Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Torus.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Torus.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Torus.cc (Version 9.5.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4Torus implementation                      << 
 27 //                                                 26 //
 28 // 30.10.96 V.Grichine: first implementation w <<  27 // $Id: G4Torus.cc,v 1.71 2010-10-19 15:42:10 gcosmo Exp $
 29 // 26.05.00 V.Grichine: added new fuctions dev <<  28 // GEANT4 tag $Name: not supported by cvs2svn $
 30 // 31.08.00 E.Medernach: numerical computation <<  29 //
 31 // 11.01.01 E.Medernach: Use G4PolynomialSolve <<  30 // 
 32 // 03.05.05 V.Grichine: SurfaceNormal(p) accor <<  31 // class G4Torus
                                                   >>  32 //
                                                   >>  33 // Implementation
                                                   >>  34 //
                                                   >>  35 // 02.10.07 T.Nikitina: Bug fixed in SolveNumericJT(), b.969:segmentation fault.
                                                   >>  36 //                      rootsrefined is used only if the number of refined roots
                                                   >>  37 //                      is the same as for primary roots. 
                                                   >>  38 // 02.10.07 T.Nikitina: Bug fixed in CalculateExtent() for case of non-rotated
                                                   >>  39 //                      full-phi torus:protect against negative value for sqrt,
                                                   >>  40 //                      correct  formula for delta.  
                                                   >>  41 // 20.11.05 V.Grichine: Bug fixed in Inside(p) for phi sections, b.810 
 33 // 25.08.05 O.Link: new methods for DistanceTo     42 // 25.08.05 O.Link: new methods for DistanceToIn/Out using JTPolynomialSolver
 34 // 28.10.16 E.Tcherniaev: new CalculateExtent( <<  43 // 07.06.05 V.Grichine: SurfaceNormal(p) for rho=0, Constructor as G4Cons 
 35 // 16.12.16 H.Burkhardt: use radius difference <<  44 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal
 36 // ------------------------------------------- <<  45 // 18.03.04 V.Grichine: bug fixed in DistanceToIn(p)
                                                   >>  46 // 11.01.01 E.Medernach: Use G4PolynomialSolver to find roots
                                                   >>  47 // 03.10.00 E.Medernach: SafeNewton added
                                                   >>  48 // 31.08.00 E.Medernach: numerical computation of roots wuth bounding
                                                   >>  49 //                       volume technique
                                                   >>  50 // 26.05.00 V.Grichine: new fuctions developed by O.Cremonesi were added
                                                   >>  51 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...)
                                                   >>  52 // 19.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...)
                                                   >>  53 // 09.10.98 V.Grichine: modifications in Distance ToOut(p,v,...)
                                                   >>  54 // 30.10.96 V.Grichine: first implementation with G4Tubs elements in Fs
                                                   >>  55 //
 37                                                    56 
 38 #include "G4Torus.hh"                              57 #include "G4Torus.hh"
 39                                                    58 
 40 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4 << 
 41                                                << 
 42 #include "G4GeomTools.hh"                      << 
 43 #include "G4VoxelLimits.hh"                        59 #include "G4VoxelLimits.hh"
 44 #include "G4AffineTransform.hh"                    60 #include "G4AffineTransform.hh"
 45 #include "G4BoundingEnvelope.hh"               << 
 46 #include "G4GeometryTolerance.hh"                  61 #include "G4GeometryTolerance.hh"
 47 #include "G4JTPolynomialSolver.hh"                 62 #include "G4JTPolynomialSolver.hh"
 48                                                    63 
 49 #include "G4VPVParameterisation.hh"                64 #include "G4VPVParameterisation.hh"
 50                                                    65 
 51 #include "meshdefs.hh"                             66 #include "meshdefs.hh"
 52                                                    67 
 53 #include "Randomize.hh"                            68 #include "Randomize.hh"
 54                                                    69 
 55 #include "G4VGraphicsScene.hh"                     70 #include "G4VGraphicsScene.hh"
 56 #include "G4Polyhedron.hh"                         71 #include "G4Polyhedron.hh"
                                                   >>  72 #include "G4NURBS.hh"
                                                   >>  73 #include "G4NURBStube.hh"
                                                   >>  74 #include "G4NURBScylinder.hh"
                                                   >>  75 #include "G4NURBStubesector.hh"
 57                                                    76 
 58 using namespace CLHEP;                             77 using namespace CLHEP;
 59                                                    78 
 60 //////////////////////////////////////////////     79 ///////////////////////////////////////////////////////////////
 61 //                                                 80 //
 62 // Constructor - check parameters, convert ang     81 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 63 //             - note if pdphi>2PI then reset      82 //             - note if pdphi>2PI then reset to 2PI
 64                                                    83 
 65 G4Torus::G4Torus( const G4String& pName,       <<  84 G4Torus::G4Torus( const G4String &pName,
 66                         G4double pRmin,            85                         G4double pRmin,
 67                         G4double pRmax,            86                         G4double pRmax,
 68                         G4double pRtor,            87                         G4double pRtor,
 69                         G4double pSPhi,            88                         G4double pSPhi,
 70                         G4double pDPhi )       <<  89                         G4double pDPhi)
 71   : G4CSGSolid(pName)                              90   : G4CSGSolid(pName)
 72 {                                                  91 {
 73   SetAllParameters(pRmin, pRmax, pRtor, pSPhi,     92   SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi);
 74 }                                                  93 }
 75                                                    94 
 76 //////////////////////////////////////////////     95 ////////////////////////////////////////////////////////////////////////////
 77 //                                                 96 //
 78 //                                                 97 //
 79                                                    98 
 80 void                                               99 void
 81 G4Torus::SetAllParameters( G4double pRmin,        100 G4Torus::SetAllParameters( G4double pRmin,
 82                            G4double pRmax,        101                            G4double pRmax,
 83                            G4double pRtor,        102                            G4double pRtor,
 84                            G4double pSPhi,        103                            G4double pSPhi,
 85                            G4double pDPhi )       104                            G4double pDPhi )
 86 {                                                 105 {
 87   const G4double fEpsilon = 4.e-11;  // relati    106   const G4double fEpsilon = 4.e-11;  // relative tolerance of radii
 88                                                   107 
 89   fCubicVolume = 0.;                              108   fCubicVolume = 0.;
 90   fSurfaceArea = 0.;                              109   fSurfaceArea = 0.;
 91   fRebuildPolyhedron = true;                   << 110   fpPolyhedron = 0;
 92                                                   111 
 93   kRadTolerance = G4GeometryTolerance::GetInst    112   kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance();
 94   kAngTolerance = G4GeometryTolerance::GetInst    113   kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance();
 95                                                << 114   
 96   halfCarTolerance = 0.5*kCarTolerance;        << 
 97   halfAngTolerance = 0.5*kAngTolerance;        << 
 98                                                << 
 99   if ( pRtor >= pRmax+1.e3*kCarTolerance )  //    115   if ( pRtor >= pRmax+1.e3*kCarTolerance )  // Check swept radius, as in G4Cons
100   {                                               116   {
101     fRtor = pRtor ;                               117     fRtor = pRtor ;
102   }                                               118   }
103   else                                            119   else
104   {                                               120   {
105     std::ostringstream message;                   121     std::ostringstream message;
106     message << "Invalid swept radius for Solid    122     message << "Invalid swept radius for Solid: " << GetName() << G4endl
107             << "        pRtor = " << pRtor <<     123             << "        pRtor = " << pRtor << ", pRmax = " << pRmax;
108     G4Exception("G4Torus::SetAllParameters()",    124     G4Exception("G4Torus::SetAllParameters()",
109                 "GeomSolids0002", FatalExcepti    125                 "GeomSolids0002", FatalException, message);
110   }                                               126   }
111                                                   127 
112   // Check radii, as in G4Cons                    128   // Check radii, as in G4Cons
113   //                                              129   //
114   if ( pRmin < pRmax - 1.e2*kCarTolerance && p    130   if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 )
115   {                                               131   {
116     if (pRmin >= 1.e2*kCarTolerance) { fRmin =    132     if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; }
117     else                             { fRmin =    133     else                             { fRmin = 0.0   ; }
118     fRmax = pRmax ;                               134     fRmax = pRmax ;
119   }                                               135   }
120   else                                            136   else
121   {                                               137   {
122     std::ostringstream message;                   138     std::ostringstream message;
123     message << "Invalid values of radii for So    139     message << "Invalid values of radii for Solid: " << GetName() << G4endl
124             << "        pRmin = " << pRmin <<     140             << "        pRmin = " << pRmin << ", pRmax = " << pRmax;
125     G4Exception("G4Torus::SetAllParameters()",    141     G4Exception("G4Torus::SetAllParameters()",
126                 "GeomSolids0002", FatalExcepti    142                 "GeomSolids0002", FatalException, message);
127   }                                               143   }
128                                                   144 
129   // Relative tolerances                          145   // Relative tolerances
130   //                                              146   //
131   fRminTolerance = (fRmin) != 0.0              << 147   fRminTolerance = (fRmin)
132                  ? 0.5*std::max( kRadTolerance    148                  ? 0.5*std::max( kRadTolerance, fEpsilon*(fRtor-fRmin )) : 0;
133   fRmaxTolerance = 0.5*std::max( kRadTolerance    149   fRmaxTolerance = 0.5*std::max( kRadTolerance, fEpsilon*(fRtor+fRmax) );
134                                                   150 
135   // Check angles                                 151   // Check angles
136   //                                              152   //
137   if ( pDPhi >= twopi )  { fDPhi = twopi ; }      153   if ( pDPhi >= twopi )  { fDPhi = twopi ; }
138   else                                            154   else
139   {                                               155   {
140     if (pDPhi > 0)       { fDPhi = pDPhi ; }      156     if (pDPhi > 0)       { fDPhi = pDPhi ; }
141     else                                          157     else
142     {                                             158     {
143       std::ostringstream message;                 159       std::ostringstream message;
144       message << "Invalid Z delta-Phi for Soli    160       message << "Invalid Z delta-Phi for Solid: " << GetName() << G4endl
145               << "        pDPhi = " << pDPhi;     161               << "        pDPhi = " << pDPhi;
146       G4Exception("G4Torus::SetAllParameters()    162       G4Exception("G4Torus::SetAllParameters()",
147                   "GeomSolids0002", FatalExcep    163                   "GeomSolids0002", FatalException, message);
148     }                                             164     }
149   }                                               165   }
150                                                   166   
151   // Ensure psphi in 0-2PI or -2PI-0 range if     167   // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0
152   //                                              168   //
153   fSPhi = pSPhi;                                  169   fSPhi = pSPhi;
154                                                   170 
155   if (fSPhi < 0)  { fSPhi = twopi-std::fmod(st    171   if (fSPhi < 0)  { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; }
156   else            { fSPhi = std::fmod(fSPhi,tw    172   else            { fSPhi = std::fmod(fSPhi,twopi) ; }
157                                                   173 
158   if (fSPhi+fDPhi > twopi)  { fSPhi-=twopi ; }    174   if (fSPhi+fDPhi > twopi)  { fSPhi-=twopi ; }
159 }                                                 175 }
160                                                   176 
161 //////////////////////////////////////////////    177 ///////////////////////////////////////////////////////////////////////
162 //                                                178 //
163 // Fake default constructor - sets only member    179 // Fake default constructor - sets only member data and allocates memory
164 //                            for usage restri    180 //                            for usage restricted to object persistency.
165 //                                                181 //
166 G4Torus::G4Torus( __void__& a )                   182 G4Torus::G4Torus( __void__& a )
167   : G4CSGSolid(a)                              << 183   : G4CSGSolid(a), fRmin(0.), fRmax(0.), fRtor(0.), fSPhi(0.),
                                                   >> 184     fDPhi(0.), fRminTolerance(0.), fRmaxTolerance(0. ),
                                                   >> 185     kRadTolerance(0.), kAngTolerance(0.)
168 {                                                 186 {
169 }                                                 187 }
170                                                   188 
171 //////////////////////////////////////////////    189 //////////////////////////////////////////////////////////////////////
172 //                                                190 //
173 // Destructor                                     191 // Destructor
174                                                   192 
175 G4Torus::~G4Torus() = default;                 << 193 G4Torus::~G4Torus()
                                                   >> 194 {}
176                                                   195 
177 //////////////////////////////////////////////    196 //////////////////////////////////////////////////////////////////////////
178 //                                                197 //
179 // Copy constructor                               198 // Copy constructor
180                                                   199 
181 G4Torus::G4Torus(const G4Torus&) = default;    << 200 G4Torus::G4Torus(const G4Torus& rhs)
                                                   >> 201   : G4CSGSolid(rhs), fRmin(rhs.fRmin),fRmax(rhs.fRmax),
                                                   >> 202     fRtor(rhs.fRtor),fSPhi(rhs.fSPhi),fDPhi(rhs.fDPhi),
                                                   >> 203     fRminTolerance(rhs.fRminTolerance), fRmaxTolerance(rhs.fRmaxTolerance),
                                                   >> 204     kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance)
                                                   >> 205 {
                                                   >> 206 }
182                                                   207 
183 //////////////////////////////////////////////    208 //////////////////////////////////////////////////////////////////////////
184 //                                                209 //
185 // Assignment operator                            210 // Assignment operator
186                                                   211 
187 G4Torus& G4Torus::operator = (const G4Torus& r    212 G4Torus& G4Torus::operator = (const G4Torus& rhs) 
188 {                                                 213 {
189    // Check assignment to self                    214    // Check assignment to self
190    //                                             215    //
191    if (this == &rhs)  { return *this; }           216    if (this == &rhs)  { return *this; }
192                                                   217 
193    // Copy base class data                        218    // Copy base class data
194    //                                             219    //
195    G4CSGSolid::operator=(rhs);                    220    G4CSGSolid::operator=(rhs);
196                                                   221 
197    // Copy data                                   222    // Copy data
198    //                                             223    //
199    fRmin = rhs.fRmin; fRmax = rhs.fRmax;          224    fRmin = rhs.fRmin; fRmax = rhs.fRmax;
200    fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi    225    fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi;
201    fRminTolerance = rhs.fRminTolerance; fRmaxT    226    fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance;
202    kRadTolerance = rhs.kRadTolerance; kAngTole    227    kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance;
203    halfCarTolerance = rhs.halfCarTolerance;    << 
204    halfAngTolerance = rhs.halfAngTolerance;    << 
205                                                   228 
206    return *this;                                  229    return *this;
207 }                                                 230 }
208                                                   231 
209 //////////////////////////////////////////////    232 //////////////////////////////////////////////////////////////////////
210 //                                                233 //
211 // Dispatch to parameterisation for replicatio    234 // Dispatch to parameterisation for replication mechanism dimension
212 // computation & modification.                    235 // computation & modification.
213                                                   236 
214 void G4Torus::ComputeDimensions(       G4VPVPa    237 void G4Torus::ComputeDimensions(       G4VPVParameterisation* p,
215                                  const G4int n    238                                  const G4int n,
216                                  const G4VPhys    239                                  const G4VPhysicalVolume* pRep )
217 {                                                 240 {
218   p->ComputeDimensions(*this,n,pRep);             241   p->ComputeDimensions(*this,n,pRep);
219 }                                                 242 }
220                                                   243 
221                                                   244 
222                                                   245 
223 //////////////////////////////////////////////    246 ////////////////////////////////////////////////////////////////////////////////
224 //                                                247 //
225 // Calculate the real roots to torus surface.     248 // Calculate the real roots to torus surface. 
226 // Returns negative solutions as well.            249 // Returns negative solutions as well.
227                                                   250 
228 void G4Torus::TorusRootsJT( const G4ThreeVecto    251 void G4Torus::TorusRootsJT( const G4ThreeVector& p,
229                             const G4ThreeVecto    252                             const G4ThreeVector& v,
230                                   G4double r,     253                                   G4double r,
231                                   std::vector<    254                                   std::vector<G4double>& roots ) const
232 {                                                 255 {
233                                                   256 
234   G4int i, num ;                                  257   G4int i, num ;
235   G4double c[5], srd[4], si[4] ;               << 258   G4double c[5], sr[4], si[4] ;
236                                                   259 
237   G4double Rtor2 = fRtor*fRtor, r2 = r*r  ;       260   G4double Rtor2 = fRtor*fRtor, r2 = r*r  ;
238                                                   261 
239   G4double pDotV = p.x()*v.x() + p.y()*v.y() +    262   G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
240   G4double pRad2 = p.x()*p.x() + p.y()*p.y() +    263   G4double pRad2 = p.x()*p.x() + p.y()*p.y() + p.z()*p.z() ;
241                                                   264 
242   G4double d=pRad2 - Rtor2;                    << 
243   c[0] = 1.0 ;                                    265   c[0] = 1.0 ;
244   c[1] = 4*pDotV ;                                266   c[1] = 4*pDotV ;
245   c[2] = 2*( (d + 2*pDotV*pDotV  - r2) + 2*Rto << 267   c[2] = 2*(pRad2 + 2*pDotV*pDotV - Rtor2 - r2 + 2*Rtor2*v.z()*v.z()) ;
246   c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z << 268   c[3] = 4*(pDotV*(pRad2 - Rtor2 - r2) + 2*Rtor2*p.z()*v.z()) ;
247   c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r << 269   c[4] = pRad2*pRad2 - 2*pRad2*(Rtor2+r2) 
248                                                << 270        + 4*Rtor2*p.z()*p.z() + (Rtor2-r2)*(Rtor2-r2) ;
                                                   >> 271   
249   G4JTPolynomialSolver  torusEq;                  272   G4JTPolynomialSolver  torusEq;
250                                                   273 
251   num = torusEq.FindRoots( c, 4, srd, si );    << 274   num = torusEq.FindRoots( c, 4, sr, si );
252                                                   275   
253   for ( i = 0; i < num; ++i )                  << 276   for ( i = 0; i < num; i++ ) 
254   {                                               277   {
255     if( si[i] == 0. )  { roots.push_back(srd[i << 278     if( si[i] == 0. )  { roots.push_back(sr[i]) ; }  // store real roots
256   }                                               279   }  
257                                                   280 
258   std::sort(roots.begin() , roots.end() ) ;  /    281   std::sort(roots.begin() , roots.end() ) ;  // sorting  with <
259 }                                                 282 }
260                                                   283 
261 //////////////////////////////////////////////    284 //////////////////////////////////////////////////////////////////////////////
262 //                                                285 //
263 // Interface for DistanceToIn and DistanceToOu    286 // Interface for DistanceToIn and DistanceToOut.
264 // Calls TorusRootsJT and returns the smalles     287 // Calls TorusRootsJT and returns the smalles possible distance to 
265 // the surface.                                   288 // the surface.
266 // Attention: Difference in DistanceToIn/Out f    289 // Attention: Difference in DistanceToIn/Out for points p on the surface.
267                                                   290 
268 G4double G4Torus::SolveNumericJT( const G4Thre    291 G4double G4Torus::SolveNumericJT( const G4ThreeVector& p,
269                                   const G4Thre    292                                   const G4ThreeVector& v,
270                                         G4doub    293                                         G4double r,
271                                         G4bool    294                                         G4bool IsDistanceToIn ) const
272 {                                                 295 {
273   G4double bigdist = 10*mm ;                      296   G4double bigdist = 10*mm ;
274   G4double tmin = kInfinity ;                     297   G4double tmin = kInfinity ;
275   G4double t, scal ;                              298   G4double t, scal ;
                                                   >> 299   static const G4double halfCarTolerance = 0.5*kCarTolerance;
                                                   >> 300   static const G4double halfAngTolerance = 0.5*kAngTolerance;
276                                                   301 
277   // calculate the distances to the intersecti    302   // calculate the distances to the intersections with the Torus
278   // from a given point p and direction v.        303   // from a given point p and direction v.
279   //                                              304   //
280   std::vector<G4double> roots ;                   305   std::vector<G4double> roots ;
281   std::vector<G4double> rootsrefined ;            306   std::vector<G4double> rootsrefined ;
282   TorusRootsJT(p,v,r,roots) ;                     307   TorusRootsJT(p,v,r,roots) ;
283                                                   308 
284   G4ThreeVector ptmp ;                            309   G4ThreeVector ptmp ;
285                                                   310 
286   // determine the smallest non-negative solut    311   // determine the smallest non-negative solution
287   //                                              312   //
288   for ( std::size_t k = 0 ; k<roots.size() ; + << 313   for ( size_t k = 0 ; k<roots.size() ; k++ )
289   {                                               314   {
290     t = roots[k] ;                                315     t = roots[k] ;
291                                                   316 
292     if ( t < -halfCarTolerance )  { continue ;    317     if ( t < -halfCarTolerance )  { continue ; }  // skip negative roots
293                                                   318 
294     if ( t > bigdist && t<kInfinity )    // pr    319     if ( t > bigdist && t<kInfinity )    // problem with big distances
295     {                                             320     {
296       ptmp = p + t*v ;                            321       ptmp = p + t*v ;
297       TorusRootsJT(ptmp,v,r,rootsrefined) ;       322       TorusRootsJT(ptmp,v,r,rootsrefined) ;
298       if ( rootsrefined.size()==roots.size() )    323       if ( rootsrefined.size()==roots.size() )
299       {                                           324       {
300         t = t + rootsrefined[k] ;                 325         t = t + rootsrefined[k] ;
301       }                                           326       }
302     }                                             327     }
303                                                   328 
304     ptmp = p + t*v ;   // calculate the positi    329     ptmp = p + t*v ;   // calculate the position of the proposed intersection
305                                                   330 
306     G4double theta = std::atan2(ptmp.y(),ptmp.    331     G4double theta = std::atan2(ptmp.y(),ptmp.x());
307                                                   332     
308     if ( fSPhi >= 0 )                             333     if ( fSPhi >= 0 )
309     {                                             334     {
310       if ( theta < - halfAngTolerance )  { the    335       if ( theta < - halfAngTolerance )  { theta += twopi; }
311       if ( (std::fabs(theta) < halfAngToleranc    336       if ( (std::fabs(theta) < halfAngTolerance)
312         && (std::fabs(fSPhi + fDPhi - twopi) <    337         && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
313       {                                           338       { 
314         theta += twopi ; // 0 <= theta < 2pi      339         theta += twopi ; // 0 <= theta < 2pi
315       }                                           340       }
316     }                                             341     }
317     if ((fSPhi <= -pi )&&(theta>halfAngToleran    342     if ((fSPhi <= -pi )&&(theta>halfAngTolerance)) { theta = theta-twopi; }
318                                                   343        
319     // We have to verify if this root is insid    344     // We have to verify if this root is inside the region between
320     // fSPhi and fSPhi + fDPhi                    345     // fSPhi and fSPhi + fDPhi
321     //                                            346     //
322     if ( (theta - fSPhi >= - halfAngTolerance)    347     if ( (theta - fSPhi >= - halfAngTolerance)
323       && (theta - (fSPhi + fDPhi) <=  halfAngT    348       && (theta - (fSPhi + fDPhi) <=  halfAngTolerance) )
324     {                                             349     {
325       // check if P is on the surface, and cal    350       // check if P is on the surface, and called from DistanceToIn
326       // DistanceToIn has to return 0.0 if par    351       // DistanceToIn has to return 0.0 if particle is going inside the solid
327                                                   352 
328       if ( IsDistanceToIn )                    << 353       if ( IsDistanceToIn == true )
329       {                                           354       {
330         if (std::fabs(t) < halfCarTolerance )     355         if (std::fabs(t) < halfCarTolerance )
331         {                                         356         {
332           // compute scalar product at positio    357           // compute scalar product at position p : v.n
333           // ( n taken from SurfaceNormal, not    358           // ( n taken from SurfaceNormal, not normalized )
334                                                   359 
335           scal = v* G4ThreeVector( p.x()*(1-fR << 360           scal = v* G4ThreeVector( p.x()*(1-fRtor/std::sqrt(p.x()*p.x()
336                                    p.y()*(1-fR << 361                                           + p.y()*p.y())),
                                                   >> 362                                    p.y()*(1-fRtor/std::sqrt(p.x()*p.x()
                                                   >> 363                                           + p.y()*p.y())),
337                                    p.z() );       364                                    p.z() );
338                                                   365 
339           // change sign in case of inner radi    366           // change sign in case of inner radius
340           //                                      367           //
341           if ( r == GetRmin() )  { scal = -sca    368           if ( r == GetRmin() )  { scal = -scal ; }
342           if ( scal < 0 )  { return 0.0  ; }      369           if ( scal < 0 )  { return 0.0  ; }
343         }                                         370         }
344       }                                           371       }
345                                                   372 
346       // check if P is on the surface, and cal    373       // check if P is on the surface, and called from DistanceToOut
347       // DistanceToIn has to return 0.0 if par    374       // DistanceToIn has to return 0.0 if particle is leaving the solid
348                                                   375 
349       if ( !IsDistanceToIn )                   << 376       if ( IsDistanceToIn == false )
350       {                                           377       {
351         if (std::fabs(t) < halfCarTolerance )     378         if (std::fabs(t) < halfCarTolerance )
352         {                                         379         {
353           // compute scalar product at positio    380           // compute scalar product at position p : v.n   
354           //                                      381           //
355           scal = v* G4ThreeVector( p.x()*(1-fR << 382           scal = v* G4ThreeVector( p.x()*(1-fRtor/std::sqrt(p.x()*p.x()
356                                    p.y()*(1-fR << 383                                           + p.y()*p.y())),
                                                   >> 384                                    p.y()*(1-fRtor/std::sqrt(p.x()*p.x()
                                                   >> 385                                           + p.y()*p.y())),
357                                    p.z() );       386                                    p.z() );
358                                                   387 
359           // change sign in case of inner radi    388           // change sign in case of inner radius
360           //                                      389           //
361           if ( r == GetRmin() )  { scal = -sca    390           if ( r == GetRmin() )  { scal = -scal ; }
362           if ( scal > 0 )  { return 0.0  ; }      391           if ( scal > 0 )  { return 0.0  ; }
363         }                                         392         }
364       }                                           393       }
365                                                   394 
366       // check if distance is larger than 1/2     395       // check if distance is larger than 1/2 kCarTolerance
367       //                                          396       //
368       if(  t > halfCarTolerance  )                397       if(  t > halfCarTolerance  )
369       {                                           398       {
370         tmin = t  ;                               399         tmin = t  ;
371         return tmin  ;                            400         return tmin  ;
372       }                                           401       }
373     }                                             402     }
374   }                                               403   }
375                                                   404 
376   return tmin;                                    405   return tmin;
377 }                                                 406 }
378                                                   407 
379 //////////////////////////////////////////////    408 /////////////////////////////////////////////////////////////////////////////
380 //                                                409 //
381 // Get bounding box                            << 
382                                                << 
383 void G4Torus::BoundingLimits(G4ThreeVector& pM << 
384 {                                              << 
385   G4double rmax = GetRmax();                   << 
386   G4double rtor = GetRtor();                   << 
387   G4double rint = rtor - rmax;                 << 
388   G4double rext = rtor + rmax;                 << 
389   G4double dz   = rmax;                        << 
390                                                << 
391   // Find bounding box                         << 
392   //                                           << 
393   if (GetDPhi() >= twopi)                      << 
394   {                                            << 
395     pMin.set(-rext,-rext,-dz);                 << 
396     pMax.set( rext, rext, dz);                 << 
397   }                                            << 
398   else                                         << 
399   {                                            << 
400     G4TwoVector vmin,vmax;                     << 
401     G4GeomTools::DiskExtent(rint,rext,         << 
402                             GetSinStartPhi(),G << 
403                             GetSinEndPhi(),Get << 
404                             vmin,vmax);        << 
405     pMin.set(vmin.x(),vmin.y(),-dz);           << 
406     pMax.set(vmax.x(),vmax.y(), dz);           << 
407   }                                            << 
408                                                << 
409   // Check correctness of the bounding box     << 
410   //                                           << 
411   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
412   {                                            << 
413     std::ostringstream message;                << 
414     message << "Bad bounding box (min >= max)  << 
415             << GetName() << " !"               << 
416             << "\npMin = " << pMin             << 
417             << "\npMax = " << pMax;            << 
418     G4Exception("G4Torus::BoundingLimits()", " << 
419                 JustWarning, message);         << 
420     DumpInfo();                                << 
421   }                                            << 
422 }                                              << 
423                                                << 
424 ////////////////////////////////////////////// << 
425 //                                             << 
426 // Calculate extent under transform and specif    410 // Calculate extent under transform and specified limit
427                                                   411 
428 G4bool G4Torus::CalculateExtent( const EAxis p    412 G4bool G4Torus::CalculateExtent( const EAxis pAxis,
429                                  const G4Voxel    413                                  const G4VoxelLimits& pVoxelLimit,
430                                  const G4Affin    414                                  const G4AffineTransform& pTransform,
431                                        G4doubl    415                                        G4double& pMin, G4double& pMax) const
432 {                                                 416 {
433   G4ThreeVector bmin, bmax;                    << 417   if ((!pTransform.IsRotated()) && (fDPhi==twopi) && (fRmin==0))
434   G4bool exist;                                << 418   {
                                                   >> 419     // Special case handling for unrotated solid torus
                                                   >> 420     // Compute x/y/z mins and maxs for bounding box respecting limits,
                                                   >> 421     // with early returns if outside limits. Then switch() on pAxis,
                                                   >> 422     // and compute exact x and y limit for x/y case
                                                   >> 423       
                                                   >> 424     G4double xoffset,xMin,xMax;
                                                   >> 425     G4double yoffset,yMin,yMax;
                                                   >> 426     G4double zoffset,zMin,zMax;
                                                   >> 427 
                                                   >> 428     G4double RTorus,delta,diff1,diff2,maxDiff,newMin,newMax;
                                                   >> 429     G4double xoff1,xoff2,yoff1,yoff2;
                                                   >> 430 
                                                   >> 431     xoffset = pTransform.NetTranslation().x();
                                                   >> 432     xMin    = xoffset - fRmax - fRtor ;
                                                   >> 433     xMax    = xoffset + fRmax + fRtor ;
                                                   >> 434 
                                                   >> 435     if (pVoxelLimit.IsXLimited())
                                                   >> 436     {
                                                   >> 437       if ( (xMin > pVoxelLimit.GetMaxXExtent()+kCarTolerance)
                                                   >> 438         || (xMax < pVoxelLimit.GetMinXExtent()-kCarTolerance) )
                                                   >> 439         return false ;
                                                   >> 440       else
                                                   >> 441       {
                                                   >> 442         if (xMin < pVoxelLimit.GetMinXExtent())
                                                   >> 443         {
                                                   >> 444           xMin = pVoxelLimit.GetMinXExtent() ;
                                                   >> 445         }
                                                   >> 446         if (xMax > pVoxelLimit.GetMaxXExtent())
                                                   >> 447         {
                                                   >> 448           xMax = pVoxelLimit.GetMaxXExtent() ;
                                                   >> 449         }
                                                   >> 450       }
                                                   >> 451     }
                                                   >> 452     yoffset = pTransform.NetTranslation().y();
                                                   >> 453     yMin    = yoffset - fRmax - fRtor ;
                                                   >> 454     yMax    = yoffset + fRmax + fRtor ;
                                                   >> 455 
                                                   >> 456     if (pVoxelLimit.IsYLimited())
                                                   >> 457     {
                                                   >> 458       if ( (yMin > pVoxelLimit.GetMaxYExtent()+kCarTolerance)
                                                   >> 459         || (yMax < pVoxelLimit.GetMinYExtent()-kCarTolerance) )
                                                   >> 460       {
                                                   >> 461         return false ;
                                                   >> 462       }
                                                   >> 463       else
                                                   >> 464       {
                                                   >> 465         if (yMin < pVoxelLimit.GetMinYExtent() )
                                                   >> 466         { 
                                                   >> 467           yMin = pVoxelLimit.GetMinYExtent() ;
                                                   >> 468         }
                                                   >> 469         if (yMax > pVoxelLimit.GetMaxYExtent() )
                                                   >> 470         {
                                                   >> 471           yMax = pVoxelLimit.GetMaxYExtent() ;
                                                   >> 472         }
                                                   >> 473       }
                                                   >> 474     }
                                                   >> 475     zoffset = pTransform.NetTranslation().z() ;
                                                   >> 476     zMin    = zoffset - fRmax ;
                                                   >> 477     zMax    = zoffset + fRmax ;
435                                                   478 
436   // Get bounding box                          << 479     if (pVoxelLimit.IsZLimited())
437   BoundingLimits(bmin,bmax);                   << 480     {
                                                   >> 481       if ( (zMin > pVoxelLimit.GetMaxZExtent()+kCarTolerance)
                                                   >> 482         || (zMax < pVoxelLimit.GetMinZExtent()-kCarTolerance) )
                                                   >> 483       {
                                                   >> 484         return false ;
                                                   >> 485       }
                                                   >> 486       else
                                                   >> 487       {
                                                   >> 488         if (zMin < pVoxelLimit.GetMinZExtent() )
                                                   >> 489         {
                                                   >> 490           zMin = pVoxelLimit.GetMinZExtent() ;
                                                   >> 491         }
                                                   >> 492         if (zMax > pVoxelLimit.GetMaxZExtent() )
                                                   >> 493         {
                                                   >> 494           zMax = pVoxelLimit.GetMaxZExtent() ;
                                                   >> 495         }
                                                   >> 496       }
                                                   >> 497     }
438                                                   498 
439   // Check bounding box                        << 499     // Known to cut cylinder
440   G4BoundingEnvelope bbox(bmin,bmax);          << 500     
441 #ifdef G4BBOX_EXTENT                           << 501     switch (pAxis)
442   return bbox.CalculateExtent(pAxis,pVoxelLimi << 502     {
443 #endif                                         << 503       case kXAxis:
444   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 504         yoff1=yoffset-yMin;
445   {                                            << 505         yoff2=yMax-yoffset;
446     return exist = pMin < pMax;                << 506         if ( yoff1 >= 0 && yoff2 >= 0 )
                                                   >> 507         {
                                                   >> 508           // Y limits cross max/min x => no change
                                                   >> 509           //
                                                   >> 510           pMin = xMin ;
                                                   >> 511           pMax = xMax ;
                                                   >> 512         }
                                                   >> 513         else
                                                   >> 514         {
                                                   >> 515           // Y limits don't cross max/min x => compute max delta x,
                                                   >> 516           // hence new mins/maxs
                                                   >> 517           //
                                                   >> 518        
                                                   >> 519           RTorus=fRmax+fRtor;
                                                   >> 520           delta   = RTorus*RTorus - yoff1*yoff1;
                                                   >> 521           diff1   = (delta>0.) ? std::sqrt(delta) : 0.;
                                                   >> 522           delta   = RTorus*RTorus - yoff2*yoff2;
                                                   >> 523           diff2   = (delta>0.) ? std::sqrt(delta) : 0.;
                                                   >> 524           maxDiff = (diff1 > diff2) ? diff1:diff2 ;
                                                   >> 525           newMin  = xoffset - maxDiff ;
                                                   >> 526           newMax  = xoffset + maxDiff ;
                                                   >> 527           pMin    = (newMin < xMin) ? xMin : newMin ;
                                                   >> 528           pMax    = (newMax > xMax) ? xMax : newMax ;
                                                   >> 529         }
                                                   >> 530         break;
                                                   >> 531 
                                                   >> 532       case kYAxis:
                                                   >> 533         xoff1 = xoffset - xMin ;
                                                   >> 534         xoff2 = xMax - xoffset ;
                                                   >> 535         if (xoff1 >= 0 && xoff2 >= 0 )
                                                   >> 536         {
                                                   >> 537           // X limits cross max/min y => no change
                                                   >> 538           //
                                                   >> 539           pMin = yMin ;
                                                   >> 540           pMax = yMax ;
                                                   >> 541         } 
                                                   >> 542         else
                                                   >> 543         {
                                                   >> 544           // X limits don't cross max/min y => compute max delta y,
                                                   >> 545           // hence new mins/maxs
                                                   >> 546           //
                                                   >> 547           RTorus=fRmax+fRtor;
                                                   >> 548           delta   = RTorus*RTorus - xoff1*xoff1;
                                                   >> 549           diff1   = (delta>0.) ? std::sqrt(delta) : 0.;
                                                   >> 550           delta   = RTorus*RTorus - xoff2*xoff2;
                                                   >> 551           diff2   = (delta>0.) ? std::sqrt(delta) : 0.;
                                                   >> 552           maxDiff = (diff1 > diff2) ? diff1 : diff2 ;
                                                   >> 553           newMin  = yoffset - maxDiff ;
                                                   >> 554           newMax  = yoffset + maxDiff ;
                                                   >> 555           pMin    = (newMin < yMin) ? yMin : newMin ;
                                                   >> 556           pMax    = (newMax > yMax) ? yMax : newMax ;
                                                   >> 557         }
                                                   >> 558         break;
                                                   >> 559 
                                                   >> 560       case kZAxis:
                                                   >> 561         pMin=zMin;
                                                   >> 562         pMax=zMax;
                                                   >> 563         break;
                                                   >> 564 
                                                   >> 565       default:
                                                   >> 566         break;
                                                   >> 567     }
                                                   >> 568     pMin -= kCarTolerance ;
                                                   >> 569     pMax += kCarTolerance ;
                                                   >> 570 
                                                   >> 571     return true;
447   }                                               572   }
                                                   >> 573   else
                                                   >> 574   {
                                                   >> 575     G4int i, noEntries, noBetweenSections4 ;
                                                   >> 576     G4bool existsAfterClip = false ;
448                                                   577 
449   // Get parameters of the solid               << 578     // Calculate rotated vertex coordinates
450   G4double rmin = GetRmin();                   << 
451   G4double rmax = GetRmax();                   << 
452   G4double rtor = GetRtor();                   << 
453   G4double dphi = GetDPhi();                   << 
454   G4double sinStart = GetSinStartPhi();        << 
455   G4double cosStart = GetCosStartPhi();        << 
456   G4double sinEnd   = GetSinEndPhi();          << 
457   G4double cosEnd   = GetCosEndPhi();          << 
458   G4double rint = rtor - rmax;                 << 
459   G4double rext = rtor + rmax;                 << 
460                                                   579 
461   // Find bounding envelope and calculate exte << 580     G4ThreeVectorList *vertices ;
462   //                                           << 581     G4int noPolygonVertices ;  // will be 4 
463   static const G4int NPHI  = 24; // number of  << 582     vertices = CreateRotatedVertices(pTransform,noPolygonVertices) ;
464   static const G4int NDISK = 16; // number of  << 583 
465   static const G4double sinHalfDisk = std::sin << 584     pMin = +kInfinity ;
466   static const G4double cosHalfDisk = std::cos << 585     pMax = -kInfinity ;
467   static const G4double sinStepDisk = 2.*sinHa << 586 
468   static const G4double cosStepDisk = 1. - 2.* << 587     noEntries          = vertices->size() ;
469                                                << 588     noBetweenSections4 = noEntries - noPolygonVertices ;
470   G4double astep = (360/NPHI)*deg; // max angl << 589       
471   G4int    kphi  = (dphi <= astep) ? 1 : (G4in << 590     for (i=0;i<noEntries;i+=noPolygonVertices)
472   G4double ang   = dphi/kphi;                  << 591     {
473                                                << 592       ClipCrossSection(vertices,i,pVoxelLimit,pAxis,pMin,pMax);
474   G4double sinHalf = std::sin(0.5*ang);        << 593     }    
475   G4double cosHalf = std::cos(0.5*ang);        << 594     for (i=0;i<noBetweenSections4;i+=noPolygonVertices)
476   G4double sinStep = 2.*sinHalf*cosHalf;       << 595     {
477   G4double cosStep = 1. - 2.*sinHalf*sinHalf;  << 596       ClipBetweenSections(vertices,i,pVoxelLimit,pAxis,pMin,pMax);
478                                                << 597     }
479   // define vectors for bounding envelope      << 598     if (pMin!=kInfinity||pMax!=-kInfinity)
480   G4ThreeVectorList pols[NDISK+1];             << 599     {
481   for (auto & pol : pols) pol.resize(4);       << 600       existsAfterClip = true ; // Add 2*tolerance to avoid precision troubles
482                                                << 601       pMin           -= kCarTolerance ;
483   std::vector<const G4ThreeVectorList *> polyg << 602       pMax           += kCarTolerance ;
484   polygons.resize(NDISK+1);                    << 
485   for (G4int k=0; k<NDISK+1; ++k) polygons[k]  << 
486                                                << 
487   // set internal and external reference circl << 
488   G4TwoVector rzmin[NDISK];                    << 
489   G4TwoVector rzmax[NDISK];                    << 
490                                                << 
491   if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+ << 
492   rmax /= cosHalfDisk;                         << 
493   G4double sinCurDisk = sinHalfDisk;           << 
494   G4double cosCurDisk = cosHalfDisk;           << 
495   for (G4int k=0; k<NDISK; ++k)                << 
496   {                                            << 
497     G4double rmincur = rtor + rmin*cosCurDisk; << 
498     if (cosCurDisk < 0 && rmin > 0) rmincur /= << 
499     rzmin[k].set(rmincur,rmin*sinCurDisk);     << 
500                                                << 
501     G4double rmaxcur = rtor + rmax*cosCurDisk; << 
502     if (cosCurDisk > 0) rmaxcur /= cosHalf;    << 
503     rzmax[k].set(rmaxcur,rmax*sinCurDisk);     << 
504                                                << 
505     G4double sinTmpDisk = sinCurDisk;          << 
506     sinCurDisk = sinCurDisk*cosStepDisk + cosC << 
507     cosCurDisk = cosCurDisk*cosStepDisk - sinT << 
508   }                                            << 
509                                                << 
510   // Loop along slices in Phi. The extent is c << 
511   // extent of the slices                      << 
512   pMin =  kInfinity;                           << 
513   pMax = -kInfinity;                           << 
514   G4double eminlim = pVoxelLimit.GetMinExtent( << 
515   G4double emaxlim = pVoxelLimit.GetMaxExtent( << 
516   G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = << 
517   for (G4int i=0; i<kphi+1; ++i)               << 
518   {                                            << 
519     if (i == 0)                                << 
520     {                                          << 
521       sinCur1 = sinStart;                      << 
522       cosCur1 = cosStart;                      << 
523       sinCur2 = sinCur1*cosHalf + cosCur1*sinH << 
524       cosCur2 = cosCur1*cosHalf - sinCur1*sinH << 
525     }                                             603     }
526     else                                          604     else
527     {                                             605     {
528       sinCur1 = sinCur2;                       << 606       // Check for case where completely enveloping clipping volume
529       cosCur1 = cosCur2;                       << 607       // If point inside then we are confident that the solid completely
530       sinCur2 = (i == kphi) ? sinEnd : sinCur1 << 608       // envelopes the clipping volume. Hence set min/max extents according
531       cosCur2 = (i == kphi) ? cosEnd : cosCur1 << 609       // to clipping volume extents along the specified axis.
532     }                                          << 610 
533     for (G4int k=0; k<NDISK; ++k)              << 611       G4ThreeVector clipCentre(
534     {                                          << 612           (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
535       G4double r1 = rzmin[k].x(), r2 = rzmax[k << 613           (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
536       G4double z1 = rzmin[k].y(), z2 = rzmax[k << 614           (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5  ) ;
537       pols[k][0].set(r1*cosCur1,r1*sinCur1,z1) << 615         
538       pols[k][1].set(r2*cosCur1,r2*sinCur1,z2) << 616       if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside )
539       pols[k][2].set(r2*cosCur2,r2*sinCur2,z2) << 617       {
540       pols[k][3].set(r1*cosCur2,r1*sinCur2,z1) << 618         existsAfterClip = true ;
541     }                                          << 619         pMin            = pVoxelLimit.GetMinExtent(pAxis) ;
542     pols[NDISK] = pols[0];                     << 620         pMax            = pVoxelLimit.GetMaxExtent(pAxis) ;
543                                                << 621       }
544     // get bounding box of current slice       << 622     }
545     G4TwoVector vmin,vmax;                     << 623     delete vertices;
546     G4GeomTools::                              << 624     return existsAfterClip;
547       DiskExtent(rint,rext,sinCur1,cosCur1,sin << 
548     bmin.setX(vmin.x()); bmin.setY(vmin.y());  << 
549     bmax.setX(vmax.x()); bmax.setY(vmax.y());  << 
550                                                << 
551     // set bounding envelope for current slice << 
552     G4double emin,emax;                        << 
553     G4BoundingEnvelope benv(bmin,bmax,polygons << 
554     if (!benv.CalculateExtent(pAxis,pVoxelLimi << 
555     if (emin < pMin) pMin = emin;              << 
556     if (emax > pMax) pMax = emax;              << 
557     if (eminlim > pMin && emaxlim < pMax) brea << 
558   }                                               625   }
559   return (pMin < pMax);                        << 
560 }                                                 626 }
561                                                   627 
562 //////////////////////////////////////////////    628 //////////////////////////////////////////////////////////////////////////////
563 //                                                629 //
564 // Return whether point inside/outside/on surf    630 // Return whether point inside/outside/on surface
565                                                   631 
566 EInside G4Torus::Inside( const G4ThreeVector&     632 EInside G4Torus::Inside( const G4ThreeVector& p ) const
567 {                                                 633 {
568   G4double r, pt2, pPhi, tolRMin, tolRMax ;    << 634   G4double r2, pt2, pPhi, tolRMin, tolRMax ;
569                                                   635 
570   EInside in = kOutside ;                         636   EInside in = kOutside ;
                                                   >> 637   static const G4double halfAngTolerance = 0.5*kAngTolerance;
571                                                   638 
572   // General precals                           << 639                                                // General precals
573   //                                           << 640   r2  = p.x()*p.x() + p.y()*p.y() ;
574   r   = std::hypot(p.x(),p.y());               << 641   pt2 = r2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*std::sqrt(r2) ;
575   pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor);     << 
576                                                   642 
577   if (fRmin != 0.0) tolRMin = fRmin + fRminTol << 643   if (fRmin) tolRMin = fRmin + fRminTolerance ;
578   else       tolRMin = 0 ;                        644   else       tolRMin = 0 ;
579                                                   645 
580   tolRMax = fRmax - fRmaxTolerance;               646   tolRMax = fRmax - fRmaxTolerance;
581                                                   647       
582   if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax    648   if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax )
583   {                                               649   {
584     if ( fDPhi == twopi || pt2 == 0 )  // on t    650     if ( fDPhi == twopi || pt2 == 0 )  // on torus swept axis
585     {                                             651     {
586       in = kInside ;                              652       in = kInside ;
587     }                                             653     }
588     else                                          654     else
589     {                                             655     {
590       // Try inner tolerant phi boundaries (=>    656       // Try inner tolerant phi boundaries (=>inside)
591       // if not inside, try outer tolerant phi    657       // if not inside, try outer tolerant phi boundaries
592                                                   658 
593       pPhi = std::atan2(p.y(),p.x()) ;            659       pPhi = std::atan2(p.y(),p.x()) ;
594                                                   660 
595       if ( pPhi < -halfAngTolerance )  { pPhi     661       if ( pPhi < -halfAngTolerance )  { pPhi += twopi ; }  // 0<=pPhi<2pi
596       if ( fSPhi >= 0 )                           662       if ( fSPhi >= 0 )
597       {                                           663       {
598         if ( (std::fabs(pPhi) < halfAngToleran    664         if ( (std::fabs(pPhi) < halfAngTolerance)
599             && (std::fabs(fSPhi + fDPhi - twop    665             && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
600         {                                         666         { 
601             pPhi += twopi ; // 0 <= pPhi < 2pi    667             pPhi += twopi ; // 0 <= pPhi < 2pi
602         }                                         668         }
603         if ( (pPhi >= fSPhi + halfAngTolerance    669         if ( (pPhi >= fSPhi + halfAngTolerance)
604             && (pPhi <= fSPhi + fDPhi - halfAn    670             && (pPhi <= fSPhi + fDPhi - halfAngTolerance) )
605         {                                         671         {
606           in = kInside ;                          672           in = kInside ;
607         }                                         673         }
608           else if ( (pPhi >= fSPhi - halfAngTo    674           else if ( (pPhi >= fSPhi - halfAngTolerance)
609                  && (pPhi <= fSPhi + fDPhi + h    675                  && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
610         {                                         676         {
611           in = kSurface ;                         677           in = kSurface ;
612         }                                         678         }
613       }                                           679       }
614       else  // fSPhi < 0                          680       else  // fSPhi < 0
615       {                                           681       {
616           if ( (pPhi <= fSPhi + twopi - halfAn    682           if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
617             && (pPhi >= fSPhi + fDPhi  + halfA    683             && (pPhi >= fSPhi + fDPhi  + halfAngTolerance) )  {;}
618           else                                    684           else
619           {                                       685           {
620             in = kSurface ;                       686             in = kSurface ;
621           }                                       687           }
622       }                                           688       }
623     }                                             689     }
624   }                                               690   }
625   else   // Try generous boundaries               691   else   // Try generous boundaries
626   {                                               692   {
627     tolRMin = fRmin - fRminTolerance ;            693     tolRMin = fRmin - fRminTolerance ;
628     tolRMax = fRmax + fRmaxTolerance ;            694     tolRMax = fRmax + fRmaxTolerance ;
629                                                   695 
630     if (tolRMin < 0 )  { tolRMin = 0 ; }          696     if (tolRMin < 0 )  { tolRMin = 0 ; }
631                                                   697 
632     if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= t    698     if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) )
633     {                                             699     {
634       if ( (fDPhi == twopi) || (pt2 == 0) ) //    700       if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis
635       {                                           701       {
636         in = kSurface ;                           702         in = kSurface ;
637       }                                           703       }
638       else // Try outer tolerant phi boundarie    704       else // Try outer tolerant phi boundaries only
639       {                                           705       {
640         pPhi = std::atan2(p.y(),p.x()) ;          706         pPhi = std::atan2(p.y(),p.x()) ;
641                                                   707 
642         if ( pPhi < -halfAngTolerance )  { pPh    708         if ( pPhi < -halfAngTolerance )  { pPhi += twopi ; }  // 0<=pPhi<2pi
643         if ( fSPhi >= 0 )                         709         if ( fSPhi >= 0 )
644         {                                         710         {
645           if ( (std::fabs(pPhi) < halfAngToler    711           if ( (std::fabs(pPhi) < halfAngTolerance)
646             && (std::fabs(fSPhi + fDPhi - twop    712             && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
647           {                                       713           { 
648             pPhi += twopi ; // 0 <= pPhi < 2pi    714             pPhi += twopi ; // 0 <= pPhi < 2pi
649           }                                       715           }
650           if ( (pPhi >= fSPhi - halfAngToleran    716           if ( (pPhi >= fSPhi - halfAngTolerance)
651             && (pPhi <= fSPhi + fDPhi + halfAn    717             && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
652           {                                       718           {
653             in = kSurface;                        719             in = kSurface;
654           }                                       720           }
655         }                                         721         }
656         else  // fSPhi < 0                        722         else  // fSPhi < 0
657         {                                         723         {
658           if ( (pPhi <= fSPhi + twopi - halfAn    724           if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
659             && (pPhi >= fSPhi + fDPhi  + halfA    725             && (pPhi >= fSPhi + fDPhi  + halfAngTolerance) )  {;}
660           else                                    726           else
661           {                                       727           {
662             in = kSurface ;                       728             in = kSurface ;
663           }                                       729           }
664         }                                         730         }
665       }                                           731       }
666     }                                             732     }
667   }                                               733   }
668   return in ;                                     734   return in ;
669 }                                                 735 }
670                                                   736 
671 //////////////////////////////////////////////    737 /////////////////////////////////////////////////////////////////////////////
672 //                                                738 //
673 // Return unit normal of surface closest to p     739 // Return unit normal of surface closest to p
674 // - note if point on z axis, ignore phi divid    740 // - note if point on z axis, ignore phi divided sides
675 // - unsafe if point close to z axis a rmin=0     741 // - unsafe if point close to z axis a rmin=0 - no explicit checks
676                                                   742 
677 G4ThreeVector G4Torus::SurfaceNormal( const G4    743 G4ThreeVector G4Torus::SurfaceNormal( const G4ThreeVector& p ) const
678 {                                                 744 {
679   G4int noSurfaces = 0;                           745   G4int noSurfaces = 0;  
680   G4double rho, pt, pPhi;                      << 746   G4double rho2, rho, pt2, pt, pPhi;
681   G4double distRMin = kInfinity;                  747   G4double distRMin = kInfinity;
682   G4double distSPhi = kInfinity, distEPhi = kI    748   G4double distSPhi = kInfinity, distEPhi = kInfinity;
683                                                   749 
684   // To cope with precision loss               << 750   static const G4double delta = 0.5*kCarTolerance;
685   //                                           << 751   static const G4double dAngle = 0.5*kAngTolerance;
686   const G4double delta = std::max(10.0*kCarTol << 
687                                   1.0e-8*(fRto << 
688   const G4double dAngle = 10.0*kAngTolerance;  << 
689                                                   752 
690   G4ThreeVector nR, nPs, nPe;                     753   G4ThreeVector nR, nPs, nPe;
691   G4ThreeVector norm, sumnorm(0.,0.,0.);          754   G4ThreeVector norm, sumnorm(0.,0.,0.);
692                                                   755 
693   rho = std::hypot(p.x(),p.y());               << 756   rho2 = p.x()*p.x() + p.y()*p.y();
694   pt  = std::hypot(p.z(),rho-fRtor);           << 757   rho = std::sqrt(rho2);
                                                   >> 758   pt2 = std::fabs(rho2+p.z()*p.z() +fRtor*fRtor - 2*fRtor*rho);
                                                   >> 759   pt = std::sqrt(pt2) ;
695                                                   760 
696   G4double  distRMax = std::fabs(pt - fRmax);     761   G4double  distRMax = std::fabs(pt - fRmax);
697   if(fRmin != 0.0) distRMin = std::fabs(pt - f << 762   if(fRmin) distRMin = std::fabs(pt - fRmin);
698                                                   763 
699   if( rho > delta && pt != 0.0 )               << 764   if( rho > delta )
700   {                                               765   {
701     G4double redFactor= (rho-fRtor)/rho;       << 766     nR = G4ThreeVector( p.x()*(1-fRtor/rho)/pt,
702     nR = G4ThreeVector( p.x()*redFactor,  // p << 767                         p.y()*(1-fRtor/rho)/pt,
703                         p.y()*redFactor,  // p << 768                         p.z()/pt                 );
704                         p.z()          );      << 
705     nR *= 1.0/pt;                              << 
706   }                                               769   }
707                                                   770 
708   if ( fDPhi < twopi ) // && rho ) // old limi    771   if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z)
709   {                                               772   {
710     if ( rho != 0.0 )                          << 773     if ( rho )
711     {                                             774     {
712       pPhi = std::atan2(p.y(),p.x());             775       pPhi = std::atan2(p.y(),p.x());
713                                                   776 
714       if(pPhi < fSPhi-delta)            { pPhi    777       if(pPhi < fSPhi-delta)            { pPhi += twopi; }
715       else if(pPhi > fSPhi+fDPhi+delta) { pPhi    778       else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; }
716                                                   779 
717       distSPhi = std::fabs( pPhi - fSPhi );       780       distSPhi = std::fabs( pPhi - fSPhi );
718       distEPhi = std::fabs(pPhi-fSPhi-fDPhi);     781       distEPhi = std::fabs(pPhi-fSPhi-fDPhi);
719     }                                             782     }
720     nPs = G4ThreeVector(std::sin(fSPhi),-std::    783     nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
721     nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi)    784     nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
722   }                                               785   } 
723   if( distRMax <= delta )                         786   if( distRMax <= delta )
724   {                                               787   {
725     ++noSurfaces;                              << 788     noSurfaces ++;
726     sumnorm += nR;                                789     sumnorm += nR;
727   }                                               790   }
728   else if( (fRmin != 0.0) && (distRMin <= delt << 791   if( fRmin && distRMin <= delta )
729   {                                               792   {
730     ++noSurfaces;                              << 793     noSurfaces ++;
731     sumnorm -= nR;                                794     sumnorm -= nR;
732   }                                               795   }
733                                                << 796   if( fDPhi < twopi )   
734   //  To be on one of the 'phi' surfaces,      << 
735   //  it must be within the 'tube' - with tole << 
736                                                << 
737   if( (fDPhi < twopi) && (fRmin-delta <= pt) & << 
738   {                                               797   {
739     if (distSPhi <= dAngle)                       798     if (distSPhi <= dAngle)
740     {                                             799     {
741       ++noSurfaces;                            << 800       noSurfaces ++;
742       sumnorm += nPs;                             801       sumnorm += nPs;
743     }                                             802     }
744     if (distEPhi <= dAngle)                       803     if (distEPhi <= dAngle) 
745     {                                             804     {
746       ++noSurfaces;                            << 805       noSurfaces ++;
747       sumnorm += nPe;                             806       sumnorm += nPe;
748     }                                             807     }
749   }                                               808   }
750   if ( noSurfaces == 0 )                          809   if ( noSurfaces == 0 )
751   {                                               810   {
752 #ifdef G4CSGDEBUG                                 811 #ifdef G4CSGDEBUG
753      G4ExceptionDescription ed;                << 812     G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002",
754      ed.precision(16);                         << 813                 JustWarning, "Point p is not on surface !?" );
755                                                << 814 #endif 
756      EInside  inIt= Inside( p );               << 
757                                                << 
758      if( inIt != kSurface )                    << 
759      {                                         << 
760         ed << " ERROR>  Surface Normal was cal << 
761            << " with point not on surface." << << 
762      }                                         << 
763      else                                      << 
764      {                                         << 
765         ed << " ERROR>  Surface Normal has not << 
766            << " despite the point being on the << 
767      }                                         << 
768                                                << 
769      if( inIt != kInside)                      << 
770      {                                         << 
771          ed << " Safety (Dist To In)  = " << D << 
772      }                                         << 
773      if( inIt != kOutside)                     << 
774      {                                         << 
775          ed << " Safety (Dist to Out) = " << D << 
776      }                                         << 
777      ed << " Coordinates of point : " << p <<  << 
778      ed << " Parameters  of solid : " << G4end << 
779                                                << 
780      if( inIt == kSurface )                    << 
781      {                                         << 
782         G4Exception("G4Torus::SurfaceNormal(p) << 
783                     JustWarning, ed,           << 
784                     "Failing to find normal, e << 
785      }                                         << 
786      else                                      << 
787      {                                         << 
788         static const char* NameInside[3]= { "I << 
789         ed << "  The point is " << NameInside[ << 
790         G4Exception("G4Torus::SurfaceNormal(p) << 
791                     JustWarning, ed, "Point p  << 
792      }                                         << 
793 #endif                                         << 
794      norm = ApproxSurfaceNormal(p);               815      norm = ApproxSurfaceNormal(p);
795   }                                               816   }
796   else if ( noSurfaces == 1 )  { norm = sumnor    817   else if ( noSurfaces == 1 )  { norm = sumnorm; }
797   else                         { norm = sumnor    818   else                         { norm = sumnorm.unit(); }
798                                                   819 
799   return norm ;                                   820   return norm ;
800 }                                                 821 }
801                                                   822 
802 //////////////////////////////////////////////    823 //////////////////////////////////////////////////////////////////////////////
803 //                                                824 //
804 // Algorithm for SurfaceNormal() following the    825 // Algorithm for SurfaceNormal() following the original specification
805 // for points not on the surface                  826 // for points not on the surface
806                                                   827 
807 G4ThreeVector G4Torus::ApproxSurfaceNormal( co    828 G4ThreeVector G4Torus::ApproxSurfaceNormal( const G4ThreeVector& p ) const
808 {                                                 829 {
809   ENorm side ;                                    830   ENorm side ;
810   G4ThreeVector norm;                             831   G4ThreeVector norm;
811   G4double rho,pt,phi;                         << 832   G4double rho2,rho,pt2,pt,phi;
812   G4double distRMin,distRMax,distSPhi,distEPhi    833   G4double distRMin,distRMax,distSPhi,distEPhi,distMin;
813                                                   834 
814   rho = std::hypot(p.x(),p.y());               << 835   rho2 = p.x()*p.x() + p.y()*p.y();
815   pt  = std::hypot(p.z(),rho-fRtor);           << 836   rho = std::sqrt(rho2) ;
                                                   >> 837   pt2 = std::fabs(rho2+p.z()*p.z() +fRtor*fRtor - 2*fRtor*rho) ;
                                                   >> 838   pt = std::sqrt(pt2) ;
816                                                   839 
817 #ifdef G4CSGDEBUG                              << 
818   G4cout << " G4Torus::ApproximateSurfaceNorma << 
819          << G4endl;                            << 
820 #endif                                         << 
821                                                << 
822   distRMax = std::fabs(pt - fRmax) ;              840   distRMax = std::fabs(pt - fRmax) ;
823                                                   841 
824   if(fRmin != 0.0)  // First minimum radius    << 842   if(fRmin)  // First minimum radius
825   {                                               843   {
826     distRMin = std::fabs(pt - fRmin) ;            844     distRMin = std::fabs(pt - fRmin) ;
827                                                   845 
828     if (distRMin < distRMax)                      846     if (distRMin < distRMax)
829     {                                             847     {
830       distMin = distRMin ;                        848       distMin = distRMin ;
831       side    = kNRMin ;                          849       side    = kNRMin ;
832     }                                             850     }
833     else                                          851     else
834     {                                             852     {
835       distMin = distRMax ;                        853       distMin = distRMax ;
836       side    = kNRMax ;                          854       side    = kNRMax ;
837     }                                             855     }
838   }                                               856   }
839   else                                            857   else
840   {                                               858   {
841     distMin = distRMax ;                          859     distMin = distRMax ;
842     side    = kNRMax ;                            860     side    = kNRMax ;
843   }                                               861   }    
844   if ( (fDPhi < twopi) && (rho != 0.0) )       << 862   if ( (fDPhi < twopi) && rho )
845   {                                               863   {
846     phi = std::atan2(p.y(),p.x()) ; // Protect    864     phi = std::atan2(p.y(),p.x()) ; // Protected against (0,0,z) (above rho!=0)
847                                                   865 
848     if (phi < 0)  { phi += twopi ; }              866     if (phi < 0)  { phi += twopi ; }
849                                                   867 
850     if (fSPhi < 0 )  { distSPhi = std::fabs(ph    868     if (fSPhi < 0 )  { distSPhi = std::fabs(phi-(fSPhi+twopi))*rho ; }
851     else             { distSPhi = std::fabs(ph    869     else             { distSPhi = std::fabs(phi-fSPhi)*rho ; }
852                                                   870 
853     distEPhi = std::fabs(phi - fSPhi - fDPhi)*    871     distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ;
854                                                   872 
855     if (distSPhi < distEPhi) // Find new minim    873     if (distSPhi < distEPhi) // Find new minimum
856     {                                             874     {
857       if (distSPhi<distMin) side = kNSPhi ;       875       if (distSPhi<distMin) side = kNSPhi ;
858     }                                             876     }
859     else                                          877     else
860     {                                             878     {
861       if (distEPhi < distMin)  { side = kNEPhi    879       if (distEPhi < distMin)  { side = kNEPhi ; }
862     }                                             880     }
863   }                                               881   }  
864   switch (side)                                   882   switch (side)
865   {                                               883   {
866     case kNRMin:      // Inner radius             884     case kNRMin:      // Inner radius
867       norm = G4ThreeVector( -p.x()*(1-fRtor/rh    885       norm = G4ThreeVector( -p.x()*(1-fRtor/rho)/pt,
868                             -p.y()*(1-fRtor/rh    886                             -p.y()*(1-fRtor/rho)/pt,
869                             -p.z()/pt             887                             -p.z()/pt                 ) ;
870       break ;                                     888       break ;
871     case kNRMax:      // Outer radius             889     case kNRMax:      // Outer radius
872       norm = G4ThreeVector( p.x()*(1-fRtor/rho    890       norm = G4ThreeVector( p.x()*(1-fRtor/rho)/pt,
873                             p.y()*(1-fRtor/rho    891                             p.y()*(1-fRtor/rho)/pt,
874                             p.z()/pt              892                             p.z()/pt                  ) ;
875       break;                                      893       break;
876     case kNSPhi:                                  894     case kNSPhi:
877       norm = G4ThreeVector(std::sin(fSPhi),-st    895       norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ;
878       break;                                      896       break;
879     case kNEPhi:                                  897     case kNEPhi:
880       norm = G4ThreeVector(-std::sin(fSPhi+fDP    898       norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ;
881       break;                                      899       break;
882     default:          // Should never reach th    900     default:          // Should never reach this case ...
883       DumpInfo();                                 901       DumpInfo();
884       G4Exception("G4Torus::ApproxSurfaceNorma    902       G4Exception("G4Torus::ApproxSurfaceNormal()",
885                   "GeomSolids1002", JustWarnin    903                   "GeomSolids1002", JustWarning,
886                   "Undefined side for valid su    904                   "Undefined side for valid surface normal to solid.");
887       break ;                                     905       break ;
888   }                                               906   } 
889   return norm ;                                   907   return norm ;
890 }                                                 908 }
891                                                   909 
892 //////////////////////////////////////////////    910 ///////////////////////////////////////////////////////////////////////
893 //                                                911 //
894 // Calculate distance to shape from outside, a    912 // Calculate distance to shape from outside, along normalised vector
895 // - return kInfinity if no intersection, or i    913 // - return kInfinity if no intersection, or intersection distance <= tolerance
896 //                                                914 //
897 // - Compute the intersection with the z plane    915 // - Compute the intersection with the z planes 
898 //        - if at valid r, phi, return            916 //        - if at valid r, phi, return
899 //                                                917 //
900 // -> If point is outer outer radius, compute     918 // -> If point is outer outer radius, compute intersection with rmax
901 //        - if at valid phi,z return              919 //        - if at valid phi,z return
902 //                                                920 //
903 // -> Compute intersection with inner radius,     921 // -> Compute intersection with inner radius, taking largest +ve root
904 //        - if valid (phi), save intersction      922 //        - if valid (phi), save intersction
905 //                                                923 //
906 //    -> If phi segmented, compute intersectio    924 //    -> If phi segmented, compute intersections with phi half planes
907 //        - return smallest of valid phi inter    925 //        - return smallest of valid phi intersections and
908 //          inner radius intersection             926 //          inner radius intersection
909 //                                                927 //
910 // NOTE:                                          928 // NOTE:
911 // - Precalculations for phi trigonometry are     929 // - Precalculations for phi trigonometry are Done `just in time'
912 // - `if valid' implies tolerant checking of i    930 // - `if valid' implies tolerant checking of intersection points
913                                                   931 
914 G4double G4Torus::DistanceToIn( const G4ThreeV    932 G4double G4Torus::DistanceToIn( const G4ThreeVector& p,
915                                 const G4ThreeV    933                                 const G4ThreeVector& v ) const
916 {                                                 934 {
917   // Get bounding box of full torus            << 
918   //                                           << 
919   G4double boxDx  = fRtor + fRmax;             << 
920   G4double boxDy  = boxDx;                     << 
921   G4double boxDz  = fRmax;                     << 
922   G4double boxMax = boxDx;                     << 
923   G4double boxMin = boxDz;                     << 
924                                                   935 
925   // Check if point is traveling away          << 
926   //                                           << 
927   G4double distX = std::abs(p.x()) - boxDx;    << 
928   G4double distY = std::abs(p.y()) - boxDy;    << 
929   G4double distZ = std::abs(p.z()) - boxDz;    << 
930   if (distX >= -halfCarTolerance && p.x()*v.x( << 
931   if (distY >= -halfCarTolerance && p.y()*v.y( << 
932   if (distZ >= -halfCarTolerance && p.z()*v.z( << 
933                                                << 
934   // Calculate safety distance to bounding box << 
935   // If point is too far, move it closer and c << 
936   //                                           << 
937   G4double Dmax = 32*boxMax;                   << 
938   G4double safe = std::max(std::max(distX,dist << 
939   if (safe > Dmax)                             << 
940   {                                            << 
941     G4double dist = safe - 1.e-8*safe - boxMin << 
942     dist += DistanceToIn(p + dist*v, v);       << 
943     return (dist >= kInfinity) ? kInfinity : d << 
944   }                                            << 
945                                                << 
946   // Find intersection with torus              << 
947   //                                           << 
948   G4double snxt=kInfinity, sphi=kInfinity; //     936   G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value
949                                                   937 
950   G4double  sd[4] ;                            << 938   G4double  s[4] ;
951                                                   939 
952   // Precalculated trig for phi intersections     940   // Precalculated trig for phi intersections - used by r,z intersections to
953   //                                              941   //                                            check validity
954                                                   942 
955   G4bool seg;        // true if segmented         943   G4bool seg;        // true if segmented
956   G4double hDPhi;    // half dphi                 944   G4double hDPhi;    // half dphi
957   G4double cPhi,sinCPhi=0.,cosCPhi=0.;  // cen    945   G4double cPhi,sinCPhi=0.,cosCPhi=0.;  // central phi
958                                                   946 
959   G4double tolORMin2;  // `generous' radii squ    947   G4double tolORMin2;  // `generous' radii squared
960   G4double tolORMax2;                             948   G4double tolORMax2;
961                                                   949 
962   G4double Dist,xi,yi,zi,rhoi,it2; // Intersec << 950   static const G4double halfCarTolerance = 0.5*kCarTolerance;
                                                   >> 951  
                                                   >> 952   G4double Dist,xi,yi,zi,rhoi2,it2; // Intersection point variables
963                                                   953 
964   G4double Comp;                                  954   G4double Comp;
965   G4double cosSPhi,sinSPhi;       // Trig for     955   G4double cosSPhi,sinSPhi;       // Trig for phi start intersect
966   G4double ePhi,cosEPhi,sinEPhi;  // for phi e    956   G4double ePhi,cosEPhi,sinEPhi;  // for phi end intersect
967                                                   957 
968   // Set phi divided flag and precalcs            958   // Set phi divided flag and precalcs
969   //                                              959   //
970   if ( fDPhi < twopi )                            960   if ( fDPhi < twopi )
971   {                                               961   {
972     seg        = true ;                           962     seg        = true ;
973     hDPhi      = 0.5*fDPhi ;    // half delta     963     hDPhi      = 0.5*fDPhi ;    // half delta phi
974     cPhi       = fSPhi + hDPhi ;                  964     cPhi       = fSPhi + hDPhi ;
975     sinCPhi    = std::sin(cPhi) ;                 965     sinCPhi    = std::sin(cPhi) ;
976     cosCPhi    = std::cos(cPhi) ;                 966     cosCPhi    = std::cos(cPhi) ;
977   }                                               967   }
978   else                                            968   else
979   {                                               969   {
980     seg = false ;                                 970     seg = false ;
981   }                                               971   }
982                                                   972 
983   if (fRmin > fRminTolerance) // Calculate tol    973   if (fRmin > fRminTolerance) // Calculate tolerant rmin and rmax
984   {                                               974   {
985     tolORMin2 = (fRmin - fRminTolerance)*(fRmi    975     tolORMin2 = (fRmin - fRminTolerance)*(fRmin - fRminTolerance) ;
986   }                                               976   }
987   else                                            977   else
988   {                                               978   {
989     tolORMin2 = 0 ;                               979     tolORMin2 = 0 ;
990   }                                               980   }
991   tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax     981   tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax + fRmaxTolerance) ;
992                                                   982 
993   // Intersection with Rmax (possible return)     983   // Intersection with Rmax (possible return) and Rmin (must also check phi)
994                                                   984 
995   snxt = SolveNumericJT(p,v,fRmax,true);       << 985   G4double Rtor2 = fRtor*fRtor ;
996                                                   986 
997   if (fRmin != 0.0)  // Possible Rmin intersec << 987   snxt = SolveNumericJT(p,v,fRmax,true);
                                                   >> 988   if (fRmin)  // Possible Rmin intersection
998   {                                               989   {
999     sd[0] = SolveNumericJT(p,v,fRmin,true);    << 990     s[0] = SolveNumericJT(p,v,fRmin,true);
1000     if ( sd[0] < snxt )  { snxt = sd[0] ; }   << 991     if ( s[0] < snxt )  { snxt = s[0] ; }
1001   }                                              992   }
1002                                                  993 
1003   //                                             994   //
1004   // Phi segment intersection                    995   // Phi segment intersection
1005   //                                             996   //
1006   // o Tolerant of points inside phi planes b    997   // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1007   //                                             998   //
1008   // o NOTE: Large duplication of code betwee    999   // o NOTE: Large duplication of code between sphi & ephi checks
1009   //         -> only diffs: sphi -> ephi, Com    1000   //         -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1010   //            intersection check <=0 -> >=0    1001   //            intersection check <=0 -> >=0
1011   //         -> use some form of loop Constru    1002   //         -> use some form of loop Construct ?
1012                                                  1003 
1013   if (seg)                                       1004   if (seg)
1014   {                                              1005   {
1015     sinSPhi = std::sin(fSPhi) ; // First phi  << 1006     sinSPhi = std::sin(fSPhi) ; // First phi surface (`S'tarting phi)
1016     cosSPhi = std::cos(fSPhi) ;                  1007     cosSPhi = std::cos(fSPhi) ;
1017     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;    1008     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;  // Component in outwards
1018                                                  1009                                                // normal direction
1019     if (Comp < 0 )                               1010     if (Comp < 0 )
1020     {                                            1011     {
1021       Dist = (p.y()*cosSPhi - p.x()*sinSPhi)     1012       Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
1022                                                  1013 
1023       if (Dist < halfCarTolerance)               1014       if (Dist < halfCarTolerance)
1024       {                                          1015       {
1025         sphi = Dist/Comp ;                       1016         sphi = Dist/Comp ;
1026         if (sphi < snxt)                         1017         if (sphi < snxt)
1027         {                                        1018         {
1028           if ( sphi < 0 )  { sphi = 0 ; }        1019           if ( sphi < 0 )  { sphi = 0 ; }
1029                                                  1020 
1030           xi    = p.x() + sphi*v.x() ;           1021           xi    = p.x() + sphi*v.x() ;
1031           yi    = p.y() + sphi*v.y() ;           1022           yi    = p.y() + sphi*v.y() ;
1032           zi    = p.z() + sphi*v.z() ;           1023           zi    = p.z() + sphi*v.z() ;
1033           rhoi = std::hypot(xi,yi);           << 1024           rhoi2 = xi*xi + yi*yi ;
1034           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR << 1025           it2   = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ;
1035                                                  1026 
1036           if ( it2 >= tolORMin2 && it2 <= tol    1027           if ( it2 >= tolORMin2 && it2 <= tolORMax2 )
1037           {                                      1028           {
1038             // r intersection is good - check    1029             // r intersection is good - check intersecting
1039             // with correct half-plane           1030             // with correct half-plane
1040             //                                   1031             //
1041             if ((yi*cosCPhi-xi*sinCPhi)<=0)      1032             if ((yi*cosCPhi-xi*sinCPhi)<=0)  { snxt=sphi; }
1042           }                                   << 1033           }    
1043         }                                        1034         }
1044       }                                          1035       }
1045     }                                            1036     }
1046     ePhi=fSPhi+fDPhi;    // Second phi surfac << 1037     ePhi=fSPhi+fDPhi;    // Second phi surface (`E'nding phi)
1047     sinEPhi=std::sin(ePhi);                      1038     sinEPhi=std::sin(ePhi);
1048     cosEPhi=std::cos(ePhi);                      1039     cosEPhi=std::cos(ePhi);
1049     Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);         1040     Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);
1050                                                  1041         
1051     if ( Comp < 0 )   // Component in outward    1042     if ( Comp < 0 )   // Component in outwards normal dirn
1052     {                                            1043     {
1053       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi)    1044       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1054                                                  1045 
1055       if (Dist < halfCarTolerance )              1046       if (Dist < halfCarTolerance )
1056       {                                          1047       {
1057         sphi = Dist/Comp ;                       1048         sphi = Dist/Comp ;
1058                                               << 
1059         if (sphi < snxt )                        1049         if (sphi < snxt )
1060         {                                        1050         {
1061           if (sphi < 0 )  { sphi = 0 ; }         1051           if (sphi < 0 )  { sphi = 0 ; }
1062                                                  1052        
1063           xi    = p.x() + sphi*v.x() ;           1053           xi    = p.x() + sphi*v.x() ;
1064           yi    = p.y() + sphi*v.y() ;           1054           yi    = p.y() + sphi*v.y() ;
1065           zi    = p.z() + sphi*v.z() ;           1055           zi    = p.z() + sphi*v.z() ;
1066           rhoi = std::hypot(xi,yi);           << 1056           rhoi2 = xi*xi + yi*yi ;
1067           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR << 1057           it2   = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ;
1068                                                  1058 
1069           if (it2 >= tolORMin2 && it2 <= tolO    1059           if (it2 >= tolORMin2 && it2 <= tolORMax2)
1070           {                                      1060           {
1071             // z and r intersections good - c    1061             // z and r intersections good - check intersecting
1072             // with correct half-plane           1062             // with correct half-plane
1073             //                                   1063             //
1074             if ((yi*cosCPhi-xi*sinCPhi)>=0)      1064             if ((yi*cosCPhi-xi*sinCPhi)>=0)  { snxt=sphi; }
1075           }                                      1065           }    
1076         }                                        1066         }
1077       }                                          1067       }
1078     }                                            1068     }
1079   }                                              1069   }
1080   if(snxt < halfCarTolerance)  { snxt = 0.0 ;    1070   if(snxt < halfCarTolerance)  { snxt = 0.0 ; }
1081                                                  1071 
1082   return snxt ;                                  1072   return snxt ;
1083 }                                                1073 }
1084                                                  1074 
1085 /////////////////////////////////////////////    1075 /////////////////////////////////////////////////////////////////////////////
1086 //                                               1076 //
1087 // Calculate distance (<= actual) to closest     1077 // Calculate distance (<= actual) to closest surface of shape from outside
1088 // - Calculate distance to z, radial planes      1078 // - Calculate distance to z, radial planes
1089 // - Only to phi planes if outside phi extent    1079 // - Only to phi planes if outside phi extent
1090 // - Return 0 if point inside                    1080 // - Return 0 if point inside
1091                                                  1081 
1092 G4double G4Torus::DistanceToIn( const G4Three    1082 G4double G4Torus::DistanceToIn( const G4ThreeVector& p ) const
1093 {                                                1083 {
1094   G4double safe=0.0, safe1, safe2 ;              1084   G4double safe=0.0, safe1, safe2 ;
1095   G4double phiC, cosPhiC, sinPhiC, safePhi, e    1085   G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ;
1096   G4double rho, pt ;                          << 1086   G4double rho2, rho, pt2, pt ;
1097                                               << 1087     
1098   rho = std::hypot(p.x(),p.y());              << 1088   rho2 = p.x()*p.x() + p.y()*p.y() ;
1099   pt  = std::hypot(p.z(),rho-fRtor);          << 1089   rho  = std::sqrt(rho2) ;
                                                   >> 1090   pt2  = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ;
                                                   >> 1091   pt   = std::sqrt(pt2) ;
                                                   >> 1092 
1100   safe1 = fRmin - pt ;                           1093   safe1 = fRmin - pt ;
1101   safe2 = pt - fRmax ;                           1094   safe2 = pt - fRmax ;
1102                                                  1095 
1103   if (safe1 > safe2)  { safe = safe1; }          1096   if (safe1 > safe2)  { safe = safe1; }
1104   else                { safe = safe2; }          1097   else                { safe = safe2; }
1105                                                  1098 
1106   if ( fDPhi < twopi && (rho != 0.0) )        << 1099   if ( fDPhi < twopi && rho )
1107   {                                              1100   {
1108     phiC    = fSPhi + fDPhi*0.5 ;                1101     phiC    = fSPhi + fDPhi*0.5 ;
1109     cosPhiC = std::cos(phiC) ;                   1102     cosPhiC = std::cos(phiC) ;
1110     sinPhiC = std::sin(phiC) ;                   1103     sinPhiC = std::sin(phiC) ;
1111     cosPsi  = (p.x()*cosPhiC + p.y()*sinPhiC)    1104     cosPsi  = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ;
1112                                                  1105 
1113     if (cosPsi < std::cos(fDPhi*0.5) ) // Psi    1106     if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point
1114     {                                  // Poi    1107     {                                  // Point lies outside phi range
1115       if ((p.y()*cosPhiC - p.x()*sinPhiC) <=     1108       if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 )
1116       {                                          1109       {
1117         safePhi = std::fabs(p.x()*std::sin(fS    1110         safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1118       }                                          1111       }
1119       else                                       1112       else
1120       {                                          1113       {
1121         ePhi    = fSPhi + fDPhi ;                1114         ePhi    = fSPhi + fDPhi ;
1122         safePhi = std::fabs(p.x()*std::sin(eP    1115         safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1123       }                                          1116       }
1124       if (safePhi > safe)  { safe = safePhi ;    1117       if (safePhi > safe)  { safe = safePhi ; }
1125     }                                            1118     }
1126   }                                              1119   }
1127   if (safe < 0 )  { safe = 0 ; }                 1120   if (safe < 0 )  { safe = 0 ; }
1128   return safe;                                   1121   return safe;
1129 }                                                1122 }
1130                                                  1123 
1131 /////////////////////////////////////////////    1124 ///////////////////////////////////////////////////////////////////////////
1132 //                                               1125 //
1133 // Calculate distance to surface of shape fro    1126 // Calculate distance to surface of shape from `inside', allowing for tolerance
1134 // - Only Calc rmax intersection if no valid     1127 // - Only Calc rmax intersection if no valid rmin intersection
1135 //                                               1128 //
1136                                                  1129 
1137 G4double G4Torus::DistanceToOut( const G4Thre    1130 G4double G4Torus::DistanceToOut( const G4ThreeVector& p,
1138                                  const G4Thre    1131                                  const G4ThreeVector& v,
1139                                  const G4bool    1132                                  const G4bool calcNorm,
1140                                        G4bool << 1133                                        G4bool *validNorm,
1141                                        G4Thre << 1134                                        G4ThreeVector  *n  ) const
1142 {                                                1135 {
1143   ESide    side = kNull, sidephi = kNull ;       1136   ESide    side = kNull, sidephi = kNull ;
1144   G4double snxt = kInfinity, sphi, sd[4] ;    << 1137   G4double snxt = kInfinity, sphi, s[4] ;
                                                   >> 1138 
                                                   >> 1139   static const G4double halfCarTolerance = 0.5*kCarTolerance;
                                                   >> 1140   static const G4double halfAngTolerance = 0.5*kAngTolerance;
1145                                                  1141 
1146   // Vars for phi intersection                   1142   // Vars for phi intersection
1147   //                                             1143   //
1148   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, c    1144   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi;
1149   G4double cPhi, sinCPhi, cosCPhi ;              1145   G4double cPhi, sinCPhi, cosCPhi ;
1150   G4double pDistS, compS, pDistE, compE, sphi    1146   G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ;
1151                                                  1147 
1152   // Radial Intersections Defenitions & Gener    1148   // Radial Intersections Defenitions & General Precals
1153                                                  1149 
1154   //////////////////////// new calculation //    1150   //////////////////////// new calculation //////////////////////
1155                                                  1151 
1156 #if 1                                            1152 #if 1
1157                                                  1153 
1158   // This is the version with the calculation    1154   // This is the version with the calculation of CalcNorm = true 
1159   // To be done: Check the precision of this     1155   // To be done: Check the precision of this calculation.
1160   // If you want return always validNorm = fa    1156   // If you want return always validNorm = false, then take the version below
1161                                                  1157   
1162                                               << 1158   G4double Rtor2 = fRtor*fRtor ;
1163   G4double rho = std::hypot(p.x(),p.y());     << 1159   G4double rho2  = p.x()*p.x()+p.y()*p.y();
1164   G4double pt = hypot(p.z(),rho-fRtor);       << 1160   G4double rho   = std::sqrt(rho2) ;
                                                   >> 1161 
                                                   >> 1162 
                                                   >> 1163   G4double pt2   = std::fabs(rho2 + p.z()*p.z() + Rtor2 - 2*fRtor*rho) ;
                                                   >> 1164   G4double pt    = std::sqrt(pt2) ;
1165                                                  1165 
1166   G4double pDotV = p.x()*v.x() + p.y()*v.y()     1166   G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
1167                                                  1167 
1168   G4double tolRMax = fRmax - fRmaxTolerance ;    1168   G4double tolRMax = fRmax - fRmaxTolerance ;
1169                                                  1169    
1170   G4double vDotNmax   = pDotV - fRtor*(v.x()*    1170   G4double vDotNmax   = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ;
1171   G4double pDotxyNmax = (1 - fRtor/rho) ;        1171   G4double pDotxyNmax = (1 - fRtor/rho) ;
1172                                                  1172 
1173   if( (pt*pt > tolRMax*tolRMax) && (vDotNmax  << 1173   if( (pt2 > tolRMax*tolRMax) && (vDotNmax >= 0) )
1174   {                                              1174   {
1175     // On tolerant boundary & heading outward    1175     // On tolerant boundary & heading outwards (or perpendicular to) outer
1176     // radial surface -> leaving immediately     1176     // radial surface -> leaving immediately with *n for really convex part
1177     // only                                      1177     // only
1178                                                  1178       
1179     if ( calcNorm && (pDotxyNmax >= -2.*fRmax    1179     if ( calcNorm && (pDotxyNmax >= -2.*fRmaxTolerance) ) 
1180     {                                            1180     {
1181       *n = G4ThreeVector( p.x()*(1 - fRtor/rh    1181       *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt,
1182                           p.y()*(1 - fRtor/rh    1182                           p.y()*(1 - fRtor/rho)/pt,
1183                           p.z()/pt               1183                           p.z()/pt                  ) ;
1184       *validNorm = true ;                        1184       *validNorm = true ;
1185     }                                            1185     }
1186                                               << 
1187     return snxt = 0 ; // Leaving by Rmax imme    1186     return snxt = 0 ; // Leaving by Rmax immediately
1188   }                                              1187   }
1189                                                  1188   
1190   snxt = SolveNumericJT(p,v,fRmax,false);        1189   snxt = SolveNumericJT(p,v,fRmax,false);  
1191   side = kRMax ;                                 1190   side = kRMax ;
1192                                                  1191 
1193   // rmin                                        1192   // rmin
1194                                                  1193 
1195   if ( fRmin != 0.0 )                         << 1194   if ( fRmin )
1196   {                                              1195   {
1197     G4double tolRMin = fRmin + fRminTolerance    1196     G4double tolRMin = fRmin + fRminTolerance ;
1198                                                  1197 
1199     if ( (pt*pt < tolRMin*tolRMin) && (vDotNm << 1198     if ( (pt2 < tolRMin*tolRMin) && (vDotNmax < 0) )
1200     {                                            1199     {
1201       if (calcNorm)  { *validNorm = false ; }    1200       if (calcNorm)  { *validNorm = false ; } // Concave surface of the torus
1202       return  snxt = 0 ;                         1201       return  snxt = 0 ;                      // Leaving by Rmin immediately
1203     }                                            1202     }
1204                                                  1203     
1205     sd[0] = SolveNumericJT(p,v,fRmin,false);  << 1204     s[0] = SolveNumericJT(p,v,fRmin,false);
1206     if ( sd[0] < snxt )                       << 1205     if ( s[0] < snxt )
1207     {                                            1206     {
1208       snxt = sd[0] ;                          << 1207       snxt = s[0] ;
1209       side = kRMin ;                             1208       side = kRMin ;
1210     }                                            1209     }
1211   }                                              1210   }
1212                                                  1211 
1213 #else                                            1212 #else
1214                                                  1213 
1215   // this is the "conservative" version which    1214   // this is the "conservative" version which return always validnorm = false
1216   // NOTE: using this version the unit test t    1215   // NOTE: using this version the unit test testG4Torus will break
1217                                                  1216 
1218   snxt = SolveNumericJT(p,v,fRmax,false);        1217   snxt = SolveNumericJT(p,v,fRmax,false);  
1219   side = kRMax ;                                 1218   side = kRMax ;
1220                                                  1219 
1221   if ( fRmin )                                   1220   if ( fRmin )
1222   {                                              1221   {
1223     sd[0] = SolveNumericJT(p,v,fRmin,false);  << 1222     s[0] = SolveNumericJT(p,v,fRmin,false);
1224     if ( sd[0] < snxt )                       << 1223     if ( s[0] < snxt )
1225     {                                            1224     {
1226       snxt = sd[0] ;                          << 1225       snxt = s[0] ;
1227       side = kRMin ;                             1226       side = kRMin ;
1228     }                                            1227     }
1229   }                                              1228   }
1230                                                  1229 
1231   if ( calcNorm && (snxt == 0.0) )               1230   if ( calcNorm && (snxt == 0.0) )
1232   {                                              1231   {
1233     *validNorm = false ;    // Leaving solid,    1232     *validNorm = false ;    // Leaving solid, but possible re-intersection
1234     return snxt  ;                               1233     return snxt  ;
1235   }                                              1234   }
1236                                                  1235 
1237 #endif                                           1236 #endif
1238                                                  1237   
1239   if (fDPhi < twopi)  // Phi Intersections       1238   if (fDPhi < twopi)  // Phi Intersections
1240   {                                              1239   {
1241     sinSPhi = std::sin(fSPhi) ;                  1240     sinSPhi = std::sin(fSPhi) ;
1242     cosSPhi = std::cos(fSPhi) ;                  1241     cosSPhi = std::cos(fSPhi) ;
1243     ePhi    = fSPhi + fDPhi ;                    1242     ePhi    = fSPhi + fDPhi ;
1244     sinEPhi = std::sin(ePhi) ;                   1243     sinEPhi = std::sin(ePhi) ;
1245     cosEPhi = std::cos(ePhi) ;                   1244     cosEPhi = std::cos(ePhi) ;
1246     cPhi    = fSPhi + fDPhi*0.5 ;                1245     cPhi    = fSPhi + fDPhi*0.5 ;
1247     sinCPhi = std::sin(cPhi) ;                   1246     sinCPhi = std::sin(cPhi) ;
1248     cosCPhi = std::cos(cPhi) ;                   1247     cosCPhi = std::cos(cPhi) ;
1249                                                  1248     
1250     // angle calculation with correction         1249     // angle calculation with correction 
1251     // of difference in domain of atan2 and S    1250     // of difference in domain of atan2 and Sphi
1252     //                                           1251     //
1253     vphi = std::atan2(v.y(),v.x()) ;             1252     vphi = std::atan2(v.y(),v.x()) ;
1254                                                  1253      
1255     if ( vphi < fSPhi - halfAngTolerance  )      1254     if ( vphi < fSPhi - halfAngTolerance  )    { vphi += twopi; }
1256     else if ( vphi > ePhi + halfAngTolerance     1255     else if ( vphi > ePhi + halfAngTolerance ) { vphi -= twopi; }
1257                                                  1256 
1258     if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 1257     if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
1259     {                                            1258     {
1260       pDistS = p.x()*sinSPhi - p.y()*cosSPhi     1259       pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside
1261       pDistE = -p.x()*sinEPhi + p.y()*cosEPhi    1260       pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1262                                                  1261 
1263       // Comp -ve when in direction of outwar    1262       // Comp -ve when in direction of outwards normal
1264       //                                         1263       //
1265       compS   = -sinSPhi*v.x() + cosSPhi*v.y(    1264       compS   = -sinSPhi*v.x() + cosSPhi*v.y() ;
1266       compE   = sinEPhi*v.x() - cosEPhi*v.y()    1265       compE   = sinEPhi*v.x() - cosEPhi*v.y() ;
1267       sidephi = kNull ;                          1266       sidephi = kNull ;
1268                                                  1267      
1269       if( ( (fDPhi <= pi) && ( (pDistS <= hal    1268       if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance)
1270                             && (pDistE <= hal    1269                             && (pDistE <= halfCarTolerance) ) )
1271        || ( (fDPhi >  pi) && ((pDistS <=  hal << 1270        || ( (fDPhi >  pi) && !((pDistS >  halfCarTolerance)
1272                             || (pDistE <=  ha << 1271                             && (pDistE >  halfCarTolerance) ) )  )
1273       {                                          1272       {
1274         // Inside both phi *full* planes         1273         // Inside both phi *full* planes
1275                                               << 1274           
1276         if ( compS < 0 )                         1275         if ( compS < 0 )
1277         {                                        1276         {
1278           sphi = pDistS/compS ;                  1277           sphi = pDistS/compS ;
1279                                                  1278             
1280           if (sphi >= -halfCarTolerance)         1279           if (sphi >= -halfCarTolerance)
1281           {                                      1280           {
1282             xi = p.x() + sphi*v.x() ;            1281             xi = p.x() + sphi*v.x() ;
1283             yi = p.y() + sphi*v.y() ;            1282             yi = p.y() + sphi*v.y() ;
1284                                                  1283               
1285             // Check intersecting with correc    1284             // Check intersecting with correct half-plane
1286             // (if not -> no intersect)          1285             // (if not -> no intersect)
1287             //                                   1286             //
1288             if ( (std::fabs(xi)<=kCarToleranc    1287             if ( (std::fabs(xi)<=kCarTolerance)
1289               && (std::fabs(yi)<=kCarToleranc    1288               && (std::fabs(yi)<=kCarTolerance) )
1290             {                                    1289             {
1291               sidephi = kSPhi;                   1290               sidephi = kSPhi;
1292               if ( ((fSPhi-halfAngTolerance)<    1291               if ( ((fSPhi-halfAngTolerance)<=vphi)
1293                 && ((ePhi+halfAngTolerance)>=    1292                 && ((ePhi+halfAngTolerance)>=vphi) )
1294               {                                  1293               {
1295                 sphi = kInfinity;                1294                 sphi = kInfinity;
1296               }                                  1295               }
1297             }                                    1296             }
1298             else if ( yi*cosCPhi-xi*sinCPhi >    1297             else if ( yi*cosCPhi-xi*sinCPhi >=0 )
1299             {                                    1298             {
1300               sphi = kInfinity ;                 1299               sphi = kInfinity ;
1301             }                                    1300             }
1302             else                                 1301             else
1303             {                                    1302             {
1304               sidephi = kSPhi ;                  1303               sidephi = kSPhi ;
1305             }                                    1304             }       
1306           }                                      1305           }
1307           else                                   1306           else
1308           {                                      1307           {
1309             sphi = kInfinity ;                   1308             sphi = kInfinity ;
1310           }                                      1309           }
1311         }                                        1310         }
1312         else                                     1311         else
1313         {                                        1312         {
1314           sphi = kInfinity ;                     1313           sphi = kInfinity ;
1315         }                                        1314         }
1316                                                  1315 
1317         if ( compE < 0 )                         1316         if ( compE < 0 )
1318         {                                        1317         {
1319           sphi2 = pDistE/compE ;                 1318           sphi2 = pDistE/compE ;
1320                                                  1319             
1321           // Only check further if < starting    1320           // Only check further if < starting phi intersection
1322           //                                     1321           //
1323           if ( (sphi2 > -kCarTolerance) && (s    1322           if ( (sphi2 > -kCarTolerance) && (sphi2 < sphi) )
1324           {                                      1323           {
1325             xi = p.x() + sphi2*v.x() ;           1324             xi = p.x() + sphi2*v.x() ;
1326             yi = p.y() + sphi2*v.y() ;           1325             yi = p.y() + sphi2*v.y() ;
1327                                                  1326               
1328             if ( (std::fabs(xi)<=kCarToleranc    1327             if ( (std::fabs(xi)<=kCarTolerance)
1329               && (std::fabs(yi)<=kCarToleranc    1328               && (std::fabs(yi)<=kCarTolerance) )
1330             {                                    1329             {
1331               // Leaving via ending phi          1330               // Leaving via ending phi
1332               //                                 1331               //
1333               if( (fSPhi-halfAngTolerance > v << 1332               if( !( (fSPhi-halfAngTolerance <= vphi)
1334                   || (ePhi+halfAngTolerance < << 1333                   && (ePhi+halfAngTolerance >= vphi) ) )
1335               {                                  1334               {
1336                 sidephi = kEPhi ;                1335                 sidephi = kEPhi ;
1337                 sphi = sphi2;                    1336                 sphi = sphi2;
1338               }                                  1337               }
1339             }                                    1338             } 
1340             else    // Check intersecting wit    1339             else    // Check intersecting with correct half-plane 
1341             {                                    1340             {
1342               if ( (yi*cosCPhi-xi*sinCPhi) >=    1341               if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1343               {                                  1342               {
1344                 // Leaving via ending phi        1343                 // Leaving via ending phi
1345                 //                               1344                 //
1346                 sidephi = kEPhi ;                1345                 sidephi = kEPhi ;
1347                 sphi = sphi2;                    1346                 sphi = sphi2;
1348                                                  1347                
1349               }                                  1348               }
1350             }                                    1349             }
1351           }                                      1350           }
1352         }                                        1351         }
1353       }                                          1352       }
1354       else                                       1353       else
1355       {                                          1354       {
1356         sphi = kInfinity ;                       1355         sphi = kInfinity ;
1357       }                                          1356       }
1358     }                                            1357     } 
1359     else                                         1358     else
1360     {                                            1359     {
1361       // On z axis + travel not || to z axis     1360       // On z axis + travel not || to z axis -> if phi of vector direction
1362       // within phi of shape, Step limited by    1361       // within phi of shape, Step limited by rmax, else Step =0
1363                                                  1362 
1364       vphi = std::atan2(v.y(),v.x());            1363       vphi = std::atan2(v.y(),v.x());
1365                                                  1364  
1366       if ( ( fSPhi-halfAngTolerance <= vphi )    1365       if ( ( fSPhi-halfAngTolerance <= vphi ) && 
1367            ( vphi <= ( ePhi+halfAngTolerance     1366            ( vphi <= ( ePhi+halfAngTolerance ) ) )
1368       {                                          1367       {
1369         sphi = kInfinity;                        1368         sphi = kInfinity;
1370       }                                          1369       }
1371       else                                       1370       else
1372       {                                          1371       {
1373         sidephi = kSPhi ; // arbitrary           1372         sidephi = kSPhi ; // arbitrary 
1374         sphi=0;                                  1373         sphi=0;
1375       }                                          1374       }
1376     }                                            1375     }
1377                                                  1376 
1378     // Order intersections                       1377     // Order intersections
1379                                                  1378 
1380     if (sphi<snxt)                               1379     if (sphi<snxt)
1381     {                                            1380     {
1382       snxt=sphi;                                 1381       snxt=sphi;
1383       side=sidephi;                              1382       side=sidephi;
1384     }                                         << 1383     }
1385   }                                              1384   }
1386                                                  1385 
1387   G4double rhoi,it,iDotxyNmax ;               << 1386   G4double rhoi2,rhoi,it2,it,iDotxyNmax ;
1388   // Note: by numerical computation we know w    1387   // Note: by numerical computation we know where the ray hits the torus
1389   // So I propose to return the side where th    1388   // So I propose to return the side where the ray hits
1390                                                  1389 
1391   if (calcNorm)                                  1390   if (calcNorm)
1392   {                                              1391   {
1393     switch(side)                                 1392     switch(side)
1394     {                                            1393     {
1395       case kRMax:                     // n is    1394       case kRMax:                     // n is unit vector 
1396         xi    = p.x() + snxt*v.x() ;             1395         xi    = p.x() + snxt*v.x() ;
1397         yi    = p.y() + snxt*v.y() ;          << 1396         yi    =p.y() + snxt*v.y() ;
1398         zi    = p.z() + snxt*v.z() ;             1397         zi    = p.z() + snxt*v.z() ;
1399         rhoi = std::hypot(xi,yi);             << 1398         rhoi2 = xi*xi + yi*yi ;
1400         it = hypot(zi,rhoi-fRtor);            << 1399         rhoi  = std::sqrt(rhoi2) ;
1401                                               << 1400         it2   = std::fabs(rhoi2 + zi*zi + fRtor*fRtor - 2*fRtor*rhoi) ;
                                                   >> 1401         it    = std::sqrt(it2) ;
1402         iDotxyNmax = (1-fRtor/rhoi) ;            1402         iDotxyNmax = (1-fRtor/rhoi) ;
1403         if(iDotxyNmax >= -2.*fRmaxTolerance)     1403         if(iDotxyNmax >= -2.*fRmaxTolerance) // really convex part of Rmax
1404         {                                        1404         {                       
1405           *n = G4ThreeVector( xi*(1-fRtor/rho    1405           *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it,
1406                               yi*(1-fRtor/rho    1406                               yi*(1-fRtor/rhoi)/it,
1407                               zi/it              1407                               zi/it                 ) ;
1408           *validNorm = true ;                    1408           *validNorm = true ;
1409         }                                        1409         }
1410         else                                     1410         else
1411         {                                        1411         {
1412           *validNorm = false ; // concave-con    1412           *validNorm = false ; // concave-convex part of Rmax
1413         }                                        1413         }
1414         break ;                                  1414         break ;
1415                                                  1415 
1416       case kRMin:                                1416       case kRMin:
1417         *validNorm = false ;  // Rmin is conc    1417         *validNorm = false ;  // Rmin is concave or concave-convex
1418         break;                                   1418         break;
1419                                                  1419 
1420       case kSPhi:                                1420       case kSPhi:
1421         if (fDPhi <= pi )                        1421         if (fDPhi <= pi )
1422         {                                        1422         {
1423           *n=G4ThreeVector(std::sin(fSPhi),-s    1423           *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
1424           *validNorm=true;                       1424           *validNorm=true;
1425         }                                        1425         }
1426         else                                     1426         else
1427         {                                        1427         {
1428           *validNorm = false ;                   1428           *validNorm = false ;
1429         }                                        1429         }
1430         break ;                                  1430         break ;
1431                                                  1431 
1432       case kEPhi:                                1432       case kEPhi:
1433         if (fDPhi <= pi)                         1433         if (fDPhi <= pi)
1434         {                                        1434         {
1435           *n=G4ThreeVector(-std::sin(fSPhi+fD    1435           *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
1436           *validNorm=true;                       1436           *validNorm=true;
1437         }                                        1437         }
1438         else                                     1438         else
1439         {                                        1439         {
1440           *validNorm = false ;                   1440           *validNorm = false ;
1441         }                                        1441         }
1442         break;                                   1442         break;
1443                                                  1443 
1444       default:                                   1444       default:
1445                                                  1445 
1446         // It seems we go here from time to t    1446         // It seems we go here from time to time ...
1447                                                  1447 
1448         G4cout << G4endl;                        1448         G4cout << G4endl;
1449         DumpInfo();                              1449         DumpInfo();
1450         std::ostringstream message;              1450         std::ostringstream message;
1451         G4long oldprc = message.precision(16) << 1451         G4int oldprc = message.precision(16);
1452         message << "Undefined side for valid     1452         message << "Undefined side for valid surface normal to solid."
1453                 << G4endl                        1453                 << G4endl
1454                 << "Position:"  << G4endl <<     1454                 << "Position:"  << G4endl << G4endl
1455                 << "p.x() = "   << p.x()/mm <    1455                 << "p.x() = "   << p.x()/mm << " mm" << G4endl
1456                 << "p.y() = "   << p.y()/mm <    1456                 << "p.y() = "   << p.y()/mm << " mm" << G4endl
1457                 << "p.z() = "   << p.z()/mm <    1457                 << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl
1458                 << "Direction:" << G4endl <<     1458                 << "Direction:" << G4endl << G4endl
1459                 << "v.x() = "   << v.x() << G    1459                 << "v.x() = "   << v.x() << G4endl
1460                 << "v.y() = "   << v.y() << G    1460                 << "v.y() = "   << v.y() << G4endl
1461                 << "v.z() = "   << v.z() << G    1461                 << "v.z() = "   << v.z() << G4endl << G4endl
1462                 << "Proposed distance :" << G    1462                 << "Proposed distance :" << G4endl << G4endl
1463                 << "snxt = " << snxt/mm << "     1463                 << "snxt = " << snxt/mm << " mm" << G4endl;
1464         message.precision(oldprc);               1464         message.precision(oldprc);
1465         G4Exception("G4Torus::DistanceToOut(p    1465         G4Exception("G4Torus::DistanceToOut(p,v,..)",
1466                     "GeomSolids1002",JustWarn    1466                     "GeomSolids1002",JustWarning, message);
1467         break;                                   1467         break;
1468     }                                            1468     }
1469   }                                              1469   }
1470   if ( snxt<halfCarTolerance )  { snxt=0 ; }     1470   if ( snxt<halfCarTolerance )  { snxt=0 ; }
1471                                                  1471 
1472   return snxt;                                   1472   return snxt;
1473 }                                                1473 }
1474                                                  1474 
1475 /////////////////////////////////////////////    1475 /////////////////////////////////////////////////////////////////////////
1476 //                                               1476 //
1477 // Calculate distance (<=actual) to closest s    1477 // Calculate distance (<=actual) to closest surface of shape from inside
1478                                                  1478 
1479 G4double G4Torus::DistanceToOut( const G4Thre    1479 G4double G4Torus::DistanceToOut( const G4ThreeVector& p ) const
1480 {                                                1480 {
1481   G4double safe=0.0,safeR1,safeR2;               1481   G4double safe=0.0,safeR1,safeR2;
1482   G4double rho,pt ;                           << 1482   G4double rho2,rho,pt2,pt ;
1483   G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;    1483   G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;
1484                                               << 1484   rho2 = p.x()*p.x() + p.y()*p.y() ;
1485   rho = std::hypot(p.x(),p.y());              << 1485   rho  = std::sqrt(rho2) ;
1486   pt  = std::hypot(p.z(),rho-fRtor);          << 1486   pt2  = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ;
1487                                               << 1487   pt   = std::sqrt(pt2) ;
                                                   >> 1488 
1488 #ifdef G4CSGDEBUG                                1489 #ifdef G4CSGDEBUG
1489   if( Inside(p) == kOutside )                    1490   if( Inside(p) == kOutside )
1490   {                                              1491   {
1491      G4long oldprc = G4cout.precision(16) ;   << 1492      G4int oldprc = G4cout.precision(16) ;
1492      G4cout << G4endl ;                          1493      G4cout << G4endl ;
1493      DumpInfo();                                 1494      DumpInfo();
1494      G4cout << "Position:"  << G4endl << G4en    1495      G4cout << "Position:"  << G4endl << G4endl ;
1495      G4cout << "p.x() = "   << p.x()/mm << "     1496      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
1496      G4cout << "p.y() = "   << p.y()/mm << "     1497      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
1497      G4cout << "p.z() = "   << p.z()/mm << "     1498      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
1498      G4cout.precision(oldprc);                   1499      G4cout.precision(oldprc);
1499      G4Exception("G4Torus::DistanceToOut(p)",    1500      G4Exception("G4Torus::DistanceToOut(p)", "GeomSolids1002",
1500                  JustWarning, "Point p is out    1501                  JustWarning, "Point p is outside !?" );
1501   }                                              1502   }
1502 #endif                                           1503 #endif
1503                                                  1504 
1504   if (fRmin != 0.0)                           << 1505   if (fRmin)
1505   {                                              1506   {
1506     safeR1 = pt - fRmin ;                        1507     safeR1 = pt - fRmin ;
1507     safeR2 = fRmax - pt ;                        1508     safeR2 = fRmax - pt ;
1508                                                  1509 
1509     if (safeR1 < safeR2)  { safe = safeR1 ; }    1510     if (safeR1 < safeR2)  { safe = safeR1 ; }
1510     else                  { safe = safeR2 ; }    1511     else                  { safe = safeR2 ; }
1511   }                                              1512   }
1512   else                                           1513   else
1513   {                                              1514   {
1514     safe = fRmax - pt ;                          1515     safe = fRmax - pt ;
1515   }                                              1516   }  
1516                                                  1517 
1517   // Check if phi divided, Calc distances clo    1518   // Check if phi divided, Calc distances closest phi plane
1518   //                                             1519   //
1519   if (fDPhi < twopi) // Above/below central p << 1520   if (fDPhi<twopi) // Above/below central phi of Torus?
1520   {                                              1521   {
1521     phiC    = fSPhi + fDPhi*0.5 ;                1522     phiC    = fSPhi + fDPhi*0.5 ;
1522     cosPhiC = std::cos(phiC) ;                   1523     cosPhiC = std::cos(phiC) ;
1523     sinPhiC = std::sin(phiC) ;                   1524     sinPhiC = std::sin(phiC) ;
1524                                                  1525 
1525     if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)        1526     if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)
1526     {                                            1527     {
1527       safePhi = -(p.x()*std::sin(fSPhi) - p.y    1528       safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1528     }                                            1529     }
1529     else                                         1530     else
1530     {                                            1531     {
1531       ePhi    = fSPhi + fDPhi ;                  1532       ePhi    = fSPhi + fDPhi ;
1532       safePhi = (p.x()*std::sin(ePhi) - p.y()    1533       safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1533     }                                            1534     }
1534     if (safePhi < safe)  { safe = safePhi ; }    1535     if (safePhi < safe)  { safe = safePhi ; }
1535   }                                              1536   }
1536   if (safe < 0)  { safe = 0 ; }                  1537   if (safe < 0)  { safe = 0 ; }
1537   return safe ;                                  1538   return safe ;  
1538 }                                                1539 }
1539                                                  1540 
                                                   >> 1541 /////////////////////////////////////////////////////////////////////////////
                                                   >> 1542 //
                                                   >> 1543 // Create a List containing the transformed vertices
                                                   >> 1544 // Ordering [0-3] -fRtor cross section
                                                   >> 1545 //          [4-7] +fRtor cross section such that [0] is below [4],
                                                   >> 1546 //                                             [1] below [5] etc.
                                                   >> 1547 // Note:
                                                   >> 1548 //  Caller has deletion resposibility
                                                   >> 1549 //  Potential improvement: For last slice, use actual ending angle
                                                   >> 1550 //                         to avoid rounding error problems.
                                                   >> 1551 
                                                   >> 1552 G4ThreeVectorList*
                                                   >> 1553 G4Torus::CreateRotatedVertices( const G4AffineTransform& pTransform,
                                                   >> 1554                                       G4int& noPolygonVertices ) const
                                                   >> 1555 {
                                                   >> 1556   G4ThreeVectorList *vertices;
                                                   >> 1557   G4ThreeVector vertex0,vertex1,vertex2,vertex3;
                                                   >> 1558   G4double meshAngle,meshRMax,crossAngle,cosCrossAngle,sinCrossAngle,sAngle;
                                                   >> 1559   G4double rMaxX,rMaxY,rMinX,rMinY;
                                                   >> 1560   G4int crossSection,noCrossSections;
                                                   >> 1561 
                                                   >> 1562   // Compute no of cross-sections necessary to mesh tube
                                                   >> 1563   //
                                                   >> 1564   noCrossSections = G4int (fDPhi/kMeshAngleDefault) + 1 ;
                                                   >> 1565 
                                                   >> 1566   if (noCrossSections < kMinMeshSections)
                                                   >> 1567   {
                                                   >> 1568     noCrossSections = kMinMeshSections ;
                                                   >> 1569   }
                                                   >> 1570   else if (noCrossSections>kMaxMeshSections)
                                                   >> 1571   {
                                                   >> 1572     noCrossSections=kMaxMeshSections;
                                                   >> 1573   }
                                                   >> 1574   meshAngle = fDPhi/(noCrossSections - 1) ;
                                                   >> 1575   meshRMax  = (fRtor + fRmax)/std::cos(meshAngle*0.5) ;
                                                   >> 1576 
                                                   >> 1577   // If complete in phi, set start angle such that mesh will be at fRmax
                                                   >> 1578   // on the x axis. Will give better extent calculations when not rotated
                                                   >> 1579 
                                                   >> 1580   if ( (fDPhi == twopi) && (fSPhi == 0) )
                                                   >> 1581   {
                                                   >> 1582     sAngle = -meshAngle*0.5 ;
                                                   >> 1583   }
                                                   >> 1584   else
                                                   >> 1585   {
                                                   >> 1586     sAngle = fSPhi ;
                                                   >> 1587   }
                                                   >> 1588   vertices = new G4ThreeVectorList();
                                                   >> 1589   
                                                   >> 1590   if (vertices)
                                                   >> 1591   {
                                                   >> 1592     vertices->reserve(noCrossSections*4) ;
                                                   >> 1593     for (crossSection=0;crossSection<noCrossSections;crossSection++)
                                                   >> 1594     {
                                                   >> 1595       // Compute coordinates of cross section at section crossSection
                                                   >> 1596 
                                                   >> 1597       crossAngle=sAngle+crossSection*meshAngle;
                                                   >> 1598       cosCrossAngle=std::cos(crossAngle);
                                                   >> 1599       sinCrossAngle=std::sin(crossAngle);
                                                   >> 1600 
                                                   >> 1601       rMaxX=meshRMax*cosCrossAngle;
                                                   >> 1602       rMaxY=meshRMax*sinCrossAngle;
                                                   >> 1603       rMinX=(fRtor-fRmax)*cosCrossAngle;
                                                   >> 1604       rMinY=(fRtor-fRmax)*sinCrossAngle;
                                                   >> 1605       vertex0=G4ThreeVector(rMinX,rMinY,-fRmax);
                                                   >> 1606       vertex1=G4ThreeVector(rMaxX,rMaxY,-fRmax);
                                                   >> 1607       vertex2=G4ThreeVector(rMaxX,rMaxY,+fRmax);
                                                   >> 1608       vertex3=G4ThreeVector(rMinX,rMinY,+fRmax);
                                                   >> 1609 
                                                   >> 1610       vertices->push_back(pTransform.TransformPoint(vertex0));
                                                   >> 1611       vertices->push_back(pTransform.TransformPoint(vertex1));
                                                   >> 1612       vertices->push_back(pTransform.TransformPoint(vertex2));
                                                   >> 1613       vertices->push_back(pTransform.TransformPoint(vertex3));
                                                   >> 1614     }
                                                   >> 1615     noPolygonVertices = 4 ;
                                                   >> 1616   }
                                                   >> 1617   else
                                                   >> 1618   {
                                                   >> 1619     DumpInfo();
                                                   >> 1620     G4Exception("G4Torus::CreateRotatedVertices()",
                                                   >> 1621                 "GeomSolids0003", FatalException,
                                                   >> 1622                 "Error in allocation of vertices. Out of memory !");
                                                   >> 1623   }
                                                   >> 1624   return vertices;
                                                   >> 1625 }
                                                   >> 1626 
1540 /////////////////////////////////////////////    1627 //////////////////////////////////////////////////////////////////////////
1541 //                                               1628 //
1542 // Stream object contents to an output stream    1629 // Stream object contents to an output stream
1543                                                  1630 
1544 G4GeometryType G4Torus::GetEntityType() const    1631 G4GeometryType G4Torus::GetEntityType() const
1545 {                                                1632 {
1546   return {"G4Torus"};                         << 1633   return G4String("G4Torus");
1547 }                                                1634 }
1548                                                  1635 
1549 /////////////////////////////////////////////    1636 //////////////////////////////////////////////////////////////////////////
1550 //                                               1637 //
1551 // Make a clone of the object                    1638 // Make a clone of the object
1552 //                                               1639 //
1553 G4VSolid* G4Torus::Clone() const                 1640 G4VSolid* G4Torus::Clone() const
1554 {                                                1641 {
1555   return new G4Torus(*this);                     1642   return new G4Torus(*this);
1556 }                                                1643 }
1557                                                  1644 
1558 /////////////////////////////////////////////    1645 //////////////////////////////////////////////////////////////////////////
1559 //                                               1646 //
1560 // Stream object contents to an output stream    1647 // Stream object contents to an output stream
1561                                                  1648 
1562 std::ostream& G4Torus::StreamInfo( std::ostre    1649 std::ostream& G4Torus::StreamInfo( std::ostream& os ) const
1563 {                                                1650 {
1564   G4long oldprc = os.precision(16);           << 1651   G4int oldprc = os.precision(16);
1565   os << "------------------------------------    1652   os << "-----------------------------------------------------------\n"
1566      << "    *** Dump for solid - " << GetNam    1653      << "    *** Dump for solid - " << GetName() << " ***\n"
1567      << "    ================================    1654      << "    ===================================================\n"
1568      << " Solid type: G4Torus\n"                 1655      << " Solid type: G4Torus\n"
1569      << " Parameters: \n"                        1656      << " Parameters: \n"
1570      << "    inner radius: " << fRmin/mm << "    1657      << "    inner radius: " << fRmin/mm << " mm \n"
1571      << "    outer radius: " << fRmax/mm << "    1658      << "    outer radius: " << fRmax/mm << " mm \n"
1572      << "    swept radius: " << fRtor/mm << "    1659      << "    swept radius: " << fRtor/mm << " mm \n"
1573      << "    starting phi: " << fSPhi/degree     1660      << "    starting phi: " << fSPhi/degree << " degrees \n"
1574      << "    delta phi   : " << fDPhi/degree     1661      << "    delta phi   : " << fDPhi/degree << " degrees \n"
1575      << "------------------------------------    1662      << "-----------------------------------------------------------\n";
1576   os.precision(oldprc);                          1663   os.precision(oldprc);
1577                                                  1664 
1578   return os;                                     1665   return os;
1579 }                                                1666 }
1580                                                  1667 
1581 /////////////////////////////////////////////    1668 ////////////////////////////////////////////////////////////////////////////
1582 //                                               1669 //
1583 // GetPointOnSurface                             1670 // GetPointOnSurface
1584                                                  1671 
1585 G4ThreeVector G4Torus::GetPointOnSurface() co    1672 G4ThreeVector G4Torus::GetPointOnSurface() const
1586 {                                                1673 {
1587   G4double cosu, sinu,cosv, sinv, aOut, aIn,     1674   G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand;
1588                                                  1675    
1589   phi   = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi << 1676   phi   = RandFlat::shoot(fSPhi,fSPhi+fDPhi);
1590   theta = G4RandFlat::shoot(0.,twopi);        << 1677   theta = RandFlat::shoot(0.,twopi);
1591                                                  1678   
1592   cosu   = std::cos(phi);    sinu = std::sin(    1679   cosu   = std::cos(phi);    sinu = std::sin(phi);
1593   cosv   = std::cos(theta);  sinv = std::sin(    1680   cosv   = std::cos(theta);  sinv = std::sin(theta); 
1594                                                  1681 
1595   // compute the areas                           1682   // compute the areas
1596                                                  1683 
1597   aOut   = (fDPhi)*twopi*fRtor*fRmax;            1684   aOut   = (fDPhi)*twopi*fRtor*fRmax;
1598   aIn    = (fDPhi)*twopi*fRtor*fRmin;            1685   aIn    = (fDPhi)*twopi*fRtor*fRmin;
1599   aSide  = pi*(fRmax*fRmax-fRmin*fRmin);         1686   aSide  = pi*(fRmax*fRmax-fRmin*fRmin);
1600                                                  1687   
1601   if ((fSPhi == 0) && (fDPhi == twopi)){ aSid    1688   if ((fSPhi == 0) && (fDPhi == twopi)){ aSide = 0; }
1602   chose = G4RandFlat::shoot(0.,aOut + aIn + 2 << 1689   chose = RandFlat::shoot(0.,aOut + aIn + 2.*aSide);
1603                                                  1690 
1604   if(chose < aOut)                               1691   if(chose < aOut)
1605   {                                              1692   {
1606     return { (fRtor+fRmax*cosv)*cosu, (fRtor+ << 1693     return G4ThreeVector ((fRtor+fRmax*cosv)*cosu,
                                                   >> 1694                           (fRtor+fRmax*cosv)*sinu, fRmax*sinv);
1607   }                                              1695   }
1608   else if( (chose >= aOut) && (chose < aOut +    1696   else if( (chose >= aOut) && (chose < aOut + aIn) )
1609   {                                              1697   {
1610     return { (fRtor+fRmin*cosv)*cosu, (fRtor+ << 1698     return G4ThreeVector ((fRtor+fRmin*cosv)*cosu,
                                                   >> 1699                           (fRtor+fRmin*cosv)*sinu, fRmin*sinv);
1611   }                                              1700   }
1612   else if( (chose >= aOut + aIn) && (chose <     1701   else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) )
1613   {                                              1702   {
1614     rRand = GetRadiusInRing(fRmin,fRmax);     << 1703     rRand = RandFlat::shoot(fRmin,fRmax);
1615     return { (fRtor+rRand*cosv)*std::cos(fSPh << 1704     return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi),
1616              (fRtor+rRand*cosv)*std::sin(fSPh << 1705                           (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv);
1617   }                                              1706   }
1618   else                                           1707   else
1619   {                                              1708   {   
1620     rRand = GetRadiusInRing(fRmin,fRmax);     << 1709     rRand = RandFlat::shoot(fRmin,fRmax);
1621     return { (fRtor+rRand*cosv)*std::cos(fSPh << 1710     return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi),
1622              (fRtor+rRand*cosv)*std::sin(fSPh << 1711                           (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi), 
                                                   >> 1712                           rRand*sinv);
1623    }                                             1713    }
1624 }                                                1714 }
1625                                                  1715 
1626 /////////////////////////////////////////////    1716 ///////////////////////////////////////////////////////////////////////
1627 //                                               1717 //
1628 // Visualisation Functions                       1718 // Visualisation Functions
1629                                                  1719 
1630 void G4Torus::DescribeYourselfTo ( G4VGraphic    1720 void G4Torus::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
1631 {                                                1721 {
1632   scene.AddSolid (*this);                        1722   scene.AddSolid (*this);
1633 }                                                1723 }
1634                                                  1724 
1635 G4Polyhedron* G4Torus::CreatePolyhedron () co    1725 G4Polyhedron* G4Torus::CreatePolyhedron () const 
1636 {                                                1726 {
1637   return new G4PolyhedronTorus (fRmin, fRmax,    1727   return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi);
1638 }                                                1728 }
1639                                                  1729 
1640 #endif // !defined(G4GEOM_USE_TORUS) || !defi << 1730 G4NURBS* G4Torus::CreateNURBS () const 
                                                   >> 1731 {
                                                   >> 1732   G4NURBS* pNURBS;
                                                   >> 1733   if (fRmin != 0) 
                                                   >> 1734   {
                                                   >> 1735     if (fDPhi >= twopi) 
                                                   >> 1736     {
                                                   >> 1737       pNURBS = new G4NURBStube(fRmin, fRmax, fRtor);
                                                   >> 1738     }
                                                   >> 1739     else 
                                                   >> 1740     {
                                                   >> 1741       pNURBS = new G4NURBStubesector(fRmin, fRmax, fRtor, fSPhi, fSPhi + fDPhi);
                                                   >> 1742     }
                                                   >> 1743   }
                                                   >> 1744   else 
                                                   >> 1745   {
                                                   >> 1746     if (fDPhi >= twopi) 
                                                   >> 1747     {
                                                   >> 1748       pNURBS = new G4NURBScylinder (fRmax, fRtor);
                                                   >> 1749     }
                                                   >> 1750     else 
                                                   >> 1751     {
                                                   >> 1752       const G4double epsilon = 1.e-4; // Cylinder sector not yet available!
                                                   >> 1753       pNURBS = new G4NURBStubesector (epsilon, fRmax, fRtor,
                                                   >> 1754                                       fSPhi, fSPhi + fDPhi);
                                                   >> 1755     }
                                                   >> 1756   }
                                                   >> 1757   return pNURBS;
                                                   >> 1758 }
1641                                                  1759