4GEOM_USE_PARTIAL_USOLIDS) ) 35 35 36 #include "G4GeomTools.hh" 36 #include "G4GeomTools.hh" 37 #include "G4AffineTransform.hh" 37 #include "G4AffineTransform.hh" 38 #include "G4BoundingEnvelope.hh" 38 #include "G4BoundingEnvelope.hh" 39 39 >> 40 #include "G4PolyhedronArbitrary.hh" >> 41 40 ////////////////////////////////////////////// 42 //////////////////////////////////////////////////////////////////////// 41 // 43 // 42 // Constructors 44 // Constructors 43 // 45 // 44 G4UExtrudedSolid::G4UExtrudedSolid(const G4Str 46 G4UExtrudedSolid::G4UExtrudedSolid(const G4String& name, 45 const std:: 47 const std::vector<G4TwoVector>& polygon, 46 const std:: 48 const std::vector<ZSection>& zsections) 47 : Base_t(name) // General constructor 49 : Base_t(name) // General constructor 48 { 50 { 49 unsigned int nVertices = polygon.size(); 51 unsigned int nVertices = polygon.size(); 50 unsigned int nSections = zsections.size(); 52 unsigned int nSections = zsections.size(); 51 53 52 auto vertices = new vecgeom::XtruVertex2[nVe << 54 vecgeom::XtruVertex2* vertices = new vecgeom::XtruVertex2[nVertices]; 53 auto sections = new vecgeom::XtruSection[nSe << 55 vecgeom::XtruSection* sections = new vecgeom::XtruSection[nSections]; 54 56 55 for (unsigned int i = 0; i < nVertices; ++i) 57 for (unsigned int i = 0; i < nVertices; ++i) 56 { 58 { 57 vertices[i].x = polygon[i].x(); 59 vertices[i].x = polygon[i].x(); 58 vertices[i].y = polygon[i].y(); 60 vertices[i].y = polygon[i].y(); 59 } 61 } 60 for (unsigned int i = 0; i < nSections; ++i) 62 for (unsigned int i = 0; i < nSections; ++i) 61 { 63 { 62 sections[i].fOrigin.Set(zsections[i].fOffs 64 sections[i].fOrigin.Set(zsections[i].fOffset.x(), 63 zsections[i].fOffs 65 zsections[i].fOffset.y(), 64 zsections[i].fZ); 66 zsections[i].fZ); 65 sections[i].fScale = zsections[i].fScale; 67 sections[i].fScale = zsections[i].fScale; 66 } 68 } 67 Base_t::Initialize(nVertices, vertices, nSec 69 Base_t::Initialize(nVertices, vertices, nSections, sections); 68 delete[] vertices; 70 delete[] vertices; 69 delete[] sections; 71 delete[] sections; 70 } 72 } 71 73 72 74 73 G4UExtrudedSolid::G4UExtrudedSolid(const G4Str 75 G4UExtrudedSolid::G4UExtrudedSolid(const G4String& name, 74 const std:: 76 const std::vector<G4TwoVector>& polygon, 75 G4double 77 G4double halfZ, 76 const G4Two 78 const G4TwoVector& off1, G4double scale1, 77 const G4Two 79 const G4TwoVector& off2, G4double scale2) 78 : Base_t(name) // Special constructor for 2 80 : Base_t(name) // Special constructor for 2 sections 79 { 81 { 80 unsigned int nVertices = polygon.size(); 82 unsigned int nVertices = polygon.size(); 81 unsigned int nSections = 2; 83 unsigned int nSections = 2; 82 84 83 auto vertices = new vecgeom::XtruVertex2[nVe << 85 vecgeom::XtruVertex2* vertices = new vecgeom::XtruVertex2[nVertices]; 84 auto sections = new vecgeom::XtruSection[nSe << 86 vecgeom::XtruSection* sections = new vecgeom::XtruSection[nSections]; 85 87 86 for (unsigned int i = 0; i < nVertices; ++i) 88 for (unsigned int i = 0; i < nVertices; ++i) 87 { 89 { 88 vertices[i].x = polygon[i].x(); 90 vertices[i].x = polygon[i].x(); 89 vertices[i].y = polygon[i].y(); 91 vertices[i].y = polygon[i].y(); 90 } 92 } 91 sections[0].fOrigin.Set(off1.x(), off1.y(), 93 sections[0].fOrigin.Set(off1.x(), off1.y(), -halfZ); 92 sections[0].fScale = scale1; 94 sections[0].fScale = scale1; 93 sections[1].fOrigin.Set(off2.x(), off2.y(), 95 sections[1].fOrigin.Set(off2.x(), off2.y(), halfZ); 94 sections[1].fScale = scale2; 96 sections[1].fScale = scale2; 95 Base_t::Initialize(nVertices, vertices, nSec 97 Base_t::Initialize(nVertices, vertices, nSections, sections); 96 delete[] vertices; 98 delete[] vertices; 97 delete[] sections; 99 delete[] sections; 98 } 100 } 99 101 100 ////////////////////////////////////////////// 102 //////////////////////////////////////////////////////////////////////// 101 // 103 // 102 // Fake default constructor - sets only member 104 // Fake default constructor - sets only member data and allocates memory 103 // for usage restri 105 // for usage restricted to object persistency. 104 // 106 // 105 G4UExtrudedSolid::G4UExtrudedSolid(__void__& a 107 G4UExtrudedSolid::G4UExtrudedSolid(__void__& a) 106 : Base_t(a) 108 : Base_t(a) 107 { 109 { 108 } 110 } 109 111 110 112 111 ////////////////////////////////////////////// 113 ////////////////////////////////////////////////////////////////////////// 112 // 114 // 113 // Destructor 115 // Destructor 114 // 116 // 115 G4UExtrudedSolid::~G4UExtrudedSolid() = defaul << 117 G4UExtrudedSolid::~G4UExtrudedSolid() >> 118 { >> 119 } 116 120 117 121 118 ////////////////////////////////////////////// 122 ////////////////////////////////////////////////////////////////////////// 119 // 123 // 120 // Copy constructor 124 // Copy constructor 121 // 125 // 122 G4UExtrudedSolid::G4UExtrudedSolid(const G4UEx 126 G4UExtrudedSolid::G4UExtrudedSolid(const G4UExtrudedSolid &source) 123 : Base_t(source) 127 : Base_t(source) 124 { 128 { 125 } 129 } 126 130 127 131 128 ////////////////////////////////////////////// 132 ////////////////////////////////////////////////////////////////////////// 129 // 133 // 130 // Assignment operator 134 // Assignment operator 131 // 135 // 132 G4UExtrudedSolid& 136 G4UExtrudedSolid& 133 G4UExtrudedSolid::operator=(const G4UExtrudedS 137 G4UExtrudedSolid::operator=(const G4UExtrudedSolid &source) 134 { 138 { 135 if (this == &source) return *this; 139 if (this == &source) return *this; 136 140 137 Base_t::operator=( source ); 141 Base_t::operator=( source ); 138 142 139 return *this; 143 return *this; 140 } 144 } 141 145 142 146 143 ////////////////////////////////////////////// 147 ////////////////////////////////////////////////////////////////////////// 144 // 148 // 145 // Accessors 149 // Accessors 146 150 147 G4int G4UExtrudedSolid::GetNofVertices() const 151 G4int G4UExtrudedSolid::GetNofVertices() const 148 { 152 { 149 return Base_t::GetNVertices(); 153 return Base_t::GetNVertices(); 150 } 154 } 151 << 152 G4TwoVector G4UExtrudedSolid::GetVertex(G4int 155 G4TwoVector G4UExtrudedSolid::GetVertex(G4int i) const 153 { 156 { 154 G4double xx, yy; 157 G4double xx, yy; 155 Base_t::GetVertex(i, xx, yy); 158 Base_t::GetVertex(i, xx, yy); 156 return { xx, yy }; << 159 return G4TwoVector(xx, yy); 157 } 160 } 158 << 159 std::vector<G4TwoVector> G4UExtrudedSolid::Get 161 std::vector<G4TwoVector> G4UExtrudedSolid::GetPolygon() const 160 { 162 { 161 std::vector<G4TwoVector> pol; 163 std::vector<G4TwoVector> pol; 162 for (unsigned int i = 0; i < Base_t::GetNVer 164 for (unsigned int i = 0; i < Base_t::GetNVertices(); ++i) 163 { 165 { 164 pol.push_back(GetVertex(i)); 166 pol.push_back(GetVertex(i)); 165 } 167 } 166 return pol; 168 return pol; 167 } 169 } 168 << 169 G4int G4UExtrudedSolid::GetNofZSections() cons 170 G4int G4UExtrudedSolid::GetNofZSections() const 170 { 171 { 171 return Base_t::GetNSections(); 172 return Base_t::GetNSections(); 172 } 173 } 173 << 174 G4UExtrudedSolid::ZSection G4UExtrudedSolid::G 174 G4UExtrudedSolid::ZSection G4UExtrudedSolid::GetZSection(G4int i) const 175 { 175 { 176 vecgeom::XtruSection sect = Base_t::GetSecti 176 vecgeom::XtruSection sect = Base_t::GetSection(i); 177 return { sect.fOrigin[2], << 177 return ZSection(sect.fOrigin[2], 178 G4TwoVector(sect.fOrigin[0], sect.f << 178 G4TwoVector(sect.fOrigin[0], sect.fOrigin[1]), 179 sect.fScale }; << 179 sect.fScale); 180 } 180 } 181 << 182 std::vector<G4UExtrudedSolid::ZSection> G4UExt 181 std::vector<G4UExtrudedSolid::ZSection> G4UExtrudedSolid::GetZSections() const 183 { 182 { 184 std::vector<G4UExtrudedSolid::ZSection> sect 183 std::vector<G4UExtrudedSolid::ZSection> sections; 185 for (unsigned int i = 0; i < Base_t::GetNSec 184 for (unsigned int i = 0; i < Base_t::GetNSections(); ++i) 186 { 185 { 187 vecgeom::XtruSection sect = Base_t::GetSec 186 vecgeom::XtruSection sect = Base_t::GetSection(i); 188 sections.emplace_back(sect.fOrigin[2], << 187 sections.push_back(ZSection(sect.fOrigin[2], 189 G4TwoVector(sect.fOr << 188 G4TwoVector(sect.fOrigin[0], sect.fOrigin[1]), 190 sect.fScale); << 189 sect.fScale)); 191 } 190 } 192 return sections; 191 return sections; 193 } 192 } 194 193 195 194 196 ////////////////////////////////////////////// 195 /////////////////////////////////////////////////////////////////////////////// 197 // 196 // 198 // Get bounding box 197 // Get bounding box 199 198 200 void G4UExtrudedSolid::BoundingLimits(G4ThreeV 199 void G4UExtrudedSolid::BoundingLimits(G4ThreeVector& pMin, 201 G4ThreeV 200 G4ThreeVector& pMax) const 202 { 201 { 203 static G4bool checkBBox = true; 202 static G4bool checkBBox = true; 204 203 205 G4double xmin0 = kInfinity, xmax0 = -kInfini 204 G4double xmin0 = kInfinity, xmax0 = -kInfinity; 206 G4double ymin0 = kInfinity, ymax0 = -kInfini 205 G4double ymin0 = kInfinity, ymax0 = -kInfinity; 207 206 208 for (G4int i=0; i<GetNofVertices(); ++i) 207 for (G4int i=0; i<GetNofVertices(); ++i) 209 { 208 { 210 G4TwoVector vertex = GetVertex(i); 209 G4TwoVector vertex = GetVertex(i); 211 G4double x = vertex.x(); 210 G4double x = vertex.x(); 212 if (x < xmin0) xmin0 = x; 211 if (x < xmin0) xmin0 = x; 213 if (x > xmax0) xmax0 = x; 212 if (x > xmax0) xmax0 = x; 214 G4double y = vertex.y(); 213 G4double y = vertex.y(); 215 if (y < ymin0) ymin0 = y; 214 if (y < ymin0) ymin0 = y; 216 if (y > ymax0) ymax0 = y; 215 if (y > ymax0) ymax0 = y; 217 } 216 } 218 217 219 G4double xmin = kInfinity, xmax = -kInfinity 218 G4double xmin = kInfinity, xmax = -kInfinity; 220 G4double ymin = kInfinity, ymax = -kInfinity 219 G4double ymin = kInfinity, ymax = -kInfinity; 221 220 222 G4int nsect = GetNofZSections(); 221 G4int nsect = GetNofZSections(); 223 for (G4int i=0; i<nsect; ++i) 222 for (G4int i=0; i<nsect; ++i) 224 { 223 { 225 ZSection zsect = GetZSection(i); 224 ZSection zsect = GetZSection(i); 226 G4double dx = zsect.fOffset.x(); 225 G4double dx = zsect.fOffset.x(); 227 G4double dy = zsect.fOffset.y(); 226 G4double dy = zsect.fOffset.y(); 228 G4double scale = zsect.fScale; 227 G4double scale = zsect.fScale; 229 xmin = std::min(xmin,xmin0*scale+dx); 228 xmin = std::min(xmin,xmin0*scale+dx); 230 xmax = std::max(xmax,xmax0*scale+dx); 229 xmax = std::max(xmax,xmax0*scale+dx); 231 ymin = std::min(ymin,ymin0*scale+dy); 230 ymin = std::min(ymin,ymin0*scale+dy); 232 ymax = std::max(ymax,ymax0*scale+dy); 231 ymax = std::max(ymax,ymax0*scale+dy); 233 } 232 } 234 233 235 G4double zmin = GetZSection(0).fZ; 234 G4double zmin = GetZSection(0).fZ; 236 G4double zmax = GetZSection(nsect-1).fZ; 235 G4double zmax = GetZSection(nsect-1).fZ; 237 236 238 pMin.set(xmin,ymin,zmin); 237 pMin.set(xmin,ymin,zmin); 239 pMax.set(xmax,ymax,zmax); 238 pMax.set(xmax,ymax,zmax); 240 239 241 // Check correctness of the bounding box 240 // Check correctness of the bounding box 242 // 241 // 243 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 242 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 244 { 243 { 245 std::ostringstream message; 244 std::ostringstream message; 246 message << "Bad bounding box (min >= max) 245 message << "Bad bounding box (min >= max) for solid: " 247 << GetName() << " !" 246 << GetName() << " !" 248 << "\npMin = " << pMin 247 << "\npMin = " << pMin 249 << "\npMax = " << pMax; 248 << "\npMax = " << pMax; 250 G4Exception("G4UExtrudedSolid::BoundingLim 249 G4Exception("G4UExtrudedSolid::BoundingLimits()", "GeomMgt0001", 251 JustWarning, message); 250 JustWarning, message); 252 StreamInfo(G4cout); 251 StreamInfo(G4cout); 253 } 252 } 254 253 255 // Check consistency of bounding boxes 254 // Check consistency of bounding boxes 256 // 255 // 257 if (checkBBox) 256 if (checkBBox) 258 { 257 { 259 U3Vector vmin, vmax; 258 U3Vector vmin, vmax; 260 Base_t::Extent(vmin,vmax); 259 Base_t::Extent(vmin,vmax); 261 if (std::abs(pMin.x()-vmin.x()) > kCarTole 260 if (std::abs(pMin.x()-vmin.x()) > kCarTolerance || 262 std::abs(pMin.y()-vmin.y()) > kCarTole 261 std::abs(pMin.y()-vmin.y()) > kCarTolerance || 263 std::abs(pMin.z()-vmin.z()) > kCarTole 262 std::abs(pMin.z()-vmin.z()) > kCarTolerance || 264 std::abs(pMax.x()-vmax.x()) > kCarTole 263 std::abs(pMax.x()-vmax.x()) > kCarTolerance || 265 std::abs(pMax.y()-vmax.y()) > kCarTole 264 std::abs(pMax.y()-vmax.y()) > kCarTolerance || 266 std::abs(pMax.z()-vmax.z()) > kCarTole 265 std::abs(pMax.z()-vmax.z()) > kCarTolerance) 267 { 266 { 268 std::ostringstream message; 267 std::ostringstream message; 269 message << "Inconsistency in bounding bo 268 message << "Inconsistency in bounding boxes for solid: " 270 << GetName() << " !" 269 << GetName() << " !" 271 << "\nBBox min: wrapper = " << p 270 << "\nBBox min: wrapper = " << pMin << " solid = " << vmin 272 << "\nBBox max: wrapper = " << p 271 << "\nBBox max: wrapper = " << pMax << " solid = " << vmax; 273 G4Exception("G4UExtrudedSolid::BoundingL 272 G4Exception("G4UExtrudedSolid::BoundingLimits()", "GeomMgt0001", 274 JustWarning, message); 273 JustWarning, message); 275 checkBBox = false; 274 checkBBox = false; 276 } 275 } 277 } 276 } 278 } 277 } 279 278 280 279 281 ////////////////////////////////////////////// 280 ////////////////////////////////////////////////////////////////////////////// 282 // 281 // 283 // Calculate extent under transform and specif 282 // Calculate extent under transform and specified limit 284 283 285 G4bool 284 G4bool 286 G4UExtrudedSolid::CalculateExtent(const EAxis 285 G4UExtrudedSolid::CalculateExtent(const EAxis pAxis, 287 const G4Voxe 286 const G4VoxelLimits& pVoxelLimit, 288 const G4Affi 287 const G4AffineTransform& pTransform, 289 G4doub 288 G4double& pMin, G4double& pMax) const 290 { 289 { 291 G4ThreeVector bmin, bmax; 290 G4ThreeVector bmin, bmax; 292 G4bool exist; 291 G4bool exist; 293 292 294 // Check bounding box (bbox) 293 // Check bounding box (bbox) 295 // 294 // 296 BoundingLimits(bmin,bmax); 295 BoundingLimits(bmin,bmax); 297 G4BoundingEnvelope bbox(bmin,bmax); 296 G4BoundingEnvelope bbox(bmin,bmax); 298 #ifdef G4BBOX_EXTENT 297 #ifdef G4BBOX_EXTENT 299 return bbox.CalculateExtent(pAxis,pVoxelLimi 298 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 300 #endif 299 #endif 301 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 300 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 302 { 301 { 303 return exist = pMin < pMax; << 302 return exist = (pMin < pMax) ? true : false; 304 } 303 } 305 304 306 // To find the extent, the base polygon is s 305 // To find the extent, the base polygon is subdivided in triangles. 307 // The extent is calculated as cumulative ex 306 // The extent is calculated as cumulative extent of the parts 308 // formed by extrusion of the triangles 307 // formed by extrusion of the triangles 309 // 308 // 310 G4TwoVectorList basePolygon = GetPolygon(); 309 G4TwoVectorList basePolygon = GetPolygon(); 311 G4TwoVectorList triangles; 310 G4TwoVectorList triangles; 312 G4double eminlim = pVoxelLimit.GetMinExtent( 311 G4double eminlim = pVoxelLimit.GetMinExtent(pAxis); 313 G4double emaxlim = pVoxelLimit.GetMaxExtent( 312 G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis); 314 313 315 // triangulate the base polygon 314 // triangulate the base polygon 316 if (!G4GeomTools::TriangulatePolygon(basePol 315 if (!G4GeomTools::TriangulatePolygon(basePolygon,triangles)) 317 { 316 { 318 std::ostringstream message; 317 std::ostringstream message; 319 message << "Triangulation of the base poly 318 message << "Triangulation of the base polygon has failed for solid: " 320 << GetName() << " !" 319 << GetName() << " !" 321 << "\nExtent has been calculated u 320 << "\nExtent has been calculated using boundary box"; 322 G4Exception("G4UExtrudedSolid::CalculateEx 321 G4Exception("G4UExtrudedSolid::CalculateExtent()", 323 "GeomMgt1002",JustWarning,mess 322 "GeomMgt1002",JustWarning,message); 324 return bbox.CalculateExtent(pAxis,pVoxelLi 323 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 325 } 324 } 326 325 327 // allocate vector lists 326 // allocate vector lists 328 G4int nsect = GetNofZSections(); 327 G4int nsect = GetNofZSections(); 329 std::vector<const G4ThreeVectorList *> polyg 328 std::vector<const G4ThreeVectorList *> polygons; 330 polygons.resize(nsect); 329 polygons.resize(nsect); 331 for (G4int k=0; k<nsect; ++k) { polygons[k] 330 for (G4int k=0; k<nsect; ++k) { polygons[k] = new G4ThreeVectorList(3); } 332 331 333 // main loop along triangles 332 // main loop along triangles 334 pMin = kInfinity; 333 pMin = kInfinity; 335 pMax = -kInfinity; 334 pMax = -kInfinity; 336 G4int ntria = triangles.size()/3; 335 G4int ntria = triangles.size()/3; 337 for (G4int i=0; i<ntria; ++i) 336 for (G4int i=0; i<ntria; ++i) 338 { 337 { 339 G4int i3 = i*3; 338 G4int i3 = i*3; 340 for (G4int k=0; k<nsect; ++k) // extrude t 339 for (G4int k=0; k<nsect; ++k) // extrude triangle 341 { 340 { 342 ZSection zsect = GetZSection(k); 341 ZSection zsect = GetZSection(k); 343 G4double z = zsect.fZ; 342 G4double z = zsect.fZ; 344 G4double dx = zsect.fOffset.x(); 343 G4double dx = zsect.fOffset.x(); 345 G4double dy = zsect.fOffset.y(); 344 G4double dy = zsect.fOffset.y(); 346 G4double scale = zsect.fScale; 345 G4double scale = zsect.fScale; 347 346 348 auto ptr = const_cast<G4ThreeVectorList* << 347 G4ThreeVectorList* ptr = const_cast<G4ThreeVectorList*>(polygons[k]); 349 auto iter = ptr->begin(); << 348 G4ThreeVectorList::iterator iter = ptr->begin(); 350 G4double x0 = triangles[i3+0].x()*scale+ 349 G4double x0 = triangles[i3+0].x()*scale+dx; 351 G4double y0 = triangles[i3+0].y()*scale+ 350 G4double y0 = triangles[i3+0].y()*scale+dy; 352 iter->set(x0,y0,z); 351 iter->set(x0,y0,z); 353 iter++; 352 iter++; 354 G4double x1 = triangles[i3+1].x()*scale+ 353 G4double x1 = triangles[i3+1].x()*scale+dx; 355 G4double y1 = triangles[i3+1].y()*scale+ 354 G4double y1 = triangles[i3+1].y()*scale+dy; 356 iter->set(x1,y1,z); 355 iter->set(x1,y1,z); 357 iter++; 356 iter++; 358 G4double x2 = triangles[i3+2].x()*scale+ 357 G4double x2 = triangles[i3+2].x()*scale+dx; 359 G4double y2 = triangles[i3+2].y()*scale+ 358 G4double y2 = triangles[i3+2].y()*scale+dy; 360 iter->set(x2,y2,z); 359 iter->set(x2,y2,z); 361 } 360 } 362 361 363 // set sub-envelope and adjust extent 362 // set sub-envelope and adjust extent 364 G4double emin,emax; 363 G4double emin,emax; 365 G4BoundingEnvelope benv(polygons); 364 G4BoundingEnvelope benv(polygons); 366 if (!benv.CalculateExtent(pAxis,pVoxelLimi 365 if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue; 367 if (emin < pMin) pMin = emin; 366 if (emin < pMin) pMin = emin; 368 if (emax > pMax) pMax = emax; 367 if (emax > pMax) pMax = emax; 369 if (eminlim > pMin && emaxlim < pMax) brea 368 if (eminlim > pMin && emaxlim < pMax) break; // max possible extent 370 } 369 } 371 // free memory 370 // free memory 372 for (G4int k=0; k<nsect; ++k) { delete polyg << 371 for (G4int k=0; k<nsect; ++k) { delete polygons[k]; polygons[k]=0;} 373 return (pMin < pMax); 372 return (pMin < pMax); 374 } 373 } 375 374 376 375 377 ////////////////////////////////////////////// 376 /////////////////////////////////////////////////////////////////////////////// 378 // 377 // 379 // CreatePolyhedron() 378 // CreatePolyhedron() 380 // 379 // 381 G4Polyhedron* G4UExtrudedSolid::CreatePolyhedr 380 G4Polyhedron* G4UExtrudedSolid::CreatePolyhedron () const 382 { 381 { 383 unsigned int nFacets = Base_t::GetStruct().f 382 unsigned int nFacets = Base_t::GetStruct().fTslHelper.fFacets.size(); 384 unsigned int nVertices = Base_t::GetStruct() 383 unsigned int nVertices = Base_t::GetStruct().fTslHelper.fVertices.size(); 385 384 386 auto polyhedron = new G4Polyhedron(nVertices << 385 G4PolyhedronArbitrary* polyhedron = >> 386 new G4PolyhedronArbitrary (nVertices, nFacets); 387 387 388 // Copy vertices 388 // Copy vertices 389 for (unsigned int i = 0; i < nVertices; ++i) 389 for (unsigned int i = 0; i < nVertices; ++i) 390 { 390 { 391 U3Vector v = Base_t::GetStruct().fTslHelpe 391 U3Vector v = Base_t::GetStruct().fTslHelper.fVertices[i]; 392 polyhedron->SetVertex(i+1, G4ThreeVector(v << 392 polyhedron->AddVertex(G4ThreeVector(v.x(), v.y(), v.z())); 393 } 393 } 394 394 395 // Copy facets 395 // Copy facets 396 for (unsigned int i = 0; i < nFacets; ++i) 396 for (unsigned int i = 0; i < nFacets; ++i) 397 { 397 { 398 // Facets are only triangular in VecGeom 398 // Facets are only triangular in VecGeom 399 G4int i1 = Base_t::GetStruct().fTslHelper. 399 G4int i1 = Base_t::GetStruct().fTslHelper.fFacets[i]->fIndices[0] + 1; 400 G4int i2 = Base_t::GetStruct().fTslHelper. 400 G4int i2 = Base_t::GetStruct().fTslHelper.fFacets[i]->fIndices[1] + 1; 401 G4int i3 = Base_t::GetStruct().fTslHelper. 401 G4int i3 = Base_t::GetStruct().fTslHelper.fFacets[i]->fIndices[2] + 1; 402 polyhedron->SetFacet(i+1, i1, i2, i3); << 402 polyhedron->AddFacet(i1, i2, i3); 403 } 403 } 404 polyhedron->SetReferences(); 404 polyhedron->SetReferences(); 405 405 406 return polyhedron; << 406 return (G4Polyhedron*) polyhedron; 407 } 407 } 408 408 409 #endif // G4GEOM_USE_USOLIDS 409 #endif // G4GEOM_USE_USOLIDS 410 410