Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Torus implementation << 27 // 26 // 28 // 30.10.96 V.Grichine: first implementation w << 27 // $Id: G4Torus.cc,v 1.71 2010-10-19 15:42:10 gcosmo Exp $ 29 // 26.05.00 V.Grichine: added new fuctions dev << 28 // GEANT4 tag $Name: geant4-09-04-patch-02 $ 30 // 31.08.00 E.Medernach: numerical computation << 29 // 31 // 11.01.01 E.Medernach: Use G4PolynomialSolve << 30 // 32 // 03.05.05 V.Grichine: SurfaceNormal(p) accor << 31 // class G4Torus >> 32 // >> 33 // Implementation >> 34 // >> 35 // 02.10.07 T.Nikitina: Bug fixed in SolveNumericJT(), b.969:segmentation fault. >> 36 // rootsrefined is used only if the number of refined roots >> 37 // is the same as for primary roots. >> 38 // 02.10.07 T.Nikitina: Bug fixed in CalculateExtent() for case of non-rotated >> 39 // full-phi torus:protect against negative value for sqrt, >> 40 // correct formula for delta. >> 41 // 20.11.05 V.Grichine: Bug fixed in Inside(p) for phi sections, b.810 33 // 25.08.05 O.Link: new methods for DistanceTo 42 // 25.08.05 O.Link: new methods for DistanceToIn/Out using JTPolynomialSolver 34 // 28.10.16 E.Tcherniaev: new CalculateExtent( << 43 // 07.06.05 V.Grichine: SurfaceNormal(p) for rho=0, Constructor as G4Cons 35 // 16.12.16 H.Burkhardt: use radius difference << 44 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal 36 // ------------------------------------------- << 45 // 18.03.04 V.Grichine: bug fixed in DistanceToIn(p) >> 46 // 11.01.01 E.Medernach: Use G4PolynomialSolver to find roots >> 47 // 03.10.00 E.Medernach: SafeNewton added >> 48 // 31.08.00 E.Medernach: numerical computation of roots wuth bounding >> 49 // volume technique >> 50 // 26.05.00 V.Grichine: new fuctions developed by O.Cremonesi were added >> 51 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...) >> 52 // 19.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...) >> 53 // 09.10.98 V.Grichine: modifications in Distance ToOut(p,v,...) >> 54 // 30.10.96 V.Grichine: first implementation with G4Tubs elements in Fs >> 55 // 37 56 38 #include "G4Torus.hh" 57 #include "G4Torus.hh" 39 58 40 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4 << 41 << 42 #include "G4GeomTools.hh" << 43 #include "G4VoxelLimits.hh" 59 #include "G4VoxelLimits.hh" 44 #include "G4AffineTransform.hh" 60 #include "G4AffineTransform.hh" 45 #include "G4BoundingEnvelope.hh" << 46 #include "G4GeometryTolerance.hh" 61 #include "G4GeometryTolerance.hh" 47 #include "G4JTPolynomialSolver.hh" 62 #include "G4JTPolynomialSolver.hh" 48 63 49 #include "G4VPVParameterisation.hh" 64 #include "G4VPVParameterisation.hh" 50 65 51 #include "meshdefs.hh" 66 #include "meshdefs.hh" 52 67 53 #include "Randomize.hh" 68 #include "Randomize.hh" 54 69 55 #include "G4VGraphicsScene.hh" 70 #include "G4VGraphicsScene.hh" 56 #include "G4Polyhedron.hh" 71 #include "G4Polyhedron.hh" >> 72 #include "G4NURBS.hh" >> 73 #include "G4NURBStube.hh" >> 74 #include "G4NURBScylinder.hh" >> 75 #include "G4NURBStubesector.hh" 57 76 58 using namespace CLHEP; 77 using namespace CLHEP; 59 78 60 ////////////////////////////////////////////// 79 /////////////////////////////////////////////////////////////// 61 // 80 // 62 // Constructor - check parameters, convert ang 81 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 63 // - note if pdphi>2PI then reset 82 // - note if pdphi>2PI then reset to 2PI 64 83 65 G4Torus::G4Torus( const G4String& pName, << 84 G4Torus::G4Torus( const G4String &pName, 66 G4double pRmin, 85 G4double pRmin, 67 G4double pRmax, 86 G4double pRmax, 68 G4double pRtor, 87 G4double pRtor, 69 G4double pSPhi, 88 G4double pSPhi, 70 G4double pDPhi ) << 89 G4double pDPhi) 71 : G4CSGSolid(pName) 90 : G4CSGSolid(pName) 72 { 91 { 73 SetAllParameters(pRmin, pRmax, pRtor, pSPhi, 92 SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi); 74 } 93 } 75 94 76 ////////////////////////////////////////////// 95 //////////////////////////////////////////////////////////////////////////// 77 // 96 // 78 // 97 // 79 98 80 void 99 void 81 G4Torus::SetAllParameters( G4double pRmin, 100 G4Torus::SetAllParameters( G4double pRmin, 82 G4double pRmax, 101 G4double pRmax, 83 G4double pRtor, 102 G4double pRtor, 84 G4double pSPhi, 103 G4double pSPhi, 85 G4double pDPhi ) 104 G4double pDPhi ) 86 { 105 { 87 const G4double fEpsilon = 4.e-11; // relati 106 const G4double fEpsilon = 4.e-11; // relative tolerance of radii 88 107 89 fCubicVolume = 0.; 108 fCubicVolume = 0.; 90 fSurfaceArea = 0.; 109 fSurfaceArea = 0.; 91 fRebuildPolyhedron = true; << 110 fpPolyhedron = 0; 92 111 93 kRadTolerance = G4GeometryTolerance::GetInst 112 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 94 kAngTolerance = G4GeometryTolerance::GetInst 113 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 95 << 114 96 halfCarTolerance = 0.5*kCarTolerance; << 97 halfAngTolerance = 0.5*kAngTolerance; << 98 << 99 if ( pRtor >= pRmax+1.e3*kCarTolerance ) // 115 if ( pRtor >= pRmax+1.e3*kCarTolerance ) // Check swept radius, as in G4Cons 100 { 116 { 101 fRtor = pRtor ; 117 fRtor = pRtor ; 102 } 118 } 103 else 119 else 104 { 120 { 105 std::ostringstream message; << 121 G4cerr << "ERROR - G4Torus()::SetAllParameters(): " << GetName() << G4endl 106 message << "Invalid swept radius for Solid << 122 << " Invalid swept radius !" << G4endl 107 << " pRtor = " << pRtor << << 123 << "pRtor = " << pRtor << ", pRmax = " << pRmax << G4endl; 108 G4Exception("G4Torus::SetAllParameters()", 124 G4Exception("G4Torus::SetAllParameters()", 109 "GeomSolids0002", FatalExcepti << 125 "InvalidSetup", FatalException, "Invalid swept radius."); 110 } 126 } 111 127 112 // Check radii, as in G4Cons 128 // Check radii, as in G4Cons 113 // 129 // 114 if ( pRmin < pRmax - 1.e2*kCarTolerance && p 130 if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 ) 115 { 131 { 116 if (pRmin >= 1.e2*kCarTolerance) { fRmin = 132 if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; } 117 else { fRmin = 133 else { fRmin = 0.0 ; } 118 fRmax = pRmax ; 134 fRmax = pRmax ; 119 } 135 } 120 else 136 else 121 { 137 { 122 std::ostringstream message; << 138 G4cerr << "ERROR - G4Torus()::SetAllParameters(): " << GetName() << G4endl 123 message << "Invalid values of radii for So << 139 << " Invalid values for radii !" << G4endl 124 << " pRmin = " << pRmin << << 140 << " pRmin = " << pRmin << ", pRmax = " << pRmax << G4endl; 125 G4Exception("G4Torus::SetAllParameters()", 141 G4Exception("G4Torus::SetAllParameters()", 126 "GeomSolids0002", FatalExcepti << 142 "InvalidSetup", FatalException, "Invalid radii."); 127 } 143 } 128 144 129 // Relative tolerances 145 // Relative tolerances 130 // 146 // 131 fRminTolerance = (fRmin) != 0.0 << 147 fRminTolerance = (fRmin) 132 ? 0.5*std::max( kRadTolerance 148 ? 0.5*std::max( kRadTolerance, fEpsilon*(fRtor-fRmin )) : 0; 133 fRmaxTolerance = 0.5*std::max( kRadTolerance 149 fRmaxTolerance = 0.5*std::max( kRadTolerance, fEpsilon*(fRtor+fRmax) ); 134 150 135 // Check angles 151 // Check angles 136 // 152 // 137 if ( pDPhi >= twopi ) { fDPhi = twopi ; } 153 if ( pDPhi >= twopi ) { fDPhi = twopi ; } 138 else 154 else 139 { 155 { 140 if (pDPhi > 0) { fDPhi = pDPhi ; } 156 if (pDPhi > 0) { fDPhi = pDPhi ; } 141 else 157 else 142 { 158 { 143 std::ostringstream message; << 159 G4cerr << "ERROR - G4Torus::SetAllParameters(): " << GetName() << G4endl 144 message << "Invalid Z delta-Phi for Soli << 160 << " Negative Z delta-Phi ! - " 145 << " pDPhi = " << pDPhi; << 161 << pDPhi << G4endl; 146 G4Exception("G4Torus::SetAllParameters() 162 G4Exception("G4Torus::SetAllParameters()", 147 "GeomSolids0002", FatalExcep << 163 "InvalidSetup", FatalException, "Invalid dphi."); 148 } 164 } 149 } 165 } 150 166 151 // Ensure psphi in 0-2PI or -2PI-0 range if 167 // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0 152 // 168 // 153 fSPhi = pSPhi; 169 fSPhi = pSPhi; 154 170 155 if (fSPhi < 0) { fSPhi = twopi-std::fmod(st 171 if (fSPhi < 0) { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; } 156 else { fSPhi = std::fmod(fSPhi,tw 172 else { fSPhi = std::fmod(fSPhi,twopi) ; } 157 173 158 if (fSPhi+fDPhi > twopi) { fSPhi-=twopi ; } 174 if (fSPhi+fDPhi > twopi) { fSPhi-=twopi ; } 159 } 175 } 160 176 161 ////////////////////////////////////////////// 177 /////////////////////////////////////////////////////////////////////// 162 // 178 // 163 // Fake default constructor - sets only member 179 // Fake default constructor - sets only member data and allocates memory 164 // for usage restri 180 // for usage restricted to object persistency. 165 // 181 // 166 G4Torus::G4Torus( __void__& a ) 182 G4Torus::G4Torus( __void__& a ) 167 : G4CSGSolid(a) << 183 : G4CSGSolid(a), fRmin(0.), fRmax(0.), fRtor(0.), fSPhi(0.), >> 184 fDPhi(0.), fRminTolerance(0.), fRmaxTolerance(0. ), >> 185 kRadTolerance(0.), kAngTolerance(0.) 168 { 186 { 169 } 187 } 170 188 171 ////////////////////////////////////////////// 189 ////////////////////////////////////////////////////////////////////// 172 // 190 // 173 // Destructor 191 // Destructor 174 192 175 G4Torus::~G4Torus() = default; << 193 G4Torus::~G4Torus() >> 194 {} 176 195 177 ////////////////////////////////////////////// 196 ////////////////////////////////////////////////////////////////////////// 178 // 197 // 179 // Copy constructor 198 // Copy constructor 180 199 181 G4Torus::G4Torus(const G4Torus&) = default; << 200 G4Torus::G4Torus(const G4Torus& rhs) >> 201 : G4CSGSolid(rhs), fRmin(rhs.fRmin),fRmax(rhs.fRmax), >> 202 fRtor(rhs.fRtor),fSPhi(rhs.fSPhi),fDPhi(rhs.fDPhi), >> 203 fRminTolerance(rhs.fRminTolerance), fRmaxTolerance(rhs.fRmaxTolerance), >> 204 kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance) >> 205 { >> 206 } 182 207 183 ////////////////////////////////////////////// 208 ////////////////////////////////////////////////////////////////////////// 184 // 209 // 185 // Assignment operator 210 // Assignment operator 186 211 187 G4Torus& G4Torus::operator = (const G4Torus& r 212 G4Torus& G4Torus::operator = (const G4Torus& rhs) 188 { 213 { 189 // Check assignment to self 214 // Check assignment to self 190 // 215 // 191 if (this == &rhs) { return *this; } 216 if (this == &rhs) { return *this; } 192 217 193 // Copy base class data 218 // Copy base class data 194 // 219 // 195 G4CSGSolid::operator=(rhs); 220 G4CSGSolid::operator=(rhs); 196 221 197 // Copy data 222 // Copy data 198 // 223 // 199 fRmin = rhs.fRmin; fRmax = rhs.fRmax; 224 fRmin = rhs.fRmin; fRmax = rhs.fRmax; 200 fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi 225 fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 201 fRminTolerance = rhs.fRminTolerance; fRmaxT 226 fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance; 202 kRadTolerance = rhs.kRadTolerance; kAngTole 227 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 203 halfCarTolerance = rhs.halfCarTolerance; << 204 halfAngTolerance = rhs.halfAngTolerance; << 205 228 206 return *this; 229 return *this; 207 } 230 } 208 231 209 ////////////////////////////////////////////// 232 ////////////////////////////////////////////////////////////////////// 210 // 233 // 211 // Dispatch to parameterisation for replicatio 234 // Dispatch to parameterisation for replication mechanism dimension 212 // computation & modification. 235 // computation & modification. 213 236 214 void G4Torus::ComputeDimensions( G4VPVPa 237 void G4Torus::ComputeDimensions( G4VPVParameterisation* p, 215 const G4int n 238 const G4int n, 216 const G4VPhys 239 const G4VPhysicalVolume* pRep ) 217 { 240 { 218 p->ComputeDimensions(*this,n,pRep); 241 p->ComputeDimensions(*this,n,pRep); 219 } 242 } 220 243 221 244 222 245 223 ////////////////////////////////////////////// 246 //////////////////////////////////////////////////////////////////////////////// 224 // 247 // 225 // Calculate the real roots to torus surface. 248 // Calculate the real roots to torus surface. 226 // Returns negative solutions as well. 249 // Returns negative solutions as well. 227 250 228 void G4Torus::TorusRootsJT( const G4ThreeVecto 251 void G4Torus::TorusRootsJT( const G4ThreeVector& p, 229 const G4ThreeVecto 252 const G4ThreeVector& v, 230 G4double r, 253 G4double r, 231 std::vector< 254 std::vector<G4double>& roots ) const 232 { 255 { 233 256 234 G4int i, num ; 257 G4int i, num ; 235 G4double c[5], srd[4], si[4] ; << 258 G4double c[5], sr[4], si[4] ; 236 259 237 G4double Rtor2 = fRtor*fRtor, r2 = r*r ; 260 G4double Rtor2 = fRtor*fRtor, r2 = r*r ; 238 261 239 G4double pDotV = p.x()*v.x() + p.y()*v.y() + 262 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ; 240 G4double pRad2 = p.x()*p.x() + p.y()*p.y() + 263 G4double pRad2 = p.x()*p.x() + p.y()*p.y() + p.z()*p.z() ; 241 264 242 G4double d=pRad2 - Rtor2; << 243 c[0] = 1.0 ; 265 c[0] = 1.0 ; 244 c[1] = 4*pDotV ; 266 c[1] = 4*pDotV ; 245 c[2] = 2*( (d + 2*pDotV*pDotV - r2) + 2*Rto << 267 c[2] = 2*(pRad2 + 2*pDotV*pDotV - Rtor2 - r2 + 2*Rtor2*v.z()*v.z()) ; 246 c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z << 268 c[3] = 4*(pDotV*(pRad2 - Rtor2 - r2) + 2*Rtor2*p.z()*v.z()) ; 247 c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r << 269 c[4] = pRad2*pRad2 - 2*pRad2*(Rtor2+r2) 248 << 270 + 4*Rtor2*p.z()*p.z() + (Rtor2-r2)*(Rtor2-r2) ; >> 271 249 G4JTPolynomialSolver torusEq; 272 G4JTPolynomialSolver torusEq; 250 273 251 num = torusEq.FindRoots( c, 4, srd, si ); << 274 num = torusEq.FindRoots( c, 4, sr, si ); 252 275 253 for ( i = 0; i < num; ++i ) << 276 for ( i = 0; i < num; i++ ) 254 { 277 { 255 if( si[i] == 0. ) { roots.push_back(srd[i << 278 if( si[i] == 0. ) { roots.push_back(sr[i]) ; } // store real roots 256 } 279 } 257 280 258 std::sort(roots.begin() , roots.end() ) ; / 281 std::sort(roots.begin() , roots.end() ) ; // sorting with < 259 } 282 } 260 283 261 ////////////////////////////////////////////// 284 ////////////////////////////////////////////////////////////////////////////// 262 // 285 // 263 // Interface for DistanceToIn and DistanceToOu 286 // Interface for DistanceToIn and DistanceToOut. 264 // Calls TorusRootsJT and returns the smalles 287 // Calls TorusRootsJT and returns the smalles possible distance to 265 // the surface. 288 // the surface. 266 // Attention: Difference in DistanceToIn/Out f 289 // Attention: Difference in DistanceToIn/Out for points p on the surface. 267 290 268 G4double G4Torus::SolveNumericJT( const G4Thre 291 G4double G4Torus::SolveNumericJT( const G4ThreeVector& p, 269 const G4Thre 292 const G4ThreeVector& v, 270 G4doub 293 G4double r, 271 G4bool 294 G4bool IsDistanceToIn ) const 272 { 295 { 273 G4double bigdist = 10*mm ; 296 G4double bigdist = 10*mm ; 274 G4double tmin = kInfinity ; 297 G4double tmin = kInfinity ; 275 G4double t, scal ; 298 G4double t, scal ; >> 299 static const G4double halfCarTolerance = 0.5*kCarTolerance; >> 300 static const G4double halfAngTolerance = 0.5*kAngTolerance; 276 301 277 // calculate the distances to the intersecti 302 // calculate the distances to the intersections with the Torus 278 // from a given point p and direction v. 303 // from a given point p and direction v. 279 // 304 // 280 std::vector<G4double> roots ; 305 std::vector<G4double> roots ; 281 std::vector<G4double> rootsrefined ; 306 std::vector<G4double> rootsrefined ; 282 TorusRootsJT(p,v,r,roots) ; 307 TorusRootsJT(p,v,r,roots) ; 283 308 284 G4ThreeVector ptmp ; 309 G4ThreeVector ptmp ; 285 310 286 // determine the smallest non-negative solut 311 // determine the smallest non-negative solution 287 // 312 // 288 for ( std::size_t k = 0 ; k<roots.size() ; + << 313 for ( size_t k = 0 ; k<roots.size() ; k++ ) 289 { 314 { 290 t = roots[k] ; 315 t = roots[k] ; 291 316 292 if ( t < -halfCarTolerance ) { continue ; 317 if ( t < -halfCarTolerance ) { continue ; } // skip negative roots 293 318 294 if ( t > bigdist && t<kInfinity ) // pr 319 if ( t > bigdist && t<kInfinity ) // problem with big distances 295 { 320 { 296 ptmp = p + t*v ; 321 ptmp = p + t*v ; 297 TorusRootsJT(ptmp,v,r,rootsrefined) ; 322 TorusRootsJT(ptmp,v,r,rootsrefined) ; 298 if ( rootsrefined.size()==roots.size() ) 323 if ( rootsrefined.size()==roots.size() ) 299 { 324 { 300 t = t + rootsrefined[k] ; 325 t = t + rootsrefined[k] ; 301 } 326 } 302 } 327 } 303 328 304 ptmp = p + t*v ; // calculate the positi 329 ptmp = p + t*v ; // calculate the position of the proposed intersection 305 330 306 G4double theta = std::atan2(ptmp.y(),ptmp. 331 G4double theta = std::atan2(ptmp.y(),ptmp.x()); 307 332 308 if ( fSPhi >= 0 ) 333 if ( fSPhi >= 0 ) 309 { 334 { 310 if ( theta < - halfAngTolerance ) { the 335 if ( theta < - halfAngTolerance ) { theta += twopi; } 311 if ( (std::fabs(theta) < halfAngToleranc 336 if ( (std::fabs(theta) < halfAngTolerance) 312 && (std::fabs(fSPhi + fDPhi - twopi) < 337 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 313 { 338 { 314 theta += twopi ; // 0 <= theta < 2pi 339 theta += twopi ; // 0 <= theta < 2pi 315 } 340 } 316 } 341 } 317 if ((fSPhi <= -pi )&&(theta>halfAngToleran 342 if ((fSPhi <= -pi )&&(theta>halfAngTolerance)) { theta = theta-twopi; } 318 343 319 // We have to verify if this root is insid 344 // We have to verify if this root is inside the region between 320 // fSPhi and fSPhi + fDPhi 345 // fSPhi and fSPhi + fDPhi 321 // 346 // 322 if ( (theta - fSPhi >= - halfAngTolerance) 347 if ( (theta - fSPhi >= - halfAngTolerance) 323 && (theta - (fSPhi + fDPhi) <= halfAngT 348 && (theta - (fSPhi + fDPhi) <= halfAngTolerance) ) 324 { 349 { 325 // check if P is on the surface, and cal 350 // check if P is on the surface, and called from DistanceToIn 326 // DistanceToIn has to return 0.0 if par 351 // DistanceToIn has to return 0.0 if particle is going inside the solid 327 352 328 if ( IsDistanceToIn ) << 353 if ( IsDistanceToIn == true ) 329 { 354 { 330 if (std::fabs(t) < halfCarTolerance ) 355 if (std::fabs(t) < halfCarTolerance ) 331 { 356 { 332 // compute scalar product at positio 357 // compute scalar product at position p : v.n 333 // ( n taken from SurfaceNormal, not 358 // ( n taken from SurfaceNormal, not normalized ) 334 359 335 scal = v* G4ThreeVector( p.x()*(1-fR << 360 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::sqrt(p.x()*p.x() 336 p.y()*(1-fR << 361 + p.y()*p.y())), >> 362 p.y()*(1-fRtor/std::sqrt(p.x()*p.x() >> 363 + p.y()*p.y())), 337 p.z() ); 364 p.z() ); 338 365 339 // change sign in case of inner radi 366 // change sign in case of inner radius 340 // 367 // 341 if ( r == GetRmin() ) { scal = -sca 368 if ( r == GetRmin() ) { scal = -scal ; } 342 if ( scal < 0 ) { return 0.0 ; } 369 if ( scal < 0 ) { return 0.0 ; } 343 } 370 } 344 } 371 } 345 372 346 // check if P is on the surface, and cal 373 // check if P is on the surface, and called from DistanceToOut 347 // DistanceToIn has to return 0.0 if par 374 // DistanceToIn has to return 0.0 if particle is leaving the solid 348 375 349 if ( !IsDistanceToIn ) << 376 if ( IsDistanceToIn == false ) 350 { 377 { 351 if (std::fabs(t) < halfCarTolerance ) 378 if (std::fabs(t) < halfCarTolerance ) 352 { 379 { 353 // compute scalar product at positio 380 // compute scalar product at position p : v.n 354 // 381 // 355 scal = v* G4ThreeVector( p.x()*(1-fR << 382 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::sqrt(p.x()*p.x() 356 p.y()*(1-fR << 383 + p.y()*p.y())), >> 384 p.y()*(1-fRtor/std::sqrt(p.x()*p.x() >> 385 + p.y()*p.y())), 357 p.z() ); 386 p.z() ); 358 387 359 // change sign in case of inner radi 388 // change sign in case of inner radius 360 // 389 // 361 if ( r == GetRmin() ) { scal = -sca 390 if ( r == GetRmin() ) { scal = -scal ; } 362 if ( scal > 0 ) { return 0.0 ; } 391 if ( scal > 0 ) { return 0.0 ; } 363 } 392 } 364 } 393 } 365 394 366 // check if distance is larger than 1/2 395 // check if distance is larger than 1/2 kCarTolerance 367 // 396 // 368 if( t > halfCarTolerance ) 397 if( t > halfCarTolerance ) 369 { 398 { 370 tmin = t ; 399 tmin = t ; 371 return tmin ; 400 return tmin ; 372 } 401 } 373 } 402 } 374 } 403 } 375 404 376 return tmin; 405 return tmin; 377 } 406 } 378 407 379 ////////////////////////////////////////////// 408 ///////////////////////////////////////////////////////////////////////////// 380 // 409 // 381 // Get bounding box << 382 << 383 void G4Torus::BoundingLimits(G4ThreeVector& pM << 384 { << 385 G4double rmax = GetRmax(); << 386 G4double rtor = GetRtor(); << 387 G4double rint = rtor - rmax; << 388 G4double rext = rtor + rmax; << 389 G4double dz = rmax; << 390 << 391 // Find bounding box << 392 // << 393 if (GetDPhi() >= twopi) << 394 { << 395 pMin.set(-rext,-rext,-dz); << 396 pMax.set( rext, rext, dz); << 397 } << 398 else << 399 { << 400 G4TwoVector vmin,vmax; << 401 G4GeomTools::DiskExtent(rint,rext, << 402 GetSinStartPhi(),G << 403 GetSinEndPhi(),Get << 404 vmin,vmax); << 405 pMin.set(vmin.x(),vmin.y(),-dz); << 406 pMax.set(vmax.x(),vmax.y(), dz); << 407 } << 408 << 409 // Check correctness of the bounding box << 410 // << 411 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 412 { << 413 std::ostringstream message; << 414 message << "Bad bounding box (min >= max) << 415 << GetName() << " !" << 416 << "\npMin = " << pMin << 417 << "\npMax = " << pMax; << 418 G4Exception("G4Torus::BoundingLimits()", " << 419 JustWarning, message); << 420 DumpInfo(); << 421 } << 422 } << 423 << 424 ////////////////////////////////////////////// << 425 // << 426 // Calculate extent under transform and specif 410 // Calculate extent under transform and specified limit 427 411 428 G4bool G4Torus::CalculateExtent( const EAxis p 412 G4bool G4Torus::CalculateExtent( const EAxis pAxis, 429 const G4Voxel 413 const G4VoxelLimits& pVoxelLimit, 430 const G4Affin 414 const G4AffineTransform& pTransform, 431 G4doubl 415 G4double& pMin, G4double& pMax) const 432 { 416 { 433 G4ThreeVector bmin, bmax; << 417 if ((!pTransform.IsRotated()) && (fDPhi==twopi) && (fRmin==0)) 434 G4bool exist; << 418 { >> 419 // Special case handling for unrotated solid torus >> 420 // Compute x/y/z mins and maxs for bounding box respecting limits, >> 421 // with early returns if outside limits. Then switch() on pAxis, >> 422 // and compute exact x and y limit for x/y case >> 423 >> 424 G4double xoffset,xMin,xMax; >> 425 G4double yoffset,yMin,yMax; >> 426 G4double zoffset,zMin,zMax; >> 427 >> 428 G4double RTorus,delta,diff1,diff2,maxDiff,newMin,newMax; >> 429 G4double xoff1,xoff2,yoff1,yoff2; >> 430 >> 431 xoffset = pTransform.NetTranslation().x(); >> 432 xMin = xoffset - fRmax - fRtor ; >> 433 xMax = xoffset + fRmax + fRtor ; >> 434 >> 435 if (pVoxelLimit.IsXLimited()) >> 436 { >> 437 if ( (xMin > pVoxelLimit.GetMaxXExtent()+kCarTolerance) >> 438 || (xMax < pVoxelLimit.GetMinXExtent()-kCarTolerance) ) >> 439 return false ; >> 440 else >> 441 { >> 442 if (xMin < pVoxelLimit.GetMinXExtent()) >> 443 { >> 444 xMin = pVoxelLimit.GetMinXExtent() ; >> 445 } >> 446 if (xMax > pVoxelLimit.GetMaxXExtent()) >> 447 { >> 448 xMax = pVoxelLimit.GetMaxXExtent() ; >> 449 } >> 450 } >> 451 } >> 452 yoffset = pTransform.NetTranslation().y(); >> 453 yMin = yoffset - fRmax - fRtor ; >> 454 yMax = yoffset + fRmax + fRtor ; 435 455 436 // Get bounding box << 456 if (pVoxelLimit.IsYLimited()) 437 BoundingLimits(bmin,bmax); << 457 { >> 458 if ( (yMin > pVoxelLimit.GetMaxYExtent()+kCarTolerance) >> 459 || (yMax < pVoxelLimit.GetMinYExtent()-kCarTolerance) ) >> 460 { >> 461 return false ; >> 462 } >> 463 else >> 464 { >> 465 if (yMin < pVoxelLimit.GetMinYExtent() ) >> 466 { >> 467 yMin = pVoxelLimit.GetMinYExtent() ; >> 468 } >> 469 if (yMax > pVoxelLimit.GetMaxYExtent() ) >> 470 { >> 471 yMax = pVoxelLimit.GetMaxYExtent() ; >> 472 } >> 473 } >> 474 } >> 475 zoffset = pTransform.NetTranslation().z() ; >> 476 zMin = zoffset - fRmax ; >> 477 zMax = zoffset + fRmax ; 438 478 439 // Check bounding box << 479 if (pVoxelLimit.IsZLimited()) 440 G4BoundingEnvelope bbox(bmin,bmax); << 480 { 441 #ifdef G4BBOX_EXTENT << 481 if ( (zMin > pVoxelLimit.GetMaxZExtent()+kCarTolerance) 442 return bbox.CalculateExtent(pAxis,pVoxelLimi << 482 || (zMax < pVoxelLimit.GetMinZExtent()-kCarTolerance) ) 443 #endif << 483 { 444 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 484 return false ; 445 { << 485 } 446 return exist = pMin < pMax; << 486 else >> 487 { >> 488 if (zMin < pVoxelLimit.GetMinZExtent() ) >> 489 { >> 490 zMin = pVoxelLimit.GetMinZExtent() ; >> 491 } >> 492 if (zMax > pVoxelLimit.GetMaxZExtent() ) >> 493 { >> 494 zMax = pVoxelLimit.GetMaxZExtent() ; >> 495 } >> 496 } >> 497 } >> 498 >> 499 // Known to cut cylinder >> 500 >> 501 switch (pAxis) >> 502 { >> 503 case kXAxis: >> 504 yoff1=yoffset-yMin; >> 505 yoff2=yMax-yoffset; >> 506 if ( yoff1 >= 0 && yoff2 >= 0 ) >> 507 { >> 508 // Y limits cross max/min x => no change >> 509 // >> 510 pMin = xMin ; >> 511 pMax = xMax ; >> 512 } >> 513 else >> 514 { >> 515 // Y limits don't cross max/min x => compute max delta x, >> 516 // hence new mins/maxs >> 517 // >> 518 >> 519 RTorus=fRmax+fRtor; >> 520 delta = RTorus*RTorus - yoff1*yoff1; >> 521 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; >> 522 delta = RTorus*RTorus - yoff2*yoff2; >> 523 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; >> 524 maxDiff = (diff1 > diff2) ? diff1:diff2 ; >> 525 newMin = xoffset - maxDiff ; >> 526 newMax = xoffset + maxDiff ; >> 527 pMin = (newMin < xMin) ? xMin : newMin ; >> 528 pMax = (newMax > xMax) ? xMax : newMax ; >> 529 } >> 530 break; >> 531 >> 532 case kYAxis: >> 533 xoff1 = xoffset - xMin ; >> 534 xoff2 = xMax - xoffset ; >> 535 if (xoff1 >= 0 && xoff2 >= 0 ) >> 536 { >> 537 // X limits cross max/min y => no change >> 538 // >> 539 pMin = yMin ; >> 540 pMax = yMax ; >> 541 } >> 542 else >> 543 { >> 544 // X limits don't cross max/min y => compute max delta y, >> 545 // hence new mins/maxs >> 546 // >> 547 RTorus=fRmax+fRtor; >> 548 delta = RTorus*RTorus - xoff1*xoff1; >> 549 diff1 = (delta>0.) ? std::sqrt(delta) : 0.; >> 550 delta = RTorus*RTorus - xoff2*xoff2; >> 551 diff2 = (delta>0.) ? std::sqrt(delta) : 0.; >> 552 maxDiff = (diff1 > diff2) ? diff1 : diff2 ; >> 553 newMin = yoffset - maxDiff ; >> 554 newMax = yoffset + maxDiff ; >> 555 pMin = (newMin < yMin) ? yMin : newMin ; >> 556 pMax = (newMax > yMax) ? yMax : newMax ; >> 557 } >> 558 break; >> 559 >> 560 case kZAxis: >> 561 pMin=zMin; >> 562 pMax=zMax; >> 563 break; >> 564 >> 565 default: >> 566 break; >> 567 } >> 568 pMin -= kCarTolerance ; >> 569 pMax += kCarTolerance ; >> 570 >> 571 return true; 447 } 572 } >> 573 else >> 574 { >> 575 G4int i, noEntries, noBetweenSections4 ; >> 576 G4bool existsAfterClip = false ; 448 577 449 // Get parameters of the solid << 578 // Calculate rotated vertex coordinates 450 G4double rmin = GetRmin(); << 451 G4double rmax = GetRmax(); << 452 G4double rtor = GetRtor(); << 453 G4double dphi = GetDPhi(); << 454 G4double sinStart = GetSinStartPhi(); << 455 G4double cosStart = GetCosStartPhi(); << 456 G4double sinEnd = GetSinEndPhi(); << 457 G4double cosEnd = GetCosEndPhi(); << 458 G4double rint = rtor - rmax; << 459 G4double rext = rtor + rmax; << 460 579 461 // Find bounding envelope and calculate exte << 580 G4ThreeVectorList *vertices ; 462 // << 581 G4int noPolygonVertices ; // will be 4 463 static const G4int NPHI = 24; // number of << 582 vertices = CreateRotatedVertices(pTransform,noPolygonVertices) ; 464 static const G4int NDISK = 16; // number of << 583 465 static const G4double sinHalfDisk = std::sin << 584 pMin = +kInfinity ; 466 static const G4double cosHalfDisk = std::cos << 585 pMax = -kInfinity ; 467 static const G4double sinStepDisk = 2.*sinHa << 586 468 static const G4double cosStepDisk = 1. - 2.* << 587 noEntries = vertices->size() ; 469 << 588 noBetweenSections4 = noEntries - noPolygonVertices ; 470 G4double astep = (360/NPHI)*deg; // max angl << 589 471 G4int kphi = (dphi <= astep) ? 1 : (G4in << 590 for (i=0;i<noEntries;i+=noPolygonVertices) 472 G4double ang = dphi/kphi; << 591 { 473 << 592 ClipCrossSection(vertices,i,pVoxelLimit,pAxis,pMin,pMax); 474 G4double sinHalf = std::sin(0.5*ang); << 593 } 475 G4double cosHalf = std::cos(0.5*ang); << 594 for (i=0;i<noBetweenSections4;i+=noPolygonVertices) 476 G4double sinStep = 2.*sinHalf*cosHalf; << 595 { 477 G4double cosStep = 1. - 2.*sinHalf*sinHalf; << 596 ClipBetweenSections(vertices,i,pVoxelLimit,pAxis,pMin,pMax); 478 << 597 } 479 // define vectors for bounding envelope << 598 if (pMin!=kInfinity||pMax!=-kInfinity) 480 G4ThreeVectorList pols[NDISK+1]; << 599 { 481 for (auto & pol : pols) pol.resize(4); << 600 existsAfterClip = true ; // Add 2*tolerance to avoid precision troubles 482 << 601 pMin -= kCarTolerance ; 483 std::vector<const G4ThreeVectorList *> polyg << 602 pMax += kCarTolerance ; 484 polygons.resize(NDISK+1); << 485 for (G4int k=0; k<NDISK+1; ++k) polygons[k] << 486 << 487 // set internal and external reference circl << 488 G4TwoVector rzmin[NDISK]; << 489 G4TwoVector rzmax[NDISK]; << 490 << 491 if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+ << 492 rmax /= cosHalfDisk; << 493 G4double sinCurDisk = sinHalfDisk; << 494 G4double cosCurDisk = cosHalfDisk; << 495 for (G4int k=0; k<NDISK; ++k) << 496 { << 497 G4double rmincur = rtor + rmin*cosCurDisk; << 498 if (cosCurDisk < 0 && rmin > 0) rmincur /= << 499 rzmin[k].set(rmincur,rmin*sinCurDisk); << 500 << 501 G4double rmaxcur = rtor + rmax*cosCurDisk; << 502 if (cosCurDisk > 0) rmaxcur /= cosHalf; << 503 rzmax[k].set(rmaxcur,rmax*sinCurDisk); << 504 << 505 G4double sinTmpDisk = sinCurDisk; << 506 sinCurDisk = sinCurDisk*cosStepDisk + cosC << 507 cosCurDisk = cosCurDisk*cosStepDisk - sinT << 508 } << 509 << 510 // Loop along slices in Phi. The extent is c << 511 // extent of the slices << 512 pMin = kInfinity; << 513 pMax = -kInfinity; << 514 G4double eminlim = pVoxelLimit.GetMinExtent( << 515 G4double emaxlim = pVoxelLimit.GetMaxExtent( << 516 G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = << 517 for (G4int i=0; i<kphi+1; ++i) << 518 { << 519 if (i == 0) << 520 { << 521 sinCur1 = sinStart; << 522 cosCur1 = cosStart; << 523 sinCur2 = sinCur1*cosHalf + cosCur1*sinH << 524 cosCur2 = cosCur1*cosHalf - sinCur1*sinH << 525 } 603 } 526 else 604 else 527 { 605 { 528 sinCur1 = sinCur2; << 606 // Check for case where completely enveloping clipping volume 529 cosCur1 = cosCur2; << 607 // If point inside then we are confident that the solid completely 530 sinCur2 = (i == kphi) ? sinEnd : sinCur1 << 608 // envelopes the clipping volume. Hence set min/max extents according 531 cosCur2 = (i == kphi) ? cosEnd : cosCur1 << 609 // to clipping volume extents along the specified axis. 532 } << 610 533 for (G4int k=0; k<NDISK; ++k) << 611 G4ThreeVector clipCentre( 534 { << 612 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, 535 G4double r1 = rzmin[k].x(), r2 = rzmax[k << 613 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, 536 G4double z1 = rzmin[k].y(), z2 = rzmax[k << 614 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5 ) ; 537 pols[k][0].set(r1*cosCur1,r1*sinCur1,z1) << 615 538 pols[k][1].set(r2*cosCur1,r2*sinCur1,z2) << 616 if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside ) 539 pols[k][2].set(r2*cosCur2,r2*sinCur2,z2) << 617 { 540 pols[k][3].set(r1*cosCur2,r1*sinCur2,z1) << 618 existsAfterClip = true ; 541 } << 619 pMin = pVoxelLimit.GetMinExtent(pAxis) ; 542 pols[NDISK] = pols[0]; << 620 pMax = pVoxelLimit.GetMaxExtent(pAxis) ; 543 << 621 } 544 // get bounding box of current slice << 622 } 545 G4TwoVector vmin,vmax; << 623 delete vertices; 546 G4GeomTools:: << 624 return existsAfterClip; 547 DiskExtent(rint,rext,sinCur1,cosCur1,sin << 548 bmin.setX(vmin.x()); bmin.setY(vmin.y()); << 549 bmax.setX(vmax.x()); bmax.setY(vmax.y()); << 550 << 551 // set bounding envelope for current slice << 552 G4double emin,emax; << 553 G4BoundingEnvelope benv(bmin,bmax,polygons << 554 if (!benv.CalculateExtent(pAxis,pVoxelLimi << 555 if (emin < pMin) pMin = emin; << 556 if (emax > pMax) pMax = emax; << 557 if (eminlim > pMin && emaxlim < pMax) brea << 558 } 625 } 559 return (pMin < pMax); << 560 } 626 } 561 627 562 ////////////////////////////////////////////// 628 ////////////////////////////////////////////////////////////////////////////// 563 // 629 // 564 // Return whether point inside/outside/on surf 630 // Return whether point inside/outside/on surface 565 631 566 EInside G4Torus::Inside( const G4ThreeVector& 632 EInside G4Torus::Inside( const G4ThreeVector& p ) const 567 { 633 { 568 G4double r, pt2, pPhi, tolRMin, tolRMax ; << 634 G4double r2, pt2, pPhi, tolRMin, tolRMax ; 569 635 570 EInside in = kOutside ; 636 EInside in = kOutside ; >> 637 static const G4double halfAngTolerance = 0.5*kAngTolerance; 571 638 572 // General precals << 639 // General precals 573 // << 640 r2 = p.x()*p.x() + p.y()*p.y() ; 574 r = std::hypot(p.x(),p.y()); << 641 pt2 = r2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*std::sqrt(r2) ; 575 pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor); << 576 642 577 if (fRmin != 0.0) tolRMin = fRmin + fRminTol << 643 if (fRmin) tolRMin = fRmin + fRminTolerance ; 578 else tolRMin = 0 ; 644 else tolRMin = 0 ; 579 645 580 tolRMax = fRmax - fRmaxTolerance; 646 tolRMax = fRmax - fRmaxTolerance; 581 647 582 if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax 648 if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax ) 583 { 649 { 584 if ( fDPhi == twopi || pt2 == 0 ) // on t 650 if ( fDPhi == twopi || pt2 == 0 ) // on torus swept axis 585 { 651 { 586 in = kInside ; 652 in = kInside ; 587 } 653 } 588 else 654 else 589 { 655 { 590 // Try inner tolerant phi boundaries (=> 656 // Try inner tolerant phi boundaries (=>inside) 591 // if not inside, try outer tolerant phi 657 // if not inside, try outer tolerant phi boundaries 592 658 593 pPhi = std::atan2(p.y(),p.x()) ; 659 pPhi = std::atan2(p.y(),p.x()) ; 594 660 595 if ( pPhi < -halfAngTolerance ) { pPhi 661 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi 596 if ( fSPhi >= 0 ) 662 if ( fSPhi >= 0 ) 597 { 663 { 598 if ( (std::fabs(pPhi) < halfAngToleran 664 if ( (std::fabs(pPhi) < halfAngTolerance) 599 && (std::fabs(fSPhi + fDPhi - twop 665 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 600 { 666 { 601 pPhi += twopi ; // 0 <= pPhi < 2pi 667 pPhi += twopi ; // 0 <= pPhi < 2pi 602 } 668 } 603 if ( (pPhi >= fSPhi + halfAngTolerance 669 if ( (pPhi >= fSPhi + halfAngTolerance) 604 && (pPhi <= fSPhi + fDPhi - halfAn 670 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) ) 605 { 671 { 606 in = kInside ; 672 in = kInside ; 607 } 673 } 608 else if ( (pPhi >= fSPhi - halfAngTo 674 else if ( (pPhi >= fSPhi - halfAngTolerance) 609 && (pPhi <= fSPhi + fDPhi + h 675 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 610 { 676 { 611 in = kSurface ; 677 in = kSurface ; 612 } 678 } 613 } 679 } 614 else // fSPhi < 0 680 else // fSPhi < 0 615 { 681 { 616 if ( (pPhi <= fSPhi + twopi - halfAn 682 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 617 && (pPhi >= fSPhi + fDPhi + halfA 683 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 618 else 684 else 619 { 685 { 620 in = kSurface ; 686 in = kSurface ; 621 } 687 } 622 } 688 } 623 } 689 } 624 } 690 } 625 else // Try generous boundaries 691 else // Try generous boundaries 626 { 692 { 627 tolRMin = fRmin - fRminTolerance ; 693 tolRMin = fRmin - fRminTolerance ; 628 tolRMax = fRmax + fRmaxTolerance ; 694 tolRMax = fRmax + fRmaxTolerance ; 629 695 630 if (tolRMin < 0 ) { tolRMin = 0 ; } 696 if (tolRMin < 0 ) { tolRMin = 0 ; } 631 697 632 if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= t 698 if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) ) 633 { 699 { 634 if ( (fDPhi == twopi) || (pt2 == 0) ) // 700 if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis 635 { 701 { 636 in = kSurface ; 702 in = kSurface ; 637 } 703 } 638 else // Try outer tolerant phi boundarie 704 else // Try outer tolerant phi boundaries only 639 { 705 { 640 pPhi = std::atan2(p.y(),p.x()) ; 706 pPhi = std::atan2(p.y(),p.x()) ; 641 707 642 if ( pPhi < -halfAngTolerance ) { pPh 708 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi 643 if ( fSPhi >= 0 ) 709 if ( fSPhi >= 0 ) 644 { 710 { 645 if ( (std::fabs(pPhi) < halfAngToler 711 if ( (std::fabs(pPhi) < halfAngTolerance) 646 && (std::fabs(fSPhi + fDPhi - twop 712 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 647 { 713 { 648 pPhi += twopi ; // 0 <= pPhi < 2pi 714 pPhi += twopi ; // 0 <= pPhi < 2pi 649 } 715 } 650 if ( (pPhi >= fSPhi - halfAngToleran 716 if ( (pPhi >= fSPhi - halfAngTolerance) 651 && (pPhi <= fSPhi + fDPhi + halfAn 717 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 652 { 718 { 653 in = kSurface; 719 in = kSurface; 654 } 720 } 655 } 721 } 656 else // fSPhi < 0 722 else // fSPhi < 0 657 { 723 { 658 if ( (pPhi <= fSPhi + twopi - halfAn 724 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 659 && (pPhi >= fSPhi + fDPhi + halfA 725 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 660 else 726 else 661 { 727 { 662 in = kSurface ; 728 in = kSurface ; 663 } 729 } 664 } 730 } 665 } 731 } 666 } 732 } 667 } 733 } 668 return in ; 734 return in ; 669 } 735 } 670 736 671 ////////////////////////////////////////////// 737 ///////////////////////////////////////////////////////////////////////////// 672 // 738 // 673 // Return unit normal of surface closest to p 739 // Return unit normal of surface closest to p 674 // - note if point on z axis, ignore phi divid 740 // - note if point on z axis, ignore phi divided sides 675 // - unsafe if point close to z axis a rmin=0 741 // - unsafe if point close to z axis a rmin=0 - no explicit checks 676 742 677 G4ThreeVector G4Torus::SurfaceNormal( const G4 743 G4ThreeVector G4Torus::SurfaceNormal( const G4ThreeVector& p ) const 678 { 744 { 679 G4int noSurfaces = 0; 745 G4int noSurfaces = 0; 680 G4double rho, pt, pPhi; << 746 G4double rho2, rho, pt2, pt, pPhi; 681 G4double distRMin = kInfinity; 747 G4double distRMin = kInfinity; 682 G4double distSPhi = kInfinity, distEPhi = kI 748 G4double distSPhi = kInfinity, distEPhi = kInfinity; 683 749 684 // To cope with precision loss << 750 static const G4double delta = 0.5*kCarTolerance; 685 // << 751 static const G4double dAngle = 0.5*kAngTolerance; 686 const G4double delta = std::max(10.0*kCarTol << 687 1.0e-8*(fRto << 688 const G4double dAngle = 10.0*kAngTolerance; << 689 752 690 G4ThreeVector nR, nPs, nPe; 753 G4ThreeVector nR, nPs, nPe; 691 G4ThreeVector norm, sumnorm(0.,0.,0.); 754 G4ThreeVector norm, sumnorm(0.,0.,0.); 692 755 693 rho = std::hypot(p.x(),p.y()); << 756 rho2 = p.x()*p.x() + p.y()*p.y(); 694 pt = std::hypot(p.z(),rho-fRtor); << 757 rho = std::sqrt(rho2); >> 758 pt2 = std::fabs(rho2+p.z()*p.z() +fRtor*fRtor - 2*fRtor*rho); >> 759 pt = std::sqrt(pt2) ; 695 760 696 G4double distRMax = std::fabs(pt - fRmax); 761 G4double distRMax = std::fabs(pt - fRmax); 697 if(fRmin != 0.0) distRMin = std::fabs(pt - f << 762 if(fRmin) distRMin = std::fabs(pt - fRmin); 698 763 699 if( rho > delta && pt != 0.0 ) << 764 if( rho > delta ) 700 { 765 { 701 G4double redFactor= (rho-fRtor)/rho; << 766 nR = G4ThreeVector( p.x()*(1-fRtor/rho)/pt, 702 nR = G4ThreeVector( p.x()*redFactor, // p << 767 p.y()*(1-fRtor/rho)/pt, 703 p.y()*redFactor, // p << 768 p.z()/pt ); 704 p.z() ); << 705 nR *= 1.0/pt; << 706 } 769 } 707 770 708 if ( fDPhi < twopi ) // && rho ) // old limi 771 if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z) 709 { 772 { 710 if ( rho != 0.0 ) << 773 if ( rho ) 711 { 774 { 712 pPhi = std::atan2(p.y(),p.x()); 775 pPhi = std::atan2(p.y(),p.x()); 713 776 714 if(pPhi < fSPhi-delta) { pPhi 777 if(pPhi < fSPhi-delta) { pPhi += twopi; } 715 else if(pPhi > fSPhi+fDPhi+delta) { pPhi 778 else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; } 716 779 717 distSPhi = std::fabs( pPhi - fSPhi ); 780 distSPhi = std::fabs( pPhi - fSPhi ); 718 distEPhi = std::fabs(pPhi-fSPhi-fDPhi); 781 distEPhi = std::fabs(pPhi-fSPhi-fDPhi); 719 } 782 } 720 nPs = G4ThreeVector(std::sin(fSPhi),-std:: 783 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 721 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi) 784 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 722 } 785 } 723 if( distRMax <= delta ) 786 if( distRMax <= delta ) 724 { 787 { 725 ++noSurfaces; << 788 noSurfaces ++; 726 sumnorm += nR; 789 sumnorm += nR; 727 } 790 } 728 else if( (fRmin != 0.0) && (distRMin <= delt << 791 if( fRmin && distRMin <= delta ) 729 { 792 { 730 ++noSurfaces; << 793 noSurfaces ++; 731 sumnorm -= nR; 794 sumnorm -= nR; 732 } 795 } 733 << 796 if( fDPhi < twopi ) 734 // To be on one of the 'phi' surfaces, << 735 // it must be within the 'tube' - with tole << 736 << 737 if( (fDPhi < twopi) && (fRmin-delta <= pt) & << 738 { 797 { 739 if (distSPhi <= dAngle) 798 if (distSPhi <= dAngle) 740 { 799 { 741 ++noSurfaces; << 800 noSurfaces ++; 742 sumnorm += nPs; 801 sumnorm += nPs; 743 } 802 } 744 if (distEPhi <= dAngle) 803 if (distEPhi <= dAngle) 745 { 804 { 746 ++noSurfaces; << 805 noSurfaces ++; 747 sumnorm += nPe; 806 sumnorm += nPe; 748 } 807 } 749 } 808 } 750 if ( noSurfaces == 0 ) 809 if ( noSurfaces == 0 ) 751 { 810 { 752 #ifdef G4CSGDEBUG 811 #ifdef G4CSGDEBUG 753 G4ExceptionDescription ed; << 812 G4Exception("G4Torus::SurfaceNormal(p)", "Notification", JustWarning, 754 ed.precision(16); << 813 "Point p is not on surface !?" ); 755 << 814 #endif 756 EInside inIt= Inside( p ); << 757 << 758 if( inIt != kSurface ) << 759 { << 760 ed << " ERROR> Surface Normal was cal << 761 << " with point not on surface." << << 762 } << 763 else << 764 { << 765 ed << " ERROR> Surface Normal has not << 766 << " despite the point being on the << 767 } << 768 << 769 if( inIt != kInside) << 770 { << 771 ed << " Safety (Dist To In) = " << D << 772 } << 773 if( inIt != kOutside) << 774 { << 775 ed << " Safety (Dist to Out) = " << D << 776 } << 777 ed << " Coordinates of point : " << p << << 778 ed << " Parameters of solid : " << G4end << 779 << 780 if( inIt == kSurface ) << 781 { << 782 G4Exception("G4Torus::SurfaceNormal(p) << 783 JustWarning, ed, << 784 "Failing to find normal, e << 785 } << 786 else << 787 { << 788 static const char* NameInside[3]= { "I << 789 ed << " The point is " << NameInside[ << 790 G4Exception("G4Torus::SurfaceNormal(p) << 791 JustWarning, ed, "Point p << 792 } << 793 #endif << 794 norm = ApproxSurfaceNormal(p); 815 norm = ApproxSurfaceNormal(p); 795 } 816 } 796 else if ( noSurfaces == 1 ) { norm = sumnor 817 else if ( noSurfaces == 1 ) { norm = sumnorm; } 797 else { norm = sumnor 818 else { norm = sumnorm.unit(); } 798 819 799 return norm ; 820 return norm ; 800 } 821 } 801 822 802 ////////////////////////////////////////////// 823 ////////////////////////////////////////////////////////////////////////////// 803 // 824 // 804 // Algorithm for SurfaceNormal() following the 825 // Algorithm for SurfaceNormal() following the original specification 805 // for points not on the surface 826 // for points not on the surface 806 827 807 G4ThreeVector G4Torus::ApproxSurfaceNormal( co 828 G4ThreeVector G4Torus::ApproxSurfaceNormal( const G4ThreeVector& p ) const 808 { 829 { 809 ENorm side ; 830 ENorm side ; 810 G4ThreeVector norm; 831 G4ThreeVector norm; 811 G4double rho,pt,phi; << 832 G4double rho2,rho,pt2,pt,phi; 812 G4double distRMin,distRMax,distSPhi,distEPhi 833 G4double distRMin,distRMax,distSPhi,distEPhi,distMin; 813 834 814 rho = std::hypot(p.x(),p.y()); << 835 rho2 = p.x()*p.x() + p.y()*p.y(); 815 pt = std::hypot(p.z(),rho-fRtor); << 836 rho = std::sqrt(rho2) ; >> 837 pt2 = std::fabs(rho2+p.z()*p.z() +fRtor*fRtor - 2*fRtor*rho) ; >> 838 pt = std::sqrt(pt2) ; 816 839 817 #ifdef G4CSGDEBUG << 818 G4cout << " G4Torus::ApproximateSurfaceNorma << 819 << G4endl; << 820 #endif << 821 << 822 distRMax = std::fabs(pt - fRmax) ; 840 distRMax = std::fabs(pt - fRmax) ; 823 841 824 if(fRmin != 0.0) // First minimum radius << 842 if(fRmin) // First minimum radius 825 { 843 { 826 distRMin = std::fabs(pt - fRmin) ; 844 distRMin = std::fabs(pt - fRmin) ; 827 845 828 if (distRMin < distRMax) 846 if (distRMin < distRMax) 829 { 847 { 830 distMin = distRMin ; 848 distMin = distRMin ; 831 side = kNRMin ; 849 side = kNRMin ; 832 } 850 } 833 else 851 else 834 { 852 { 835 distMin = distRMax ; 853 distMin = distRMax ; 836 side = kNRMax ; 854 side = kNRMax ; 837 } 855 } 838 } 856 } 839 else 857 else 840 { 858 { 841 distMin = distRMax ; 859 distMin = distRMax ; 842 side = kNRMax ; 860 side = kNRMax ; 843 } 861 } 844 if ( (fDPhi < twopi) && (rho != 0.0) ) << 862 if ( (fDPhi < twopi) && rho ) 845 { 863 { 846 phi = std::atan2(p.y(),p.x()) ; // Protect 864 phi = std::atan2(p.y(),p.x()) ; // Protected against (0,0,z) (above rho!=0) 847 865 848 if (phi < 0) { phi += twopi ; } 866 if (phi < 0) { phi += twopi ; } 849 867 850 if (fSPhi < 0 ) { distSPhi = std::fabs(ph 868 if (fSPhi < 0 ) { distSPhi = std::fabs(phi-(fSPhi+twopi))*rho ; } 851 else { distSPhi = std::fabs(ph 869 else { distSPhi = std::fabs(phi-fSPhi)*rho ; } 852 870 853 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 871 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 854 872 855 if (distSPhi < distEPhi) // Find new minim 873 if (distSPhi < distEPhi) // Find new minimum 856 { 874 { 857 if (distSPhi<distMin) side = kNSPhi ; 875 if (distSPhi<distMin) side = kNSPhi ; 858 } 876 } 859 else 877 else 860 { 878 { 861 if (distEPhi < distMin) { side = kNEPhi 879 if (distEPhi < distMin) { side = kNEPhi ; } 862 } 880 } 863 } 881 } 864 switch (side) 882 switch (side) 865 { 883 { 866 case kNRMin: // Inner radius 884 case kNRMin: // Inner radius 867 norm = G4ThreeVector( -p.x()*(1-fRtor/rh 885 norm = G4ThreeVector( -p.x()*(1-fRtor/rho)/pt, 868 -p.y()*(1-fRtor/rh 886 -p.y()*(1-fRtor/rho)/pt, 869 -p.z()/pt 887 -p.z()/pt ) ; 870 break ; 888 break ; 871 case kNRMax: // Outer radius 889 case kNRMax: // Outer radius 872 norm = G4ThreeVector( p.x()*(1-fRtor/rho 890 norm = G4ThreeVector( p.x()*(1-fRtor/rho)/pt, 873 p.y()*(1-fRtor/rho 891 p.y()*(1-fRtor/rho)/pt, 874 p.z()/pt 892 p.z()/pt ) ; 875 break; 893 break; 876 case kNSPhi: 894 case kNSPhi: 877 norm = G4ThreeVector(std::sin(fSPhi),-st 895 norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ; 878 break; 896 break; 879 case kNEPhi: 897 case kNEPhi: 880 norm = G4ThreeVector(-std::sin(fSPhi+fDP 898 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ; 881 break; 899 break; 882 default: // Should never reach th 900 default: // Should never reach this case ... 883 DumpInfo(); 901 DumpInfo(); 884 G4Exception("G4Torus::ApproxSurfaceNorma 902 G4Exception("G4Torus::ApproxSurfaceNormal()", 885 "GeomSolids1002", JustWarnin << 903 "Notification", JustWarning, 886 "Undefined side for valid su 904 "Undefined side for valid surface normal to solid."); 887 break ; 905 break ; 888 } 906 } 889 return norm ; 907 return norm ; 890 } 908 } 891 909 892 ////////////////////////////////////////////// 910 /////////////////////////////////////////////////////////////////////// 893 // 911 // 894 // Calculate distance to shape from outside, a 912 // Calculate distance to shape from outside, along normalised vector 895 // - return kInfinity if no intersection, or i 913 // - return kInfinity if no intersection, or intersection distance <= tolerance 896 // 914 // 897 // - Compute the intersection with the z plane 915 // - Compute the intersection with the z planes 898 // - if at valid r, phi, return 916 // - if at valid r, phi, return 899 // 917 // 900 // -> If point is outer outer radius, compute 918 // -> If point is outer outer radius, compute intersection with rmax 901 // - if at valid phi,z return 919 // - if at valid phi,z return 902 // 920 // 903 // -> Compute intersection with inner radius, 921 // -> Compute intersection with inner radius, taking largest +ve root 904 // - if valid (phi), save intersction 922 // - if valid (phi), save intersction 905 // 923 // 906 // -> If phi segmented, compute intersectio 924 // -> If phi segmented, compute intersections with phi half planes 907 // - return smallest of valid phi inter 925 // - return smallest of valid phi intersections and 908 // inner radius intersection 926 // inner radius intersection 909 // 927 // 910 // NOTE: 928 // NOTE: 911 // - Precalculations for phi trigonometry are 929 // - Precalculations for phi trigonometry are Done `just in time' 912 // - `if valid' implies tolerant checking of i 930 // - `if valid' implies tolerant checking of intersection points 913 931 914 G4double G4Torus::DistanceToIn( const G4ThreeV 932 G4double G4Torus::DistanceToIn( const G4ThreeVector& p, 915 const G4ThreeV 933 const G4ThreeVector& v ) const 916 { 934 { 917 // Get bounding box of full torus << 918 // << 919 G4double boxDx = fRtor + fRmax; << 920 G4double boxDy = boxDx; << 921 G4double boxDz = fRmax; << 922 G4double boxMax = boxDx; << 923 G4double boxMin = boxDz; << 924 935 925 // Check if point is traveling away << 926 // << 927 G4double distX = std::abs(p.x()) - boxDx; << 928 G4double distY = std::abs(p.y()) - boxDy; << 929 G4double distZ = std::abs(p.z()) - boxDz; << 930 if (distX >= -halfCarTolerance && p.x()*v.x( << 931 if (distY >= -halfCarTolerance && p.y()*v.y( << 932 if (distZ >= -halfCarTolerance && p.z()*v.z( << 933 << 934 // Calculate safety distance to bounding box << 935 // If point is too far, move it closer and c << 936 // << 937 G4double Dmax = 32*boxMax; << 938 G4double safe = std::max(std::max(distX,dist << 939 if (safe > Dmax) << 940 { << 941 G4double dist = safe - 1.e-8*safe - boxMin << 942 dist += DistanceToIn(p + dist*v, v); << 943 return (dist >= kInfinity) ? kInfinity : d << 944 } << 945 << 946 // Find intersection with torus << 947 // << 948 G4double snxt=kInfinity, sphi=kInfinity; // 936 G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value 949 937 950 G4double sd[4] ; << 938 G4double s[4] ; 951 939 952 // Precalculated trig for phi intersections 940 // Precalculated trig for phi intersections - used by r,z intersections to 953 // 941 // check validity 954 942 955 G4bool seg; // true if segmented 943 G4bool seg; // true if segmented 956 G4double hDPhi; // half dphi 944 G4double hDPhi; // half dphi 957 G4double cPhi,sinCPhi=0.,cosCPhi=0.; // cen 945 G4double cPhi,sinCPhi=0.,cosCPhi=0.; // central phi 958 946 959 G4double tolORMin2; // `generous' radii squ 947 G4double tolORMin2; // `generous' radii squared 960 G4double tolORMax2; 948 G4double tolORMax2; 961 949 962 G4double Dist,xi,yi,zi,rhoi,it2; // Intersec << 950 static const G4double halfCarTolerance = 0.5*kCarTolerance; >> 951 >> 952 G4double Dist,xi,yi,zi,rhoi2,it2; // Intersection point variables 963 953 964 G4double Comp; 954 G4double Comp; 965 G4double cosSPhi,sinSPhi; // Trig for 955 G4double cosSPhi,sinSPhi; // Trig for phi start intersect 966 G4double ePhi,cosEPhi,sinEPhi; // for phi e 956 G4double ePhi,cosEPhi,sinEPhi; // for phi end intersect 967 957 968 // Set phi divided flag and precalcs 958 // Set phi divided flag and precalcs 969 // 959 // 970 if ( fDPhi < twopi ) 960 if ( fDPhi < twopi ) 971 { 961 { 972 seg = true ; 962 seg = true ; 973 hDPhi = 0.5*fDPhi ; // half delta 963 hDPhi = 0.5*fDPhi ; // half delta phi 974 cPhi = fSPhi + hDPhi ; 964 cPhi = fSPhi + hDPhi ; 975 sinCPhi = std::sin(cPhi) ; 965 sinCPhi = std::sin(cPhi) ; 976 cosCPhi = std::cos(cPhi) ; 966 cosCPhi = std::cos(cPhi) ; 977 } 967 } 978 else 968 else 979 { 969 { 980 seg = false ; 970 seg = false ; 981 } 971 } 982 972 983 if (fRmin > fRminTolerance) // Calculate tol 973 if (fRmin > fRminTolerance) // Calculate tolerant rmin and rmax 984 { 974 { 985 tolORMin2 = (fRmin - fRminTolerance)*(fRmi 975 tolORMin2 = (fRmin - fRminTolerance)*(fRmin - fRminTolerance) ; 986 } 976 } 987 else 977 else 988 { 978 { 989 tolORMin2 = 0 ; 979 tolORMin2 = 0 ; 990 } 980 } 991 tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax 981 tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax + fRmaxTolerance) ; 992 982 993 // Intersection with Rmax (possible return) 983 // Intersection with Rmax (possible return) and Rmin (must also check phi) 994 984 995 snxt = SolveNumericJT(p,v,fRmax,true); << 985 G4double Rtor2 = fRtor*fRtor ; 996 986 997 if (fRmin != 0.0) // Possible Rmin intersec << 987 snxt = SolveNumericJT(p,v,fRmax,true); >> 988 if (fRmin) // Possible Rmin intersection 998 { 989 { 999 sd[0] = SolveNumericJT(p,v,fRmin,true); << 990 s[0] = SolveNumericJT(p,v,fRmin,true); 1000 if ( sd[0] < snxt ) { snxt = sd[0] ; } << 991 if ( s[0] < snxt ) { snxt = s[0] ; } 1001 } 992 } 1002 993 1003 // 994 // 1004 // Phi segment intersection 995 // Phi segment intersection 1005 // 996 // 1006 // o Tolerant of points inside phi planes b 997 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1007 // 998 // 1008 // o NOTE: Large duplication of code betwee 999 // o NOTE: Large duplication of code between sphi & ephi checks 1009 // -> only diffs: sphi -> ephi, Com 1000 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1010 // intersection check <=0 -> >=0 1001 // intersection check <=0 -> >=0 1011 // -> use some form of loop Constru 1002 // -> use some form of loop Construct ? 1012 1003 1013 if (seg) 1004 if (seg) 1014 { 1005 { 1015 sinSPhi = std::sin(fSPhi) ; // First phi << 1006 sinSPhi = std::sin(fSPhi) ; // First phi surface (`S'tarting phi) 1016 cosSPhi = std::cos(fSPhi) ; 1007 cosSPhi = std::cos(fSPhi) ; 1017 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1008 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; // Component in outwards 1018 1009 // normal direction 1019 if (Comp < 0 ) 1010 if (Comp < 0 ) 1020 { 1011 { 1021 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) 1012 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1022 1013 1023 if (Dist < halfCarTolerance) 1014 if (Dist < halfCarTolerance) 1024 { 1015 { 1025 sphi = Dist/Comp ; 1016 sphi = Dist/Comp ; 1026 if (sphi < snxt) 1017 if (sphi < snxt) 1027 { 1018 { 1028 if ( sphi < 0 ) { sphi = 0 ; } 1019 if ( sphi < 0 ) { sphi = 0 ; } 1029 1020 1030 xi = p.x() + sphi*v.x() ; 1021 xi = p.x() + sphi*v.x() ; 1031 yi = p.y() + sphi*v.y() ; 1022 yi = p.y() + sphi*v.y() ; 1032 zi = p.z() + sphi*v.z() ; 1023 zi = p.z() + sphi*v.z() ; 1033 rhoi = std::hypot(xi,yi); << 1024 rhoi2 = xi*xi + yi*yi ; 1034 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR << 1025 it2 = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ; 1035 1026 1036 if ( it2 >= tolORMin2 && it2 <= tol 1027 if ( it2 >= tolORMin2 && it2 <= tolORMax2 ) 1037 { 1028 { 1038 // r intersection is good - check 1029 // r intersection is good - check intersecting 1039 // with correct half-plane 1030 // with correct half-plane 1040 // 1031 // 1041 if ((yi*cosCPhi-xi*sinCPhi)<=0) 1032 if ((yi*cosCPhi-xi*sinCPhi)<=0) { snxt=sphi; } 1042 } << 1033 } 1043 } 1034 } 1044 } 1035 } 1045 } 1036 } 1046 ePhi=fSPhi+fDPhi; // Second phi surfac << 1037 ePhi=fSPhi+fDPhi; // Second phi surface (`E'nding phi) 1047 sinEPhi=std::sin(ePhi); 1038 sinEPhi=std::sin(ePhi); 1048 cosEPhi=std::cos(ePhi); 1039 cosEPhi=std::cos(ePhi); 1049 Comp=-(v.x()*sinEPhi-v.y()*cosEPhi); 1040 Comp=-(v.x()*sinEPhi-v.y()*cosEPhi); 1050 1041 1051 if ( Comp < 0 ) // Component in outward 1042 if ( Comp < 0 ) // Component in outwards normal dirn 1052 { 1043 { 1053 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1044 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1054 1045 1055 if (Dist < halfCarTolerance ) 1046 if (Dist < halfCarTolerance ) 1056 { 1047 { 1057 sphi = Dist/Comp ; 1048 sphi = Dist/Comp ; 1058 << 1059 if (sphi < snxt ) 1049 if (sphi < snxt ) 1060 { 1050 { 1061 if (sphi < 0 ) { sphi = 0 ; } 1051 if (sphi < 0 ) { sphi = 0 ; } 1062 1052 1063 xi = p.x() + sphi*v.x() ; 1053 xi = p.x() + sphi*v.x() ; 1064 yi = p.y() + sphi*v.y() ; 1054 yi = p.y() + sphi*v.y() ; 1065 zi = p.z() + sphi*v.z() ; 1055 zi = p.z() + sphi*v.z() ; 1066 rhoi = std::hypot(xi,yi); << 1056 rhoi2 = xi*xi + yi*yi ; 1067 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR << 1057 it2 = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ; 1068 1058 1069 if (it2 >= tolORMin2 && it2 <= tolO 1059 if (it2 >= tolORMin2 && it2 <= tolORMax2) 1070 { 1060 { 1071 // z and r intersections good - c 1061 // z and r intersections good - check intersecting 1072 // with correct half-plane 1062 // with correct half-plane 1073 // 1063 // 1074 if ((yi*cosCPhi-xi*sinCPhi)>=0) 1064 if ((yi*cosCPhi-xi*sinCPhi)>=0) { snxt=sphi; } 1075 } 1065 } 1076 } 1066 } 1077 } 1067 } 1078 } 1068 } 1079 } 1069 } 1080 if(snxt < halfCarTolerance) { snxt = 0.0 ; 1070 if(snxt < halfCarTolerance) { snxt = 0.0 ; } 1081 1071 1082 return snxt ; 1072 return snxt ; 1083 } 1073 } 1084 1074 1085 ///////////////////////////////////////////// 1075 ///////////////////////////////////////////////////////////////////////////// 1086 // 1076 // 1087 // Calculate distance (<= actual) to closest 1077 // Calculate distance (<= actual) to closest surface of shape from outside 1088 // - Calculate distance to z, radial planes 1078 // - Calculate distance to z, radial planes 1089 // - Only to phi planes if outside phi extent 1079 // - Only to phi planes if outside phi extent 1090 // - Return 0 if point inside 1080 // - Return 0 if point inside 1091 1081 1092 G4double G4Torus::DistanceToIn( const G4Three 1082 G4double G4Torus::DistanceToIn( const G4ThreeVector& p ) const 1093 { 1083 { 1094 G4double safe=0.0, safe1, safe2 ; 1084 G4double safe=0.0, safe1, safe2 ; 1095 G4double phiC, cosPhiC, sinPhiC, safePhi, e 1085 G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ; 1096 G4double rho, pt ; << 1086 G4double rho2, rho, pt2, pt ; 1097 << 1087 1098 rho = std::hypot(p.x(),p.y()); << 1088 rho2 = p.x()*p.x() + p.y()*p.y() ; 1099 pt = std::hypot(p.z(),rho-fRtor); << 1089 rho = std::sqrt(rho2) ; >> 1090 pt2 = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ; >> 1091 pt = std::sqrt(pt2) ; >> 1092 1100 safe1 = fRmin - pt ; 1093 safe1 = fRmin - pt ; 1101 safe2 = pt - fRmax ; 1094 safe2 = pt - fRmax ; 1102 1095 1103 if (safe1 > safe2) { safe = safe1; } 1096 if (safe1 > safe2) { safe = safe1; } 1104 else { safe = safe2; } 1097 else { safe = safe2; } 1105 1098 1106 if ( fDPhi < twopi && (rho != 0.0) ) << 1099 if ( fDPhi < twopi && rho ) 1107 { 1100 { 1108 phiC = fSPhi + fDPhi*0.5 ; 1101 phiC = fSPhi + fDPhi*0.5 ; 1109 cosPhiC = std::cos(phiC) ; 1102 cosPhiC = std::cos(phiC) ; 1110 sinPhiC = std::sin(phiC) ; 1103 sinPhiC = std::sin(phiC) ; 1111 cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC) 1104 cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ; 1112 1105 1113 if (cosPsi < std::cos(fDPhi*0.5) ) // Psi 1106 if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point 1114 { // Poi 1107 { // Point lies outside phi range 1115 if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 1108 if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 ) 1116 { 1109 { 1117 safePhi = std::fabs(p.x()*std::sin(fS 1110 safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1118 } 1111 } 1119 else 1112 else 1120 { 1113 { 1121 ePhi = fSPhi + fDPhi ; 1114 ePhi = fSPhi + fDPhi ; 1122 safePhi = std::fabs(p.x()*std::sin(eP 1115 safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1123 } 1116 } 1124 if (safePhi > safe) { safe = safePhi ; 1117 if (safePhi > safe) { safe = safePhi ; } 1125 } 1118 } 1126 } 1119 } 1127 if (safe < 0 ) { safe = 0 ; } 1120 if (safe < 0 ) { safe = 0 ; } 1128 return safe; 1121 return safe; 1129 } 1122 } 1130 1123 1131 ///////////////////////////////////////////// 1124 /////////////////////////////////////////////////////////////////////////// 1132 // 1125 // 1133 // Calculate distance to surface of shape fro 1126 // Calculate distance to surface of shape from `inside', allowing for tolerance 1134 // - Only Calc rmax intersection if no valid 1127 // - Only Calc rmax intersection if no valid rmin intersection 1135 // 1128 // 1136 1129 1137 G4double G4Torus::DistanceToOut( const G4Thre 1130 G4double G4Torus::DistanceToOut( const G4ThreeVector& p, 1138 const G4Thre 1131 const G4ThreeVector& v, 1139 const G4bool 1132 const G4bool calcNorm, 1140 G4bool << 1133 G4bool *validNorm, 1141 G4Thre << 1134 G4ThreeVector *n ) const 1142 { 1135 { 1143 ESide side = kNull, sidephi = kNull ; 1136 ESide side = kNull, sidephi = kNull ; 1144 G4double snxt = kInfinity, sphi, sd[4] ; << 1137 G4double snxt = kInfinity, sphi, s[4] ; >> 1138 >> 1139 static const G4double halfCarTolerance = 0.5*kCarTolerance; >> 1140 static const G4double halfAngTolerance = 0.5*kAngTolerance; 1145 1141 1146 // Vars for phi intersection 1142 // Vars for phi intersection 1147 // 1143 // 1148 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, c 1144 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi; 1149 G4double cPhi, sinCPhi, cosCPhi ; 1145 G4double cPhi, sinCPhi, cosCPhi ; 1150 G4double pDistS, compS, pDistE, compE, sphi 1146 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ; 1151 1147 1152 // Radial Intersections Defenitions & Gener 1148 // Radial Intersections Defenitions & General Precals 1153 1149 1154 //////////////////////// new calculation // 1150 //////////////////////// new calculation ////////////////////// 1155 1151 1156 #if 1 1152 #if 1 1157 1153 1158 // This is the version with the calculation 1154 // This is the version with the calculation of CalcNorm = true 1159 // To be done: Check the precision of this 1155 // To be done: Check the precision of this calculation. 1160 // If you want return always validNorm = fa 1156 // If you want return always validNorm = false, then take the version below 1161 1157 1162 << 1158 G4double Rtor2 = fRtor*fRtor ; 1163 G4double rho = std::hypot(p.x(),p.y()); << 1159 G4double rho2 = p.x()*p.x()+p.y()*p.y(); 1164 G4double pt = hypot(p.z(),rho-fRtor); << 1160 G4double rho = std::sqrt(rho2) ; >> 1161 >> 1162 >> 1163 G4double pt2 = std::fabs(rho2 + p.z()*p.z() + Rtor2 - 2*fRtor*rho) ; >> 1164 G4double pt = std::sqrt(pt2) ; 1165 1165 1166 G4double pDotV = p.x()*v.x() + p.y()*v.y() 1166 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ; 1167 1167 1168 G4double tolRMax = fRmax - fRmaxTolerance ; 1168 G4double tolRMax = fRmax - fRmaxTolerance ; 1169 1169 1170 G4double vDotNmax = pDotV - fRtor*(v.x()* 1170 G4double vDotNmax = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ; 1171 G4double pDotxyNmax = (1 - fRtor/rho) ; 1171 G4double pDotxyNmax = (1 - fRtor/rho) ; 1172 1172 1173 if( (pt*pt > tolRMax*tolRMax) && (vDotNmax << 1173 if( (pt2 > tolRMax*tolRMax) && (vDotNmax >= 0) ) 1174 { 1174 { 1175 // On tolerant boundary & heading outward 1175 // On tolerant boundary & heading outwards (or perpendicular to) outer 1176 // radial surface -> leaving immediately 1176 // radial surface -> leaving immediately with *n for really convex part 1177 // only 1177 // only 1178 1178 1179 if ( calcNorm && (pDotxyNmax >= -2.*fRmax 1179 if ( calcNorm && (pDotxyNmax >= -2.*fRmaxTolerance) ) 1180 { 1180 { 1181 *n = G4ThreeVector( p.x()*(1 - fRtor/rh 1181 *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt, 1182 p.y()*(1 - fRtor/rh 1182 p.y()*(1 - fRtor/rho)/pt, 1183 p.z()/pt 1183 p.z()/pt ) ; 1184 *validNorm = true ; 1184 *validNorm = true ; 1185 } 1185 } 1186 << 1187 return snxt = 0 ; // Leaving by Rmax imme 1186 return snxt = 0 ; // Leaving by Rmax immediately 1188 } 1187 } 1189 1188 1190 snxt = SolveNumericJT(p,v,fRmax,false); 1189 snxt = SolveNumericJT(p,v,fRmax,false); 1191 side = kRMax ; 1190 side = kRMax ; 1192 1191 1193 // rmin 1192 // rmin 1194 1193 1195 if ( fRmin != 0.0 ) << 1194 if ( fRmin ) 1196 { 1195 { 1197 G4double tolRMin = fRmin + fRminTolerance 1196 G4double tolRMin = fRmin + fRminTolerance ; 1198 1197 1199 if ( (pt*pt < tolRMin*tolRMin) && (vDotNm << 1198 if ( (pt2 < tolRMin*tolRMin) && (vDotNmax < 0) ) 1200 { 1199 { 1201 if (calcNorm) { *validNorm = false ; } 1200 if (calcNorm) { *validNorm = false ; } // Concave surface of the torus 1202 return snxt = 0 ; 1201 return snxt = 0 ; // Leaving by Rmin immediately 1203 } 1202 } 1204 1203 1205 sd[0] = SolveNumericJT(p,v,fRmin,false); << 1204 s[0] = SolveNumericJT(p,v,fRmin,false); 1206 if ( sd[0] < snxt ) << 1205 if ( s[0] < snxt ) 1207 { 1206 { 1208 snxt = sd[0] ; << 1207 snxt = s[0] ; 1209 side = kRMin ; 1208 side = kRMin ; 1210 } 1209 } 1211 } 1210 } 1212 1211 1213 #else 1212 #else 1214 1213 1215 // this is the "conservative" version which 1214 // this is the "conservative" version which return always validnorm = false 1216 // NOTE: using this version the unit test t 1215 // NOTE: using this version the unit test testG4Torus will break 1217 1216 1218 snxt = SolveNumericJT(p,v,fRmax,false); 1217 snxt = SolveNumericJT(p,v,fRmax,false); 1219 side = kRMax ; 1218 side = kRMax ; 1220 1219 1221 if ( fRmin ) 1220 if ( fRmin ) 1222 { 1221 { 1223 sd[0] = SolveNumericJT(p,v,fRmin,false); << 1222 s[0] = SolveNumericJT(p,v,fRmin,false); 1224 if ( sd[0] < snxt ) << 1223 if ( s[0] < snxt ) 1225 { 1224 { 1226 snxt = sd[0] ; << 1225 snxt = s[0] ; 1227 side = kRMin ; 1226 side = kRMin ; 1228 } 1227 } 1229 } 1228 } 1230 1229 1231 if ( calcNorm && (snxt == 0.0) ) 1230 if ( calcNorm && (snxt == 0.0) ) 1232 { 1231 { 1233 *validNorm = false ; // Leaving solid, 1232 *validNorm = false ; // Leaving solid, but possible re-intersection 1234 return snxt ; 1233 return snxt ; 1235 } 1234 } 1236 1235 1237 #endif 1236 #endif 1238 1237 1239 if (fDPhi < twopi) // Phi Intersections 1238 if (fDPhi < twopi) // Phi Intersections 1240 { 1239 { 1241 sinSPhi = std::sin(fSPhi) ; 1240 sinSPhi = std::sin(fSPhi) ; 1242 cosSPhi = std::cos(fSPhi) ; 1241 cosSPhi = std::cos(fSPhi) ; 1243 ePhi = fSPhi + fDPhi ; 1242 ePhi = fSPhi + fDPhi ; 1244 sinEPhi = std::sin(ePhi) ; 1243 sinEPhi = std::sin(ePhi) ; 1245 cosEPhi = std::cos(ePhi) ; 1244 cosEPhi = std::cos(ePhi) ; 1246 cPhi = fSPhi + fDPhi*0.5 ; 1245 cPhi = fSPhi + fDPhi*0.5 ; 1247 sinCPhi = std::sin(cPhi) ; 1246 sinCPhi = std::sin(cPhi) ; 1248 cosCPhi = std::cos(cPhi) ; 1247 cosCPhi = std::cos(cPhi) ; 1249 1248 1250 // angle calculation with correction 1249 // angle calculation with correction 1251 // of difference in domain of atan2 and S 1250 // of difference in domain of atan2 and Sphi 1252 // 1251 // 1253 vphi = std::atan2(v.y(),v.x()) ; 1252 vphi = std::atan2(v.y(),v.x()) ; 1254 1253 1255 if ( vphi < fSPhi - halfAngTolerance ) 1254 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1256 else if ( vphi > ePhi + halfAngTolerance 1255 else if ( vphi > ePhi + halfAngTolerance ) { vphi -= twopi; } 1257 1256 1258 if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 1257 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1259 { 1258 { 1260 pDistS = p.x()*sinSPhi - p.y()*cosSPhi 1259 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside 1261 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi 1260 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1262 1261 1263 // Comp -ve when in direction of outwar 1262 // Comp -ve when in direction of outwards normal 1264 // 1263 // 1265 compS = -sinSPhi*v.x() + cosSPhi*v.y( 1264 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1266 compE = sinEPhi*v.x() - cosEPhi*v.y() 1265 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1267 sidephi = kNull ; 1266 sidephi = kNull ; 1268 1267 1269 if( ( (fDPhi <= pi) && ( (pDistS <= hal 1268 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1270 && (pDistE <= hal 1269 && (pDistE <= halfCarTolerance) ) ) 1271 || ( (fDPhi > pi) && ((pDistS <= hal << 1270 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance) 1272 || (pDistE <= ha << 1271 && (pDistE > halfCarTolerance) ) ) ) 1273 { 1272 { 1274 // Inside both phi *full* planes 1273 // Inside both phi *full* planes 1275 << 1274 1276 if ( compS < 0 ) 1275 if ( compS < 0 ) 1277 { 1276 { 1278 sphi = pDistS/compS ; 1277 sphi = pDistS/compS ; 1279 1278 1280 if (sphi >= -halfCarTolerance) 1279 if (sphi >= -halfCarTolerance) 1281 { 1280 { 1282 xi = p.x() + sphi*v.x() ; 1281 xi = p.x() + sphi*v.x() ; 1283 yi = p.y() + sphi*v.y() ; 1282 yi = p.y() + sphi*v.y() ; 1284 1283 1285 // Check intersecting with correc 1284 // Check intersecting with correct half-plane 1286 // (if not -> no intersect) 1285 // (if not -> no intersect) 1287 // 1286 // 1288 if ( (std::fabs(xi)<=kCarToleranc 1287 if ( (std::fabs(xi)<=kCarTolerance) 1289 && (std::fabs(yi)<=kCarToleranc 1288 && (std::fabs(yi)<=kCarTolerance) ) 1290 { 1289 { 1291 sidephi = kSPhi; 1290 sidephi = kSPhi; 1292 if ( ((fSPhi-halfAngTolerance)< 1291 if ( ((fSPhi-halfAngTolerance)<=vphi) 1293 && ((ePhi+halfAngTolerance)>= 1292 && ((ePhi+halfAngTolerance)>=vphi) ) 1294 { 1293 { 1295 sphi = kInfinity; 1294 sphi = kInfinity; 1296 } 1295 } 1297 } 1296 } 1298 else if ( yi*cosCPhi-xi*sinCPhi > 1297 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1299 { 1298 { 1300 sphi = kInfinity ; 1299 sphi = kInfinity ; 1301 } 1300 } 1302 else 1301 else 1303 { 1302 { 1304 sidephi = kSPhi ; 1303 sidephi = kSPhi ; 1305 } 1304 } 1306 } 1305 } 1307 else 1306 else 1308 { 1307 { 1309 sphi = kInfinity ; 1308 sphi = kInfinity ; 1310 } 1309 } 1311 } 1310 } 1312 else 1311 else 1313 { 1312 { 1314 sphi = kInfinity ; 1313 sphi = kInfinity ; 1315 } 1314 } 1316 1315 1317 if ( compE < 0 ) 1316 if ( compE < 0 ) 1318 { 1317 { 1319 sphi2 = pDistE/compE ; 1318 sphi2 = pDistE/compE ; 1320 1319 1321 // Only check further if < starting 1320 // Only check further if < starting phi intersection 1322 // 1321 // 1323 if ( (sphi2 > -kCarTolerance) && (s 1322 if ( (sphi2 > -kCarTolerance) && (sphi2 < sphi) ) 1324 { 1323 { 1325 xi = p.x() + sphi2*v.x() ; 1324 xi = p.x() + sphi2*v.x() ; 1326 yi = p.y() + sphi2*v.y() ; 1325 yi = p.y() + sphi2*v.y() ; 1327 1326 1328 if ( (std::fabs(xi)<=kCarToleranc 1327 if ( (std::fabs(xi)<=kCarTolerance) 1329 && (std::fabs(yi)<=kCarToleranc 1328 && (std::fabs(yi)<=kCarTolerance) ) 1330 { 1329 { 1331 // Leaving via ending phi 1330 // Leaving via ending phi 1332 // 1331 // 1333 if( (fSPhi-halfAngTolerance > v << 1332 if( !( (fSPhi-halfAngTolerance <= vphi) 1334 || (ePhi+halfAngTolerance < << 1333 && (ePhi+halfAngTolerance >= vphi) ) ) 1335 { 1334 { 1336 sidephi = kEPhi ; 1335 sidephi = kEPhi ; 1337 sphi = sphi2; 1336 sphi = sphi2; 1338 } 1337 } 1339 } 1338 } 1340 else // Check intersecting wit 1339 else // Check intersecting with correct half-plane 1341 { 1340 { 1342 if ( (yi*cosCPhi-xi*sinCPhi) >= 1341 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1343 { 1342 { 1344 // Leaving via ending phi 1343 // Leaving via ending phi 1345 // 1344 // 1346 sidephi = kEPhi ; 1345 sidephi = kEPhi ; 1347 sphi = sphi2; 1346 sphi = sphi2; 1348 1347 1349 } 1348 } 1350 } 1349 } 1351 } 1350 } 1352 } 1351 } 1353 } 1352 } 1354 else 1353 else 1355 { 1354 { 1356 sphi = kInfinity ; 1355 sphi = kInfinity ; 1357 } 1356 } 1358 } 1357 } 1359 else 1358 else 1360 { 1359 { 1361 // On z axis + travel not || to z axis 1360 // On z axis + travel not || to z axis -> if phi of vector direction 1362 // within phi of shape, Step limited by 1361 // within phi of shape, Step limited by rmax, else Step =0 1363 1362 1364 vphi = std::atan2(v.y(),v.x()); 1363 vphi = std::atan2(v.y(),v.x()); 1365 1364 1366 if ( ( fSPhi-halfAngTolerance <= vphi ) 1365 if ( ( fSPhi-halfAngTolerance <= vphi ) && 1367 ( vphi <= ( ePhi+halfAngTolerance 1366 ( vphi <= ( ePhi+halfAngTolerance ) ) ) 1368 { 1367 { 1369 sphi = kInfinity; 1368 sphi = kInfinity; 1370 } 1369 } 1371 else 1370 else 1372 { 1371 { 1373 sidephi = kSPhi ; // arbitrary 1372 sidephi = kSPhi ; // arbitrary 1374 sphi=0; 1373 sphi=0; 1375 } 1374 } 1376 } 1375 } 1377 1376 1378 // Order intersections 1377 // Order intersections 1379 1378 1380 if (sphi<snxt) 1379 if (sphi<snxt) 1381 { 1380 { 1382 snxt=sphi; 1381 snxt=sphi; 1383 side=sidephi; 1382 side=sidephi; 1384 } << 1383 } 1385 } 1384 } 1386 1385 1387 G4double rhoi,it,iDotxyNmax ; << 1386 G4double rhoi2,rhoi,it2,it,iDotxyNmax ; 1388 // Note: by numerical computation we know w 1387 // Note: by numerical computation we know where the ray hits the torus 1389 // So I propose to return the side where th 1388 // So I propose to return the side where the ray hits 1390 1389 1391 if (calcNorm) 1390 if (calcNorm) 1392 { 1391 { 1393 switch(side) 1392 switch(side) 1394 { 1393 { 1395 case kRMax: // n is 1394 case kRMax: // n is unit vector 1396 xi = p.x() + snxt*v.x() ; 1395 xi = p.x() + snxt*v.x() ; 1397 yi = p.y() + snxt*v.y() ; << 1396 yi =p.y() + snxt*v.y() ; 1398 zi = p.z() + snxt*v.z() ; 1397 zi = p.z() + snxt*v.z() ; 1399 rhoi = std::hypot(xi,yi); << 1398 rhoi2 = xi*xi + yi*yi ; 1400 it = hypot(zi,rhoi-fRtor); << 1399 rhoi = std::sqrt(rhoi2) ; 1401 << 1400 it2 = std::fabs(rhoi2 + zi*zi + fRtor*fRtor - 2*fRtor*rhoi) ; >> 1401 it = std::sqrt(it2) ; 1402 iDotxyNmax = (1-fRtor/rhoi) ; 1402 iDotxyNmax = (1-fRtor/rhoi) ; 1403 if(iDotxyNmax >= -2.*fRmaxTolerance) 1403 if(iDotxyNmax >= -2.*fRmaxTolerance) // really convex part of Rmax 1404 { 1404 { 1405 *n = G4ThreeVector( xi*(1-fRtor/rho 1405 *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it, 1406 yi*(1-fRtor/rho 1406 yi*(1-fRtor/rhoi)/it, 1407 zi/it 1407 zi/it ) ; 1408 *validNorm = true ; 1408 *validNorm = true ; 1409 } 1409 } 1410 else 1410 else 1411 { 1411 { 1412 *validNorm = false ; // concave-con 1412 *validNorm = false ; // concave-convex part of Rmax 1413 } 1413 } 1414 break ; 1414 break ; 1415 1415 1416 case kRMin: 1416 case kRMin: 1417 *validNorm = false ; // Rmin is conc 1417 *validNorm = false ; // Rmin is concave or concave-convex 1418 break; 1418 break; 1419 1419 1420 case kSPhi: 1420 case kSPhi: 1421 if (fDPhi <= pi ) 1421 if (fDPhi <= pi ) 1422 { 1422 { 1423 *n=G4ThreeVector(std::sin(fSPhi),-s 1423 *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 1424 *validNorm=true; 1424 *validNorm=true; 1425 } 1425 } 1426 else 1426 else 1427 { 1427 { 1428 *validNorm = false ; 1428 *validNorm = false ; 1429 } 1429 } 1430 break ; 1430 break ; 1431 1431 1432 case kEPhi: 1432 case kEPhi: 1433 if (fDPhi <= pi) 1433 if (fDPhi <= pi) 1434 { 1434 { 1435 *n=G4ThreeVector(-std::sin(fSPhi+fD 1435 *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 1436 *validNorm=true; 1436 *validNorm=true; 1437 } 1437 } 1438 else 1438 else 1439 { 1439 { 1440 *validNorm = false ; 1440 *validNorm = false ; 1441 } 1441 } 1442 break; 1442 break; 1443 1443 1444 default: 1444 default: 1445 1445 1446 // It seems we go here from time to t 1446 // It seems we go here from time to time ... 1447 1447 >> 1448 G4int oldprc = G4cout.precision(16); 1448 G4cout << G4endl; 1449 G4cout << G4endl; 1449 DumpInfo(); 1450 DumpInfo(); 1450 std::ostringstream message; << 1451 G4cout << "Position:" << G4endl << G4endl; 1451 G4long oldprc = message.precision(16) << 1452 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 1452 message << "Undefined side for valid << 1453 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 1453 << G4endl << 1454 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 1454 << "Position:" << G4endl << << 1455 G4cout << "Direction:" << G4endl << G4endl; 1455 << "p.x() = " << p.x()/mm < << 1456 G4cout << "v.x() = " << v.x() << G4endl; 1456 << "p.y() = " << p.y()/mm < << 1457 G4cout << "v.y() = " << v.y() << G4endl; 1457 << "p.z() = " << p.z()/mm < << 1458 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 1458 << "Direction:" << G4endl << << 1459 G4cout << "Proposed distance :" << G4endl << G4endl; 1459 << "v.x() = " << v.x() << G << 1460 G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl; 1460 << "v.y() = " << v.y() << G << 1461 G4cout.precision(oldprc); 1461 << "v.z() = " << v.z() << G << 1462 << "Proposed distance :" << G << 1463 << "snxt = " << snxt/mm << " << 1464 message.precision(oldprc); << 1465 G4Exception("G4Torus::DistanceToOut(p 1462 G4Exception("G4Torus::DistanceToOut(p,v,..)", 1466 "GeomSolids1002",JustWarn << 1463 "Notification",JustWarning, >> 1464 "Undefined side for valid surface normal to solid."); 1467 break; 1465 break; 1468 } 1466 } 1469 } 1467 } 1470 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1468 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1471 1469 1472 return snxt; 1470 return snxt; 1473 } 1471 } 1474 1472 1475 ///////////////////////////////////////////// 1473 ///////////////////////////////////////////////////////////////////////// 1476 // 1474 // 1477 // Calculate distance (<=actual) to closest s 1475 // Calculate distance (<=actual) to closest surface of shape from inside 1478 1476 1479 G4double G4Torus::DistanceToOut( const G4Thre 1477 G4double G4Torus::DistanceToOut( const G4ThreeVector& p ) const 1480 { 1478 { 1481 G4double safe=0.0,safeR1,safeR2; 1479 G4double safe=0.0,safeR1,safeR2; 1482 G4double rho,pt ; << 1480 G4double rho2,rho,pt2,pt ; 1483 G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi; 1481 G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi; 1484 << 1482 rho2 = p.x()*p.x() + p.y()*p.y() ; 1485 rho = std::hypot(p.x(),p.y()); << 1483 rho = std::sqrt(rho2) ; 1486 pt = std::hypot(p.z(),rho-fRtor); << 1484 pt2 = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ; 1487 << 1485 pt = std::sqrt(pt2) ; >> 1486 1488 #ifdef G4CSGDEBUG 1487 #ifdef G4CSGDEBUG 1489 if( Inside(p) == kOutside ) 1488 if( Inside(p) == kOutside ) 1490 { 1489 { 1491 G4long oldprc = G4cout.precision(16) ; << 1490 G4int oldprc = G4cout.precision(16) ; 1492 G4cout << G4endl ; 1491 G4cout << G4endl ; 1493 DumpInfo(); 1492 DumpInfo(); 1494 G4cout << "Position:" << G4endl << G4en 1493 G4cout << "Position:" << G4endl << G4endl ; 1495 G4cout << "p.x() = " << p.x()/mm << " 1494 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1496 G4cout << "p.y() = " << p.y()/mm << " 1495 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1497 G4cout << "p.z() = " << p.z()/mm << " 1496 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1498 G4cout.precision(oldprc); 1497 G4cout.precision(oldprc); 1499 G4Exception("G4Torus::DistanceToOut(p)", << 1498 G4Exception("G4Torus::DistanceToOut(p)", "Notification", 1500 JustWarning, "Point p is out 1499 JustWarning, "Point p is outside !?" ); 1501 } 1500 } 1502 #endif 1501 #endif 1503 1502 1504 if (fRmin != 0.0) << 1503 if (fRmin) 1505 { 1504 { 1506 safeR1 = pt - fRmin ; 1505 safeR1 = pt - fRmin ; 1507 safeR2 = fRmax - pt ; 1506 safeR2 = fRmax - pt ; 1508 1507 1509 if (safeR1 < safeR2) { safe = safeR1 ; } 1508 if (safeR1 < safeR2) { safe = safeR1 ; } 1510 else { safe = safeR2 ; } 1509 else { safe = safeR2 ; } 1511 } 1510 } 1512 else 1511 else 1513 { 1512 { 1514 safe = fRmax - pt ; 1513 safe = fRmax - pt ; 1515 } 1514 } 1516 1515 1517 // Check if phi divided, Calc distances clo 1516 // Check if phi divided, Calc distances closest phi plane 1518 // 1517 // 1519 if (fDPhi < twopi) // Above/below central p << 1518 if (fDPhi<twopi) // Above/below central phi of Torus? 1520 { 1519 { 1521 phiC = fSPhi + fDPhi*0.5 ; 1520 phiC = fSPhi + fDPhi*0.5 ; 1522 cosPhiC = std::cos(phiC) ; 1521 cosPhiC = std::cos(phiC) ; 1523 sinPhiC = std::sin(phiC) ; 1522 sinPhiC = std::sin(phiC) ; 1524 1523 1525 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0) 1524 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0) 1526 { 1525 { 1527 safePhi = -(p.x()*std::sin(fSPhi) - p.y 1526 safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1528 } 1527 } 1529 else 1528 else 1530 { 1529 { 1531 ePhi = fSPhi + fDPhi ; 1530 ePhi = fSPhi + fDPhi ; 1532 safePhi = (p.x()*std::sin(ePhi) - p.y() 1531 safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1533 } 1532 } 1534 if (safePhi < safe) { safe = safePhi ; } 1533 if (safePhi < safe) { safe = safePhi ; } 1535 } 1534 } 1536 if (safe < 0) { safe = 0 ; } 1535 if (safe < 0) { safe = 0 ; } 1537 return safe ; 1536 return safe ; 1538 } 1537 } 1539 1538 >> 1539 ///////////////////////////////////////////////////////////////////////////// >> 1540 // >> 1541 // Create a List containing the transformed vertices >> 1542 // Ordering [0-3] -fRtor cross section >> 1543 // [4-7] +fRtor cross section such that [0] is below [4], >> 1544 // [1] below [5] etc. >> 1545 // Note: >> 1546 // Caller has deletion resposibility >> 1547 // Potential improvement: For last slice, use actual ending angle >> 1548 // to avoid rounding error problems. >> 1549 >> 1550 G4ThreeVectorList* >> 1551 G4Torus::CreateRotatedVertices( const G4AffineTransform& pTransform, >> 1552 G4int& noPolygonVertices ) const >> 1553 { >> 1554 G4ThreeVectorList *vertices; >> 1555 G4ThreeVector vertex0,vertex1,vertex2,vertex3; >> 1556 G4double meshAngle,meshRMax,crossAngle,cosCrossAngle,sinCrossAngle,sAngle; >> 1557 G4double rMaxX,rMaxY,rMinX,rMinY; >> 1558 G4int crossSection,noCrossSections; >> 1559 >> 1560 // Compute no of cross-sections necessary to mesh tube >> 1561 // >> 1562 noCrossSections = G4int (fDPhi/kMeshAngleDefault) + 1 ; >> 1563 >> 1564 if (noCrossSections < kMinMeshSections) >> 1565 { >> 1566 noCrossSections = kMinMeshSections ; >> 1567 } >> 1568 else if (noCrossSections>kMaxMeshSections) >> 1569 { >> 1570 noCrossSections=kMaxMeshSections; >> 1571 } >> 1572 meshAngle = fDPhi/(noCrossSections - 1) ; >> 1573 meshRMax = (fRtor + fRmax)/std::cos(meshAngle*0.5) ; >> 1574 >> 1575 // If complete in phi, set start angle such that mesh will be at fRmax >> 1576 // on the x axis. Will give better extent calculations when not rotated >> 1577 >> 1578 if ( (fDPhi == twopi) && (fSPhi == 0) ) >> 1579 { >> 1580 sAngle = -meshAngle*0.5 ; >> 1581 } >> 1582 else >> 1583 { >> 1584 sAngle = fSPhi ; >> 1585 } >> 1586 vertices = new G4ThreeVectorList(); >> 1587 >> 1588 if (vertices) >> 1589 { >> 1590 vertices->reserve(noCrossSections*4) ; >> 1591 for (crossSection=0;crossSection<noCrossSections;crossSection++) >> 1592 { >> 1593 // Compute coordinates of cross section at section crossSection >> 1594 >> 1595 crossAngle=sAngle+crossSection*meshAngle; >> 1596 cosCrossAngle=std::cos(crossAngle); >> 1597 sinCrossAngle=std::sin(crossAngle); >> 1598 >> 1599 rMaxX=meshRMax*cosCrossAngle; >> 1600 rMaxY=meshRMax*sinCrossAngle; >> 1601 rMinX=(fRtor-fRmax)*cosCrossAngle; >> 1602 rMinY=(fRtor-fRmax)*sinCrossAngle; >> 1603 vertex0=G4ThreeVector(rMinX,rMinY,-fRmax); >> 1604 vertex1=G4ThreeVector(rMaxX,rMaxY,-fRmax); >> 1605 vertex2=G4ThreeVector(rMaxX,rMaxY,+fRmax); >> 1606 vertex3=G4ThreeVector(rMinX,rMinY,+fRmax); >> 1607 >> 1608 vertices->push_back(pTransform.TransformPoint(vertex0)); >> 1609 vertices->push_back(pTransform.TransformPoint(vertex1)); >> 1610 vertices->push_back(pTransform.TransformPoint(vertex2)); >> 1611 vertices->push_back(pTransform.TransformPoint(vertex3)); >> 1612 } >> 1613 noPolygonVertices = 4 ; >> 1614 } >> 1615 else >> 1616 { >> 1617 DumpInfo(); >> 1618 G4Exception("G4Torus::CreateRotatedVertices()", >> 1619 "FatalError", FatalException, >> 1620 "Error in allocation of vertices. Out of memory !"); >> 1621 } >> 1622 return vertices; >> 1623 } >> 1624 1540 ///////////////////////////////////////////// 1625 ////////////////////////////////////////////////////////////////////////// 1541 // 1626 // 1542 // Stream object contents to an output stream 1627 // Stream object contents to an output stream 1543 1628 1544 G4GeometryType G4Torus::GetEntityType() const 1629 G4GeometryType G4Torus::GetEntityType() const 1545 { 1630 { 1546 return {"G4Torus"}; << 1631 return G4String("G4Torus"); 1547 } 1632 } 1548 1633 1549 ///////////////////////////////////////////// 1634 ////////////////////////////////////////////////////////////////////////// 1550 // 1635 // 1551 // Make a clone of the object 1636 // Make a clone of the object 1552 // 1637 // 1553 G4VSolid* G4Torus::Clone() const 1638 G4VSolid* G4Torus::Clone() const 1554 { 1639 { 1555 return new G4Torus(*this); 1640 return new G4Torus(*this); 1556 } 1641 } 1557 1642 1558 ///////////////////////////////////////////// 1643 ////////////////////////////////////////////////////////////////////////// 1559 // 1644 // 1560 // Stream object contents to an output stream 1645 // Stream object contents to an output stream 1561 1646 1562 std::ostream& G4Torus::StreamInfo( std::ostre 1647 std::ostream& G4Torus::StreamInfo( std::ostream& os ) const 1563 { 1648 { 1564 G4long oldprc = os.precision(16); << 1565 os << "------------------------------------ 1649 os << "-----------------------------------------------------------\n" 1566 << " *** Dump for solid - " << GetNam 1650 << " *** Dump for solid - " << GetName() << " ***\n" 1567 << " ================================ 1651 << " ===================================================\n" 1568 << " Solid type: G4Torus\n" 1652 << " Solid type: G4Torus\n" 1569 << " Parameters: \n" 1653 << " Parameters: \n" 1570 << " inner radius: " << fRmin/mm << " 1654 << " inner radius: " << fRmin/mm << " mm \n" 1571 << " outer radius: " << fRmax/mm << " 1655 << " outer radius: " << fRmax/mm << " mm \n" 1572 << " swept radius: " << fRtor/mm << " 1656 << " swept radius: " << fRtor/mm << " mm \n" 1573 << " starting phi: " << fSPhi/degree 1657 << " starting phi: " << fSPhi/degree << " degrees \n" 1574 << " delta phi : " << fDPhi/degree 1658 << " delta phi : " << fDPhi/degree << " degrees \n" 1575 << "------------------------------------ 1659 << "-----------------------------------------------------------\n"; 1576 os.precision(oldprc); << 1577 1660 1578 return os; 1661 return os; 1579 } 1662 } 1580 1663 1581 ///////////////////////////////////////////// 1664 //////////////////////////////////////////////////////////////////////////// 1582 // 1665 // 1583 // GetPointOnSurface 1666 // GetPointOnSurface 1584 1667 1585 G4ThreeVector G4Torus::GetPointOnSurface() co 1668 G4ThreeVector G4Torus::GetPointOnSurface() const 1586 { 1669 { 1587 G4double cosu, sinu,cosv, sinv, aOut, aIn, 1670 G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand; 1588 1671 1589 phi = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi << 1672 phi = RandFlat::shoot(fSPhi,fSPhi+fDPhi); 1590 theta = G4RandFlat::shoot(0.,twopi); << 1673 theta = RandFlat::shoot(0.,twopi); 1591 1674 1592 cosu = std::cos(phi); sinu = std::sin( 1675 cosu = std::cos(phi); sinu = std::sin(phi); 1593 cosv = std::cos(theta); sinv = std::sin( 1676 cosv = std::cos(theta); sinv = std::sin(theta); 1594 1677 1595 // compute the areas 1678 // compute the areas 1596 1679 1597 aOut = (fDPhi)*twopi*fRtor*fRmax; 1680 aOut = (fDPhi)*twopi*fRtor*fRmax; 1598 aIn = (fDPhi)*twopi*fRtor*fRmin; 1681 aIn = (fDPhi)*twopi*fRtor*fRmin; 1599 aSide = pi*(fRmax*fRmax-fRmin*fRmin); 1682 aSide = pi*(fRmax*fRmax-fRmin*fRmin); 1600 1683 1601 if ((fSPhi == 0) && (fDPhi == twopi)){ aSid 1684 if ((fSPhi == 0) && (fDPhi == twopi)){ aSide = 0; } 1602 chose = G4RandFlat::shoot(0.,aOut + aIn + 2 << 1685 chose = RandFlat::shoot(0.,aOut + aIn + 2.*aSide); 1603 1686 1604 if(chose < aOut) 1687 if(chose < aOut) 1605 { 1688 { 1606 return { (fRtor+fRmax*cosv)*cosu, (fRtor+ << 1689 return G4ThreeVector ((fRtor+fRmax*cosv)*cosu, >> 1690 (fRtor+fRmax*cosv)*sinu, fRmax*sinv); 1607 } 1691 } 1608 else if( (chose >= aOut) && (chose < aOut + 1692 else if( (chose >= aOut) && (chose < aOut + aIn) ) 1609 { 1693 { 1610 return { (fRtor+fRmin*cosv)*cosu, (fRtor+ << 1694 return G4ThreeVector ((fRtor+fRmin*cosv)*cosu, >> 1695 (fRtor+fRmin*cosv)*sinu, fRmin*sinv); 1611 } 1696 } 1612 else if( (chose >= aOut + aIn) && (chose < 1697 else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) ) 1613 { 1698 { 1614 rRand = GetRadiusInRing(fRmin,fRmax); << 1699 rRand = RandFlat::shoot(fRmin,fRmax); 1615 return { (fRtor+rRand*cosv)*std::cos(fSPh << 1700 return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi), 1616 (fRtor+rRand*cosv)*std::sin(fSPh << 1701 (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv); 1617 } 1702 } 1618 else 1703 else 1619 { 1704 { 1620 rRand = GetRadiusInRing(fRmin,fRmax); << 1705 rRand = RandFlat::shoot(fRmin,fRmax); 1621 return { (fRtor+rRand*cosv)*std::cos(fSPh << 1706 return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi), 1622 (fRtor+rRand*cosv)*std::sin(fSPh << 1707 (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi), >> 1708 rRand*sinv); 1623 } 1709 } 1624 } 1710 } 1625 1711 1626 ///////////////////////////////////////////// 1712 /////////////////////////////////////////////////////////////////////// 1627 // 1713 // 1628 // Visualisation Functions 1714 // Visualisation Functions 1629 1715 1630 void G4Torus::DescribeYourselfTo ( G4VGraphic 1716 void G4Torus::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1631 { 1717 { 1632 scene.AddSolid (*this); 1718 scene.AddSolid (*this); 1633 } 1719 } 1634 1720 1635 G4Polyhedron* G4Torus::CreatePolyhedron () co 1721 G4Polyhedron* G4Torus::CreatePolyhedron () const 1636 { 1722 { 1637 return new G4PolyhedronTorus (fRmin, fRmax, 1723 return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi); 1638 } 1724 } 1639 1725 1640 #endif // !defined(G4GEOM_USE_TORUS) || !defi << 1726 G4NURBS* G4Torus::CreateNURBS () const >> 1727 { >> 1728 G4NURBS* pNURBS; >> 1729 if (fRmin != 0) >> 1730 { >> 1731 if (fDPhi >= twopi) >> 1732 { >> 1733 pNURBS = new G4NURBStube(fRmin, fRmax, fRtor); >> 1734 } >> 1735 else >> 1736 { >> 1737 pNURBS = new G4NURBStubesector(fRmin, fRmax, fRtor, fSPhi, fSPhi + fDPhi); >> 1738 } >> 1739 } >> 1740 else >> 1741 { >> 1742 if (fDPhi >= twopi) >> 1743 { >> 1744 pNURBS = new G4NURBScylinder (fRmax, fRtor); >> 1745 } >> 1746 else >> 1747 { >> 1748 const G4double epsilon = 1.e-4; // Cylinder sector not yet available! >> 1749 pNURBS = new G4NURBStubesector (epsilon, fRmax, fRtor, >> 1750 fSPhi, fSPhi + fDPhi); >> 1751 } >> 1752 } >> 1753 return pNURBS; >> 1754 } 1641 1755