Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4ExtrudedSolid implementation 26 // G4ExtrudedSolid implementation 27 // 27 // 28 // Author: Ivana Hrivnacova, IPN Orsay 28 // Author: Ivana Hrivnacova, IPN Orsay 29 // 29 // 30 // CHANGE HISTORY 30 // CHANGE HISTORY 31 // -------------- 31 // -------------- 32 // 32 // 33 // 31.10.2017 E.Tcherniaev: added implementati 33 // 31.10.2017 E.Tcherniaev: added implementation for a non-convex 34 // right prism 34 // right prism 35 // 08.09.2017 E.Tcherniaev: added implementati 35 // 08.09.2017 E.Tcherniaev: added implementation for a convex 36 // right prism 36 // right prism 37 // 21.10.2016 E.Tcherniaev: reimplemented Calc 37 // 21.10.2016 E.Tcherniaev: reimplemented CalculateExtent(), 38 // used G4GeomTools::PolygonArea() 38 // used G4GeomTools::PolygonArea() to calculate area, 39 // replaced IsConvex() with G4GeomT 39 // replaced IsConvex() with G4GeomTools::IsConvex() 40 // 02.03.2016 E.Tcherniaev: added CheckPolygon 40 // 02.03.2016 E.Tcherniaev: added CheckPolygon() to remove 41 // collinear and coincident points 41 // collinear and coincident points from polygon 42 // ------------------------------------------- 42 // -------------------------------------------------------------------- 43 43 44 #include "G4ExtrudedSolid.hh" 44 #include "G4ExtrudedSolid.hh" 45 45 46 #if !defined(G4GEOM_USE_UEXTRUDEDSOLID) 46 #if !defined(G4GEOM_USE_UEXTRUDEDSOLID) 47 47 48 #include <set> 48 #include <set> 49 #include <algorithm> 49 #include <algorithm> 50 #include <cmath> 50 #include <cmath> 51 #include <iomanip> 51 #include <iomanip> 52 52 53 #include "G4GeomTools.hh" 53 #include "G4GeomTools.hh" 54 #include "G4VoxelLimits.hh" 54 #include "G4VoxelLimits.hh" 55 #include "G4AffineTransform.hh" 55 #include "G4AffineTransform.hh" 56 #include "G4BoundingEnvelope.hh" 56 #include "G4BoundingEnvelope.hh" 57 57 58 #include "G4GeometryTolerance.hh" 58 #include "G4GeometryTolerance.hh" 59 #include "G4PhysicalConstants.hh" 59 #include "G4PhysicalConstants.hh" 60 #include "G4SystemOfUnits.hh" 60 #include "G4SystemOfUnits.hh" 61 #include "G4TriangularFacet.hh" 61 #include "G4TriangularFacet.hh" 62 #include "G4QuadrangularFacet.hh" 62 #include "G4QuadrangularFacet.hh" 63 63 64 //____________________________________________ 64 //_____________________________________________________________________________ 65 65 66 G4ExtrudedSolid::G4ExtrudedSolid( const G4Stri 66 G4ExtrudedSolid::G4ExtrudedSolid( const G4String& pName, 67 const std::v 67 const std::vector<G4TwoVector>& polygon, 68 const std::v 68 const std::vector<ZSection>& zsections) 69 : G4TessellatedSolid(pName), 69 : G4TessellatedSolid(pName), 70 fNv(polygon.size()), 70 fNv(polygon.size()), 71 fNz(zsections.size()), 71 fNz(zsections.size()), 72 fIsConvex(false), 72 fIsConvex(false), 73 fGeometryType("G4ExtrudedSolid"), 73 fGeometryType("G4ExtrudedSolid"), 74 fSolidType(0) 74 fSolidType(0) 75 { 75 { 76 // General constructor 76 // General constructor 77 77 78 // First check input parameters 78 // First check input parameters 79 79 80 if (fNv < 3) 80 if (fNv < 3) 81 { 81 { 82 std::ostringstream message; 82 std::ostringstream message; 83 message << "Number of vertices in polygon 83 message << "Number of vertices in polygon < 3 - " << pName; 84 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 84 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002", 85 FatalErrorInArgument, message) 85 FatalErrorInArgument, message); 86 } 86 } 87 87 88 if (fNz < 2) 88 if (fNz < 2) 89 { 89 { 90 std::ostringstream message; 90 std::ostringstream message; 91 message << "Number of z-sides < 2 - " << p 91 message << "Number of z-sides < 2 - " << pName; 92 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 92 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002", 93 FatalErrorInArgument, message) 93 FatalErrorInArgument, message); 94 } 94 } 95 95 96 for ( std::size_t i=0; i<fNz-1; ++i ) 96 for ( std::size_t i=0; i<fNz-1; ++i ) 97 { 97 { 98 if ( zsections[i].fZ > zsections[i+1].fZ ) 98 if ( zsections[i].fZ > zsections[i+1].fZ ) 99 { 99 { 100 std::ostringstream message; 100 std::ostringstream message; 101 message << "Z-sections have to be ordere 101 message << "Z-sections have to be ordered by z value (z0 < z1 < z2...) - " 102 << pName; 102 << pName; 103 G4Exception("G4ExtrudedSolid::G4Extruded 103 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002", 104 FatalErrorInArgument, messag 104 FatalErrorInArgument, message); 105 } 105 } 106 if ( std::fabs( zsections[i+1].fZ - zsecti 106 if ( std::fabs( zsections[i+1].fZ - zsections[i].fZ ) < kCarToleranceHalf ) 107 { 107 { 108 std::ostringstream message; 108 std::ostringstream message; 109 message << "Z-sections with the same z p 109 message << "Z-sections with the same z position are not supported - " 110 << pName; 110 << pName; 111 G4Exception("G4ExtrudedSolid::G4Extruded 111 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0001", 112 FatalException, message); 112 FatalException, message); 113 } 113 } 114 } 114 } 115 115 116 // Copy polygon 116 // Copy polygon 117 // 117 // 118 fPolygon = polygon; 118 fPolygon = polygon; 119 119 120 // Remove collinear and coincident vertices, 120 // Remove collinear and coincident vertices, if any 121 // 121 // 122 std::vector<G4int> removedVertices; 122 std::vector<G4int> removedVertices; 123 G4GeomTools::RemoveRedundantVertices(fPolygo 123 G4GeomTools::RemoveRedundantVertices(fPolygon,removedVertices, 124 2*kCarT 124 2*kCarTolerance); 125 if (!removedVertices.empty()) << 125 if (removedVertices.size() != 0) 126 { 126 { 127 std::size_t nremoved = removedVertices.siz 127 std::size_t nremoved = removedVertices.size(); 128 std::ostringstream message; 128 std::ostringstream message; 129 message << "The following "<< nremoved 129 message << "The following "<< nremoved 130 << " vertices have been removed fr 130 << " vertices have been removed from polygon in " << pName 131 << "\nas collinear or coincident w 131 << "\nas collinear or coincident with other vertices: " 132 << removedVertices[0]; 132 << removedVertices[0]; 133 for (std::size_t i=1; i<nremoved; ++i) mes 133 for (std::size_t i=1; i<nremoved; ++i) message << ", " << removedVertices[i]; 134 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 134 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids1001", 135 JustWarning, message); 135 JustWarning, message); 136 } 136 } 137 137 138 fNv = fPolygon.size(); 138 fNv = fPolygon.size(); 139 if (fNv < 3) 139 if (fNv < 3) 140 { 140 { 141 std::ostringstream message; 141 std::ostringstream message; 142 message << "Number of vertices in polygon 142 message << "Number of vertices in polygon after removal < 3 - " << pName; 143 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 143 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002", 144 FatalErrorInArgument, message) 144 FatalErrorInArgument, message); 145 } 145 } 146 146 147 // Check if polygon vertices are defined clo 147 // Check if polygon vertices are defined clockwise 148 // (the area is positive if polygon vertices 148 // (the area is positive if polygon vertices are defined anti-clockwise) 149 // 149 // 150 if (G4GeomTools::PolygonArea(fPolygon) > 0.) 150 if (G4GeomTools::PolygonArea(fPolygon) > 0.) 151 { 151 { 152 // Polygon vertices are defined anti-clock 152 // Polygon vertices are defined anti-clockwise, we revert them 153 // G4Exception("G4ExtrudedSolid::G4Extrude 153 // G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids1001", 154 // JustWarning, 154 // JustWarning, 155 // "Polygon vertices defined an 155 // "Polygon vertices defined anti-clockwise, reverting polygon"); 156 std::reverse(fPolygon.begin(),fPolygon.end 156 std::reverse(fPolygon.begin(),fPolygon.end()); 157 } 157 } 158 158 159 // Copy z-sections 159 // Copy z-sections 160 // 160 // 161 fZSections = zsections; 161 fZSections = zsections; 162 162 163 G4bool result = MakeFacets(); 163 G4bool result = MakeFacets(); 164 if (!result) 164 if (!result) 165 { 165 { 166 std::ostringstream message; 166 std::ostringstream message; 167 message << "Making facets failed - " << pN 167 message << "Making facets failed - " << pName; 168 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 168 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0003", 169 FatalException, message); 169 FatalException, message); 170 } 170 } 171 fIsConvex = G4GeomTools::IsConvex(fPolygon); 171 fIsConvex = G4GeomTools::IsConvex(fPolygon); 172 172 173 ComputeProjectionParameters(); 173 ComputeProjectionParameters(); 174 174 175 // Check if the solid is a right prism, if s 175 // Check if the solid is a right prism, if so then set lateral planes 176 // 176 // 177 if ((fNz == 2) 177 if ((fNz == 2) 178 && (fZSections[0].fScale == 1) && (fZSec 178 && (fZSections[0].fScale == 1) && (fZSections[1].fScale == 1) 179 && (fZSections[0].fOffset == G4TwoVector 179 && (fZSections[0].fOffset == G4TwoVector(0,0)) 180 && (fZSections[1].fOffset == G4TwoVector 180 && (fZSections[1].fOffset == G4TwoVector(0,0))) 181 { 181 { 182 fSolidType = (fIsConvex) ? 1 : 2; // 1 - c 182 fSolidType = (fIsConvex) ? 1 : 2; // 1 - convex, 2 - non-convex right prism 183 ComputeLateralPlanes(); 183 ComputeLateralPlanes(); 184 } 184 } 185 } 185 } 186 186 187 //____________________________________________ 187 //_____________________________________________________________________________ 188 188 189 G4ExtrudedSolid::G4ExtrudedSolid( const G4Stri 189 G4ExtrudedSolid::G4ExtrudedSolid( const G4String& pName, 190 const std::v 190 const std::vector<G4TwoVector>& polygon, 191 G4doub 191 G4double dz, 192 const G4TwoV 192 const G4TwoVector& off1, G4double scale1, 193 const G4TwoV 193 const G4TwoVector& off2, G4double scale2 ) 194 : G4TessellatedSolid(pName), 194 : G4TessellatedSolid(pName), 195 fNv(polygon.size()), 195 fNv(polygon.size()), 196 fNz(2), 196 fNz(2), 197 fGeometryType("G4ExtrudedSolid") 197 fGeometryType("G4ExtrudedSolid") 198 { 198 { 199 // Special constructor for solid with 2 z-se 199 // Special constructor for solid with 2 z-sections 200 200 201 // First check input parameters 201 // First check input parameters 202 // 202 // 203 if (fNv < 3) 203 if (fNv < 3) 204 { 204 { 205 std::ostringstream message; 205 std::ostringstream message; 206 message << "Number of vertices in polygon 206 message << "Number of vertices in polygon < 3 - " << pName; 207 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 207 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002", 208 FatalErrorInArgument, message) 208 FatalErrorInArgument, message); 209 } 209 } 210 210 211 // Copy polygon 211 // Copy polygon 212 // 212 // 213 fPolygon = polygon; 213 fPolygon = polygon; 214 214 215 // Remove collinear and coincident vertices, 215 // Remove collinear and coincident vertices, if any 216 // 216 // 217 std::vector<G4int> removedVertices; 217 std::vector<G4int> removedVertices; 218 G4GeomTools::RemoveRedundantVertices(fPolygo 218 G4GeomTools::RemoveRedundantVertices(fPolygon,removedVertices, 219 2*kCarT 219 2*kCarTolerance); 220 if (!removedVertices.empty()) << 220 if (removedVertices.size() != 0) 221 { 221 { 222 std::size_t nremoved = removedVertices.siz 222 std::size_t nremoved = removedVertices.size(); 223 std::ostringstream message; 223 std::ostringstream message; 224 message << "The following "<< nremoved 224 message << "The following "<< nremoved 225 << " vertices have been removed fr 225 << " vertices have been removed from polygon in " << pName 226 << "\nas collinear or coincident w 226 << "\nas collinear or coincident with other vertices: " 227 << removedVertices[0]; 227 << removedVertices[0]; 228 for (std::size_t i=1; i<nremoved; ++i) mes 228 for (std::size_t i=1; i<nremoved; ++i) message << ", " << removedVertices[i]; 229 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 229 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids1001", 230 JustWarning, message); 230 JustWarning, message); 231 } 231 } 232 232 233 fNv = fPolygon.size(); 233 fNv = fPolygon.size(); 234 if (fNv < 3) 234 if (fNv < 3) 235 { 235 { 236 std::ostringstream message; 236 std::ostringstream message; 237 message << "Number of vertices in polygon 237 message << "Number of vertices in polygon after removal < 3 - " << pName; 238 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 238 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0002", 239 FatalErrorInArgument, message) 239 FatalErrorInArgument, message); 240 } 240 } 241 241 242 // Check if polygon vertices are defined clo 242 // Check if polygon vertices are defined clockwise 243 // (the area is positive if polygon vertices 243 // (the area is positive if polygon vertices are defined anti-clockwise) 244 // 244 // 245 if (G4GeomTools::PolygonArea(fPolygon) > 0.) 245 if (G4GeomTools::PolygonArea(fPolygon) > 0.) 246 { 246 { 247 // Polygon vertices are defined anti-clock 247 // Polygon vertices are defined anti-clockwise, we revert them 248 // G4Exception("G4ExtrudedSolid::G4Extrude 248 // G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids1001", 249 // JustWarning, 249 // JustWarning, 250 // "Polygon vertices defined an 250 // "Polygon vertices defined anti-clockwise, reverting polygon"); 251 std::reverse(fPolygon.begin(),fPolygon.end 251 std::reverse(fPolygon.begin(),fPolygon.end()); 252 } 252 } 253 253 254 // Copy z-sections 254 // Copy z-sections 255 // 255 // 256 fZSections.emplace_back(-dz, off1, scale1); << 256 fZSections.push_back(ZSection(-dz, off1, scale1)); 257 fZSections.emplace_back( dz, off2, scale2); << 257 fZSections.push_back(ZSection( dz, off2, scale2)); 258 258 259 G4bool result = MakeFacets(); 259 G4bool result = MakeFacets(); 260 if (!result) 260 if (!result) 261 { 261 { 262 std::ostringstream message; 262 std::ostringstream message; 263 message << "Making facets failed - " << pN 263 message << "Making facets failed - " << pName; 264 G4Exception("G4ExtrudedSolid::G4ExtrudedSo 264 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "GeomSolids0003", 265 FatalException, message); 265 FatalException, message); 266 } 266 } 267 fIsConvex = G4GeomTools::IsConvex(fPolygon); 267 fIsConvex = G4GeomTools::IsConvex(fPolygon); 268 268 269 ComputeProjectionParameters(); 269 ComputeProjectionParameters(); 270 270 271 // Check if the solid is a right prism, if s 271 // Check if the solid is a right prism, if so then set lateral planes 272 // 272 // 273 if ((scale1 == 1) && (scale2 == 1) 273 if ((scale1 == 1) && (scale2 == 1) 274 && (off1 == G4TwoVector(0,0)) && (off2 = 274 && (off1 == G4TwoVector(0,0)) && (off2 == G4TwoVector(0,0))) 275 { 275 { 276 fSolidType = (fIsConvex) ? 1 : 2; // 1 - c 276 fSolidType = (fIsConvex) ? 1 : 2; // 1 - convex, 2 - non-convex right prism 277 ComputeLateralPlanes(); 277 ComputeLateralPlanes(); 278 } 278 } 279 } 279 } 280 280 281 //____________________________________________ 281 //_____________________________________________________________________________ 282 282 283 G4ExtrudedSolid::G4ExtrudedSolid( __void__& a 283 G4ExtrudedSolid::G4ExtrudedSolid( __void__& a ) 284 : G4TessellatedSolid(a), fGeometryType("G4Ex << 284 : G4TessellatedSolid(a), fNv(0), fNz(0), >> 285 fGeometryType("G4ExtrudedSolid") 285 { 286 { 286 // Fake default constructor - sets only memb 287 // Fake default constructor - sets only member data and allocates memory 287 // for usage rest 288 // for usage restricted to object persistency. 288 } 289 } 289 290 290 //____________________________________________ 291 //_____________________________________________________________________________ 291 292 292 G4ExtrudedSolid::G4ExtrudedSolid(const G4Extru << 293 G4ExtrudedSolid::G4ExtrudedSolid(const G4ExtrudedSolid& rhs) >> 294 : G4TessellatedSolid(rhs), fNv(rhs.fNv), fNz(rhs.fNz), >> 295 fPolygon(rhs.fPolygon), fZSections(rhs.fZSections), >> 296 fTriangles(rhs.fTriangles), fIsConvex(rhs.fIsConvex), >> 297 fGeometryType(rhs.fGeometryType), >> 298 fSolidType(rhs.fSolidType), fPlanes(rhs.fPlanes), >> 299 fLines(rhs.fLines), fLengths(rhs.fLengths), >> 300 fKScales(rhs.fKScales), fScale0s(rhs.fScale0s), >> 301 fKOffsets(rhs.fKOffsets), fOffset0s(rhs.fOffset0s) >> 302 { >> 303 } 293 304 294 //____________________________________________ 305 //_____________________________________________________________________________ 295 306 296 G4ExtrudedSolid& G4ExtrudedSolid::operator = ( 307 G4ExtrudedSolid& G4ExtrudedSolid::operator = (const G4ExtrudedSolid& rhs) 297 { 308 { 298 // Check assignment to self 309 // Check assignment to self 299 // 310 // 300 if (this == &rhs) { return *this; } 311 if (this == &rhs) { return *this; } 301 312 302 // Copy base class data 313 // Copy base class data 303 // 314 // 304 G4TessellatedSolid::operator=(rhs); 315 G4TessellatedSolid::operator=(rhs); 305 316 306 // Copy data 317 // Copy data 307 // 318 // 308 fNv = rhs.fNv; fNz = rhs.fNz; 319 fNv = rhs.fNv; fNz = rhs.fNz; 309 fPolygon = rhs.fPolygon; fZSections = rhs.f 320 fPolygon = rhs.fPolygon; fZSections = rhs.fZSections; 310 fTriangles = rhs.fTriangles; fIsConvex = rh 321 fTriangles = rhs.fTriangles; fIsConvex = rhs.fIsConvex; 311 fGeometryType = rhs.fGeometryType; 322 fGeometryType = rhs.fGeometryType; 312 fSolidType = rhs.fSolidType; fPlanes = rhs. 323 fSolidType = rhs.fSolidType; fPlanes = rhs.fPlanes; 313 fLines = rhs.fLines; fLengths = rhs.fLength 324 fLines = rhs.fLines; fLengths = rhs.fLengths; 314 fKScales = rhs.fKScales; fScale0s = rhs.fSc 325 fKScales = rhs.fKScales; fScale0s = rhs.fScale0s; 315 fKOffsets = rhs.fKOffsets; fOffset0s = rhs. 326 fKOffsets = rhs.fKOffsets; fOffset0s = rhs.fOffset0s; 316 327 317 return *this; 328 return *this; 318 } 329 } 319 330 320 //____________________________________________ 331 //_____________________________________________________________________________ 321 332 322 G4ExtrudedSolid::~G4ExtrudedSolid() 333 G4ExtrudedSolid::~G4ExtrudedSolid() 323 { 334 { 324 // Destructor 335 // Destructor 325 } 336 } 326 337 327 //____________________________________________ 338 //_____________________________________________________________________________ 328 339 329 void G4ExtrudedSolid::ComputeProjectionParamet 340 void G4ExtrudedSolid::ComputeProjectionParameters() 330 { 341 { 331 // Compute parameters for point projections 342 // Compute parameters for point projections p(z) 332 // to the polygon scale & offset: 343 // to the polygon scale & offset: 333 // scale(z) = k*z + scale0 344 // scale(z) = k*z + scale0 334 // offset(z) = l*z + offset0 345 // offset(z) = l*z + offset0 335 // p(z) = scale(z)*p0 + offset(z) 346 // p(z) = scale(z)*p0 + offset(z) 336 // p0 = (p(z) - offset(z))/scale(z); 347 // p0 = (p(z) - offset(z))/scale(z); 337 // 348 // 338 349 339 for (std::size_t iz=0; iz<fNz-1; ++iz) 350 for (std::size_t iz=0; iz<fNz-1; ++iz) 340 { 351 { 341 G4double z1 = fZSections[iz].fZ; 352 G4double z1 = fZSections[iz].fZ; 342 G4double z2 = fZSections[iz+1].fZ; 353 G4double z2 = fZSections[iz+1].fZ; 343 G4double scale1 = fZSections[iz].fScale; 354 G4double scale1 = fZSections[iz].fScale; 344 G4double scale2 = fZSections[iz+1].fScale 355 G4double scale2 = fZSections[iz+1].fScale; 345 G4TwoVector off1 = fZSections[iz].fOffset; 356 G4TwoVector off1 = fZSections[iz].fOffset; 346 G4TwoVector off2 = fZSections[iz+1].fOffse 357 G4TwoVector off2 = fZSections[iz+1].fOffset; 347 358 348 G4double kscale = (scale2 - scale1)/(z2 - 359 G4double kscale = (scale2 - scale1)/(z2 - z1); 349 G4double scale0 = scale2 - kscale*(z2 - z 360 G4double scale0 = scale2 - kscale*(z2 - z1)/2.0; 350 G4TwoVector koff = (off2 - off1)/(z2 - z1) 361 G4TwoVector koff = (off2 - off1)/(z2 - z1); 351 G4TwoVector off0 = off2 - koff*(z2 - z1)/ 362 G4TwoVector off0 = off2 - koff*(z2 - z1)/2.0; 352 363 353 fKScales.push_back(kscale); 364 fKScales.push_back(kscale); 354 fScale0s.push_back(scale0); 365 fScale0s.push_back(scale0); 355 fKOffsets.push_back(koff); 366 fKOffsets.push_back(koff); 356 fOffset0s.push_back(off0); 367 fOffset0s.push_back(off0); 357 } 368 } 358 } 369 } 359 370 360 //____________________________________________ 371 //_____________________________________________________________________________ 361 372 362 void G4ExtrudedSolid::ComputeLateralPlanes() 373 void G4ExtrudedSolid::ComputeLateralPlanes() 363 { 374 { 364 // Compute lateral planes: a*x + b*y + c*z + 375 // Compute lateral planes: a*x + b*y + c*z + d = 0 365 // 376 // 366 std::size_t Nv = fPolygon.size(); 377 std::size_t Nv = fPolygon.size(); 367 fPlanes.resize(Nv); 378 fPlanes.resize(Nv); 368 for (std::size_t i=0, k=Nv-1; i<Nv; k=i++) 379 for (std::size_t i=0, k=Nv-1; i<Nv; k=i++) 369 { 380 { 370 G4TwoVector norm = (fPolygon[i] - fPolygon 381 G4TwoVector norm = (fPolygon[i] - fPolygon[k]).unit(); 371 fPlanes[i].a = -norm.y(); 382 fPlanes[i].a = -norm.y(); 372 fPlanes[i].b = norm.x(); 383 fPlanes[i].b = norm.x(); 373 fPlanes[i].c = 0; 384 fPlanes[i].c = 0; 374 fPlanes[i].d = norm.y()*fPolygon[i].x() - 385 fPlanes[i].d = norm.y()*fPolygon[i].x() - norm.x()*fPolygon[i].y(); 375 } 386 } 376 387 377 // Compute edge equations: x = k*y + m 388 // Compute edge equations: x = k*y + m 378 // and edge lengths 389 // and edge lengths 379 // 390 // 380 fLines.resize(Nv); 391 fLines.resize(Nv); 381 fLengths.resize(Nv); 392 fLengths.resize(Nv); 382 for (std::size_t i=0, k=Nv-1; i<Nv; k=i++) 393 for (std::size_t i=0, k=Nv-1; i<Nv; k=i++) 383 { 394 { 384 if (fPolygon[k].y() == fPolygon[i].y()) 395 if (fPolygon[k].y() == fPolygon[i].y()) 385 { 396 { 386 fLines[i].k = 0; 397 fLines[i].k = 0; 387 fLines[i].m = fPolygon[i].x(); 398 fLines[i].m = fPolygon[i].x(); 388 } 399 } 389 else 400 else 390 { 401 { 391 G4double ctg = (fPolygon[k].x()-fPolygon 402 G4double ctg = (fPolygon[k].x()-fPolygon[i].x())/(fPolygon[k].y()-fPolygon[i].y()); 392 fLines[i].k = ctg; 403 fLines[i].k = ctg; 393 fLines[i].m = fPolygon[i].x() - ctg*fPol 404 fLines[i].m = fPolygon[i].x() - ctg*fPolygon[i].y(); 394 } 405 } 395 fLengths[i] = (fPolygon[i] - fPolygon[k] 406 fLengths[i] = (fPolygon[i] - fPolygon[k]).mag(); 396 } 407 } 397 } 408 } 398 409 399 //____________________________________________ 410 //_____________________________________________________________________________ 400 411 401 G4ThreeVector G4ExtrudedSolid::GetVertex(G4int 412 G4ThreeVector G4ExtrudedSolid::GetVertex(G4int iz, G4int ind) const 402 { 413 { 403 // Shift and scale vertices 414 // Shift and scale vertices 404 415 405 return { fPolygon[ind].x() * fZSections[iz]. << 416 return G4ThreeVector( fPolygon[ind].x() * fZSections[iz].fScale 406 + fZSections[iz].fOffset.x(), << 417 + fZSections[iz].fOffset.x(), 407 fPolygon[ind].y() * fZSections[iz]. << 418 fPolygon[ind].y() * fZSections[iz].fScale 408 + fZSections[iz].fOffset.y(), << 419 + fZSections[iz].fOffset.y(), fZSections[iz].fZ); 409 fZSections[iz].fZ }; << 410 } 420 } 411 421 412 //____________________________________________ 422 //_____________________________________________________________________________ 413 423 414 G4TwoVector G4ExtrudedSolid::ProjectPoint(cons 424 G4TwoVector G4ExtrudedSolid::ProjectPoint(const G4ThreeVector& point) const 415 { 425 { 416 // Project point in the polygon scale 426 // Project point in the polygon scale 417 // scale(z) = k*z + scale0 427 // scale(z) = k*z + scale0 418 // offset(z) = l*z + offset0 428 // offset(z) = l*z + offset0 419 // p(z) = scale(z)*p0 + offset(z) 429 // p(z) = scale(z)*p0 + offset(z) 420 // p0 = (p(z) - offset(z))/scale(z); 430 // p0 = (p(z) - offset(z))/scale(z); 421 431 422 // Select projection (z-segment of the solid 432 // Select projection (z-segment of the solid) according to p.z() 423 // 433 // 424 std::size_t iz = 0; 434 std::size_t iz = 0; 425 while ( point.z() > fZSections[iz+1].fZ && i 435 while ( point.z() > fZSections[iz+1].fZ && iz < fNz-2 ) { ++iz; } 426 // Loop checking, 13.08.2015, G.Cosmo 436 // Loop checking, 13.08.2015, G.Cosmo 427 437 428 G4double z0 = ( fZSections[iz+1].fZ + fZSect 438 G4double z0 = ( fZSections[iz+1].fZ + fZSections[iz].fZ )/2.0; 429 G4TwoVector p2(point.x(), point.y()); 439 G4TwoVector p2(point.x(), point.y()); 430 G4double pscale = fKScales[iz]*(point.z()-z 440 G4double pscale = fKScales[iz]*(point.z()-z0) + fScale0s[iz]; 431 G4TwoVector poffset = fKOffsets[iz]*(point.z 441 G4TwoVector poffset = fKOffsets[iz]*(point.z()-z0) + fOffset0s[iz]; 432 442 433 // G4cout << point << " projected to " 443 // G4cout << point << " projected to " 434 // << iz << "-th z-segment polygon as 444 // << iz << "-th z-segment polygon as " 435 // << (p2 - poffset)/pscale << G4endl 445 // << (p2 - poffset)/pscale << G4endl; 436 446 437 // pscale is always >0 as it is an interpola 447 // pscale is always >0 as it is an interpolation between two 438 // positive scale values 448 // positive scale values 439 // 449 // 440 return (p2 - poffset)/pscale; 450 return (p2 - poffset)/pscale; 441 } 451 } 442 452 443 //____________________________________________ 453 //_____________________________________________________________________________ 444 454 445 G4bool G4ExtrudedSolid::IsSameLine(const G4Two 455 G4bool G4ExtrudedSolid::IsSameLine(const G4TwoVector& p, 446 const G4Two 456 const G4TwoVector& l1, 447 const G4Two 457 const G4TwoVector& l2) const 448 { 458 { 449 // Return true if p is on the line through l 459 // Return true if p is on the line through l1, l2 450 460 451 if ( l1.x() == l2.x() ) 461 if ( l1.x() == l2.x() ) 452 { 462 { 453 return std::fabs(p.x() - l1.x()) < kCarTol 463 return std::fabs(p.x() - l1.x()) < kCarToleranceHalf; 454 } 464 } 455 G4double slope= ((l2.y() - l1.y())/(l2.x() 465 G4double slope= ((l2.y() - l1.y())/(l2.x() - l1.x())); 456 G4double predy= l1.y() + slope *(p.x() - l 466 G4double predy= l1.y() + slope *(p.x() - l1.x()); 457 G4double dy= p.y() - predy; 467 G4double dy= p.y() - predy; 458 468 459 // Calculate perpendicular distance 469 // Calculate perpendicular distance 460 // 470 // 461 // G4double perpD= std::fabs(dy) / std::sqr 471 // G4double perpD= std::fabs(dy) / std::sqrt( 1 + slope * slope ); 462 // G4bool simpleComp= (perpD<kCarToleranc 472 // G4bool simpleComp= (perpD<kCarToleranceHalf); 463 473 464 // Check perpendicular distance vs toleranc 474 // Check perpendicular distance vs tolerance 'directly' 465 // 475 // 466 G4bool squareComp = (dy*dy < (1+slope*slope 476 G4bool squareComp = (dy*dy < (1+slope*slope) 467 * kCarToleranceHalf * kCa 477 * kCarToleranceHalf * kCarToleranceHalf); 468 478 469 // return simpleComp; 479 // return simpleComp; 470 return squareComp; 480 return squareComp; 471 } 481 } 472 482 473 //____________________________________________ 483 //_____________________________________________________________________________ 474 484 475 G4bool G4ExtrudedSolid::IsSameLineSegment(cons 485 G4bool G4ExtrudedSolid::IsSameLineSegment(const G4TwoVector& p, 476 cons 486 const G4TwoVector& l1, 477 cons 487 const G4TwoVector& l2) const 478 { 488 { 479 // Return true if p is on the line through l 489 // Return true if p is on the line through l1, l2 and lies between 480 // l1 and l2 490 // l1 and l2 481 491 482 if ( p.x() < std::min(l1.x(), l2.x()) - kCar 492 if ( p.x() < std::min(l1.x(), l2.x()) - kCarToleranceHalf || 483 p.x() > std::max(l1.x(), l2.x()) + kCar 493 p.x() > std::max(l1.x(), l2.x()) + kCarToleranceHalf || 484 p.y() < std::min(l1.y(), l2.y()) - kCar 494 p.y() < std::min(l1.y(), l2.y()) - kCarToleranceHalf || 485 p.y() > std::max(l1.y(), l2.y()) + kCar 495 p.y() > std::max(l1.y(), l2.y()) + kCarToleranceHalf ) 486 { 496 { 487 return false; 497 return false; 488 } 498 } 489 499 490 return IsSameLine(p, l1, l2); 500 return IsSameLine(p, l1, l2); 491 } 501 } 492 502 493 //____________________________________________ 503 //_____________________________________________________________________________ 494 504 495 G4bool G4ExtrudedSolid::IsSameSide(const G4Two 505 G4bool G4ExtrudedSolid::IsSameSide(const G4TwoVector& p1, 496 const G4Two 506 const G4TwoVector& p2, 497 const G4Two 507 const G4TwoVector& l1, 498 const G4Two 508 const G4TwoVector& l2) const 499 { 509 { 500 // Return true if p1 and p2 are on the same 510 // Return true if p1 and p2 are on the same side of the line through l1, l2 501 511 502 return ( (p1.x() - l1.x()) * (l2.y() - l1. 512 return ( (p1.x() - l1.x()) * (l2.y() - l1.y()) 503 - (l2.x() - l1.x()) * (p1.y() - l1.y( 513 - (l2.x() - l1.x()) * (p1.y() - l1.y()) ) 504 * ( (p2.x() - l1.x()) * (l2.y() - l1. 514 * ( (p2.x() - l1.x()) * (l2.y() - l1.y()) 505 - (l2.x() - l1.x()) * (p2.y() - l1.y( 515 - (l2.x() - l1.x()) * (p2.y() - l1.y()) ) > 0; 506 } 516 } 507 517 508 //____________________________________________ 518 //_____________________________________________________________________________ 509 519 510 G4bool G4ExtrudedSolid::IsPointInside(const G4 520 G4bool G4ExtrudedSolid::IsPointInside(const G4TwoVector& a, 511 const G4 521 const G4TwoVector& b, 512 const G4 522 const G4TwoVector& c, 513 const G4 523 const G4TwoVector& p) const 514 { 524 { 515 // Return true if p is inside of triangle ab 525 // Return true if p is inside of triangle abc or on its edges, 516 // else returns false 526 // else returns false 517 527 518 // Check extent first 528 // Check extent first 519 // 529 // 520 if ( ( p.x() < a.x() && p.x() < b.x() && p.x 530 if ( ( p.x() < a.x() && p.x() < b.x() && p.x() < c.x() ) || 521 ( p.x() > a.x() && p.x() > b.x() && p.x 531 ( p.x() > a.x() && p.x() > b.x() && p.x() > c.x() ) || 522 ( p.y() < a.y() && p.y() < b.y() && p.y 532 ( p.y() < a.y() && p.y() < b.y() && p.y() < c.y() ) || 523 ( p.y() > a.y() && p.y() > b.y() && p.y 533 ( p.y() > a.y() && p.y() > b.y() && p.y() > c.y() ) ) return false; 524 534 525 G4bool inside 535 G4bool inside 526 = IsSameSide(p, a, b, c) 536 = IsSameSide(p, a, b, c) 527 && IsSameSide(p, b, a, c) 537 && IsSameSide(p, b, a, c) 528 && IsSameSide(p, c, a, b); 538 && IsSameSide(p, c, a, b); 529 539 530 G4bool onEdge 540 G4bool onEdge 531 = IsSameLineSegment(p, a, b) 541 = IsSameLineSegment(p, a, b) 532 || IsSameLineSegment(p, b, c) 542 || IsSameLineSegment(p, b, c) 533 || IsSameLineSegment(p, c, a); 543 || IsSameLineSegment(p, c, a); 534 544 535 return inside || onEdge; 545 return inside || onEdge; 536 } 546 } 537 547 538 //____________________________________________ 548 //_____________________________________________________________________________ 539 549 540 G4double 550 G4double 541 G4ExtrudedSolid::GetAngle(const G4TwoVector& p 551 G4ExtrudedSolid::GetAngle(const G4TwoVector& po, 542 const G4TwoVector& p 552 const G4TwoVector& pa, 543 const G4TwoVector& p 553 const G4TwoVector& pb) const 544 { 554 { 545 // Return the angle of the vertex in po 555 // Return the angle of the vertex in po 546 556 547 G4TwoVector t1 = pa - po; 557 G4TwoVector t1 = pa - po; 548 G4TwoVector t2 = pb - po; 558 G4TwoVector t2 = pb - po; 549 559 550 G4double result = (std::atan2(t1.y(), t1.x() 560 G4double result = (std::atan2(t1.y(), t1.x()) - std::atan2(t2.y(), t2.x())); 551 561 552 if ( result < 0 ) result += 2*pi; 562 if ( result < 0 ) result += 2*pi; 553 563 554 return result; 564 return result; 555 } 565 } 556 566 557 //____________________________________________ 567 //_____________________________________________________________________________ 558 568 559 G4VFacet* 569 G4VFacet* 560 G4ExtrudedSolid::MakeDownFacet(G4int ind1, G4i 570 G4ExtrudedSolid::MakeDownFacet(G4int ind1, G4int ind2, G4int ind3) const 561 { 571 { 562 // Create a triangular facet from the polygo 572 // Create a triangular facet from the polygon points given by indices 563 // forming the down side ( the normal goes i 573 // forming the down side ( the normal goes in -z) 564 574 565 std::vector<G4ThreeVector> vertices; 575 std::vector<G4ThreeVector> vertices; 566 vertices.push_back(GetVertex(0, ind1)); 576 vertices.push_back(GetVertex(0, ind1)); 567 vertices.push_back(GetVertex(0, ind2)); 577 vertices.push_back(GetVertex(0, ind2)); 568 vertices.push_back(GetVertex(0, ind3)); 578 vertices.push_back(GetVertex(0, ind3)); 569 579 570 // first vertex most left 580 // first vertex most left 571 // 581 // 572 G4ThreeVector cross 582 G4ThreeVector cross 573 = (vertices[1]-vertices[0]).cross(vertices 583 = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[1]); 574 584 575 if ( cross.z() > 0.0 ) 585 if ( cross.z() > 0.0 ) 576 { 586 { 577 // vertices ordered clock wise has to be r 587 // vertices ordered clock wise has to be reordered 578 588 579 // G4cout << "G4ExtrudedSolid::MakeDownFac 589 // G4cout << "G4ExtrudedSolid::MakeDownFacet: reordering vertices " 580 // << ind1 << ", " << ind2 << ", " 590 // << ind1 << ", " << ind2 << ", " << ind3 << G4endl; 581 591 582 G4ThreeVector tmp = vertices[1]; 592 G4ThreeVector tmp = vertices[1]; 583 vertices[1] = vertices[2]; 593 vertices[1] = vertices[2]; 584 vertices[2] = tmp; 594 vertices[2] = tmp; 585 } 595 } 586 596 587 return new G4TriangularFacet(vertices[0], ve 597 return new G4TriangularFacet(vertices[0], vertices[1], 588 vertices[2], AB 598 vertices[2], ABSOLUTE); 589 } 599 } 590 600 591 //____________________________________________ 601 //_____________________________________________________________________________ 592 602 593 G4VFacet* 603 G4VFacet* 594 G4ExtrudedSolid::MakeUpFacet(G4int ind1, G4int 604 G4ExtrudedSolid::MakeUpFacet(G4int ind1, G4int ind2, G4int ind3) const 595 { 605 { 596 // Creates a triangular facet from the polyg 606 // Creates a triangular facet from the polygon points given by indices 597 // forming the upper side ( z>0 ) 607 // forming the upper side ( z>0 ) 598 608 599 std::vector<G4ThreeVector> vertices; 609 std::vector<G4ThreeVector> vertices; 600 vertices.push_back(GetVertex((G4int)fNz-1, i 610 vertices.push_back(GetVertex((G4int)fNz-1, ind1)); 601 vertices.push_back(GetVertex((G4int)fNz-1, i 611 vertices.push_back(GetVertex((G4int)fNz-1, ind2)); 602 vertices.push_back(GetVertex((G4int)fNz-1, i 612 vertices.push_back(GetVertex((G4int)fNz-1, ind3)); 603 613 604 // first vertex most left 614 // first vertex most left 605 // 615 // 606 G4ThreeVector cross 616 G4ThreeVector cross 607 = (vertices[1]-vertices[0]).cross(vertices 617 = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[1]); 608 618 609 if ( cross.z() < 0.0 ) 619 if ( cross.z() < 0.0 ) 610 { 620 { 611 // vertices ordered clock wise has to be r 621 // vertices ordered clock wise has to be reordered 612 622 613 // G4cout << "G4ExtrudedSolid::MakeUpFacet 623 // G4cout << "G4ExtrudedSolid::MakeUpFacet: reordering vertices " 614 // << ind1 << ", " << ind2 << ", " 624 // << ind1 << ", " << ind2 << ", " << ind3 << G4endl; 615 625 616 G4ThreeVector tmp = vertices[1]; 626 G4ThreeVector tmp = vertices[1]; 617 vertices[1] = vertices[2]; 627 vertices[1] = vertices[2]; 618 vertices[2] = tmp; 628 vertices[2] = tmp; 619 } 629 } 620 630 621 return new G4TriangularFacet(vertices[0], ve 631 return new G4TriangularFacet(vertices[0], vertices[1], 622 vertices[2], AB 632 vertices[2], ABSOLUTE); 623 } 633 } 624 634 625 //____________________________________________ 635 //_____________________________________________________________________________ 626 636 627 G4bool G4ExtrudedSolid::AddGeneralPolygonFacet 637 G4bool G4ExtrudedSolid::AddGeneralPolygonFacets() 628 { 638 { 629 // Decompose polygonal sides in triangular f 639 // Decompose polygonal sides in triangular facets 630 640 631 typedef std::pair < G4TwoVector, G4int > Ver 641 typedef std::pair < G4TwoVector, G4int > Vertex; 632 642 633 static const G4double kAngTolerance = 643 static const G4double kAngTolerance = 634 G4GeometryTolerance::GetInstance()->GetAng 644 G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 635 645 636 // Fill one more vector 646 // Fill one more vector 637 // 647 // 638 std::vector< Vertex > verticesToBeDone; 648 std::vector< Vertex > verticesToBeDone; 639 for ( G4int i=0; i<(G4int)fNv; ++i ) 649 for ( G4int i=0; i<(G4int)fNv; ++i ) 640 { 650 { 641 verticesToBeDone.emplace_back(fPolygon[i], << 651 verticesToBeDone.push_back(Vertex(fPolygon[i], i)); 642 } 652 } 643 std::vector< Vertex > ears; 653 std::vector< Vertex > ears; 644 654 645 auto c1 = verticesToBeDone.begin(); << 655 std::vector< Vertex >::iterator c1 = verticesToBeDone.begin(); 646 auto c2 = c1+1; << 656 std::vector< Vertex >::iterator c2 = c1+1; 647 auto c3 = c1+2; << 657 std::vector< Vertex >::iterator c3 = c1+2; 648 while ( verticesToBeDone.size()>2 ) // Lo 658 while ( verticesToBeDone.size()>2 ) // Loop checking, 13.08.2015, G.Cosmo 649 { 659 { 650 660 651 // G4cout << "Looking at triangle : " 661 // G4cout << "Looking at triangle : " 652 // << c1->second << " " << c2->se 662 // << c1->second << " " << c2->second 653 // << " " << c3->second << G4endl; 663 // << " " << c3->second << G4endl; 654 //G4cout << "Looking at triangle : " 664 //G4cout << "Looking at triangle : " 655 // << c1->first << " " << c2->firs 665 // << c1->first << " " << c2->first 656 // << " " << c3->first << G4endl; 666 // << " " << c3->first << G4endl; 657 667 658 // skip concave vertices 668 // skip concave vertices 659 // 669 // 660 G4double angle = GetAngle(c2->first, c3->f 670 G4double angle = GetAngle(c2->first, c3->first, c1->first); 661 671 662 //G4cout << "angle " << angle << G4endl; 672 //G4cout << "angle " << angle << G4endl; 663 673 664 std::size_t counter = 0; 674 std::size_t counter = 0; 665 while ( angle >= (pi-kAngTolerance) ) // 675 while ( angle >= (pi-kAngTolerance) ) // Loop checking, 13.08.2015, G.Cosmo 666 { 676 { 667 // G4cout << "Skipping concave vertex " 677 // G4cout << "Skipping concave vertex " << c2->second << G4endl; 668 678 669 // try next three consecutive vertices 679 // try next three consecutive vertices 670 // 680 // 671 c1 = c2; 681 c1 = c2; 672 c2 = c3; 682 c2 = c3; 673 ++c3; 683 ++c3; 674 if ( c3 == verticesToBeDone.end() ) { c3 684 if ( c3 == verticesToBeDone.end() ) { c3 = verticesToBeDone.begin(); } 675 685 676 //G4cout << "Looking at triangle : " 686 //G4cout << "Looking at triangle : " 677 // << c1->first << " " << c2->firs 687 // << c1->first << " " << c2->first 678 // << " " << c3->first << G4endl 688 // << " " << c3->first << G4endl; 679 689 680 angle = GetAngle(c2->first, c3->first, c 690 angle = GetAngle(c2->first, c3->first, c1->first); 681 //G4cout << "angle " << angle << G4endl 691 //G4cout << "angle " << angle << G4endl; 682 692 683 ++counter; 693 ++counter; 684 694 685 if ( counter > fNv ) 695 if ( counter > fNv ) 686 { 696 { 687 G4Exception("G4ExtrudedSolid::AddGener 697 G4Exception("G4ExtrudedSolid::AddGeneralPolygonFacets", 688 "GeomSolids0003", FatalExc 698 "GeomSolids0003", FatalException, 689 "Triangularisation has fai 699 "Triangularisation has failed."); 690 break; 700 break; 691 } 701 } 692 } 702 } 693 703 694 G4bool good = true; 704 G4bool good = true; 695 for ( auto it=verticesToBeDone.cbegin(); i 705 for ( auto it=verticesToBeDone.cbegin(); it!=verticesToBeDone.cend(); ++it ) 696 { 706 { 697 // skip vertices of tested triangle 707 // skip vertices of tested triangle 698 // 708 // 699 if ( it == c1 || it == c2 || it == c3 ) 709 if ( it == c1 || it == c2 || it == c3 ) { continue; } 700 710 701 if ( IsPointInside(c1->first, c2->first, 711 if ( IsPointInside(c1->first, c2->first, c3->first, it->first) ) 702 { 712 { 703 // G4cout << "Point " << it->second << 713 // G4cout << "Point " << it->second << " is inside" << G4endl; 704 good = false; 714 good = false; 705 715 706 // try next three consecutive vertices 716 // try next three consecutive vertices 707 // 717 // 708 c1 = c2; 718 c1 = c2; 709 c2 = c3; 719 c2 = c3; 710 ++c3; 720 ++c3; 711 if ( c3 == verticesToBeDone.end() ) { 721 if ( c3 == verticesToBeDone.end() ) { c3 = verticesToBeDone.begin(); } 712 break; 722 break; 713 } 723 } 714 // else 724 // else 715 // { G4cout << "Point " << it->second 725 // { G4cout << "Point " << it->second << " is outside" << G4endl; } 716 } 726 } 717 if ( good ) 727 if ( good ) 718 { 728 { 719 // all points are outside triangle, we c 729 // all points are outside triangle, we can make a facet 720 730 721 // G4cout << "Found triangle : " 731 // G4cout << "Found triangle : " 722 // << c1->second << " " << c2->s 732 // << c1->second << " " << c2->second 723 // << " " << c3->second << G4end 733 // << " " << c3->second << G4endl; 724 734 725 G4bool result; 735 G4bool result; 726 result = AddFacet( MakeDownFacet(c1->sec 736 result = AddFacet( MakeDownFacet(c1->second, c2->second, c3->second) ); 727 if ( ! result ) { return false; } 737 if ( ! result ) { return false; } 728 738 729 result = AddFacet( MakeUpFacet(c1->secon 739 result = AddFacet( MakeUpFacet(c1->second, c2->second, c3->second) ); 730 if ( ! result ) { return false; } 740 if ( ! result ) { return false; } 731 741 732 std::vector<G4int> triangle(3); 742 std::vector<G4int> triangle(3); 733 triangle[0] = c1->second; 743 triangle[0] = c1->second; 734 triangle[1] = c2->second; 744 triangle[1] = c2->second; 735 triangle[2] = c3->second; 745 triangle[2] = c3->second; 736 fTriangles.push_back(std::move(triangle) << 746 fTriangles.push_back(triangle); 737 747 738 // remove the ear point from verticesToB 748 // remove the ear point from verticesToBeDone 739 // 749 // 740 verticesToBeDone.erase(c2); 750 verticesToBeDone.erase(c2); 741 c1 = verticesToBeDone.begin(); 751 c1 = verticesToBeDone.begin(); 742 c2 = c1+1; 752 c2 = c1+1; 743 c3 = c1+2; 753 c3 = c1+2; 744 } 754 } 745 } 755 } 746 return true; 756 return true; 747 } 757 } 748 758 749 //____________________________________________ 759 //_____________________________________________________________________________ 750 760 751 G4bool G4ExtrudedSolid::MakeFacets() 761 G4bool G4ExtrudedSolid::MakeFacets() 752 { 762 { 753 // Define facets 763 // Define facets 754 764 755 G4bool good; 765 G4bool good; 756 766 757 // Decomposition of polygonal sides in the f 767 // Decomposition of polygonal sides in the facets 758 // 768 // 759 if ( fNv == 3 ) 769 if ( fNv == 3 ) 760 { 770 { 761 good = AddFacet( new G4TriangularFacet( Ge 771 good = AddFacet( new G4TriangularFacet( GetVertex(0, 0), GetVertex(0, 1), 762 Ge 772 GetVertex(0, 2), ABSOLUTE) ); 763 if ( ! good ) { return false; } 773 if ( ! good ) { return false; } 764 774 765 good = AddFacet( new G4TriangularFacet( Ge 775 good = AddFacet( new G4TriangularFacet( GetVertex((G4int)fNz-1, 2), 766 Ge 776 GetVertex((G4int)fNz-1, 1), 767 Ge 777 GetVertex((G4int)fNz-1, 0), 768 AB 778 ABSOLUTE) ); 769 if ( ! good ) { return false; } 779 if ( ! good ) { return false; } 770 780 771 std::vector<G4int> triangle(3); 781 std::vector<G4int> triangle(3); 772 triangle[0] = 0; 782 triangle[0] = 0; 773 triangle[1] = 1; 783 triangle[1] = 1; 774 triangle[2] = 2; 784 triangle[2] = 2; 775 fTriangles.push_back(std::move(triangle)); << 785 fTriangles.push_back(triangle); 776 } 786 } 777 787 778 else if ( fNv == 4 ) 788 else if ( fNv == 4 ) 779 { 789 { 780 good = AddFacet( new G4QuadrangularFacet( 790 good = AddFacet( new G4QuadrangularFacet( GetVertex(0, 0),GetVertex(0, 1), 781 791 GetVertex(0, 2),GetVertex(0, 3), 782 792 ABSOLUTE) ); 783 if ( ! good ) { return false; } 793 if ( ! good ) { return false; } 784 794 785 good = AddFacet( new G4QuadrangularFacet( 795 good = AddFacet( new G4QuadrangularFacet( GetVertex((G4int)fNz-1, 3), 786 796 GetVertex((G4int)fNz-1, 2), 787 797 GetVertex((G4int)fNz-1, 1), 788 798 GetVertex((G4int)fNz-1, 0), 789 799 ABSOLUTE) ); 790 if ( ! good ) { return false; } 800 if ( ! good ) { return false; } 791 801 792 std::vector<G4int> triangle1(3); 802 std::vector<G4int> triangle1(3); 793 triangle1[0] = 0; 803 triangle1[0] = 0; 794 triangle1[1] = 1; 804 triangle1[1] = 1; 795 triangle1[2] = 2; 805 triangle1[2] = 2; 796 fTriangles.push_back(std::move(triangle1)) << 806 fTriangles.push_back(triangle1); 797 807 798 std::vector<G4int> triangle2(3); 808 std::vector<G4int> triangle2(3); 799 triangle2[0] = 0; 809 triangle2[0] = 0; 800 triangle2[1] = 2; 810 triangle2[1] = 2; 801 triangle2[2] = 3; 811 triangle2[2] = 3; 802 fTriangles.push_back(std::move(triangle2)) << 812 fTriangles.push_back(triangle2); 803 } 813 } 804 else 814 else 805 { 815 { 806 good = AddGeneralPolygonFacets(); 816 good = AddGeneralPolygonFacets(); 807 if ( ! good ) { return false; } 817 if ( ! good ) { return false; } 808 } 818 } 809 819 810 // The quadrangular sides 820 // The quadrangular sides 811 // 821 // 812 for ( G4int iz = 0; iz < (G4int)fNz-1; ++iz 822 for ( G4int iz = 0; iz < (G4int)fNz-1; ++iz ) 813 { 823 { 814 for ( G4int i = 0; i < (G4int)fNv; ++i ) 824 for ( G4int i = 0; i < (G4int)fNv; ++i ) 815 { 825 { 816 G4int j = (i+1) % fNv; 826 G4int j = (i+1) % fNv; 817 good = AddFacet( new G4QuadrangularFacet 827 good = AddFacet( new G4QuadrangularFacet 818 ( GetVertex(iz, j), Ge 828 ( GetVertex(iz, j), GetVertex(iz, i), 819 GetVertex(iz+1, i), 829 GetVertex(iz+1, i), GetVertex(iz+1, j), ABSOLUTE) ); 820 if ( ! good ) { return false; } 830 if ( ! good ) { return false; } 821 } 831 } 822 } 832 } 823 833 824 SetSolidClosed(true); 834 SetSolidClosed(true); 825 835 826 return good; 836 return good; 827 } 837 } 828 838 829 //____________________________________________ 839 //_____________________________________________________________________________ 830 840 831 G4GeometryType G4ExtrudedSolid::GetEntityType 841 G4GeometryType G4ExtrudedSolid::GetEntityType () const 832 { 842 { 833 // Return entity type 843 // Return entity type 834 844 835 return fGeometryType; 845 return fGeometryType; 836 } 846 } 837 847 838 //____________________________________________ 848 //_____________________________________________________________________________ 839 849 840 G4bool G4ExtrudedSolid::IsFaceted () const << 841 { << 842 return true; << 843 } << 844 << 845 //____________________________________________ << 846 << 847 G4VSolid* G4ExtrudedSolid::Clone() const 850 G4VSolid* G4ExtrudedSolid::Clone() const 848 { 851 { 849 return new G4ExtrudedSolid(*this); 852 return new G4ExtrudedSolid(*this); 850 } 853 } 851 854 852 //____________________________________________ 855 //_____________________________________________________________________________ 853 856 854 EInside G4ExtrudedSolid::Inside(const G4ThreeV 857 EInside G4ExtrudedSolid::Inside(const G4ThreeVector &p) const 855 { 858 { 856 switch (fSolidType) 859 switch (fSolidType) 857 { 860 { 858 case 1: // convex right prism 861 case 1: // convex right prism 859 { 862 { 860 G4double dist = std::max(fZSections[0].f 863 G4double dist = std::max(fZSections[0].fZ-p.z(),p.z()-fZSections[1].fZ); 861 if (dist > kCarToleranceHalf) { return 864 if (dist > kCarToleranceHalf) { return kOutside; } 862 865 863 std::size_t np = fPlanes.size(); 866 std::size_t np = fPlanes.size(); 864 for (std::size_t i=0; i<np; ++i) 867 for (std::size_t i=0; i<np; ++i) 865 { 868 { 866 G4double dd = fPlanes[i].a*p.x() + fPl 869 G4double dd = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() + fPlanes[i].d; 867 if (dd > dist) { dist = dd; } 870 if (dd > dist) { dist = dd; } 868 } 871 } 869 if (dist > kCarToleranceHalf) { return 872 if (dist > kCarToleranceHalf) { return kOutside; } 870 return (dist > -kCarToleranceHalf) ? kSu 873 return (dist > -kCarToleranceHalf) ? kSurface : kInside; 871 } 874 } 872 case 2: // non-convex right prism 875 case 2: // non-convex right prism 873 { 876 { 874 G4double distz = std::max(fZSections[0]. 877 G4double distz = std::max(fZSections[0].fZ-p.z(),p.z()-fZSections[1].fZ); 875 if (distz > kCarToleranceHalf) { return 878 if (distz > kCarToleranceHalf) { return kOutside; } 876 879 877 G4bool in = PointInPolygon(p); 880 G4bool in = PointInPolygon(p); 878 if (distz > -kCarToleranceHalf && in) { 881 if (distz > -kCarToleranceHalf && in) { return kSurface; } 879 882 880 G4double dd = DistanceToPolygonSqr(p) - 883 G4double dd = DistanceToPolygonSqr(p) - kCarToleranceHalf*kCarToleranceHalf; 881 if (in) 884 if (in) 882 { 885 { 883 return (dd >= 0) ? kInside : kSurface; 886 return (dd >= 0) ? kInside : kSurface; 884 } 887 } 885 else 888 else 886 { 889 { 887 return (dd > 0) ? kOutside : kSurface; 890 return (dd > 0) ? kOutside : kSurface; 888 } 891 } 889 } 892 } 890 } 893 } 891 894 892 // Override the base class function as it f 895 // Override the base class function as it fails in case of concave polygon. 893 // Project the point in the original polygon 896 // Project the point in the original polygon scale and check if it is inside 894 // for each triangle. 897 // for each triangle. 895 898 896 // Check first if outside extent 899 // Check first if outside extent 897 // 900 // 898 if ( p.x() < GetMinXExtent() - kCarTolerance 901 if ( p.x() < GetMinXExtent() - kCarToleranceHalf || 899 p.x() > GetMaxXExtent() + kCarTolerance 902 p.x() > GetMaxXExtent() + kCarToleranceHalf || 900 p.y() < GetMinYExtent() - kCarTolerance 903 p.y() < GetMinYExtent() - kCarToleranceHalf || 901 p.y() > GetMaxYExtent() + kCarTolerance 904 p.y() > GetMaxYExtent() + kCarToleranceHalf || 902 p.z() < GetMinZExtent() - kCarTolerance 905 p.z() < GetMinZExtent() - kCarToleranceHalf || 903 p.z() > GetMaxZExtent() + kCarTolerance 906 p.z() > GetMaxZExtent() + kCarToleranceHalf ) 904 { 907 { 905 // G4cout << "G4ExtrudedSolid::Outside ext 908 // G4cout << "G4ExtrudedSolid::Outside extent: " << p << G4endl; 906 return kOutside; 909 return kOutside; 907 } 910 } 908 911 909 // Project point p(z) to the polygon scale p 912 // Project point p(z) to the polygon scale p0 910 // 913 // 911 G4TwoVector pscaled = ProjectPoint(p); 914 G4TwoVector pscaled = ProjectPoint(p); 912 915 913 // Check if on surface of polygon 916 // Check if on surface of polygon 914 // 917 // 915 for ( G4int i=0; i<(G4int)fNv; ++i ) 918 for ( G4int i=0; i<(G4int)fNv; ++i ) 916 { 919 { 917 G4int j = (i+1) % fNv; 920 G4int j = (i+1) % fNv; 918 if ( IsSameLineSegment(pscaled, fPolygon[i 921 if ( IsSameLineSegment(pscaled, fPolygon[i], fPolygon[j]) ) 919 { 922 { 920 // G4cout << "G4ExtrudedSolid::Inside re 923 // G4cout << "G4ExtrudedSolid::Inside return Surface (on polygon) " 921 // << G4endl; 924 // << G4endl; 922 925 923 return kSurface; 926 return kSurface; 924 } 927 } 925 } 928 } 926 929 927 // Now check if inside triangles 930 // Now check if inside triangles 928 // 931 // 929 auto it = fTriangles.cbegin(); 932 auto it = fTriangles.cbegin(); 930 G4bool inside = false; 933 G4bool inside = false; 931 do // Loop checking, 13.08.2015, G.Cosmo 934 do // Loop checking, 13.08.2015, G.Cosmo 932 { 935 { 933 if ( IsPointInside(fPolygon[(*it)[0]], fPo 936 if ( IsPointInside(fPolygon[(*it)[0]], fPolygon[(*it)[1]], 934 fPolygon[(*it)[2]], psc 937 fPolygon[(*it)[2]], pscaled) ) { inside = true; } 935 ++it; 938 ++it; 936 } while ( (!inside) && (it != fTriangles.cen << 939 } while ( (inside == false) && (it != fTriangles.cend()) ); 937 940 938 if ( inside ) 941 if ( inside ) 939 { 942 { 940 // Check if on surface of z sides 943 // Check if on surface of z sides 941 // 944 // 942 if ( std::fabs( p.z() - fZSections[0].fZ ) 945 if ( std::fabs( p.z() - fZSections[0].fZ ) < kCarToleranceHalf || 943 std::fabs( p.z() - fZSections[fNz-1]. 946 std::fabs( p.z() - fZSections[fNz-1].fZ ) < kCarToleranceHalf ) 944 { 947 { 945 // G4cout << "G4ExtrudedSolid::Inside re 948 // G4cout << "G4ExtrudedSolid::Inside return Surface (on z side)" 946 // << G4endl; 949 // << G4endl; 947 950 948 return kSurface; 951 return kSurface; 949 } 952 } 950 953 951 // G4cout << "G4ExtrudedSolid::Inside retu 954 // G4cout << "G4ExtrudedSolid::Inside return Inside" << G4endl; 952 955 953 return kInside; 956 return kInside; 954 } 957 } 955 958 956 // G4cout << "G4ExtrudedSolid::Inside return 959 // G4cout << "G4ExtrudedSolid::Inside return Outside " << G4endl; 957 960 958 return kOutside; 961 return kOutside; 959 } 962 } 960 963 961 //____________________________________________ 964 //_____________________________________________________________________________ 962 965 963 G4ThreeVector G4ExtrudedSolid::SurfaceNormal(c 966 G4ThreeVector G4ExtrudedSolid::SurfaceNormal(const G4ThreeVector& p) const 964 { 967 { 965 G4int nsurf = 0; 968 G4int nsurf = 0; 966 G4double nx = 0., ny = 0., nz = 0.; 969 G4double nx = 0., ny = 0., nz = 0.; 967 switch (fSolidType) 970 switch (fSolidType) 968 { 971 { 969 case 1: // convex right prism 972 case 1: // convex right prism 970 { 973 { 971 if (std::abs(p.z() - fZSections[0].fZ) < 974 if (std::abs(p.z() - fZSections[0].fZ) <= kCarToleranceHalf) 972 { 975 { 973 nz = -1; ++nsurf; 976 nz = -1; ++nsurf; 974 } 977 } 975 if (std::abs(p.z() - fZSections[1].fZ) < 978 if (std::abs(p.z() - fZSections[1].fZ) <= kCarToleranceHalf) 976 { 979 { 977 nz = 1; ++nsurf; 980 nz = 1; ++nsurf; 978 } 981 } 979 for (std::size_t i=0; i<fNv; ++i) 982 for (std::size_t i=0; i<fNv; ++i) 980 { 983 { 981 G4double dd = fPlanes[i].a*p.x() + fPl 984 G4double dd = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() + fPlanes[i].d; 982 if (std::abs(dd) > kCarToleranceHalf) 985 if (std::abs(dd) > kCarToleranceHalf) continue; 983 nx += fPlanes[i].a; 986 nx += fPlanes[i].a; 984 ny += fPlanes[i].b; 987 ny += fPlanes[i].b; 985 ++nsurf; 988 ++nsurf; 986 } 989 } 987 break; 990 break; 988 } 991 } 989 case 2: // non-convex right prism 992 case 2: // non-convex right prism 990 { 993 { 991 if (std::abs(p.z() - fZSections[0].fZ) < 994 if (std::abs(p.z() - fZSections[0].fZ) <= kCarToleranceHalf) 992 { 995 { 993 nz = -1; ++nsurf; 996 nz = -1; ++nsurf; 994 } 997 } 995 if (std::abs(p.z() - fZSections[1].fZ) < 998 if (std::abs(p.z() - fZSections[1].fZ) <= kCarToleranceHalf) 996 { 999 { 997 nz = 1; ++nsurf; 1000 nz = 1; ++nsurf; 998 } 1001 } 999 1002 1000 G4double sqrCarToleranceHalf = kCarTole 1003 G4double sqrCarToleranceHalf = kCarToleranceHalf*kCarToleranceHalf; 1001 for (std::size_t i=0, k=fNv-1; i<fNv; k 1004 for (std::size_t i=0, k=fNv-1; i<fNv; k=i++) 1002 { 1005 { 1003 G4double ix = p.x() - fPolygon[i].x() 1006 G4double ix = p.x() - fPolygon[i].x(); 1004 G4double iy = p.y() - fPolygon[i].y() 1007 G4double iy = p.y() - fPolygon[i].y(); 1005 G4double u = fPlanes[i].a*iy - fPlan 1008 G4double u = fPlanes[i].a*iy - fPlanes[i].b*ix; 1006 if (u < 0) 1009 if (u < 0) 1007 { 1010 { 1008 if (ix*ix + iy*iy > sqrCarTolerance 1011 if (ix*ix + iy*iy > sqrCarToleranceHalf) continue; 1009 } 1012 } 1010 else if (u > fLengths[i]) 1013 else if (u > fLengths[i]) 1011 { 1014 { 1012 G4double kx = p.x() - fPolygon[k].x 1015 G4double kx = p.x() - fPolygon[k].x(); 1013 G4double ky = p.y() - fPolygon[k].y 1016 G4double ky = p.y() - fPolygon[k].y(); 1014 if (kx*kx + ky*ky > sqrCarTolerance 1017 if (kx*kx + ky*ky > sqrCarToleranceHalf) continue; 1015 } 1018 } 1016 else 1019 else 1017 { 1020 { 1018 G4double dd = fPlanes[i].a*p.x() + 1021 G4double dd = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() + fPlanes[i].d; 1019 if (dd*dd > sqrCarToleranceHalf) co 1022 if (dd*dd > sqrCarToleranceHalf) continue; 1020 } 1023 } 1021 nx += fPlanes[i].a; 1024 nx += fPlanes[i].a; 1022 ny += fPlanes[i].b; 1025 ny += fPlanes[i].b; 1023 ++nsurf; 1026 ++nsurf; 1024 } 1027 } 1025 break; 1028 break; 1026 } 1029 } 1027 default: 1030 default: 1028 { 1031 { 1029 return G4TessellatedSolid::SurfaceNorma 1032 return G4TessellatedSolid::SurfaceNormal(p); 1030 } 1033 } 1031 } 1034 } 1032 1035 1033 // Return normal (right prism) 1036 // Return normal (right prism) 1034 // 1037 // 1035 if (nsurf == 1) 1038 if (nsurf == 1) 1036 { 1039 { 1037 return { nx,ny,nz }; << 1040 return G4ThreeVector(nx,ny,nz); 1038 } 1041 } 1039 else if (nsurf != 0) // edge or corner 1042 else if (nsurf != 0) // edge or corner 1040 { 1043 { 1041 return G4ThreeVector(nx,ny,nz).unit(); 1044 return G4ThreeVector(nx,ny,nz).unit(); 1042 } 1045 } 1043 else 1046 else 1044 { 1047 { 1045 // Point is not on the surface, compute a 1048 // Point is not on the surface, compute approximate normal 1046 // 1049 // 1047 #ifdef G4CSGDEBUG 1050 #ifdef G4CSGDEBUG 1048 std::ostringstream message; 1051 std::ostringstream message; 1049 G4long oldprc = message.precision(16); 1052 G4long oldprc = message.precision(16); 1050 message << "Point p is not on surface (!? 1053 message << "Point p is not on surface (!?) of solid: " 1051 << GetName() << G4endl; 1054 << GetName() << G4endl; 1052 message << "Position:\n"; 1055 message << "Position:\n"; 1053 message << " p.x() = " << p.x()/mm << " 1056 message << " p.x() = " << p.x()/mm << " mm\n"; 1054 message << " p.y() = " << p.y()/mm << " 1057 message << " p.y() = " << p.y()/mm << " mm\n"; 1055 message << " p.z() = " << p.z()/mm << " 1058 message << " p.z() = " << p.z()/mm << " mm"; 1056 G4cout.precision(oldprc) ; 1059 G4cout.precision(oldprc) ; 1057 G4Exception("G4TesselatedSolid::SurfaceNo 1060 G4Exception("G4TesselatedSolid::SurfaceNormal(p)", "GeomSolids1002", 1058 JustWarning, message ); 1061 JustWarning, message ); 1059 DumpInfo(); 1062 DumpInfo(); 1060 #endif 1063 #endif 1061 return ApproxSurfaceNormal(p); 1064 return ApproxSurfaceNormal(p); 1062 } 1065 } 1063 } 1066 } 1064 1067 1065 //___________________________________________ 1068 //_____________________________________________________________________________ 1066 1069 1067 G4ThreeVector G4ExtrudedSolid::ApproxSurfaceN 1070 G4ThreeVector G4ExtrudedSolid::ApproxSurfaceNormal(const G4ThreeVector& p) const 1068 { 1071 { 1069 // This method is valid only for right pris 1072 // This method is valid only for right prisms and 1070 // normally should not be called 1073 // normally should not be called 1071 1074 1072 if (fSolidType == 1 || fSolidType == 2) 1075 if (fSolidType == 1 || fSolidType == 2) 1073 { 1076 { 1074 // Find distances to z-planes 1077 // Find distances to z-planes 1075 // 1078 // 1076 G4double dz0 = fZSections[0].fZ - p.z(); 1079 G4double dz0 = fZSections[0].fZ - p.z(); 1077 G4double dz1 = p.z() - fZSections[1].fZ; 1080 G4double dz1 = p.z() - fZSections[1].fZ; 1078 G4double ddz0 = dz0*dz0; 1081 G4double ddz0 = dz0*dz0; 1079 G4double ddz1 = dz1*dz1; 1082 G4double ddz1 = dz1*dz1; 1080 1083 1081 // Find nearest lateral side and distance 1084 // Find nearest lateral side and distance to it 1082 // 1085 // 1083 std::size_t iside = 0; 1086 std::size_t iside = 0; 1084 G4double dd = DBL_MAX; 1087 G4double dd = DBL_MAX; 1085 for (std::size_t i=0, k=fNv-1; i<fNv; k=i 1088 for (std::size_t i=0, k=fNv-1; i<fNv; k=i++) 1086 { 1089 { 1087 G4double ix = p.x() - fPolygon[i].x(); 1090 G4double ix = p.x() - fPolygon[i].x(); 1088 G4double iy = p.y() - fPolygon[i].y(); 1091 G4double iy = p.y() - fPolygon[i].y(); 1089 G4double u = fPlanes[i].a*iy - fPlanes 1092 G4double u = fPlanes[i].a*iy - fPlanes[i].b*ix; 1090 if (u < 0) 1093 if (u < 0) 1091 { 1094 { 1092 G4double tmp = ix*ix + iy*iy; 1095 G4double tmp = ix*ix + iy*iy; 1093 if (tmp < dd) { dd = tmp; iside = i; 1096 if (tmp < dd) { dd = tmp; iside = i; } 1094 } 1097 } 1095 else if (u > fLengths[i]) 1098 else if (u > fLengths[i]) 1096 { 1099 { 1097 G4double kx = p.x() - fPolygon[k].x() 1100 G4double kx = p.x() - fPolygon[k].x(); 1098 G4double ky = p.y() - fPolygon[k].y() 1101 G4double ky = p.y() - fPolygon[k].y(); 1099 G4double tmp = kx*kx + ky*ky; 1102 G4double tmp = kx*kx + ky*ky; 1100 if (tmp < dd) { dd = tmp; iside = i; 1103 if (tmp < dd) { dd = tmp; iside = i; } 1101 } 1104 } 1102 else 1105 else 1103 { 1106 { 1104 G4double tmp = fPlanes[i].a*p.x() + f 1107 G4double tmp = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() + fPlanes[i].d; 1105 tmp *= tmp; 1108 tmp *= tmp; 1106 if (tmp < dd) { dd = tmp; iside = i; 1109 if (tmp < dd) { dd = tmp; iside = i; } 1107 } 1110 } 1108 } 1111 } 1109 1112 1110 // Find region 1113 // Find region 1111 // 1114 // 1112 // 3 | 1 | 3 1115 // 3 | 1 | 3 1113 // ----+-------+---- 1116 // ----+-------+---- 1114 // 2 | 0 | 2 1117 // 2 | 0 | 2 1115 // ----+-------+---- 1118 // ----+-------+---- 1116 // 3 | 1 | 3 1119 // 3 | 1 | 3 1117 // 1120 // 1118 G4int iregion = 0; 1121 G4int iregion = 0; 1119 if (std::max(dz0,dz1) > 0) iregion = 1; 1122 if (std::max(dz0,dz1) > 0) iregion = 1; 1120 1123 1121 G4bool in = PointInPolygon(p); 1124 G4bool in = PointInPolygon(p); 1122 if (!in) iregion += 2; 1125 if (!in) iregion += 2; 1123 1126 1124 // Return normal 1127 // Return normal 1125 // 1128 // 1126 switch (iregion) 1129 switch (iregion) 1127 { 1130 { 1128 case 0: 1131 case 0: 1129 { 1132 { 1130 if (ddz0 <= ddz1 && ddz0 <= dd) retur << 1133 if (ddz0 <= ddz1 && ddz0 <= dd) return G4ThreeVector(0, 0,-1); 1131 if (ddz1 <= ddz0 && ddz1 <= dd) retur << 1134 if (ddz1 <= ddz0 && ddz1 <= dd) return G4ThreeVector(0, 0, 1); 1132 return { fPlanes[iside].a, fPlanes[is << 1135 return G4ThreeVector(fPlanes[iside].a, fPlanes[iside].b, 0); 1133 } 1136 } 1134 case 1: 1137 case 1: 1135 { 1138 { 1136 return { 0, 0, (G4double)((dz0 > dz1) << 1139 return G4ThreeVector(0, 0, (dz0 > dz1) ? -1 : 1); 1137 } 1140 } 1138 case 2: 1141 case 2: 1139 { 1142 { 1140 return { fPlanes[iside].a, fPlanes[is << 1143 return G4ThreeVector(fPlanes[iside].a, fPlanes[iside].b, 0); 1141 } 1144 } 1142 case 3: 1145 case 3: 1143 { 1146 { 1144 G4double dzmax = std::max(dz0,dz1); 1147 G4double dzmax = std::max(dz0,dz1); 1145 if (dzmax*dzmax > dd) return { 0, 0, << 1148 if (dzmax*dzmax > dd) return G4ThreeVector(0,0,(dz0 > dz1) ? -1 : 1); 1146 return { fPlanes[iside].a, fPlanes[is << 1149 return G4ThreeVector(fPlanes[iside].a,fPlanes[iside].b, 0); 1147 } 1150 } 1148 } 1151 } 1149 } 1152 } 1150 return {0,0,0}; << 1153 return G4ThreeVector(0,0,0); 1151 } 1154 } 1152 1155 1153 //___________________________________________ 1156 //_____________________________________________________________________________ 1154 1157 1155 G4double G4ExtrudedSolid::DistanceToIn(const 1158 G4double G4ExtrudedSolid::DistanceToIn(const G4ThreeVector& p, 1156 const 1159 const G4ThreeVector& v) const 1157 { 1160 { 1158 G4double z0 = fZSections[0].fZ; 1161 G4double z0 = fZSections[0].fZ; 1159 G4double z1 = fZSections[fNz-1].fZ; 1162 G4double z1 = fZSections[fNz-1].fZ; 1160 if ((p.z() <= z0 + kCarToleranceHalf) && v. 1163 if ((p.z() <= z0 + kCarToleranceHalf) && v.z() <= 0) return kInfinity; 1161 if ((p.z() >= z1 - kCarToleranceHalf) && v. 1164 if ((p.z() >= z1 - kCarToleranceHalf) && v.z() >= 0) return kInfinity; 1162 1165 1163 switch (fSolidType) 1166 switch (fSolidType) 1164 { 1167 { 1165 case 1: // convex right prism 1168 case 1: // convex right prism 1166 { 1169 { 1167 // Intersection with Z planes 1170 // Intersection with Z planes 1168 // 1171 // 1169 G4double dz = (z1 - z0)*0.5; 1172 G4double dz = (z1 - z0)*0.5; 1170 G4double pz = p.z() - dz - z0; 1173 G4double pz = p.z() - dz - z0; 1171 1174 1172 G4double invz = (v.z() == 0) ? DBL_MAX 1175 G4double invz = (v.z() == 0) ? DBL_MAX : -1./v.z(); 1173 G4double ddz = (invz < 0) ? dz : -dz; 1176 G4double ddz = (invz < 0) ? dz : -dz; 1174 G4double tzmin = (pz + ddz)*invz; 1177 G4double tzmin = (pz + ddz)*invz; 1175 G4double tzmax = (pz - ddz)*invz; 1178 G4double tzmax = (pz - ddz)*invz; 1176 1179 1177 // Intersection with lateral planes 1180 // Intersection with lateral planes 1178 // 1181 // 1179 std::size_t np = fPlanes.size(); 1182 std::size_t np = fPlanes.size(); 1180 G4double txmin = tzmin, txmax = tzmax; 1183 G4double txmin = tzmin, txmax = tzmax; 1181 for (std::size_t i=0; i<np; ++i) 1184 for (std::size_t i=0; i<np; ++i) 1182 { 1185 { 1183 G4double cosa = fPlanes[i].a*v.x()+fP 1186 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y(); 1184 G4double dist = fPlanes[i].a*p.x()+fP 1187 G4double dist = fPlanes[i].a*p.x()+fPlanes[i].b*p.y()+fPlanes[i].d; 1185 if (dist >= -kCarToleranceHalf) 1188 if (dist >= -kCarToleranceHalf) 1186 { 1189 { 1187 if (cosa >= 0) { return kInfinity; 1190 if (cosa >= 0) { return kInfinity; } 1188 G4double tmp = -dist/cosa; 1191 G4double tmp = -dist/cosa; 1189 if (txmin < tmp) { txmin = tmp; } 1192 if (txmin < tmp) { txmin = tmp; } 1190 } 1193 } 1191 else if (cosa > 0) 1194 else if (cosa > 0) 1192 { 1195 { 1193 G4double tmp = -dist/cosa; 1196 G4double tmp = -dist/cosa; 1194 if (txmax > tmp) { txmax = tmp; } 1197 if (txmax > tmp) { txmax = tmp; } 1195 } 1198 } 1196 } 1199 } 1197 1200 1198 // Find distance 1201 // Find distance 1199 // 1202 // 1200 G4double tmin = txmin, tmax = txmax; 1203 G4double tmin = txmin, tmax = txmax; 1201 if (tmax <= tmin + kCarToleranceHalf) 1204 if (tmax <= tmin + kCarToleranceHalf) // touch or no hit 1202 { 1205 { 1203 return kInfinity; 1206 return kInfinity; 1204 } 1207 } 1205 return (tmin < kCarToleranceHalf) ? 0. 1208 return (tmin < kCarToleranceHalf) ? 0. : tmin; 1206 } 1209 } 1207 case 2: // non-convex right prism 1210 case 2: // non-convex right prism 1208 { 1211 { 1209 } 1212 } 1210 } 1213 } 1211 return G4TessellatedSolid::DistanceToIn(p,v 1214 return G4TessellatedSolid::DistanceToIn(p,v); 1212 } 1215 } 1213 1216 1214 //___________________________________________ 1217 //_____________________________________________________________________________ 1215 1218 1216 G4double G4ExtrudedSolid::DistanceToIn (const 1219 G4double G4ExtrudedSolid::DistanceToIn (const G4ThreeVector& p) const 1217 { 1220 { 1218 switch (fSolidType) 1221 switch (fSolidType) 1219 { 1222 { 1220 case 1: // convex right prism 1223 case 1: // convex right prism 1221 { 1224 { 1222 G4double dist = std::max(fZSections[0]. 1225 G4double dist = std::max(fZSections[0].fZ-p.z(),p.z()-fZSections[1].fZ); 1223 std::size_t np = fPlanes.size(); 1226 std::size_t np = fPlanes.size(); 1224 for (std::size_t i=0; i<np; ++i) 1227 for (std::size_t i=0; i<np; ++i) 1225 { 1228 { 1226 G4double dd = fPlanes[i].a*p.x() + fP 1229 G4double dd = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() + fPlanes[i].d; 1227 if (dd > dist) dist = dd; 1230 if (dd > dist) dist = dd; 1228 } 1231 } 1229 return (dist > 0) ? dist : 0.; 1232 return (dist > 0) ? dist : 0.; 1230 } 1233 } 1231 case 2: // non-convex right prism 1234 case 2: // non-convex right prism 1232 { 1235 { 1233 G4bool in = PointInPolygon(p); 1236 G4bool in = PointInPolygon(p); 1234 if (in) 1237 if (in) 1235 { 1238 { 1236 G4double distz= std::max(fZSections[0 1239 G4double distz= std::max(fZSections[0].fZ-p.z(),p.z()-fZSections[1].fZ); 1237 return (distz > 0) ? distz : 0; 1240 return (distz > 0) ? distz : 0; 1238 } 1241 } 1239 else 1242 else 1240 { 1243 { 1241 G4double distz= std::max(fZSections[0 1244 G4double distz= std::max(fZSections[0].fZ-p.z(),p.z()-fZSections[1].fZ); 1242 G4double dd = DistanceToPolygonSqr(p) 1245 G4double dd = DistanceToPolygonSqr(p); 1243 if (distz > 0) dd += distz*distz; 1246 if (distz > 0) dd += distz*distz; 1244 return std::sqrt(dd); 1247 return std::sqrt(dd); 1245 } 1248 } 1246 } 1249 } 1247 } 1250 } 1248 1251 1249 // General case: use tessellated solid 1252 // General case: use tessellated solid 1250 return G4TessellatedSolid::DistanceToIn(p); 1253 return G4TessellatedSolid::DistanceToIn(p); 1251 } 1254 } 1252 1255 1253 //___________________________________________ 1256 //_____________________________________________________________________________ 1254 1257 1255 G4double G4ExtrudedSolid::DistanceToOut (cons 1258 G4double G4ExtrudedSolid::DistanceToOut (const G4ThreeVector &p, 1256 cons 1259 const G4ThreeVector &v, 1257 cons 1260 const G4bool calcNorm, 1258 1261 G4bool* validNorm, 1259 1262 G4ThreeVector* n) const 1260 { 1263 { 1261 G4bool getnorm = calcNorm; 1264 G4bool getnorm = calcNorm; 1262 if (getnorm) *validNorm = true; 1265 if (getnorm) *validNorm = true; 1263 1266 1264 G4double z0 = fZSections[0].fZ; 1267 G4double z0 = fZSections[0].fZ; 1265 G4double z1 = fZSections[fNz-1].fZ; 1268 G4double z1 = fZSections[fNz-1].fZ; 1266 if ((p.z() <= z0 + kCarToleranceHalf) && v. 1269 if ((p.z() <= z0 + kCarToleranceHalf) && v.z() < 0) 1267 { 1270 { 1268 if (getnorm) n->set(0,0,-1); 1271 if (getnorm) n->set(0,0,-1); 1269 return 0; 1272 return 0; 1270 } 1273 } 1271 if ((p.z() >= z1 - kCarToleranceHalf) && v. 1274 if ((p.z() >= z1 - kCarToleranceHalf) && v.z() > 0) 1272 { 1275 { 1273 if (getnorm) n->set(0,0,1); 1276 if (getnorm) n->set(0,0,1); 1274 return 0; 1277 return 0; 1275 } 1278 } 1276 1279 1277 switch (fSolidType) 1280 switch (fSolidType) 1278 { 1281 { 1279 case 1: // convex right prism 1282 case 1: // convex right prism 1280 { 1283 { 1281 // Intersection with Z planes 1284 // Intersection with Z planes 1282 // 1285 // 1283 G4double dz = (z1 - z0)*0.5; 1286 G4double dz = (z1 - z0)*0.5; 1284 G4double pz = p.z() - 0.5 * (z0 + z1); 1287 G4double pz = p.z() - 0.5 * (z0 + z1); 1285 1288 1286 G4double vz = v.z(); 1289 G4double vz = v.z(); 1287 G4double tmax = (vz == 0) ? DBL_MAX : ( 1290 G4double tmax = (vz == 0) ? DBL_MAX : (std::copysign(dz,vz) - pz)/vz; 1288 G4int iside = (vz < 0) ? -4 : -2; // li 1291 G4int iside = (vz < 0) ? -4 : -2; // little trick: (-4+3)=-1, (-2+3)=+1 1289 1292 1290 // Intersection with lateral planes 1293 // Intersection with lateral planes 1291 // 1294 // 1292 std::size_t np = fPlanes.size(); 1295 std::size_t np = fPlanes.size(); 1293 for (std::size_t i=0; i<np; ++i) 1296 for (std::size_t i=0; i<np; ++i) 1294 { 1297 { 1295 G4double cosa = fPlanes[i].a*v.x()+fP 1298 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y(); 1296 if (cosa > 0) 1299 if (cosa > 0) 1297 { 1300 { 1298 G4double dist = fPlanes[i].a*p.x()+ 1301 G4double dist = fPlanes[i].a*p.x()+fPlanes[i].b*p.y()+fPlanes[i].d; 1299 if (dist >= -kCarToleranceHalf) 1302 if (dist >= -kCarToleranceHalf) 1300 { 1303 { 1301 if (getnorm) n->set(fPlanes[i].a, 1304 if (getnorm) n->set(fPlanes[i].a, fPlanes[i].b, fPlanes[i].c); 1302 return 0; 1305 return 0; 1303 } 1306 } 1304 G4double tmp = -dist/cosa; 1307 G4double tmp = -dist/cosa; 1305 if (tmax > tmp) { tmax = tmp; iside 1308 if (tmax > tmp) { tmax = tmp; iside = (G4int)i; } 1306 } 1309 } 1307 } 1310 } 1308 1311 1309 // Set normal, if required, and return 1312 // Set normal, if required, and return distance 1310 // 1313 // 1311 if (getnorm) 1314 if (getnorm) 1312 { 1315 { 1313 if (iside < 0) 1316 if (iside < 0) 1314 { n->set(0, 0, iside + 3); } // (-4 1317 { n->set(0, 0, iside + 3); } // (-4+3)=-1, (-2+3)=+1 1315 else 1318 else 1316 { n->set(fPlanes[iside].a, fPlanes[ 1319 { n->set(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c); } 1317 } 1320 } 1318 return tmax; 1321 return tmax; 1319 } 1322 } 1320 case 2: // non-convex right prism 1323 case 2: // non-convex right prism 1321 { 1324 { 1322 } 1325 } 1323 } 1326 } 1324 1327 1325 // Override the base class function to rede 1328 // Override the base class function to redefine validNorm 1326 // (the solid can be concave) 1329 // (the solid can be concave) 1327 1330 1328 G4double distOut = 1331 G4double distOut = 1329 G4TessellatedSolid::DistanceToOut(p, v, c 1332 G4TessellatedSolid::DistanceToOut(p, v, calcNorm, validNorm, n); 1330 if (validNorm != nullptr) { *validNorm = fI << 1333 if (validNorm) { *validNorm = fIsConvex; } 1331 1334 1332 return distOut; 1335 return distOut; 1333 } 1336 } 1334 1337 1335 //___________________________________________ 1338 //_____________________________________________________________________________ 1336 1339 1337 G4double G4ExtrudedSolid::DistanceToOut(const 1340 G4double G4ExtrudedSolid::DistanceToOut(const G4ThreeVector& p) const 1338 { 1341 { 1339 switch (fSolidType) 1342 switch (fSolidType) 1340 { 1343 { 1341 case 1: // convex right prism 1344 case 1: // convex right prism 1342 { 1345 { 1343 G4double dist = std::max(fZSections[0]. 1346 G4double dist = std::max(fZSections[0].fZ-p.z(),p.z()-fZSections[1].fZ); 1344 std::size_t np = fPlanes.size(); 1347 std::size_t np = fPlanes.size(); 1345 for (std::size_t i=0; i<np; ++i) 1348 for (std::size_t i=0; i<np; ++i) 1346 { 1349 { 1347 G4double dd = fPlanes[i].a*p.x() + fP 1350 G4double dd = fPlanes[i].a*p.x() + fPlanes[i].b*p.y() + fPlanes[i].d; 1348 if (dd > dist) dist = dd; 1351 if (dd > dist) dist = dd; 1349 } 1352 } 1350 return (dist < 0) ? -dist : 0.; 1353 return (dist < 0) ? -dist : 0.; 1351 } 1354 } 1352 case 2: // non-convex right prism 1355 case 2: // non-convex right prism 1353 { 1356 { 1354 G4double distz = std::max(fZSections[0] 1357 G4double distz = std::max(fZSections[0].fZ-p.z(),p.z()-fZSections[1].fZ); 1355 G4bool in = PointInPolygon(p); 1358 G4bool in = PointInPolygon(p); 1356 if (distz >= 0 || (!in)) return 0; // p 1359 if (distz >= 0 || (!in)) return 0; // point is outside 1357 return std::min(-distz,std::sqrt(Distan 1360 return std::min(-distz,std::sqrt(DistanceToPolygonSqr(p))); 1358 } 1361 } 1359 } 1362 } 1360 1363 1361 // General case: use tessellated solid 1364 // General case: use tessellated solid 1362 return G4TessellatedSolid::DistanceToOut(p) 1365 return G4TessellatedSolid::DistanceToOut(p); 1363 } 1366 } 1364 1367 1365 //___________________________________________ 1368 //_____________________________________________________________________________ 1366 // Get bounding box 1369 // Get bounding box 1367 1370 1368 void G4ExtrudedSolid::BoundingLimits(G4ThreeV 1371 void G4ExtrudedSolid::BoundingLimits(G4ThreeVector& pMin, 1369 G4ThreeV 1372 G4ThreeVector& pMax) const 1370 { 1373 { 1371 G4double xmin0 = kInfinity, xmax0 = -kInfin 1374 G4double xmin0 = kInfinity, xmax0 = -kInfinity; 1372 G4double ymin0 = kInfinity, ymax0 = -kInfin 1375 G4double ymin0 = kInfinity, ymax0 = -kInfinity; 1373 1376 1374 for (G4int i=0; i<GetNofVertices(); ++i) 1377 for (G4int i=0; i<GetNofVertices(); ++i) 1375 { 1378 { 1376 G4double x = fPolygon[i].x(); 1379 G4double x = fPolygon[i].x(); 1377 if (x < xmin0) xmin0 = x; 1380 if (x < xmin0) xmin0 = x; 1378 if (x > xmax0) xmax0 = x; 1381 if (x > xmax0) xmax0 = x; 1379 G4double y = fPolygon[i].y(); 1382 G4double y = fPolygon[i].y(); 1380 if (y < ymin0) ymin0 = y; 1383 if (y < ymin0) ymin0 = y; 1381 if (y > ymax0) ymax0 = y; 1384 if (y > ymax0) ymax0 = y; 1382 } 1385 } 1383 1386 1384 G4double xmin = kInfinity, xmax = -kInfinit 1387 G4double xmin = kInfinity, xmax = -kInfinity; 1385 G4double ymin = kInfinity, ymax = -kInfinit 1388 G4double ymin = kInfinity, ymax = -kInfinity; 1386 1389 1387 G4int nsect = GetNofZSections(); 1390 G4int nsect = GetNofZSections(); 1388 for (G4int i=0; i<nsect; ++i) 1391 for (G4int i=0; i<nsect; ++i) 1389 { 1392 { 1390 ZSection zsect = GetZSection(i); 1393 ZSection zsect = GetZSection(i); 1391 G4double dx = zsect.fOffset.x(); 1394 G4double dx = zsect.fOffset.x(); 1392 G4double dy = zsect.fOffset.y(); 1395 G4double dy = zsect.fOffset.y(); 1393 G4double scale = zsect.fScale; 1396 G4double scale = zsect.fScale; 1394 xmin = std::min(xmin,xmin0*scale+dx); 1397 xmin = std::min(xmin,xmin0*scale+dx); 1395 xmax = std::max(xmax,xmax0*scale+dx); 1398 xmax = std::max(xmax,xmax0*scale+dx); 1396 ymin = std::min(ymin,ymin0*scale+dy); 1399 ymin = std::min(ymin,ymin0*scale+dy); 1397 ymax = std::max(ymax,ymax0*scale+dy); 1400 ymax = std::max(ymax,ymax0*scale+dy); 1398 } 1401 } 1399 1402 1400 G4double zmin = GetZSection(0).fZ; 1403 G4double zmin = GetZSection(0).fZ; 1401 G4double zmax = GetZSection(nsect-1).fZ; 1404 G4double zmax = GetZSection(nsect-1).fZ; 1402 1405 1403 pMin.set(xmin,ymin,zmin); 1406 pMin.set(xmin,ymin,zmin); 1404 pMax.set(xmax,ymax,zmax); 1407 pMax.set(xmax,ymax,zmax); 1405 1408 1406 // Check correctness of the bounding box 1409 // Check correctness of the bounding box 1407 // 1410 // 1408 if (pMin.x() >= pMax.x() || pMin.y() >= pMa 1411 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 1409 { 1412 { 1410 std::ostringstream message; 1413 std::ostringstream message; 1411 message << "Bad bounding box (min >= max) 1414 message << "Bad bounding box (min >= max) for solid: " 1412 << GetName() << " !" 1415 << GetName() << " !" 1413 << "\npMin = " << pMin 1416 << "\npMin = " << pMin 1414 << "\npMax = " << pMax; 1417 << "\npMax = " << pMax; 1415 G4Exception("G4ExtrudedSolid::BoundingLim 1418 G4Exception("G4ExtrudedSolid::BoundingLimits()", 1416 "GeomMgt0001", JustWarning, m 1419 "GeomMgt0001", JustWarning, message); 1417 DumpInfo(); 1420 DumpInfo(); 1418 } 1421 } 1419 } 1422 } 1420 1423 1421 //___________________________________________ 1424 //_____________________________________________________________________________ 1422 // Calculate extent under transform and speci 1425 // Calculate extent under transform and specified limit 1423 1426 1424 G4bool 1427 G4bool 1425 G4ExtrudedSolid::CalculateExtent(const EAxis 1428 G4ExtrudedSolid::CalculateExtent(const EAxis pAxis, 1426 const G4Voxe 1429 const G4VoxelLimits& pVoxelLimit, 1427 const G4Affi 1430 const G4AffineTransform& pTransform, 1428 G4doub 1431 G4double& pMin, G4double& pMax) const 1429 { 1432 { 1430 G4ThreeVector bmin, bmax; 1433 G4ThreeVector bmin, bmax; 1431 G4bool exist; 1434 G4bool exist; 1432 1435 1433 // Check bounding box (bbox) 1436 // Check bounding box (bbox) 1434 // 1437 // 1435 BoundingLimits(bmin,bmax); 1438 BoundingLimits(bmin,bmax); 1436 G4BoundingEnvelope bbox(bmin,bmax); 1439 G4BoundingEnvelope bbox(bmin,bmax); 1437 #ifdef G4BBOX_EXTENT 1440 #ifdef G4BBOX_EXTENT 1438 return bbox.CalculateExtent(pAxis,pVoxelLim 1441 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 1439 #endif 1442 #endif 1440 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVo 1443 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 1441 { 1444 { 1442 return exist = pMin < pMax; << 1445 return exist = (pMin < pMax) ? true : false; 1443 } 1446 } 1444 1447 1445 // To find the extent, the base polygon is 1448 // To find the extent, the base polygon is subdivided in triangles. 1446 // The extent is calculated as cumulative e 1449 // The extent is calculated as cumulative extent of the parts 1447 // formed by extrusion of the triangles 1450 // formed by extrusion of the triangles 1448 // 1451 // 1449 G4TwoVectorList triangles; 1452 G4TwoVectorList triangles; 1450 G4double eminlim = pVoxelLimit.GetMinExtent 1453 G4double eminlim = pVoxelLimit.GetMinExtent(pAxis); 1451 G4double emaxlim = pVoxelLimit.GetMaxExtent 1454 G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis); 1452 1455 1453 // triangulate the base polygon 1456 // triangulate the base polygon 1454 if (!G4GeomTools::TriangulatePolygon(fPolyg 1457 if (!G4GeomTools::TriangulatePolygon(fPolygon,triangles)) 1455 { 1458 { 1456 std::ostringstream message; 1459 std::ostringstream message; 1457 message << "Triangulation of the base pol 1460 message << "Triangulation of the base polygon has failed for solid: " 1458 << GetName() << " !" 1461 << GetName() << " !" 1459 << "\nExtent has been calculated 1462 << "\nExtent has been calculated using boundary box"; 1460 G4Exception("G4ExtrudedSolid::CalculateEx 1463 G4Exception("G4ExtrudedSolid::CalculateExtent()", 1461 "GeomMgt1002",JustWarning,mes 1464 "GeomMgt1002",JustWarning,message); 1462 return bbox.CalculateExtent(pAxis,pVoxelL 1465 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 1463 } 1466 } 1464 1467 1465 // allocate vector lists 1468 // allocate vector lists 1466 G4int nsect = GetNofZSections(); 1469 G4int nsect = GetNofZSections(); 1467 std::vector<const G4ThreeVectorList *> poly 1470 std::vector<const G4ThreeVectorList *> polygons; 1468 polygons.resize(nsect); 1471 polygons.resize(nsect); 1469 for (G4int k=0; k<nsect; ++k) { polygons[k] 1472 for (G4int k=0; k<nsect; ++k) { polygons[k] = new G4ThreeVectorList(3); } 1470 1473 1471 // main loop along triangles 1474 // main loop along triangles 1472 pMin = kInfinity; 1475 pMin = kInfinity; 1473 pMax = -kInfinity; 1476 pMax = -kInfinity; 1474 G4int ntria = (G4int)triangles.size()/3; 1477 G4int ntria = (G4int)triangles.size()/3; 1475 for (G4int i=0; i<ntria; ++i) 1478 for (G4int i=0; i<ntria; ++i) 1476 { 1479 { 1477 G4int i3 = i*3; 1480 G4int i3 = i*3; 1478 for (G4int k=0; k<nsect; ++k) // extrude 1481 for (G4int k=0; k<nsect; ++k) // extrude triangle 1479 { 1482 { 1480 ZSection zsect = GetZSection(k); 1483 ZSection zsect = GetZSection(k); 1481 G4double z = zsect.fZ; 1484 G4double z = zsect.fZ; 1482 G4double dx = zsect.fOffset.x(); 1485 G4double dx = zsect.fOffset.x(); 1483 G4double dy = zsect.fOffset.y(); 1486 G4double dy = zsect.fOffset.y(); 1484 G4double scale = zsect.fScale; 1487 G4double scale = zsect.fScale; 1485 1488 1486 auto ptr = const_cast<G4ThreeVectorList << 1489 G4ThreeVectorList* ptr = const_cast<G4ThreeVectorList*>(polygons[k]); 1487 auto iter = ptr->begin(); << 1490 G4ThreeVectorList::iterator iter = ptr->begin(); 1488 G4double x0 = triangles[i3+0].x()*scale 1491 G4double x0 = triangles[i3+0].x()*scale+dx; 1489 G4double y0 = triangles[i3+0].y()*scale 1492 G4double y0 = triangles[i3+0].y()*scale+dy; 1490 iter->set(x0,y0,z); 1493 iter->set(x0,y0,z); 1491 iter++; 1494 iter++; 1492 G4double x1 = triangles[i3+1].x()*scale 1495 G4double x1 = triangles[i3+1].x()*scale+dx; 1493 G4double y1 = triangles[i3+1].y()*scale 1496 G4double y1 = triangles[i3+1].y()*scale+dy; 1494 iter->set(x1,y1,z); 1497 iter->set(x1,y1,z); 1495 iter++; 1498 iter++; 1496 G4double x2 = triangles[i3+2].x()*scale 1499 G4double x2 = triangles[i3+2].x()*scale+dx; 1497 G4double y2 = triangles[i3+2].y()*scale 1500 G4double y2 = triangles[i3+2].y()*scale+dy; 1498 iter->set(x2,y2,z); 1501 iter->set(x2,y2,z); 1499 } 1502 } 1500 1503 1501 // set sub-envelope and adjust extent 1504 // set sub-envelope and adjust extent 1502 G4double emin,emax; 1505 G4double emin,emax; 1503 G4BoundingEnvelope benv(polygons); 1506 G4BoundingEnvelope benv(polygons); 1504 if (!benv.CalculateExtent(pAxis,pVoxelLim 1507 if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue; 1505 if (emin < pMin) pMin = emin; 1508 if (emin < pMin) pMin = emin; 1506 if (emax > pMax) pMax = emax; 1509 if (emax > pMax) pMax = emax; 1507 if (eminlim > pMin && emaxlim < pMax) bre 1510 if (eminlim > pMin && emaxlim < pMax) break; // max possible extent 1508 } 1511 } 1509 // free memory 1512 // free memory 1510 for (G4int k=0; k<nsect; ++k) { delete poly << 1513 for (G4int k=0; k<nsect; ++k) { delete polygons[k]; polygons[k]=0;} 1511 return (pMin < pMax); 1514 return (pMin < pMax); 1512 } 1515 } 1513 1516 1514 //___________________________________________ 1517 //_____________________________________________________________________________ 1515 1518 1516 std::ostream& G4ExtrudedSolid::StreamInfo(std 1519 std::ostream& G4ExtrudedSolid::StreamInfo(std::ostream &os) const 1517 { 1520 { 1518 G4long oldprc = os.precision(16); 1521 G4long oldprc = os.precision(16); 1519 os << "------------------------------------ 1522 os << "-----------------------------------------------------------\n" 1520 << " *** Dump for solid - " << GetNam 1523 << " *** Dump for solid - " << GetName() << " ***\n" 1521 << " ================================ 1524 << " ===================================================\n" 1522 << " Solid geometry type: " << fGeometry 1525 << " Solid geometry type: " << fGeometryType << G4endl; 1523 1526 1524 if ( fIsConvex) 1527 if ( fIsConvex) 1525 { os << " Convex polygon; list of vertice 1528 { os << " Convex polygon; list of vertices:" << G4endl; } 1526 else 1529 else 1527 { os << " Concave polygon; list of vertic 1530 { os << " Concave polygon; list of vertices:" << G4endl; } 1528 1531 1529 for ( std::size_t i=0; i<fNv; ++i ) 1532 for ( std::size_t i=0; i<fNv; ++i ) 1530 { 1533 { 1531 os << std::setw(5) << "#" << i 1534 os << std::setw(5) << "#" << i 1532 << " vx = " << fPolygon[i].x()/mm << 1535 << " vx = " << fPolygon[i].x()/mm << " mm" 1533 << " vy = " << fPolygon[i].y()/mm << 1536 << " vy = " << fPolygon[i].y()/mm << " mm" << G4endl; 1534 } 1537 } 1535 1538 1536 os << " Sections:" << G4endl; 1539 os << " Sections:" << G4endl; 1537 for ( std::size_t iz=0; iz<fNz; ++iz ) 1540 for ( std::size_t iz=0; iz<fNz; ++iz ) 1538 { 1541 { 1539 os << " z = " << fZSections[iz].fZ/mm 1542 os << " z = " << fZSections[iz].fZ/mm << " mm " 1540 << " x0= " << fZSections[iz].fOffs 1543 << " x0= " << fZSections[iz].fOffset.x()/mm << " mm " 1541 << " y0= " << fZSections[iz].fOffs 1544 << " y0= " << fZSections[iz].fOffset.y()/mm << " mm " 1542 << " scale= " << fZSections[iz].fScal 1545 << " scale= " << fZSections[iz].fScale << G4endl; 1543 } 1546 } 1544 1547 1545 /* 1548 /* 1546 // Triangles (for debugging) 1549 // Triangles (for debugging) 1547 os << G4endl; 1550 os << G4endl; 1548 os << " Triangles:" << G4endl; 1551 os << " Triangles:" << G4endl; 1549 os << " Triangle # vertex1 vertex2 ve 1552 os << " Triangle # vertex1 vertex2 vertex3" << G4endl; 1550 1553 1551 G4int counter = 0; 1554 G4int counter = 0; 1552 std::vector< std::vector<G4int> >::const_it 1555 std::vector< std::vector<G4int> >::const_iterator it; 1553 for ( it = fTriangles.begin(); it != fTrian 1556 for ( it = fTriangles.begin(); it != fTriangles.end(); it++ ) { 1554 std::vector<G4int> triangle = *it; 1557 std::vector<G4int> triangle = *it; 1555 os << std::setw(10) << counter++ 1558 os << std::setw(10) << counter++ 1556 << std::setw(10) << triangle[0] << st 1559 << std::setw(10) << triangle[0] << std::setw(10) << triangle[1] 1557 << std::setw(10) << triangle[2] 1560 << std::setw(10) << triangle[2] 1558 << G4endl; 1561 << G4endl; 1559 } 1562 } 1560 */ 1563 */ 1561 os.precision(oldprc); 1564 os.precision(oldprc); 1562 1565 1563 return os; 1566 return os; 1564 } 1567 } 1565 1568 1566 #endif 1569 #endif 1567 1570