Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Torus.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Torus.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Torus.cc (Version 8.0.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
 26 // G4Torus implementation                      << 
 27 //                                                 23 //
 28 // 30.10.96 V.Grichine: first implementation w <<  24 // $Id: G4Torus.cc,v 1.58 2005/11/20 16:35:39 grichine Exp $
 29 // 26.05.00 V.Grichine: added new fuctions dev <<  25 // GEANT4 tag $Name: geant4-08-00-patch-01 $
 30 // 31.08.00 E.Medernach: numerical computation <<  26 //
 31 // 11.01.01 E.Medernach: Use G4PolynomialSolve <<  27 // 
 32 // 03.05.05 V.Grichine: SurfaceNormal(p) accor <<  28 // class G4Torus
                                                   >>  29 //
                                                   >>  30 // Implementation
                                                   >>  31 //
                                                   >>  32 // 20.11.05 V.Grichine: Bug fixed in Inside(p) for phi sections, b.810 
 33 // 25.08.05 O.Link: new methods for DistanceTo     33 // 25.08.05 O.Link: new methods for DistanceToIn/Out using JTPolynomialSolver
 34 // 28.10.16 E.Tcherniaev: new CalculateExtent( <<  34 // 07.06.05 V.Grichine: SurfaceNormal(p) for rho=0, Constructor as G4Cons 
 35 // 16.12.16 H.Burkhardt: use radius difference <<  35 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal
 36 // ------------------------------------------- <<  36 // 18.03.04 V.Grichine: bug fixed in DistanceToIn(p)
                                                   >>  37 // 11.01.01 E.Medernach: Use G4PolynomialSolver to find roots
                                                   >>  38 // 03.10.00 E.Medernach: SafeNewton added
                                                   >>  39 // 31.08.00 E.Medernach: numerical computation of roots wuth bounding
                                                   >>  40 //                       volume technique
                                                   >>  41 // 26.05.00 V.Grichine: new fuctions developed by O.Cremonesi were added
                                                   >>  42 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...)
                                                   >>  43 // 19.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...)
                                                   >>  44 // 09.10.98 V.Grichine: modifications in Distance ToOut(p,v,...)
                                                   >>  45 // 30.10.96 V.Grichine: first implementation with G4Tubs elements in Fs
                                                   >>  46 //
 37                                                    47 
 38 #include "G4Torus.hh"                              48 #include "G4Torus.hh"
 39                                                    49 
 40 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4 << 
 41                                                << 
 42 #include "G4GeomTools.hh"                      << 
 43 #include "G4VoxelLimits.hh"                        50 #include "G4VoxelLimits.hh"
 44 #include "G4AffineTransform.hh"                    51 #include "G4AffineTransform.hh"
 45 #include "G4BoundingEnvelope.hh"               << 
 46 #include "G4GeometryTolerance.hh"              << 
 47 #include "G4JTPolynomialSolver.hh"                 52 #include "G4JTPolynomialSolver.hh"
 48                                                    53 
 49 #include "G4VPVParameterisation.hh"                54 #include "G4VPVParameterisation.hh"
 50                                                    55 
 51 #include "meshdefs.hh"                             56 #include "meshdefs.hh"
 52                                                    57 
 53 #include "Randomize.hh"                            58 #include "Randomize.hh"
 54                                                    59 
 55 #include "G4VGraphicsScene.hh"                     60 #include "G4VGraphicsScene.hh"
 56 #include "G4Polyhedron.hh"                         61 #include "G4Polyhedron.hh"
                                                   >>  62 #include "G4NURBS.hh"
                                                   >>  63 #include "G4NURBStube.hh"
                                                   >>  64 #include "G4NURBScylinder.hh"
                                                   >>  65 #include "G4NURBStubesector.hh"
 57                                                    66 
 58 using namespace CLHEP;                             67 using namespace CLHEP;
 59                                                    68 
 60 //////////////////////////////////////////////     69 ///////////////////////////////////////////////////////////////
 61 //                                                 70 //
 62 // Constructor - check parameters, convert ang     71 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 63 //             - note if pdphi>2PI then reset      72 //             - note if pdphi>2PI then reset to 2PI
 64                                                    73 
 65 G4Torus::G4Torus( const G4String& pName,       <<  74 G4Torus::G4Torus( const G4String &pName,
 66                         G4double pRmin,            75                         G4double pRmin,
 67                         G4double pRmax,            76                         G4double pRmax,
 68                         G4double pRtor,            77                         G4double pRtor,
 69                         G4double pSPhi,            78                         G4double pSPhi,
 70                         G4double pDPhi )       <<  79                         G4double pDPhi)
 71   : G4CSGSolid(pName)                              80   : G4CSGSolid(pName)
 72 {                                                  81 {
 73   SetAllParameters(pRmin, pRmax, pRtor, pSPhi,     82   SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi);
 74 }                                                  83 }
 75                                                    84 
 76 //////////////////////////////////////////////     85 ////////////////////////////////////////////////////////////////////////////
 77 //                                                 86 //
 78 //                                                 87 //
 79                                                    88 
 80 void                                               89 void
 81 G4Torus::SetAllParameters( G4double pRmin,         90 G4Torus::SetAllParameters( G4double pRmin,
 82                            G4double pRmax,         91                            G4double pRmax,
 83                            G4double pRtor,         92                            G4double pRtor,
 84                            G4double pSPhi,         93                            G4double pSPhi,
 85                            G4double pDPhi )        94                            G4double pDPhi )
 86 {                                                  95 {
 87   const G4double fEpsilon = 4.e-11;  // relati << 
 88                                                << 
 89   fCubicVolume = 0.;                               96   fCubicVolume = 0.;
 90   fSurfaceArea = 0.;                           <<  97   fpPolyhedron = 0;
 91   fRebuildPolyhedron = true;                   << 
 92                                                << 
 93   kRadTolerance = G4GeometryTolerance::GetInst << 
 94   kAngTolerance = G4GeometryTolerance::GetInst << 
 95                                                << 
 96   halfCarTolerance = 0.5*kCarTolerance;        << 
 97   halfAngTolerance = 0.5*kAngTolerance;        << 
 98                                                << 
 99   if ( pRtor >= pRmax+1.e3*kCarTolerance )  //     98   if ( pRtor >= pRmax+1.e3*kCarTolerance )  // Check swept radius, as in G4Cons
100   {                                                99   {
101     fRtor = pRtor ;                               100     fRtor = pRtor ;
102   }                                               101   }
103   else                                            102   else
104   {                                               103   {
105     std::ostringstream message;                << 104     G4cerr << "ERROR - G4Torus()::SetAllParameters(): " << GetName() << G4endl
106     message << "Invalid swept radius for Solid << 105            << "        Invalid swept radius !" << G4endl
107             << "        pRtor = " << pRtor <<  << 106            << "pRtor = " << pRtor << ", pRmax = " << pRmax << G4endl;
108     G4Exception("G4Torus::SetAllParameters()",    107     G4Exception("G4Torus::SetAllParameters()",
109                 "GeomSolids0002", FatalExcepti << 108                 "InvalidSetup", FatalException, "Invalid swept radius.");
110   }                                               109   }
111                                                   110 
112   // Check radii, as in G4Cons                    111   // Check radii, as in G4Cons
113   //                                              112   //
114   if ( pRmin < pRmax - 1.e2*kCarTolerance && p    113   if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 )
115   {                                               114   {
116     if (pRmin >= 1.e2*kCarTolerance) { fRmin =    115     if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; }
117     else                             { fRmin =    116     else                             { fRmin = 0.0   ; }
118     fRmax = pRmax ;                               117     fRmax = pRmax ;
119   }                                               118   }
120   else                                            119   else
121   {                                               120   {
122     std::ostringstream message;                << 121     G4cerr << "ERROR - G4Torus()::SetAllParameters(): " << GetName() << G4endl
123     message << "Invalid values of radii for So << 122            << "        Invalid values for radii !" << G4endl
124             << "        pRmin = " << pRmin <<  << 123            << "        pRmin = " << pRmin << ", pRmax = " << pRmax << G4endl;
125     G4Exception("G4Torus::SetAllParameters()",    124     G4Exception("G4Torus::SetAllParameters()",
126                 "GeomSolids0002", FatalExcepti << 125                 "InvalidSetup", FatalException, "Invalid radii.");
127   }                                               126   }
128                                                   127 
129   // Relative tolerances                       << 
130   //                                           << 
131   fRminTolerance = (fRmin) != 0.0              << 
132                  ? 0.5*std::max( kRadTolerance << 
133   fRmaxTolerance = 0.5*std::max( kRadTolerance << 
134                                                << 
135   // Check angles                                 128   // Check angles
136   //                                              129   //
137   if ( pDPhi >= twopi )  { fDPhi = twopi ; }      130   if ( pDPhi >= twopi )  { fDPhi = twopi ; }
138   else                                            131   else
139   {                                               132   {
140     if (pDPhi > 0)       { fDPhi = pDPhi ; }      133     if (pDPhi > 0)       { fDPhi = pDPhi ; }
141     else                                          134     else
142     {                                             135     {
143       std::ostringstream message;              << 136       G4cerr << "ERROR - G4Torus::SetAllParameters(): " << GetName() << G4endl
144       message << "Invalid Z delta-Phi for Soli << 137              << "        Negative Z delta-Phi ! - "
145               << "        pDPhi = " << pDPhi;  << 138              << pDPhi << G4endl;
146       G4Exception("G4Torus::SetAllParameters()    139       G4Exception("G4Torus::SetAllParameters()",
147                   "GeomSolids0002", FatalExcep << 140                   "InvalidSetup", FatalException, "Invalid dphi.");
148     }                                             141     }
149   }                                               142   }
150                                                   143   
151   // Ensure psphi in 0-2PI or -2PI-0 range if     144   // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0
152   //                                              145   //
153   fSPhi = pSPhi;                                  146   fSPhi = pSPhi;
154                                                   147 
155   if (fSPhi < 0)  { fSPhi = twopi-std::fmod(st    148   if (fSPhi < 0)  { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; }
156   else            { fSPhi = std::fmod(fSPhi,tw    149   else            { fSPhi = std::fmod(fSPhi,twopi) ; }
157                                                   150 
158   if (fSPhi+fDPhi > twopi)  { fSPhi-=twopi ; }    151   if (fSPhi+fDPhi > twopi)  { fSPhi-=twopi ; }
159 }                                                 152 }
160                                                   153 
161 //////////////////////////////////////////////    154 ///////////////////////////////////////////////////////////////////////
162 //                                                155 //
163 // Fake default constructor - sets only member    156 // Fake default constructor - sets only member data and allocates memory
164 //                            for usage restri    157 //                            for usage restricted to object persistency.
165 //                                                158 //
166 G4Torus::G4Torus( __void__& a )                   159 G4Torus::G4Torus( __void__& a )
167   : G4CSGSolid(a)                                 160   : G4CSGSolid(a)
168 {                                                 161 {
169 }                                                 162 }
170                                                   163 
171 //////////////////////////////////////////////    164 //////////////////////////////////////////////////////////////////////
172 //                                                165 //
173 // Destructor                                     166 // Destructor
174                                                   167 
175 G4Torus::~G4Torus() = default;                 << 168 G4Torus::~G4Torus()
176                                                << 169 {}
177 ////////////////////////////////////////////// << 
178 //                                             << 
179 // Copy constructor                            << 
180                                                << 
181 G4Torus::G4Torus(const G4Torus&) = default;    << 
182                                                << 
183 ////////////////////////////////////////////// << 
184 //                                             << 
185 // Assignment operator                         << 
186                                                << 
187 G4Torus& G4Torus::operator = (const G4Torus& r << 
188 {                                              << 
189    // Check assignment to self                 << 
190    //                                          << 
191    if (this == &rhs)  { return *this; }        << 
192                                                << 
193    // Copy base class data                     << 
194    //                                          << 
195    G4CSGSolid::operator=(rhs);                 << 
196                                                << 
197    // Copy data                                << 
198    //                                          << 
199    fRmin = rhs.fRmin; fRmax = rhs.fRmax;       << 
200    fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi << 
201    fRminTolerance = rhs.fRminTolerance; fRmaxT << 
202    kRadTolerance = rhs.kRadTolerance; kAngTole << 
203    halfCarTolerance = rhs.halfCarTolerance;    << 
204    halfAngTolerance = rhs.halfAngTolerance;    << 
205                                                << 
206    return *this;                               << 
207 }                                              << 
208                                                   170 
209 //////////////////////////////////////////////    171 //////////////////////////////////////////////////////////////////////
210 //                                                172 //
211 // Dispatch to parameterisation for replicatio    173 // Dispatch to parameterisation for replication mechanism dimension
212 // computation & modification.                    174 // computation & modification.
213                                                   175 
214 void G4Torus::ComputeDimensions(       G4VPVPa    176 void G4Torus::ComputeDimensions(       G4VPVParameterisation* p,
215                                  const G4int n    177                                  const G4int n,
216                                  const G4VPhys    178                                  const G4VPhysicalVolume* pRep )
217 {                                                 179 {
218   p->ComputeDimensions(*this,n,pRep);             180   p->ComputeDimensions(*this,n,pRep);
219 }                                                 181 }
220                                                   182 
221                                                   183 
222                                                   184 
223 //////////////////////////////////////////////    185 ////////////////////////////////////////////////////////////////////////////////
224 //                                                186 //
225 // Calculate the real roots to torus surface.     187 // Calculate the real roots to torus surface. 
226 // Returns negative solutions as well.            188 // Returns negative solutions as well.
227                                                   189 
228 void G4Torus::TorusRootsJT( const G4ThreeVecto << 190 std::vector<G4double> G4Torus::TorusRootsJT( const G4ThreeVector& p,
229                             const G4ThreeVecto << 191                                              const G4ThreeVector& v,
230                                   G4double r,  << 192                                                    G4double r ) const
231                                   std::vector< << 
232 {                                                 193 {
233                                                   194 
234   G4int i, num ;                                  195   G4int i, num ;
235   G4double c[5], srd[4], si[4] ;               << 196   G4double c[5], sr[4], si[4] ;
                                                   >> 197   std::vector<G4double> roots ;
236                                                   198 
237   G4double Rtor2 = fRtor*fRtor, r2 = r*r  ;       199   G4double Rtor2 = fRtor*fRtor, r2 = r*r  ;
238                                                   200 
239   G4double pDotV = p.x()*v.x() + p.y()*v.y() +    201   G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
240   G4double pRad2 = p.x()*p.x() + p.y()*p.y() +    202   G4double pRad2 = p.x()*p.x() + p.y()*p.y() + p.z()*p.z() ;
241                                                   203 
242   G4double d=pRad2 - Rtor2;                    << 
243   c[0] = 1.0 ;                                    204   c[0] = 1.0 ;
244   c[1] = 4*pDotV ;                                205   c[1] = 4*pDotV ;
245   c[2] = 2*( (d + 2*pDotV*pDotV  - r2) + 2*Rto << 206   c[2] = 2*(pRad2 + 2*pDotV*pDotV - Rtor2 - r2 + 2*Rtor2*v.z()*v.z()) ;
246   c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z << 207   c[3] = 4*(pDotV*(pRad2 - Rtor2 - r2) + 2*Rtor2*p.z()*v.z()) ;
247   c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r << 208   c[4] = pRad2*pRad2 - 2*pRad2*(Rtor2+r2) 
248                                                << 209        + 4*Rtor2*p.z()*p.z() + (Rtor2-r2)*(Rtor2-r2) ;
                                                   >> 210   
249   G4JTPolynomialSolver  torusEq;                  211   G4JTPolynomialSolver  torusEq;
250                                                   212 
251   num = torusEq.FindRoots( c, 4, srd, si );    << 213   num = torusEq.FindRoots( c, 4, sr, si );
252                                                   214   
253   for ( i = 0; i < num; ++i )                  << 215   for ( i = 0; i < num; i++ ) 
254   {                                               216   {
255     if( si[i] == 0. )  { roots.push_back(srd[i << 217     if( si[i] == 0. )  { roots.push_back(sr[i]) ; }  // store real roots
256   }                                               218   }  
257                                                   219 
258   std::sort(roots.begin() , roots.end() ) ;  / << 220   std::sort(roots.begin() , roots.end() ) ;  // sorting  with < 
                                                   >> 221 
                                                   >> 222   return roots;
259 }                                                 223 }
260                                                   224 
261 //////////////////////////////////////////////    225 //////////////////////////////////////////////////////////////////////////////
262 //                                                226 //
263 // Interface for DistanceToIn and DistanceToOu    227 // Interface for DistanceToIn and DistanceToOut.
264 // Calls TorusRootsJT and returns the smalles     228 // Calls TorusRootsJT and returns the smalles possible distance to 
265 // the surface.                                   229 // the surface.
266 // Attention: Difference in DistanceToIn/Out f    230 // Attention: Difference in DistanceToIn/Out for points p on the surface.
267                                                   231 
268 G4double G4Torus::SolveNumericJT( const G4Thre    232 G4double G4Torus::SolveNumericJT( const G4ThreeVector& p,
269                                   const G4Thre    233                                   const G4ThreeVector& v,
270                                         G4doub    234                                         G4double r,
271                                         G4bool    235                                         G4bool IsDistanceToIn ) const
272 {                                                 236 {
273   G4double bigdist = 10*mm ;                      237   G4double bigdist = 10*mm ;
274   G4double tmin = kInfinity ;                     238   G4double tmin = kInfinity ;
275   G4double t, scal ;                              239   G4double t, scal ;
276                                                   240 
277   // calculate the distances to the intersecti    241   // calculate the distances to the intersections with the Torus
278   // from a given point p and direction v.        242   // from a given point p and direction v.
279   //                                              243   //
280   std::vector<G4double> roots ;                   244   std::vector<G4double> roots ;
281   std::vector<G4double> rootsrefined ;            245   std::vector<G4double> rootsrefined ;
282   TorusRootsJT(p,v,r,roots) ;                  << 246   roots = TorusRootsJT(p,v,r) ;
283                                                   247 
284   G4ThreeVector ptmp ;                            248   G4ThreeVector ptmp ;
285                                                   249 
286   // determine the smallest non-negative solut    250   // determine the smallest non-negative solution
287   //                                              251   //
288   for ( std::size_t k = 0 ; k<roots.size() ; + << 252   for ( size_t k = 0 ; k<roots.size() ; k++ )
289   {                                               253   {
290     t = roots[k] ;                                254     t = roots[k] ;
291                                                   255 
292     if ( t < -halfCarTolerance )  { continue ; << 256     if ( t < -0.5*kCarTolerance )  { continue ; }  // skip negative roots
293                                                   257 
294     if ( t > bigdist && t<kInfinity )    // pr    258     if ( t > bigdist && t<kInfinity )    // problem with big distances
295     {                                             259     {
296       ptmp = p + t*v ;                            260       ptmp = p + t*v ;
297       TorusRootsJT(ptmp,v,r,rootsrefined) ;    << 261       rootsrefined = TorusRootsJT(ptmp,v,r) ;
298       if ( rootsrefined.size()==roots.size() ) << 262       t = t + rootsrefined[k] ; 
299       {                                        << 
300         t = t + rootsrefined[k] ;              << 
301       }                                        << 
302     }                                             263     }
303                                                   264 
304     ptmp = p + t*v ;   // calculate the positi    265     ptmp = p + t*v ;   // calculate the position of the proposed intersection
305                                                   266 
306     G4double theta = std::atan2(ptmp.y(),ptmp.    267     G4double theta = std::atan2(ptmp.y(),ptmp.x());
                                                   >> 268 
                                                   >> 269     if (theta < 0)  { theta += twopi; }
307                                                   270     
308     if ( fSPhi >= 0 )                          << 
309     {                                          << 
310       if ( theta < - halfAngTolerance )  { the << 
311       if ( (std::fabs(theta) < halfAngToleranc << 
312         && (std::fabs(fSPhi + fDPhi - twopi) < << 
313       {                                        << 
314         theta += twopi ; // 0 <= theta < 2pi   << 
315       }                                        << 
316     }                                          << 
317     if ((fSPhi <= -pi )&&(theta>halfAngToleran << 
318                                                << 
319     // We have to verify if this root is insid    271     // We have to verify if this root is inside the region between
320     // fSPhi and fSPhi + fDPhi                    272     // fSPhi and fSPhi + fDPhi
321     //                                            273     //
322     if ( (theta - fSPhi >= - halfAngTolerance) << 274     if ( (theta - fSPhi >= - kAngTolerance*0.5)
323       && (theta - (fSPhi + fDPhi) <=  halfAngT << 275       && (theta - (fSPhi + fDPhi) <=  kAngTolerance*0.5) )
324     {                                             276     {
325       // check if P is on the surface, and cal    277       // check if P is on the surface, and called from DistanceToIn
326       // DistanceToIn has to return 0.0 if par    278       // DistanceToIn has to return 0.0 if particle is going inside the solid
327                                                   279 
328       if ( IsDistanceToIn )                    << 280       if ( IsDistanceToIn == true )
329       {                                           281       {
330         if (std::fabs(t) < halfCarTolerance )  << 282         if (std::fabs(t) < 0.5*kCarTolerance )
331         {                                         283         {
332           // compute scalar product at positio    284           // compute scalar product at position p : v.n
333           // ( n taken from SurfaceNormal, not    285           // ( n taken from SurfaceNormal, not normalized )
334                                                   286 
335           scal = v* G4ThreeVector( p.x()*(1-fR << 287           scal = v* G4ThreeVector( p.x()*(1-fRtor/std::sqrt(p.x()*p.x()
336                                    p.y()*(1-fR << 288                                           + p.y()*p.y())),
                                                   >> 289                                    p.y()*(1-fRtor/std::sqrt(p.x()*p.x()
                                                   >> 290                                           + p.y()*p.y())),
337                                    p.z() );       291                                    p.z() );
338                                                   292 
339           // change sign in case of inner radi    293           // change sign in case of inner radius
340           //                                      294           //
341           if ( r == GetRmin() )  { scal = -sca    295           if ( r == GetRmin() )  { scal = -scal ; }
342           if ( scal < 0 )  { return 0.0  ; }      296           if ( scal < 0 )  { return 0.0  ; }
343         }                                         297         }
344       }                                           298       }
345                                                   299 
346       // check if P is on the surface, and cal    300       // check if P is on the surface, and called from DistanceToOut
347       // DistanceToIn has to return 0.0 if par    301       // DistanceToIn has to return 0.0 if particle is leaving the solid
348                                                   302 
349       if ( !IsDistanceToIn )                   << 303       if ( IsDistanceToIn == false )
350       {                                           304       {
351         if (std::fabs(t) < halfCarTolerance )  << 305         if (std::fabs(t) < 0.5*kCarTolerance )
352         {                                         306         {
353           // compute scalar product at positio    307           // compute scalar product at position p : v.n   
354           //                                      308           //
355           scal = v* G4ThreeVector( p.x()*(1-fR << 309           scal = v* G4ThreeVector( p.x()*(1-fRtor/std::sqrt(p.x()*p.x()
356                                    p.y()*(1-fR << 310                                           + p.y()*p.y())),
                                                   >> 311                                    p.y()*(1-fRtor/std::sqrt(p.x()*p.x()
                                                   >> 312                                           + p.y()*p.y())),
357                                    p.z() );       313                                    p.z() );
358                                                   314 
359           // change sign in case of inner radi    315           // change sign in case of inner radius
360           //                                      316           //
361           if ( r == GetRmin() )  { scal = -sca    317           if ( r == GetRmin() )  { scal = -scal ; }
362           if ( scal > 0 )  { return 0.0  ; }      318           if ( scal > 0 )  { return 0.0  ; }
363         }                                         319         }
364       }                                           320       }
365                                                   321 
366       // check if distance is larger than 1/2     322       // check if distance is larger than 1/2 kCarTolerance
367       //                                          323       //
368       if(  t > halfCarTolerance  )             << 324       if(  t > 0.5*kCarTolerance  )
369       {                                           325       {
370         tmin = t  ;                               326         tmin = t  ;
371         return tmin  ;                            327         return tmin  ;
372       }                                           328       }
373     }                                             329     }
374   }                                               330   }
375                                                   331 
376   return tmin;                                    332   return tmin;
377 }                                                 333 }
378                                                   334 
379 //////////////////////////////////////////////    335 /////////////////////////////////////////////////////////////////////////////
380 //                                                336 //
381 // Get bounding box                            << 
382                                                << 
383 void G4Torus::BoundingLimits(G4ThreeVector& pM << 
384 {                                              << 
385   G4double rmax = GetRmax();                   << 
386   G4double rtor = GetRtor();                   << 
387   G4double rint = rtor - rmax;                 << 
388   G4double rext = rtor + rmax;                 << 
389   G4double dz   = rmax;                        << 
390                                                << 
391   // Find bounding box                         << 
392   //                                           << 
393   if (GetDPhi() >= twopi)                      << 
394   {                                            << 
395     pMin.set(-rext,-rext,-dz);                 << 
396     pMax.set( rext, rext, dz);                 << 
397   }                                            << 
398   else                                         << 
399   {                                            << 
400     G4TwoVector vmin,vmax;                     << 
401     G4GeomTools::DiskExtent(rint,rext,         << 
402                             GetSinStartPhi(),G << 
403                             GetSinEndPhi(),Get << 
404                             vmin,vmax);        << 
405     pMin.set(vmin.x(),vmin.y(),-dz);           << 
406     pMax.set(vmax.x(),vmax.y(), dz);           << 
407   }                                            << 
408                                                << 
409   // Check correctness of the bounding box     << 
410   //                                           << 
411   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
412   {                                            << 
413     std::ostringstream message;                << 
414     message << "Bad bounding box (min >= max)  << 
415             << GetName() << " !"               << 
416             << "\npMin = " << pMin             << 
417             << "\npMax = " << pMax;            << 
418     G4Exception("G4Torus::BoundingLimits()", " << 
419                 JustWarning, message);         << 
420     DumpInfo();                                << 
421   }                                            << 
422 }                                              << 
423                                                << 
424 ////////////////////////////////////////////// << 
425 //                                             << 
426 // Calculate extent under transform and specif    337 // Calculate extent under transform and specified limit
427                                                   338 
428 G4bool G4Torus::CalculateExtent( const EAxis p    339 G4bool G4Torus::CalculateExtent( const EAxis pAxis,
429                                  const G4Voxel    340                                  const G4VoxelLimits& pVoxelLimit,
430                                  const G4Affin    341                                  const G4AffineTransform& pTransform,
431                                        G4doubl    342                                        G4double& pMin, G4double& pMax) const
432 {                                                 343 {
433   G4ThreeVector bmin, bmax;                    << 344   if ((!pTransform.IsRotated()) && (fDPhi==twopi) && (fRmin==0))
434   G4bool exist;                                << 345   {
                                                   >> 346     // Special case handling for unrotated solid torus
                                                   >> 347     // Compute x/y/z mins and maxs for bounding box respecting limits,
                                                   >> 348     // with early returns if outside limits. Then switch() on pAxis,
                                                   >> 349     // and compute exact x and y limit for x/y case
                                                   >> 350       
                                                   >> 351     G4double xoffset,xMin,xMax;
                                                   >> 352     G4double yoffset,yMin,yMax;
                                                   >> 353     G4double zoffset,zMin,zMax;
                                                   >> 354 
                                                   >> 355     G4double diff1,diff2,maxDiff,newMin,newMax;
                                                   >> 356     G4double xoff1,xoff2,yoff1,yoff2;
                                                   >> 357 
                                                   >> 358     xoffset = pTransform.NetTranslation().x();
                                                   >> 359     xMin    = xoffset - fRmax - fRtor ;
                                                   >> 360     xMax    = xoffset + fRmax + fRtor ;
                                                   >> 361 
                                                   >> 362     if (pVoxelLimit.IsXLimited())
                                                   >> 363     {
                                                   >> 364       if ( (xMin > pVoxelLimit.GetMaxXExtent()+kCarTolerance)
                                                   >> 365         || (xMax < pVoxelLimit.GetMinXExtent()-kCarTolerance) )
                                                   >> 366         return false ;
                                                   >> 367       else
                                                   >> 368       {
                                                   >> 369         if (xMin < pVoxelLimit.GetMinXExtent())
                                                   >> 370         {
                                                   >> 371           xMin = pVoxelLimit.GetMinXExtent() ;
                                                   >> 372         }
                                                   >> 373         if (xMax > pVoxelLimit.GetMaxXExtent())
                                                   >> 374         {
                                                   >> 375           xMax = pVoxelLimit.GetMaxXExtent() ;
                                                   >> 376         }
                                                   >> 377       }
                                                   >> 378     }
                                                   >> 379     yoffset = pTransform.NetTranslation().y();
                                                   >> 380     yMin    = yoffset - fRmax - fRtor ;
                                                   >> 381     yMax    = yoffset + fRmax + fRtor ;
435                                                   382 
436   // Get bounding box                          << 383     if (pVoxelLimit.IsYLimited())
437   BoundingLimits(bmin,bmax);                   << 384     {
                                                   >> 385       if ( (yMin > pVoxelLimit.GetMaxYExtent()+kCarTolerance)
                                                   >> 386         || (yMax < pVoxelLimit.GetMinYExtent()-kCarTolerance) )
                                                   >> 387       {
                                                   >> 388         return false ;
                                                   >> 389       }
                                                   >> 390       else
                                                   >> 391       {
                                                   >> 392         if (yMin < pVoxelLimit.GetMinYExtent() )
                                                   >> 393         {
                                                   >> 394           yMin = pVoxelLimit.GetMinYExtent() ;
                                                   >> 395         }
                                                   >> 396         if (yMax > pVoxelLimit.GetMaxYExtent() )
                                                   >> 397         {
                                                   >> 398           yMax = pVoxelLimit.GetMaxYExtent() ;
                                                   >> 399         }
                                                   >> 400       }
                                                   >> 401     }
                                                   >> 402     zoffset = pTransform.NetTranslation().z() ;
                                                   >> 403     zMin    = zoffset - fRmax ;
                                                   >> 404     zMax    = zoffset + fRmax ;
438                                                   405 
439   // Check bounding box                        << 406     if (pVoxelLimit.IsZLimited())
440   G4BoundingEnvelope bbox(bmin,bmax);          << 407     {
441 #ifdef G4BBOX_EXTENT                           << 408       if ( (zMin > pVoxelLimit.GetMaxZExtent()+kCarTolerance)
442   return bbox.CalculateExtent(pAxis,pVoxelLimi << 409         || (zMax < pVoxelLimit.GetMinZExtent()-kCarTolerance) )
443 #endif                                         << 410       {
444   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox << 411         return false ;
445   {                                            << 412       }
446     return exist = pMin < pMax;                << 413       else
                                                   >> 414       {
                                                   >> 415         if (zMin < pVoxelLimit.GetMinZExtent() )
                                                   >> 416         {
                                                   >> 417           zMin = pVoxelLimit.GetMinZExtent() ;
                                                   >> 418         }
                                                   >> 419         if (zMax > pVoxelLimit.GetMaxZExtent() )
                                                   >> 420         {
                                                   >> 421           zMax = pVoxelLimit.GetMaxZExtent() ;
                                                   >> 422         }
                                                   >> 423       }
                                                   >> 424     }
                                                   >> 425 
                                                   >> 426     // Known to cut cylinder
                                                   >> 427     
                                                   >> 428     switch (pAxis)
                                                   >> 429     {
                                                   >> 430       case kXAxis:
                                                   >> 431         yoff1=yoffset-yMin;
                                                   >> 432         yoff2=yMax-yoffset;
                                                   >> 433         if ( yoff1 >= 0 && yoff2 >= 0 )
                                                   >> 434         {
                                                   >> 435           // Y limits cross max/min x => no change
                                                   >> 436           //
                                                   >> 437           pMin = xMin ;
                                                   >> 438           pMax = xMax ;
                                                   >> 439         }
                                                   >> 440         else
                                                   >> 441         {
                                                   >> 442           // Y limits don't cross max/min x => compute max delta x,
                                                   >> 443           // hence new mins/maxs
                                                   >> 444           //
                                                   >> 445           diff1   = std::sqrt(fRmax*fRmax - yoff1*yoff1) ;
                                                   >> 446           diff2   = std::sqrt(fRmax*fRmax - yoff2*yoff2) ;
                                                   >> 447           maxDiff = (diff1 > diff2) ? diff1:diff2 ;
                                                   >> 448           newMin  = xoffset - maxDiff ;
                                                   >> 449           newMax  = xoffset + maxDiff ;
                                                   >> 450           pMin    = (newMin < xMin) ? xMin : newMin ;
                                                   >> 451           pMax    = (newMax > xMax) ? xMax : newMax ;
                                                   >> 452         }
                                                   >> 453         break;
                                                   >> 454 
                                                   >> 455       case kYAxis:
                                                   >> 456         xoff1 = xoffset - xMin ;
                                                   >> 457         xoff2 = xMax - xoffset ;
                                                   >> 458         if (xoff1 >= 0 && xoff2 >= 0 )
                                                   >> 459         {
                                                   >> 460           // X limits cross max/min y => no change
                                                   >> 461           //
                                                   >> 462           pMin = yMin ;
                                                   >> 463           pMax = yMax ;
                                                   >> 464         } 
                                                   >> 465         else
                                                   >> 466         {
                                                   >> 467           // X limits don't cross max/min y => compute max delta y,
                                                   >> 468           // hence new mins/maxs
                                                   >> 469           //
                                                   >> 470           diff1   = std::sqrt(fRmax*fRmax - xoff1*xoff1) ;
                                                   >> 471           diff2   = std::sqrt(fRmax*fRmax - xoff2*xoff2) ;
                                                   >> 472           maxDiff = (diff1 > diff2) ? diff1 : diff2 ;
                                                   >> 473           newMin  = yoffset - maxDiff ;
                                                   >> 474           newMax  = yoffset + maxDiff ;
                                                   >> 475           pMin    = (newMin < yMin) ? yMin : newMin ;
                                                   >> 476           pMax    = (newMax > yMax) ? yMax : newMax ;
                                                   >> 477         }
                                                   >> 478         break;
                                                   >> 479 
                                                   >> 480       case kZAxis:
                                                   >> 481         pMin=zMin;
                                                   >> 482         pMax=zMax;
                                                   >> 483         break;
                                                   >> 484 
                                                   >> 485       default:
                                                   >> 486         break;
                                                   >> 487     }
                                                   >> 488     pMin -= kCarTolerance ;
                                                   >> 489     pMax += kCarTolerance ;
                                                   >> 490 
                                                   >> 491     return true;
447   }                                               492   }
                                                   >> 493   else
                                                   >> 494   {
                                                   >> 495     G4int i, noEntries, noBetweenSections4 ;
                                                   >> 496     G4bool existsAfterClip = false ;
448                                                   497 
449   // Get parameters of the solid               << 498     // Calculate rotated vertex coordinates
450   G4double rmin = GetRmin();                   << 
451   G4double rmax = GetRmax();                   << 
452   G4double rtor = GetRtor();                   << 
453   G4double dphi = GetDPhi();                   << 
454   G4double sinStart = GetSinStartPhi();        << 
455   G4double cosStart = GetCosStartPhi();        << 
456   G4double sinEnd   = GetSinEndPhi();          << 
457   G4double cosEnd   = GetCosEndPhi();          << 
458   G4double rint = rtor - rmax;                 << 
459   G4double rext = rtor + rmax;                 << 
460                                                   499 
461   // Find bounding envelope and calculate exte << 500     G4ThreeVectorList *vertices ;
462   //                                           << 501     G4int noPolygonVertices ;  // will be 4 
463   static const G4int NPHI  = 24; // number of  << 502     vertices = CreateRotatedVertices(pTransform,noPolygonVertices) ;
464   static const G4int NDISK = 16; // number of  << 503 
465   static const G4double sinHalfDisk = std::sin << 504     pMin = +kInfinity ;
466   static const G4double cosHalfDisk = std::cos << 505     pMax = -kInfinity ;
467   static const G4double sinStepDisk = 2.*sinHa << 506 
468   static const G4double cosStepDisk = 1. - 2.* << 507     noEntries          = vertices->size() ;
469                                                << 508     noBetweenSections4 = noEntries - noPolygonVertices ;
470   G4double astep = (360/NPHI)*deg; // max angl << 509       
471   G4int    kphi  = (dphi <= astep) ? 1 : (G4in << 510     for (i=0;i<noEntries;i+=noPolygonVertices)
472   G4double ang   = dphi/kphi;                  << 511     {
473                                                << 512       ClipCrossSection(vertices,i,pVoxelLimit,pAxis,pMin,pMax);
474   G4double sinHalf = std::sin(0.5*ang);        << 513     }    
475   G4double cosHalf = std::cos(0.5*ang);        << 514     for (i=0;i<noBetweenSections4;i+=noPolygonVertices)
476   G4double sinStep = 2.*sinHalf*cosHalf;       << 515     {
477   G4double cosStep = 1. - 2.*sinHalf*sinHalf;  << 516       ClipBetweenSections(vertices,i,pVoxelLimit,pAxis,pMin,pMax);
478                                                << 517     }
479   // define vectors for bounding envelope      << 518     if (pMin!=kInfinity||pMax!=-kInfinity)
480   G4ThreeVectorList pols[NDISK+1];             << 519     {
481   for (auto & pol : pols) pol.resize(4);       << 520       existsAfterClip = true ; // Add 2*tolerance to avoid precision troubles
482                                                << 521       pMin           -= kCarTolerance ;
483   std::vector<const G4ThreeVectorList *> polyg << 522       pMax           += kCarTolerance ;
484   polygons.resize(NDISK+1);                    << 
485   for (G4int k=0; k<NDISK+1; ++k) polygons[k]  << 
486                                                << 
487   // set internal and external reference circl << 
488   G4TwoVector rzmin[NDISK];                    << 
489   G4TwoVector rzmax[NDISK];                    << 
490                                                << 
491   if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+ << 
492   rmax /= cosHalfDisk;                         << 
493   G4double sinCurDisk = sinHalfDisk;           << 
494   G4double cosCurDisk = cosHalfDisk;           << 
495   for (G4int k=0; k<NDISK; ++k)                << 
496   {                                            << 
497     G4double rmincur = rtor + rmin*cosCurDisk; << 
498     if (cosCurDisk < 0 && rmin > 0) rmincur /= << 
499     rzmin[k].set(rmincur,rmin*sinCurDisk);     << 
500                                                << 
501     G4double rmaxcur = rtor + rmax*cosCurDisk; << 
502     if (cosCurDisk > 0) rmaxcur /= cosHalf;    << 
503     rzmax[k].set(rmaxcur,rmax*sinCurDisk);     << 
504                                                << 
505     G4double sinTmpDisk = sinCurDisk;          << 
506     sinCurDisk = sinCurDisk*cosStepDisk + cosC << 
507     cosCurDisk = cosCurDisk*cosStepDisk - sinT << 
508   }                                            << 
509                                                << 
510   // Loop along slices in Phi. The extent is c << 
511   // extent of the slices                      << 
512   pMin =  kInfinity;                           << 
513   pMax = -kInfinity;                           << 
514   G4double eminlim = pVoxelLimit.GetMinExtent( << 
515   G4double emaxlim = pVoxelLimit.GetMaxExtent( << 
516   G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = << 
517   for (G4int i=0; i<kphi+1; ++i)               << 
518   {                                            << 
519     if (i == 0)                                << 
520     {                                          << 
521       sinCur1 = sinStart;                      << 
522       cosCur1 = cosStart;                      << 
523       sinCur2 = sinCur1*cosHalf + cosCur1*sinH << 
524       cosCur2 = cosCur1*cosHalf - sinCur1*sinH << 
525     }                                             523     }
526     else                                          524     else
527     {                                             525     {
528       sinCur1 = sinCur2;                       << 526       // Check for case where completely enveloping clipping volume
529       cosCur1 = cosCur2;                       << 527       // If point inside then we are confident that the solid completely
530       sinCur2 = (i == kphi) ? sinEnd : sinCur1 << 528       // envelopes the clipping volume. Hence set min/max extents according
531       cosCur2 = (i == kphi) ? cosEnd : cosCur1 << 529       // to clipping volume extents along the specified axis.
532     }                                          << 530 
533     for (G4int k=0; k<NDISK; ++k)              << 531       G4ThreeVector clipCentre(
534     {                                          << 532           (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
535       G4double r1 = rzmin[k].x(), r2 = rzmax[k << 533           (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
536       G4double z1 = rzmin[k].y(), z2 = rzmax[k << 534           (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5  ) ;
537       pols[k][0].set(r1*cosCur1,r1*sinCur1,z1) << 535         
538       pols[k][1].set(r2*cosCur1,r2*sinCur1,z2) << 536       if (Inside(pTransform.Inverse().TransformPoint(clipCentre)) != kOutside )
539       pols[k][2].set(r2*cosCur2,r2*sinCur2,z2) << 537       {
540       pols[k][3].set(r1*cosCur2,r1*sinCur2,z1) << 538         existsAfterClip = true ;
541     }                                          << 539         pMin            = pVoxelLimit.GetMinExtent(pAxis) ;
542     pols[NDISK] = pols[0];                     << 540         pMax            = pVoxelLimit.GetMaxExtent(pAxis) ;
543                                                << 541       }
544     // get bounding box of current slice       << 542     }
545     G4TwoVector vmin,vmax;                     << 543     delete vertices;
546     G4GeomTools::                              << 544     return existsAfterClip;
547       DiskExtent(rint,rext,sinCur1,cosCur1,sin << 
548     bmin.setX(vmin.x()); bmin.setY(vmin.y());  << 
549     bmax.setX(vmax.x()); bmax.setY(vmax.y());  << 
550                                                << 
551     // set bounding envelope for current slice << 
552     G4double emin,emax;                        << 
553     G4BoundingEnvelope benv(bmin,bmax,polygons << 
554     if (!benv.CalculateExtent(pAxis,pVoxelLimi << 
555     if (emin < pMin) pMin = emin;              << 
556     if (emax > pMax) pMax = emax;              << 
557     if (eminlim > pMin && emaxlim < pMax) brea << 
558   }                                               545   }
559   return (pMin < pMax);                        << 
560 }                                                 546 }
561                                                   547 
562 //////////////////////////////////////////////    548 //////////////////////////////////////////////////////////////////////////////
563 //                                                549 //
564 // Return whether point inside/outside/on surf    550 // Return whether point inside/outside/on surface
565                                                   551 
566 EInside G4Torus::Inside( const G4ThreeVector&     552 EInside G4Torus::Inside( const G4ThreeVector& p ) const
567 {                                                 553 {
568   G4double r, pt2, pPhi, tolRMin, tolRMax ;    << 554   G4double r2, pt2, pPhi, tolRMin, tolRMax ;
569                                                   555 
570   EInside in = kOutside ;                         556   EInside in = kOutside ;
                                                   >> 557                                               // General precals
                                                   >> 558   r2  = p.x()*p.x() + p.y()*p.y() ;
                                                   >> 559   pt2 = r2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*std::sqrt(r2) ;
571                                                   560 
572   // General precals                           << 561   if (fRmin) tolRMin = fRmin + kRadTolerance*0.5 ;
573   //                                           << 
574   r   = std::hypot(p.x(),p.y());               << 
575   pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor);     << 
576                                                << 
577   if (fRmin != 0.0) tolRMin = fRmin + fRminTol << 
578   else       tolRMin = 0 ;                        562   else       tolRMin = 0 ;
579                                                   563 
580   tolRMax = fRmax - fRmaxTolerance;            << 564   tolRMax = fRmax - kRadTolerance*0.5;
581                                                   565       
582   if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax    566   if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax )
583   {                                               567   {
584     if ( fDPhi == twopi || pt2 == 0 )  // on t    568     if ( fDPhi == twopi || pt2 == 0 )  // on torus swept axis
585     {                                             569     {
586       in = kInside ;                              570       in = kInside ;
587     }                                             571     }
588     else                                          572     else
589     {                                             573     {
590       // Try inner tolerant phi boundaries (=>    574       // Try inner tolerant phi boundaries (=>inside)
591       // if not inside, try outer tolerant phi    575       // if not inside, try outer tolerant phi boundaries
592                                                   576 
593       pPhi = std::atan2(p.y(),p.x()) ;            577       pPhi = std::atan2(p.y(),p.x()) ;
594                                                   578 
595       if ( pPhi < -halfAngTolerance )  { pPhi  << 579       if ( pPhi < -kAngTolerance*0.5 )  { pPhi += twopi ; }  // 0<=pPhi<2pi
596       if ( fSPhi >= 0 )                           580       if ( fSPhi >= 0 )
597       {                                           581       {
598         if ( (std::fabs(pPhi) < halfAngToleran << 582         if ( (std::abs(pPhi) < kAngTolerance*0.5)
599             && (std::fabs(fSPhi + fDPhi - twop << 583             && (std::abs(fSPhi + fDPhi - twopi) < kAngTolerance*0.5) )
600         {                                         584         { 
601             pPhi += twopi ; // 0 <= pPhi < 2pi    585             pPhi += twopi ; // 0 <= pPhi < 2pi
602         }                                         586         }
603         if ( (pPhi >= fSPhi + halfAngTolerance << 587         if ( (pPhi >= fSPhi + kAngTolerance*0.5)
604             && (pPhi <= fSPhi + fDPhi - halfAn << 588             && (pPhi <= fSPhi + fDPhi - kAngTolerance*0.5) )
605         {                                         589         {
606           in = kInside ;                          590           in = kInside ;
607         }                                         591         }
608           else if ( (pPhi >= fSPhi - halfAngTo << 592           else if ( (pPhi >= fSPhi - kAngTolerance*0.5)
609                  && (pPhi <= fSPhi + fDPhi + h << 593                  && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) )
610         {                                         594         {
611           in = kSurface ;                         595           in = kSurface ;
612         }                                         596         }
613       }                                           597       }
614       else  // fSPhi < 0                          598       else  // fSPhi < 0
615       {                                           599       {
616           if ( (pPhi <= fSPhi + twopi - halfAn << 600           if ( (pPhi <= fSPhi + twopi - kAngTolerance*0.5)
617             && (pPhi >= fSPhi + fDPhi  + halfA << 601             && (pPhi >= fSPhi + fDPhi  + kAngTolerance*0.5) )  {;}
618           else                                    602           else
619           {                                       603           {
620             in = kSurface ;                       604             in = kSurface ;
621           }                                       605           }
622       }                                           606       }
623     }                                             607     }
624   }                                               608   }
625   else   // Try generous boundaries               609   else   // Try generous boundaries
626   {                                               610   {
627     tolRMin = fRmin - fRminTolerance ;         << 611     tolRMin = fRmin - kRadTolerance*0.5 ;
628     tolRMax = fRmax + fRmaxTolerance ;         << 612     tolRMax = fRmax + kRadTolerance*0.5 ;
629                                                   613 
630     if (tolRMin < 0 )  { tolRMin = 0 ; }          614     if (tolRMin < 0 )  { tolRMin = 0 ; }
631                                                   615 
632     if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= t    616     if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) )
633     {                                             617     {
634       if ( (fDPhi == twopi) || (pt2 == 0) ) //    618       if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis
635       {                                           619       {
636         in = kSurface ;                           620         in = kSurface ;
637       }                                           621       }
638       else // Try outer tolerant phi boundarie    622       else // Try outer tolerant phi boundaries only
639       {                                           623       {
640         pPhi = std::atan2(p.y(),p.x()) ;          624         pPhi = std::atan2(p.y(),p.x()) ;
641                                                   625 
642         if ( pPhi < -halfAngTolerance )  { pPh << 626         if ( pPhi < -kAngTolerance*0.5 )  { pPhi += twopi ; }  // 0<=pPhi<2pi
643         if ( fSPhi >= 0 )                         627         if ( fSPhi >= 0 )
644         {                                         628         {
645           if ( (std::fabs(pPhi) < halfAngToler << 629           if ( (std::abs(pPhi) < kAngTolerance*0.5)
646             && (std::fabs(fSPhi + fDPhi - twop << 630             && (std::abs(fSPhi + fDPhi - twopi) < kAngTolerance*0.5) )
647           {                                       631           { 
648             pPhi += twopi ; // 0 <= pPhi < 2pi    632             pPhi += twopi ; // 0 <= pPhi < 2pi
649           }                                       633           }
650           if ( (pPhi >= fSPhi - halfAngToleran << 634           if ( (pPhi >= fSPhi - kAngTolerance*0.5)
651             && (pPhi <= fSPhi + fDPhi + halfAn << 635             && (pPhi <= fSPhi + fDPhi + kAngTolerance*0.5) )
652           {                                       636           {
653             in = kSurface;                        637             in = kSurface;
654           }                                       638           }
655         }                                         639         }
656         else  // fSPhi < 0                        640         else  // fSPhi < 0
657         {                                         641         {
658           if ( (pPhi <= fSPhi + twopi - halfAn << 642           if ( (pPhi <= fSPhi + twopi - kAngTolerance*0.5)
659             && (pPhi >= fSPhi + fDPhi  + halfA << 643             && (pPhi >= fSPhi + fDPhi  + kAngTolerance*0.5) )  {;}
660           else                                    644           else
661           {                                       645           {
662             in = kSurface ;                       646             in = kSurface ;
663           }                                       647           }
664         }                                         648         }
665       }                                           649       }
666     }                                             650     }
667   }                                               651   }
668   return in ;                                     652   return in ;
669 }                                                 653 }
670                                                   654 
671 //////////////////////////////////////////////    655 /////////////////////////////////////////////////////////////////////////////
672 //                                                656 //
673 // Return unit normal of surface closest to p     657 // Return unit normal of surface closest to p
674 // - note if point on z axis, ignore phi divid    658 // - note if point on z axis, ignore phi divided sides
675 // - unsafe if point close to z axis a rmin=0     659 // - unsafe if point close to z axis a rmin=0 - no explicit checks
676                                                   660 
677 G4ThreeVector G4Torus::SurfaceNormal( const G4    661 G4ThreeVector G4Torus::SurfaceNormal( const G4ThreeVector& p ) const
678 {                                                 662 {
679   G4int noSurfaces = 0;                           663   G4int noSurfaces = 0;  
680   G4double rho, pt, pPhi;                      << 664   G4double rho2, rho, pt2, pt, pPhi;
681   G4double distRMin = kInfinity;                  665   G4double distRMin = kInfinity;
682   G4double distSPhi = kInfinity, distEPhi = kI    666   G4double distSPhi = kInfinity, distEPhi = kInfinity;
683                                                << 667   G4double delta = 0.5*kCarTolerance, dAngle = 0.5*kAngTolerance;
684   // To cope with precision loss               << 
685   //                                           << 
686   const G4double delta = std::max(10.0*kCarTol << 
687                                   1.0e-8*(fRto << 
688   const G4double dAngle = 10.0*kAngTolerance;  << 
689                                                << 
690   G4ThreeVector nR, nPs, nPe;                     668   G4ThreeVector nR, nPs, nPe;
691   G4ThreeVector norm, sumnorm(0.,0.,0.);          669   G4ThreeVector norm, sumnorm(0.,0.,0.);
692                                                   670 
693   rho = std::hypot(p.x(),p.y());               << 671   rho2 = p.x()*p.x() + p.y()*p.y();
694   pt  = std::hypot(p.z(),rho-fRtor);           << 672   rho = std::sqrt(rho2);
                                                   >> 673   pt2 = std::fabs(rho2+p.z()*p.z() +fRtor*fRtor - 2*fRtor*rho);
                                                   >> 674   pt = std::sqrt(pt2) ;
695                                                   675 
696   G4double  distRMax = std::fabs(pt - fRmax);     676   G4double  distRMax = std::fabs(pt - fRmax);
697   if(fRmin != 0.0) distRMin = std::fabs(pt - f << 677   if(fRmin) distRMin = std::fabs(pt - fRmin);
698                                                   678 
699   if( rho > delta && pt != 0.0 )               << 679   if( rho > delta )
700   {                                               680   {
701     G4double redFactor= (rho-fRtor)/rho;       << 681     nR = G4ThreeVector( p.x()*(1-fRtor/rho)/pt,
702     nR = G4ThreeVector( p.x()*redFactor,  // p << 682                         p.y()*(1-fRtor/rho)/pt,
703                         p.y()*redFactor,  // p << 683                         p.z()/pt                 );
704                         p.z()          );      << 
705     nR *= 1.0/pt;                              << 
706   }                                               684   }
707                                                   685 
708   if ( fDPhi < twopi ) // && rho ) // old limi    686   if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z)
709   {                                               687   {
710     if ( rho != 0.0 )                          << 688     if ( rho )
711     {                                             689     {
712       pPhi = std::atan2(p.y(),p.x());             690       pPhi = std::atan2(p.y(),p.x());
713                                                   691 
714       if(pPhi < fSPhi-delta)            { pPhi    692       if(pPhi < fSPhi-delta)            { pPhi += twopi; }
715       else if(pPhi > fSPhi+fDPhi+delta) { pPhi    693       else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; }
716                                                   694 
717       distSPhi = std::fabs( pPhi - fSPhi );       695       distSPhi = std::fabs( pPhi - fSPhi );
718       distEPhi = std::fabs(pPhi-fSPhi-fDPhi);     696       distEPhi = std::fabs(pPhi-fSPhi-fDPhi);
719     }                                             697     }
720     nPs = G4ThreeVector(std::sin(fSPhi),-std::    698     nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
721     nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi)    699     nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
722   }                                               700   } 
723   if( distRMax <= delta )                         701   if( distRMax <= delta )
724   {                                               702   {
725     ++noSurfaces;                              << 703     noSurfaces ++;
726     sumnorm += nR;                                704     sumnorm += nR;
727   }                                               705   }
728   else if( (fRmin != 0.0) && (distRMin <= delt << 706   if( fRmin && distRMin <= delta )
729   {                                               707   {
730     ++noSurfaces;                              << 708     noSurfaces ++;
731     sumnorm -= nR;                                709     sumnorm -= nR;
732   }                                               710   }
733                                                << 711   if( fDPhi < twopi )   
734   //  To be on one of the 'phi' surfaces,      << 
735   //  it must be within the 'tube' - with tole << 
736                                                << 
737   if( (fDPhi < twopi) && (fRmin-delta <= pt) & << 
738   {                                               712   {
739     if (distSPhi <= dAngle)                       713     if (distSPhi <= dAngle)
740     {                                             714     {
741       ++noSurfaces;                            << 715       noSurfaces ++;
742       sumnorm += nPs;                             716       sumnorm += nPs;
743     }                                             717     }
744     if (distEPhi <= dAngle)                       718     if (distEPhi <= dAngle) 
745     {                                             719     {
746       ++noSurfaces;                            << 720       noSurfaces ++;
747       sumnorm += nPe;                             721       sumnorm += nPe;
748     }                                             722     }
749   }                                               723   }
750   if ( noSurfaces == 0 )                          724   if ( noSurfaces == 0 )
751   {                                               725   {
752 #ifdef G4CSGDEBUG                                 726 #ifdef G4CSGDEBUG
753      G4ExceptionDescription ed;                << 727     G4Exception("G4Torus::SurfaceNormal(p)", "Notification", JustWarning, 
754      ed.precision(16);                         << 728                 "Point p is not on surface !?" );
755                                                << 729 #endif 
756      EInside  inIt= Inside( p );               << 
757                                                << 
758      if( inIt != kSurface )                    << 
759      {                                         << 
760         ed << " ERROR>  Surface Normal was cal << 
761            << " with point not on surface." << << 
762      }                                         << 
763      else                                      << 
764      {                                         << 
765         ed << " ERROR>  Surface Normal has not << 
766            << " despite the point being on the << 
767      }                                         << 
768                                                << 
769      if( inIt != kInside)                      << 
770      {                                         << 
771          ed << " Safety (Dist To In)  = " << D << 
772      }                                         << 
773      if( inIt != kOutside)                     << 
774      {                                         << 
775          ed << " Safety (Dist to Out) = " << D << 
776      }                                         << 
777      ed << " Coordinates of point : " << p <<  << 
778      ed << " Parameters  of solid : " << G4end << 
779                                                << 
780      if( inIt == kSurface )                    << 
781      {                                         << 
782         G4Exception("G4Torus::SurfaceNormal(p) << 
783                     JustWarning, ed,           << 
784                     "Failing to find normal, e << 
785      }                                         << 
786      else                                      << 
787      {                                         << 
788         static const char* NameInside[3]= { "I << 
789         ed << "  The point is " << NameInside[ << 
790         G4Exception("G4Torus::SurfaceNormal(p) << 
791                     JustWarning, ed, "Point p  << 
792      }                                         << 
793 #endif                                         << 
794      norm = ApproxSurfaceNormal(p);               730      norm = ApproxSurfaceNormal(p);
795   }                                               731   }
796   else if ( noSurfaces == 1 )  { norm = sumnor    732   else if ( noSurfaces == 1 )  { norm = sumnorm; }
797   else                         { norm = sumnor    733   else                         { norm = sumnorm.unit(); }
798                                                   734 
799   return norm ;                                   735   return norm ;
800 }                                                 736 }
801                                                   737 
802 //////////////////////////////////////////////    738 //////////////////////////////////////////////////////////////////////////////
803 //                                                739 //
804 // Algorithm for SurfaceNormal() following the    740 // Algorithm for SurfaceNormal() following the original specification
805 // for points not on the surface                  741 // for points not on the surface
806                                                   742 
807 G4ThreeVector G4Torus::ApproxSurfaceNormal( co    743 G4ThreeVector G4Torus::ApproxSurfaceNormal( const G4ThreeVector& p ) const
808 {                                                 744 {
809   ENorm side ;                                    745   ENorm side ;
810   G4ThreeVector norm;                             746   G4ThreeVector norm;
811   G4double rho,pt,phi;                         << 747   G4double rho2,rho,pt2,pt,phi;
812   G4double distRMin,distRMax,distSPhi,distEPhi    748   G4double distRMin,distRMax,distSPhi,distEPhi,distMin;
813                                                   749 
814   rho = std::hypot(p.x(),p.y());               << 750   rho2 = p.x()*p.x() + p.y()*p.y();
815   pt  = std::hypot(p.z(),rho-fRtor);           << 751   rho = std::sqrt(rho2) ;
                                                   >> 752   pt2 = std::fabs(rho2+p.z()*p.z() +fRtor*fRtor - 2*fRtor*rho) ;
                                                   >> 753   pt = std::sqrt(pt2) ;
816                                                   754 
817 #ifdef G4CSGDEBUG                              << 
818   G4cout << " G4Torus::ApproximateSurfaceNorma << 
819          << G4endl;                            << 
820 #endif                                         << 
821                                                << 
822   distRMax = std::fabs(pt - fRmax) ;              755   distRMax = std::fabs(pt - fRmax) ;
823                                                   756 
824   if(fRmin != 0.0)  // First minimum radius    << 757   if(fRmin)  // First minimum radius
825   {                                               758   {
826     distRMin = std::fabs(pt - fRmin) ;            759     distRMin = std::fabs(pt - fRmin) ;
827                                                   760 
828     if (distRMin < distRMax)                      761     if (distRMin < distRMax)
829     {                                             762     {
830       distMin = distRMin ;                        763       distMin = distRMin ;
831       side    = kNRMin ;                          764       side    = kNRMin ;
832     }                                             765     }
833     else                                          766     else
834     {                                             767     {
835       distMin = distRMax ;                        768       distMin = distRMax ;
836       side    = kNRMax ;                          769       side    = kNRMax ;
837     }                                             770     }
838   }                                               771   }
839   else                                            772   else
840   {                                               773   {
841     distMin = distRMax ;                          774     distMin = distRMax ;
842     side    = kNRMax ;                            775     side    = kNRMax ;
843   }                                               776   }    
844   if ( (fDPhi < twopi) && (rho != 0.0) )       << 777   if ( (fDPhi < twopi) && rho )
845   {                                               778   {
846     phi = std::atan2(p.y(),p.x()) ; // Protect    779     phi = std::atan2(p.y(),p.x()) ; // Protected against (0,0,z) (above rho!=0)
847                                                   780 
848     if (phi < 0)  { phi += twopi ; }              781     if (phi < 0)  { phi += twopi ; }
849                                                   782 
850     if (fSPhi < 0 )  { distSPhi = std::fabs(ph    783     if (fSPhi < 0 )  { distSPhi = std::fabs(phi-(fSPhi+twopi))*rho ; }
851     else             { distSPhi = std::fabs(ph    784     else             { distSPhi = std::fabs(phi-fSPhi)*rho ; }
852                                                   785 
853     distEPhi = std::fabs(phi - fSPhi - fDPhi)*    786     distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ;
854                                                   787 
855     if (distSPhi < distEPhi) // Find new minim    788     if (distSPhi < distEPhi) // Find new minimum
856     {                                             789     {
857       if (distSPhi<distMin) side = kNSPhi ;       790       if (distSPhi<distMin) side = kNSPhi ;
858     }                                             791     }
859     else                                          792     else
860     {                                             793     {
861       if (distEPhi < distMin)  { side = kNEPhi    794       if (distEPhi < distMin)  { side = kNEPhi ; }
862     }                                             795     }
863   }                                               796   }  
864   switch (side)                                   797   switch (side)
865   {                                               798   {
866     case kNRMin:      // Inner radius             799     case kNRMin:      // Inner radius
867       norm = G4ThreeVector( -p.x()*(1-fRtor/rh    800       norm = G4ThreeVector( -p.x()*(1-fRtor/rho)/pt,
868                             -p.y()*(1-fRtor/rh    801                             -p.y()*(1-fRtor/rho)/pt,
869                             -p.z()/pt             802                             -p.z()/pt                 ) ;
870       break ;                                     803       break ;
871     case kNRMax:      // Outer radius             804     case kNRMax:      // Outer radius
872       norm = G4ThreeVector( p.x()*(1-fRtor/rho    805       norm = G4ThreeVector( p.x()*(1-fRtor/rho)/pt,
873                             p.y()*(1-fRtor/rho    806                             p.y()*(1-fRtor/rho)/pt,
874                             p.z()/pt              807                             p.z()/pt                  ) ;
875       break;                                      808       break;
876     case kNSPhi:                                  809     case kNSPhi:
877       norm = G4ThreeVector(std::sin(fSPhi),-st    810       norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ;
878       break;                                      811       break;
879     case kNEPhi:                                  812     case kNEPhi:
880       norm = G4ThreeVector(-std::sin(fSPhi+fDP    813       norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ;
881       break;                                      814       break;
882     default:          // Should never reach th << 815     default:
883       DumpInfo();                                 816       DumpInfo();
884       G4Exception("G4Torus::ApproxSurfaceNorma    817       G4Exception("G4Torus::ApproxSurfaceNormal()",
885                   "GeomSolids1002", JustWarnin << 818                   "Notification", JustWarning,
886                   "Undefined side for valid su    819                   "Undefined side for valid surface normal to solid.");
887       break ;                                     820       break ;
888   }                                               821   } 
889   return norm ;                                   822   return norm ;
890 }                                                 823 }
891                                                   824 
892 //////////////////////////////////////////////    825 ///////////////////////////////////////////////////////////////////////
893 //                                                826 //
894 // Calculate distance to shape from outside, a    827 // Calculate distance to shape from outside, along normalised vector
895 // - return kInfinity if no intersection, or i    828 // - return kInfinity if no intersection, or intersection distance <= tolerance
896 //                                                829 //
897 // - Compute the intersection with the z plane    830 // - Compute the intersection with the z planes 
898 //        - if at valid r, phi, return            831 //        - if at valid r, phi, return
899 //                                                832 //
900 // -> If point is outer outer radius, compute     833 // -> If point is outer outer radius, compute intersection with rmax
901 //        - if at valid phi,z return              834 //        - if at valid phi,z return
902 //                                                835 //
903 // -> Compute intersection with inner radius,     836 // -> Compute intersection with inner radius, taking largest +ve root
904 //        - if valid (phi), save intersction      837 //        - if valid (phi), save intersction
905 //                                                838 //
906 //    -> If phi segmented, compute intersectio    839 //    -> If phi segmented, compute intersections with phi half planes
907 //        - return smallest of valid phi inter    840 //        - return smallest of valid phi intersections and
908 //          inner radius intersection             841 //          inner radius intersection
909 //                                                842 //
910 // NOTE:                                          843 // NOTE:
911 // - Precalculations for phi trigonometry are     844 // - Precalculations for phi trigonometry are Done `just in time'
912 // - `if valid' implies tolerant checking of i    845 // - `if valid' implies tolerant checking of intersection points
913                                                   846 
914 G4double G4Torus::DistanceToIn( const G4ThreeV    847 G4double G4Torus::DistanceToIn( const G4ThreeVector& p,
915                                 const G4ThreeV    848                                 const G4ThreeVector& v ) const
916 {                                                 849 {
917   // Get bounding box of full torus            << 
918   //                                           << 
919   G4double boxDx  = fRtor + fRmax;             << 
920   G4double boxDy  = boxDx;                     << 
921   G4double boxDz  = fRmax;                     << 
922   G4double boxMax = boxDx;                     << 
923   G4double boxMin = boxDz;                     << 
924                                                << 
925   // Check if point is traveling away          << 
926   //                                           << 
927   G4double distX = std::abs(p.x()) - boxDx;    << 
928   G4double distY = std::abs(p.y()) - boxDy;    << 
929   G4double distZ = std::abs(p.z()) - boxDz;    << 
930   if (distX >= -halfCarTolerance && p.x()*v.x( << 
931   if (distY >= -halfCarTolerance && p.y()*v.y( << 
932   if (distZ >= -halfCarTolerance && p.z()*v.z( << 
933                                                << 
934   // Calculate safety distance to bounding box << 
935   // If point is too far, move it closer and c << 
936   //                                           << 
937   G4double Dmax = 32*boxMax;                   << 
938   G4double safe = std::max(std::max(distX,dist << 
939   if (safe > Dmax)                             << 
940   {                                            << 
941     G4double dist = safe - 1.e-8*safe - boxMin << 
942     dist += DistanceToIn(p + dist*v, v);       << 
943     return (dist >= kInfinity) ? kInfinity : d << 
944   }                                            << 
945                                                   850 
946   // Find intersection with torus              << 
947   //                                           << 
948   G4double snxt=kInfinity, sphi=kInfinity; //     851   G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value
949                                                   852 
950   G4double  sd[4] ;                            << 853   G4double  s[4] ;
951                                                   854 
952   // Precalculated trig for phi intersections     855   // Precalculated trig for phi intersections - used by r,z intersections to
953   //                                              856   //                                            check validity
954                                                   857 
955   G4bool seg;        // true if segmented         858   G4bool seg;        // true if segmented
956   G4double hDPhi;    // half dphi              << 859   G4double hDPhi,hDPhiOT,hDPhiIT,cosHDPhiOT=0.,cosHDPhiIT=0.;
                                                   >> 860                      // half dphi + outer tolerance
957   G4double cPhi,sinCPhi=0.,cosCPhi=0.;  // cen    861   G4double cPhi,sinCPhi=0.,cosCPhi=0.;  // central phi
958                                                   862 
959   G4double tolORMin2;  // `generous' radii squ << 863   G4double tolORMin2,tolIRMin2;  // `generous' radii squared
960   G4double tolORMax2;                          << 864   G4double tolORMax2,tolIRMax2 ;
                                                   >> 865 
                                                   >> 866   G4double Dist,xi,yi,zi,rhoi2,it2; // Intersection point variables
961                                                   867 
962   G4double Dist,xi,yi,zi,rhoi,it2; // Intersec << 
963                                                   868 
964   G4double Comp;                                  869   G4double Comp;
965   G4double cosSPhi,sinSPhi;       // Trig for     870   G4double cosSPhi,sinSPhi;       // Trig for phi start intersect
966   G4double ePhi,cosEPhi,sinEPhi;  // for phi e    871   G4double ePhi,cosEPhi,sinEPhi;  // for phi end intersect
967                                                   872 
968   // Set phi divided flag and precalcs            873   // Set phi divided flag and precalcs
969   //                                              874   //
970   if ( fDPhi < twopi )                            875   if ( fDPhi < twopi )
971   {                                               876   {
972     seg        = true ;                           877     seg        = true ;
973     hDPhi      = 0.5*fDPhi ;    // half delta     878     hDPhi      = 0.5*fDPhi ;    // half delta phi
974     cPhi       = fSPhi + hDPhi ;                  879     cPhi       = fSPhi + hDPhi ;
                                                   >> 880     hDPhiOT    = hDPhi+0.5*kAngTolerance ;  // outers tol' half delta phi 
                                                   >> 881     hDPhiIT    = hDPhi - 0.5*kAngTolerance ;
975     sinCPhi    = std::sin(cPhi) ;                 882     sinCPhi    = std::sin(cPhi) ;
976     cosCPhi    = std::cos(cPhi) ;                 883     cosCPhi    = std::cos(cPhi) ;
                                                   >> 884     cosHDPhiOT = std::cos(hDPhiOT) ;
                                                   >> 885     cosHDPhiIT = std::cos(hDPhiIT) ;
977   }                                               886   }
978   else                                            887   else
979   {                                               888   {
980     seg = false ;                                 889     seg = false ;
981   }                                               890   }
982                                                   891 
983   if (fRmin > fRminTolerance) // Calculate tol << 892   if (fRmin > kRadTolerance) // Calculate tolerant rmin and rmax
984   {                                               893   {
985     tolORMin2 = (fRmin - fRminTolerance)*(fRmi << 894     tolORMin2 = (fRmin - 0.5*kRadTolerance)*(fRmin - 0.5*kRadTolerance) ;
                                                   >> 895     tolIRMin2 = (fRmin + 0.5*kRadTolerance)*(fRmin + 0.5*kRadTolerance) ;
986   }                                               896   }
987   else                                            897   else
988   {                                               898   {
989     tolORMin2 = 0 ;                               899     tolORMin2 = 0 ;
                                                   >> 900     tolIRMin2 = 0 ;
990   }                                               901   }
991   tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax  << 902   tolORMax2 = (fRmax + 0.5*kRadTolerance)*(fRmax + 0.5*kRadTolerance) ;
                                                   >> 903   tolIRMax2 = (fRmax - kRadTolerance*0.5)*(fRmax - kRadTolerance*0.5) ;
992                                                   904 
993   // Intersection with Rmax (possible return)     905   // Intersection with Rmax (possible return) and Rmin (must also check phi)
994                                                   906 
995   snxt = SolveNumericJT(p,v,fRmax,true);       << 907   G4double Rtor2 = fRtor*fRtor ;
996                                                   908 
997   if (fRmin != 0.0)  // Possible Rmin intersec << 909   snxt = SolveNumericJT(p,v,fRmax,true);
                                                   >> 910   if (fRmin)  // Possible Rmin intersection
998   {                                               911   {
999     sd[0] = SolveNumericJT(p,v,fRmin,true);    << 912     s[0] = SolveNumericJT(p,v,fRmin,true);
1000     if ( sd[0] < snxt )  { snxt = sd[0] ; }   << 913     if ( s[0] < snxt )  { snxt = s[0] ; }
1001   }                                              914   }
1002                                                  915 
1003   //                                             916   //
1004   // Phi segment intersection                    917   // Phi segment intersection
1005   //                                             918   //
1006   // o Tolerant of points inside phi planes b    919   // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1007   //                                             920   //
1008   // o NOTE: Large duplication of code betwee    921   // o NOTE: Large duplication of code between sphi & ephi checks
1009   //         -> only diffs: sphi -> ephi, Com    922   //         -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1010   //            intersection check <=0 -> >=0    923   //            intersection check <=0 -> >=0
1011   //         -> use some form of loop Constru    924   //         -> use some form of loop Construct ?
1012                                                  925 
1013   if (seg)                                       926   if (seg)
1014   {                                              927   {
1015     sinSPhi = std::sin(fSPhi) ; // First phi  << 928     sinSPhi = std::sin(fSPhi) ; // First phi surface (`S'tarting phi)
1016     cosSPhi = std::cos(fSPhi) ;                  929     cosSPhi = std::cos(fSPhi) ;
1017     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;    930     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;  // Component in outwards
1018                                                  931                                                // normal direction
1019     if (Comp < 0 )                               932     if (Comp < 0 )
1020     {                                            933     {
1021       Dist = (p.y()*cosSPhi - p.x()*sinSPhi)     934       Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
1022                                                  935 
1023       if (Dist < halfCarTolerance)            << 936       if (Dist < kCarTolerance*0.5)
1024       {                                          937       {
1025         sphi = Dist/Comp ;                       938         sphi = Dist/Comp ;
1026         if (sphi < snxt)                         939         if (sphi < snxt)
1027         {                                        940         {
1028           if ( sphi < 0 )  { sphi = 0 ; }        941           if ( sphi < 0 )  { sphi = 0 ; }
1029                                                  942 
1030           xi    = p.x() + sphi*v.x() ;           943           xi    = p.x() + sphi*v.x() ;
1031           yi    = p.y() + sphi*v.y() ;           944           yi    = p.y() + sphi*v.y() ;
1032           zi    = p.z() + sphi*v.z() ;           945           zi    = p.z() + sphi*v.z() ;
1033           rhoi = std::hypot(xi,yi);           << 946           rhoi2 = xi*xi + yi*yi ;
1034           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR << 947           it2   = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ;
1035                                                  948 
1036           if ( it2 >= tolORMin2 && it2 <= tol    949           if ( it2 >= tolORMin2 && it2 <= tolORMax2 )
1037           {                                      950           {
1038             // r intersection is good - check    951             // r intersection is good - check intersecting
1039             // with correct half-plane           952             // with correct half-plane
1040             //                                   953             //
1041             if ((yi*cosCPhi-xi*sinCPhi)<=0)      954             if ((yi*cosCPhi-xi*sinCPhi)<=0)  { snxt=sphi; }
1042           }                                   << 955           }    
1043         }                                        956         }
1044       }                                          957       }
1045     }                                            958     }
1046     ePhi=fSPhi+fDPhi;    // Second phi surfac << 959     ePhi=fSPhi+fDPhi;    // Second phi surface (`E'nding phi)
1047     sinEPhi=std::sin(ePhi);                      960     sinEPhi=std::sin(ePhi);
1048     cosEPhi=std::cos(ePhi);                      961     cosEPhi=std::cos(ePhi);
1049     Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);         962     Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);
1050                                                  963         
1051     if ( Comp < 0 )   // Component in outward    964     if ( Comp < 0 )   // Component in outwards normal dirn
1052     {                                            965     {
1053       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi)    966       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1054                                                  967 
1055       if (Dist < halfCarTolerance )           << 968       if (Dist < kCarTolerance*0.5 )
1056       {                                          969       {
1057         sphi = Dist/Comp ;                       970         sphi = Dist/Comp ;
1058                                               << 
1059         if (sphi < snxt )                        971         if (sphi < snxt )
1060         {                                        972         {
1061           if (sphi < 0 )  { sphi = 0 ; }         973           if (sphi < 0 )  { sphi = 0 ; }
1062                                                  974        
1063           xi    = p.x() + sphi*v.x() ;           975           xi    = p.x() + sphi*v.x() ;
1064           yi    = p.y() + sphi*v.y() ;           976           yi    = p.y() + sphi*v.y() ;
1065           zi    = p.z() + sphi*v.z() ;           977           zi    = p.z() + sphi*v.z() ;
1066           rhoi = std::hypot(xi,yi);           << 978           rhoi2 = xi*xi + yi*yi ;
1067           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR << 979           it2   = std::fabs(rhoi2 + zi*zi + Rtor2 - 2*fRtor*std::sqrt(rhoi2)) ;
1068                                                  980 
1069           if (it2 >= tolORMin2 && it2 <= tolO    981           if (it2 >= tolORMin2 && it2 <= tolORMax2)
1070           {                                      982           {
1071             // z and r intersections good - c    983             // z and r intersections good - check intersecting
1072             // with correct half-plane           984             // with correct half-plane
1073             //                                   985             //
1074             if ((yi*cosCPhi-xi*sinCPhi)>=0)      986             if ((yi*cosCPhi-xi*sinCPhi)>=0)  { snxt=sphi; }
1075           }                                      987           }    
1076         }                                        988         }
1077       }                                          989       }
1078     }                                            990     }
1079   }                                              991   }
1080   if(snxt < halfCarTolerance)  { snxt = 0.0 ; << 992   if(snxt < 0.5*kCarTolerance)  { snxt = 0.0 ; }
1081                                                  993 
1082   return snxt ;                                  994   return snxt ;
1083 }                                                995 }
1084                                                  996 
1085 /////////////////////////////////////////////    997 /////////////////////////////////////////////////////////////////////////////
1086 //                                               998 //
1087 // Calculate distance (<= actual) to closest     999 // Calculate distance (<= actual) to closest surface of shape from outside
1088 // - Calculate distance to z, radial planes      1000 // - Calculate distance to z, radial planes
1089 // - Only to phi planes if outside phi extent    1001 // - Only to phi planes if outside phi extent
1090 // - Return 0 if point inside                    1002 // - Return 0 if point inside
1091                                                  1003 
1092 G4double G4Torus::DistanceToIn( const G4Three    1004 G4double G4Torus::DistanceToIn( const G4ThreeVector& p ) const
1093 {                                                1005 {
1094   G4double safe=0.0, safe1, safe2 ;              1006   G4double safe=0.0, safe1, safe2 ;
1095   G4double phiC, cosPhiC, sinPhiC, safePhi, e    1007   G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ;
1096   G4double rho, pt ;                          << 1008   G4double rho2, rho, pt2, pt ;
1097                                               << 1009     
1098   rho = std::hypot(p.x(),p.y());              << 1010   rho2 = p.x()*p.x() + p.y()*p.y() ;
1099   pt  = std::hypot(p.z(),rho-fRtor);          << 1011   rho  = std::sqrt(rho2) ;
                                                   >> 1012   pt2  = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ;
                                                   >> 1013   pt   = std::sqrt(pt2) ;
                                                   >> 1014 
1100   safe1 = fRmin - pt ;                           1015   safe1 = fRmin - pt ;
1101   safe2 = pt - fRmax ;                           1016   safe2 = pt - fRmax ;
1102                                                  1017 
1103   if (safe1 > safe2)  { safe = safe1; }          1018   if (safe1 > safe2)  { safe = safe1; }
1104   else                { safe = safe2; }          1019   else                { safe = safe2; }
1105                                                  1020 
1106   if ( fDPhi < twopi && (rho != 0.0) )        << 1021   if ( fDPhi < twopi && rho )
1107   {                                              1022   {
1108     phiC    = fSPhi + fDPhi*0.5 ;                1023     phiC    = fSPhi + fDPhi*0.5 ;
1109     cosPhiC = std::cos(phiC) ;                   1024     cosPhiC = std::cos(phiC) ;
1110     sinPhiC = std::sin(phiC) ;                   1025     sinPhiC = std::sin(phiC) ;
1111     cosPsi  = (p.x()*cosPhiC + p.y()*sinPhiC)    1026     cosPsi  = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ;
1112                                                  1027 
1113     if (cosPsi < std::cos(fDPhi*0.5) ) // Psi    1028     if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point
1114     {                                  // Poi    1029     {                                  // Point lies outside phi range
1115       if ((p.y()*cosPhiC - p.x()*sinPhiC) <=     1030       if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 )
1116       {                                          1031       {
1117         safePhi = std::fabs(p.x()*std::sin(fS    1032         safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1118       }                                          1033       }
1119       else                                       1034       else
1120       {                                          1035       {
1121         ePhi    = fSPhi + fDPhi ;                1036         ePhi    = fSPhi + fDPhi ;
1122         safePhi = std::fabs(p.x()*std::sin(eP    1037         safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1123       }                                          1038       }
1124       if (safePhi > safe)  { safe = safePhi ;    1039       if (safePhi > safe)  { safe = safePhi ; }
1125     }                                            1040     }
1126   }                                              1041   }
1127   if (safe < 0 )  { safe = 0 ; }                 1042   if (safe < 0 )  { safe = 0 ; }
1128   return safe;                                   1043   return safe;
1129 }                                                1044 }
1130                                                  1045 
1131 /////////////////////////////////////////////    1046 ///////////////////////////////////////////////////////////////////////////
1132 //                                               1047 //
1133 // Calculate distance to surface of shape fro    1048 // Calculate distance to surface of shape from `inside', allowing for tolerance
1134 // - Only Calc rmax intersection if no valid     1049 // - Only Calc rmax intersection if no valid rmin intersection
1135 //                                               1050 //
1136                                                  1051 
1137 G4double G4Torus::DistanceToOut( const G4Thre    1052 G4double G4Torus::DistanceToOut( const G4ThreeVector& p,
1138                                  const G4Thre    1053                                  const G4ThreeVector& v,
1139                                  const G4bool    1054                                  const G4bool calcNorm,
1140                                        G4bool << 1055                                        G4bool *validNorm,
1141                                        G4Thre << 1056                                        G4ThreeVector  *n  ) const
1142 {                                                1057 {
1143   ESide    side = kNull, sidephi = kNull ;       1058   ESide    side = kNull, sidephi = kNull ;
1144   G4double snxt = kInfinity, sphi, sd[4] ;    << 1059   G4double snxt = kInfinity, sphi, s[4] ;
1145                                                  1060 
1146   // Vars for phi intersection                   1061   // Vars for phi intersection
1147   //                                             1062   //
1148   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, c    1063   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi;
1149   G4double cPhi, sinCPhi, cosCPhi ;              1064   G4double cPhi, sinCPhi, cosCPhi ;
1150   G4double pDistS, compS, pDistE, compE, sphi    1065   G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ;
1151                                                  1066 
1152   // Radial Intersections Defenitions & Gener    1067   // Radial Intersections Defenitions & General Precals
1153                                                  1068 
1154   //////////////////////// new calculation //    1069   //////////////////////// new calculation //////////////////////
1155                                                  1070 
1156 #if 1                                            1071 #if 1
1157                                                  1072 
1158   // This is the version with the calculation    1073   // This is the version with the calculation of CalcNorm = true 
1159   // To be done: Check the precision of this     1074   // To be done: Check the precision of this calculation.
1160   // If you want return always validNorm = fa    1075   // If you want return always validNorm = false, then take the version below
1161                                                  1076   
1162                                               << 1077   G4double Rtor2 = fRtor*fRtor ;
1163   G4double rho = std::hypot(p.x(),p.y());     << 1078   G4double rho2  = p.x()*p.x()+p.y()*p.y();
1164   G4double pt = hypot(p.z(),rho-fRtor);       << 1079   G4double rho   = std::sqrt(rho2) ;
                                                   >> 1080 
                                                   >> 1081 
                                                   >> 1082   G4double pt2   = std::fabs(rho2 + p.z()*p.z() + Rtor2 - 2*fRtor*rho) ;
                                                   >> 1083   G4double pt    = std::sqrt(pt2) ;
1165                                                  1084 
1166   G4double pDotV = p.x()*v.x() + p.y()*v.y()     1085   G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
1167                                                  1086 
1168   G4double tolRMax = fRmax - fRmaxTolerance ; << 1087   G4double tolRMax = fRmax - kRadTolerance*0.5 ;
1169                                                  1088    
1170   G4double vDotNmax   = pDotV - fRtor*(v.x()*    1089   G4double vDotNmax   = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ;
1171   G4double pDotxyNmax = (1 - fRtor/rho) ;        1090   G4double pDotxyNmax = (1 - fRtor/rho) ;
1172                                                  1091 
1173   if( (pt*pt > tolRMax*tolRMax) && (vDotNmax  << 1092   if( (pt2 > tolRMax*tolRMax) && (vDotNmax >= 0) )
1174   {                                              1093   {
1175     // On tolerant boundary & heading outward    1094     // On tolerant boundary & heading outwards (or perpendicular to) outer
1176     // radial surface -> leaving immediately     1095     // radial surface -> leaving immediately with *n for really convex part
1177     // only                                      1096     // only
1178                                                  1097       
1179     if ( calcNorm && (pDotxyNmax >= -2.*fRmax << 1098     if ( calcNorm && (pDotxyNmax >= -kRadTolerance) ) 
1180     {                                            1099     {
1181       *n = G4ThreeVector( p.x()*(1 - fRtor/rh    1100       *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt,
1182                           p.y()*(1 - fRtor/rh    1101                           p.y()*(1 - fRtor/rho)/pt,
1183                           p.z()/pt               1102                           p.z()/pt                  ) ;
1184       *validNorm = true ;                        1103       *validNorm = true ;
1185     }                                            1104     }
1186                                               << 
1187     return snxt = 0 ; // Leaving by Rmax imme    1105     return snxt = 0 ; // Leaving by Rmax immediately
1188   }                                              1106   }
1189                                                  1107   
1190   snxt = SolveNumericJT(p,v,fRmax,false);        1108   snxt = SolveNumericJT(p,v,fRmax,false);  
1191   side = kRMax ;                                 1109   side = kRMax ;
1192                                                  1110 
1193   // rmin                                        1111   // rmin
1194                                                  1112 
1195   if ( fRmin != 0.0 )                         << 1113   if ( fRmin )
1196   {                                              1114   {
1197     G4double tolRMin = fRmin + fRminTolerance << 1115     G4double tolRMin = fRmin + kRadTolerance*0.5 ;
1198                                                  1116 
1199     if ( (pt*pt < tolRMin*tolRMin) && (vDotNm << 1117     if ( (pt2 < tolRMin*tolRMin) && (vDotNmax < 0) )
1200     {                                            1118     {
1201       if (calcNorm)  { *validNorm = false ; }    1119       if (calcNorm)  { *validNorm = false ; } // Concave surface of the torus
1202       return  snxt = 0 ;                         1120       return  snxt = 0 ;                      // Leaving by Rmin immediately
1203     }                                            1121     }
1204                                                  1122     
1205     sd[0] = SolveNumericJT(p,v,fRmin,false);  << 1123     s[0] = SolveNumericJT(p,v,fRmin,false);
1206     if ( sd[0] < snxt )                       << 1124     if ( s[0] < snxt )
1207     {                                            1125     {
1208       snxt = sd[0] ;                          << 1126       snxt = s[0] ;
1209       side = kRMin ;                             1127       side = kRMin ;
1210     }                                            1128     }
1211   }                                              1129   }
1212                                                  1130 
1213 #else                                            1131 #else
1214                                                  1132 
1215   // this is the "conservative" version which    1133   // this is the "conservative" version which return always validnorm = false
1216   // NOTE: using this version the unit test t    1134   // NOTE: using this version the unit test testG4Torus will break
1217                                                  1135 
1218   snxt = SolveNumericJT(p,v,fRmax,false);        1136   snxt = SolveNumericJT(p,v,fRmax,false);  
1219   side = kRMax ;                                 1137   side = kRMax ;
1220                                                  1138 
1221   if ( fRmin )                                   1139   if ( fRmin )
1222   {                                              1140   {
1223     sd[0] = SolveNumericJT(p,v,fRmin,false);  << 1141     s[0] = SolveNumericJT(p,v,fRmin,false);
1224     if ( sd[0] < snxt )                       << 1142     if ( s[0] < snxt )
1225     {                                            1143     {
1226       snxt = sd[0] ;                          << 1144       snxt = s[0] ;
1227       side = kRMin ;                             1145       side = kRMin ;
1228     }                                            1146     }
1229   }                                              1147   }
1230                                                  1148 
1231   if ( calcNorm && (snxt == 0.0) )               1149   if ( calcNorm && (snxt == 0.0) )
1232   {                                              1150   {
1233     *validNorm = false ;    // Leaving solid,    1151     *validNorm = false ;    // Leaving solid, but possible re-intersection
1234     return snxt  ;                               1152     return snxt  ;
1235   }                                              1153   }
1236                                                  1154 
1237 #endif                                           1155 #endif
1238                                               << 1156 
1239   if (fDPhi < twopi)  // Phi Intersections       1157   if (fDPhi < twopi)  // Phi Intersections
1240   {                                              1158   {
1241     sinSPhi = std::sin(fSPhi) ;                  1159     sinSPhi = std::sin(fSPhi) ;
1242     cosSPhi = std::cos(fSPhi) ;                  1160     cosSPhi = std::cos(fSPhi) ;
1243     ePhi    = fSPhi + fDPhi ;                    1161     ePhi    = fSPhi + fDPhi ;
1244     sinEPhi = std::sin(ePhi) ;                   1162     sinEPhi = std::sin(ePhi) ;
1245     cosEPhi = std::cos(ePhi) ;                   1163     cosEPhi = std::cos(ePhi) ;
1246     cPhi    = fSPhi + fDPhi*0.5 ;                1164     cPhi    = fSPhi + fDPhi*0.5 ;
1247     sinCPhi = std::sin(cPhi) ;                   1165     sinCPhi = std::sin(cPhi) ;
1248     cosCPhi = std::cos(cPhi) ;                   1166     cosCPhi = std::cos(cPhi) ;
1249                                               << 
1250     // angle calculation with correction      << 
1251     // of difference in domain of atan2 and S << 
1252     //                                        << 
1253     vphi = std::atan2(v.y(),v.x()) ;          << 
1254                                               << 
1255     if ( vphi < fSPhi - halfAngTolerance  )   << 
1256     else if ( vphi > ePhi + halfAngTolerance  << 
1257                                                  1167 
1258     if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 1168     if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
1259     {                                            1169     {
1260       pDistS = p.x()*sinSPhi - p.y()*cosSPhi     1170       pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside
1261       pDistE = -p.x()*sinEPhi + p.y()*cosEPhi    1171       pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1262                                                  1172 
1263       // Comp -ve when in direction of outwar    1173       // Comp -ve when in direction of outwards normal
1264       //                                         1174       //
1265       compS   = -sinSPhi*v.x() + cosSPhi*v.y(    1175       compS   = -sinSPhi*v.x() + cosSPhi*v.y() ;
1266       compE   = sinEPhi*v.x() - cosEPhi*v.y()    1176       compE   = sinEPhi*v.x() - cosEPhi*v.y() ;
1267       sidephi = kNull ;                          1177       sidephi = kNull ;
1268                                               << 1178 
1269       if( ( (fDPhi <= pi) && ( (pDistS <= hal << 1179       if ( (pDistS <= 0) && (pDistE <= 0) )
1270                             && (pDistE <= hal << 
1271        || ( (fDPhi >  pi) && ((pDistS <=  hal << 
1272                             || (pDistE <=  ha << 
1273       {                                          1180       {
1274         // Inside both phi *full* planes         1181         // Inside both phi *full* planes
1275                                                  1182 
1276         if ( compS < 0 )                      << 1183         if (compS<0)
                                                   >> 1184         {
                                                   >> 1185           sphi=pDistS/compS;
                                                   >> 1186           xi=p.x()+sphi*v.x();
                                                   >> 1187           yi=p.y()+sphi*v.y();
                                                   >> 1188 
                                                   >> 1189           // Check intersecting with correct half-plane
                                                   >> 1190           // (if not -> no intersect)
                                                   >> 1191           //
                                                   >> 1192           if ((yi*cosCPhi-xi*sinCPhi)>=0)
                                                   >> 1193           {
                                                   >> 1194             sphi=kInfinity;
                                                   >> 1195           }
                                                   >> 1196           else
                                                   >> 1197           {
                                                   >> 1198             sidephi=kSPhi;
                                                   >> 1199             if (pDistS>-kCarTolerance*0.5)  { sphi=0; }  // Leave by sphi
                                                   >> 1200                                                          // immediately
                                                   >> 1201           }
                                                   >> 1202         }
                                                   >> 1203         else
                                                   >> 1204         {
                                                   >> 1205           sphi=kInfinity;
                                                   >> 1206         }
                                                   >> 1207 
                                                   >> 1208         if (compE<0)
1277         {                                        1209         {
1278           sphi = pDistS/compS ;               << 1210           sphi2=pDistE/compE;
1279                                               << 1211 
1280           if (sphi >= -halfCarTolerance)      << 1212           // Only check further if < starting phi intersection
                                                   >> 1213           //
                                                   >> 1214           if (sphi2<sphi)
1281           {                                      1215           {
1282             xi = p.x() + sphi*v.x() ;         << 1216             xi=p.x()+sphi2*v.x();
1283             yi = p.y() + sphi*v.y() ;         << 1217             yi=p.y()+sphi2*v.y();
1284                                               << 1218 
1285             // Check intersecting with correc    1219             // Check intersecting with correct half-plane
1286             // (if not -> no intersect)       << 1220             // 
1287             //                                << 1221             if ((yi*cosCPhi-xi*sinCPhi)>=0)
1288             if ( (std::fabs(xi)<=kCarToleranc << 
1289               && (std::fabs(yi)<=kCarToleranc << 
1290             {                                    1222             {
1291               sidephi = kSPhi;                << 1223               // Leaving via ending phi
1292               if ( ((fSPhi-halfAngTolerance)< << 1224               //
1293                 && ((ePhi+halfAngTolerance)>= << 1225               sidephi=kEPhi;
                                                   >> 1226               if (pDistE<=-kCarTolerance*0.5)
                                                   >> 1227               {
                                                   >> 1228                 sphi=sphi2;
                                                   >> 1229               }
                                                   >> 1230               else 
1294               {                                  1231               {
1295                 sphi = kInfinity;             << 1232                 sphi=0;
1296               }                                  1233               }
1297             }                                    1234             }
1298             else if ( yi*cosCPhi-xi*sinCPhi > << 1235           }
                                                   >> 1236         }
                                                   >> 1237       }
                                                   >> 1238       else if ( (pDistS>=0) && (pDistE>=0) )
                                                   >> 1239       {
                                                   >> 1240         // Outside both *full* phi planes
                                                   >> 1241 
                                                   >> 1242         if (pDistS <= pDistE)
                                                   >> 1243         {
                                                   >> 1244           sidephi = kSPhi ;
                                                   >> 1245         }
                                                   >> 1246         else
                                                   >> 1247         {
                                                   >> 1248           sidephi = kEPhi ;
                                                   >> 1249         }
                                                   >> 1250         if (fDPhi>pi)
                                                   >> 1251         {
                                                   >> 1252           if ( (compS<0) && (compE<0) )  { sphi=0; }
                                                   >> 1253           else                           { sphi=kInfinity; }
                                                   >> 1254         }
                                                   >> 1255         else
                                                   >> 1256         {
                                                   >> 1257           // if towards both >=0 then once inside (after error)
                                                   >> 1258           // will remain inside
                                                   >> 1259           //
                                                   >> 1260           if ( (compS>=0) && (compE>=0) )
                                                   >> 1261           {
                                                   >> 1262             sphi=kInfinity;
                                                   >> 1263           }
                                                   >> 1264           else
                                                   >> 1265           {
                                                   >> 1266             sphi=0;
                                                   >> 1267           }
                                                   >> 1268         }
                                                   >> 1269       }
                                                   >> 1270       else if ( (pDistS>0) && (pDistE<0) )
                                                   >> 1271       {
                                                   >> 1272         // Outside full starting plane, inside full ending plane
                                                   >> 1273 
                                                   >> 1274         if (fDPhi>pi)
                                                   >> 1275         {
                                                   >> 1276           if (compE<0)
                                                   >> 1277           {
                                                   >> 1278             sphi=pDistE/compE;
                                                   >> 1279             xi=p.x()+sphi*v.x();
                                                   >> 1280             yi=p.y()+sphi*v.y();
                                                   >> 1281 
                                                   >> 1282             // Check intersection in correct half-plane
                                                   >> 1283             // (if not -> not leaving phi extent)
                                                   >> 1284             //
                                                   >> 1285             if ((yi*cosCPhi-xi*sinCPhi)<=0)
1299             {                                    1286             {
1300               sphi = kInfinity ;              << 1287               sphi=kInfinity;
1301             }                                    1288             }
1302             else                                 1289             else
1303             {                                    1290             {
1304               sidephi = kSPhi ;               << 1291               // Leaving via Ending phi
1305             }                                 << 1292               //
                                                   >> 1293               sidephi = kEPhi ;
                                                   >> 1294               if (pDistE>-kCarTolerance*0.5)  { sphi=0; }
                                                   >> 1295             }
1306           }                                      1296           }
1307           else                                   1297           else
1308           {                                      1298           {
1309             sphi = kInfinity ;                << 1299             sphi=kInfinity;
1310           }                                      1300           }
1311         }                                        1301         }
1312         else                                     1302         else
1313         {                                        1303         {
1314           sphi = kInfinity ;                  << 1304           if (compS>=0)
1315         }                                     << 
1316                                               << 
1317         if ( compE < 0 )                      << 
1318         {                                     << 
1319           sphi2 = pDistE/compE ;              << 
1320                                               << 
1321           // Only check further if < starting << 
1322           //                                  << 
1323           if ( (sphi2 > -kCarTolerance) && (s << 
1324           {                                      1305           {
1325             xi = p.x() + sphi2*v.x() ;        << 1306             if (compE<0)
1326             yi = p.y() + sphi2*v.y() ;        << 
1327                                               << 
1328             if ( (std::fabs(xi)<=kCarToleranc << 
1329               && (std::fabs(yi)<=kCarToleranc << 
1330             {                                    1307             {
1331               // Leaving via ending phi       << 1308               sphi=pDistE/compE;
                                                   >> 1309               xi=p.x()+sphi*v.x();
                                                   >> 1310               yi=p.y()+sphi*v.y();
                                                   >> 1311 
                                                   >> 1312               // Check intersection in correct half-plane
                                                   >> 1313               // (if not -> remain in extent)
1332               //                                 1314               //
1333               if( (fSPhi-halfAngTolerance > v << 1315               if ((yi*cosCPhi-xi*sinCPhi)<=0)
1334                   || (ePhi+halfAngTolerance < << 
1335               {                                  1316               {
1336                 sidephi = kEPhi ;             << 1317                 sphi=kInfinity;
1337                 sphi = sphi2;                 << 
1338               }                                  1318               }
1339             }                                 << 1319               else
1340             else    // Check intersecting wit << 
1341             {                                 << 
1342               if ( (yi*cosCPhi-xi*sinCPhi) >= << 
1343               {                                  1320               {
1344                 // Leaving via ending phi     << 1321                 // otherwise leaving via Ending phi
1345                 //                               1322                 //
1346                 sidephi = kEPhi ;             << 1323                 sidephi=kEPhi;
1347                 sphi = sphi2;                 << 
1348                                               << 
1349               }                                  1324               }
1350             }                                    1325             }
                                                   >> 1326             else  { sphi=kInfinity; }
                                                   >> 1327           }
                                                   >> 1328           else
                                                   >> 1329           {
                                                   >> 1330             // leaving immediately by starting phi
                                                   >> 1331             //
                                                   >> 1332             sidephi=kSPhi;
                                                   >> 1333             sphi=0;
1351           }                                      1334           }
1352         }                                        1335         }
1353       }                                          1336       }
1354       else                                       1337       else
1355       {                                          1338       {
1356         sphi = kInfinity ;                    << 1339         // Must be pDistS<0&&pDistE>0
                                                   >> 1340         // Inside full starting plane, outside full ending plane
                                                   >> 1341 
                                                   >> 1342         if (fDPhi>pi)
                                                   >> 1343         {
                                                   >> 1344           if (compS<0)
                                                   >> 1345           {
                                                   >> 1346             sphi=pDistS/compS;
                                                   >> 1347             xi=p.x()+sphi*v.x();
                                                   >> 1348             yi=p.y()+sphi*v.y();
                                                   >> 1349 
                                                   >> 1350             // Check intersection in correct half-plane
                                                   >> 1351             // (if not -> not leaving phi extent)
                                                   >> 1352             //
                                                   >> 1353             if ((yi*cosCPhi-xi*sinCPhi)>=0)
                                                   >> 1354             {
                                                   >> 1355               sphi=kInfinity;
                                                   >> 1356             }
                                                   >> 1357             else
                                                   >> 1358             {
                                                   >> 1359               // Leaving via Starting phi
                                                   >> 1360               //
                                                   >> 1361               sidephi = kSPhi ;   
                                                   >> 1362               if (pDistS>-kCarTolerance*0.5)  { sphi=0; }
                                                   >> 1363             }
                                                   >> 1364           }
                                                   >> 1365           else
                                                   >> 1366           {
                                                   >> 1367             sphi=kInfinity;
                                                   >> 1368           }
                                                   >> 1369         }
                                                   >> 1370         else
                                                   >> 1371         {
                                                   >> 1372           if (compE>=0)
                                                   >> 1373           {
                                                   >> 1374             if (compS<0)
                                                   >> 1375             {
                                                   >> 1376               sphi=pDistS/compS;
                                                   >> 1377               xi=p.x()+sphi*v.x();
                                                   >> 1378               yi=p.y()+sphi*v.y();
                                                   >> 1379 
                                                   >> 1380               // Check intersection in correct half-plane
                                                   >> 1381               // (if not -> remain in extent)
                                                   >> 1382               //
                                                   >> 1383               if ((yi*cosCPhi-xi*sinCPhi)>=0)
                                                   >> 1384               {
                                                   >> 1385                 sphi=kInfinity;
                                                   >> 1386               }
                                                   >> 1387               else
                                                   >> 1388               {
                                                   >> 1389                 // otherwise leaving via Starting phi
                                                   >> 1390                 //
                                                   >> 1391                 sidephi=kSPhi;
                                                   >> 1392               }
                                                   >> 1393             }
                                                   >> 1394             else  { sphi=kInfinity; }
                                                   >> 1395           }
                                                   >> 1396           else
                                                   >> 1397           {
                                                   >> 1398             // leaving immediately by ending
                                                   >> 1399             //
                                                   >> 1400             sidephi=kEPhi;
                                                   >> 1401             sphi=0;
                                                   >> 1402           }
                                                   >> 1403         }
1357       }                                          1404       }
1358     }                                         << 1405     }
1359     else                                         1406     else
1360     {                                            1407     {
1361       // On z axis + travel not || to z axis     1408       // On z axis + travel not || to z axis -> if phi of vector direction
1362       // within phi of shape, Step limited by    1409       // within phi of shape, Step limited by rmax, else Step =0
1363                                                  1410 
1364       vphi = std::atan2(v.y(),v.x());         << 1411       vphi=std::atan2(v.y(),v.x());
1365                                               << 1412       if ( (fSPhi<vphi) && (vphi<fSPhi+fDPhi) )
1366       if ( ( fSPhi-halfAngTolerance <= vphi ) << 
1367            ( vphi <= ( ePhi+halfAngTolerance  << 
1368       {                                          1413       {
1369         sphi = kInfinity;                     << 1414         sphi=kInfinity;
1370       }                                          1415       }
1371       else                                       1416       else
1372       {                                          1417       {
1373         sidephi = kSPhi ; // arbitrary           1418         sidephi = kSPhi ; // arbitrary 
1374         sphi=0;                                  1419         sphi=0;
1375       }                                          1420       }
1376     }                                            1421     }
1377                                                  1422 
1378     // Order intersections                       1423     // Order intersections
1379                                                  1424 
1380     if (sphi<snxt)                               1425     if (sphi<snxt)
1381     {                                            1426     {
1382       snxt=sphi;                                 1427       snxt=sphi;
1383       side=sidephi;                              1428       side=sidephi;
1384     }                                         << 1429     }
1385   }                                              1430   }
                                                   >> 1431   G4double rhoi2,rhoi,it2,it,iDotxyNmax ;
1386                                                  1432 
1387   G4double rhoi,it,iDotxyNmax ;               << 
1388   // Note: by numerical computation we know w    1433   // Note: by numerical computation we know where the ray hits the torus
1389   // So I propose to return the side where th    1434   // So I propose to return the side where the ray hits
1390                                                  1435 
1391   if (calcNorm)                                  1436   if (calcNorm)
1392   {                                              1437   {
1393     switch(side)                                 1438     switch(side)
1394     {                                            1439     {
1395       case kRMax:                     // n is    1440       case kRMax:                     // n is unit vector 
1396         xi    = p.x() + snxt*v.x() ;             1441         xi    = p.x() + snxt*v.x() ;
1397         yi    = p.y() + snxt*v.y() ;          << 1442         yi    =p.y() + snxt*v.y() ;
1398         zi    = p.z() + snxt*v.z() ;             1443         zi    = p.z() + snxt*v.z() ;
1399         rhoi = std::hypot(xi,yi);             << 1444         rhoi2 = xi*xi + yi*yi ;
1400         it = hypot(zi,rhoi-fRtor);            << 1445         rhoi  = std::sqrt(rhoi2) ;
1401                                               << 1446         it2   = std::fabs(rhoi2 + zi*zi + fRtor*fRtor - 2*fRtor*rhoi) ;
                                                   >> 1447         it    = std::sqrt(it2) ;
1402         iDotxyNmax = (1-fRtor/rhoi) ;            1448         iDotxyNmax = (1-fRtor/rhoi) ;
1403         if(iDotxyNmax >= -2.*fRmaxTolerance)  << 1449         if(iDotxyNmax >= -kRadTolerance) // really convex part of Rmax
1404         {                                        1450         {                       
1405           *n = G4ThreeVector( xi*(1-fRtor/rho    1451           *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it,
1406                               yi*(1-fRtor/rho    1452                               yi*(1-fRtor/rhoi)/it,
1407                               zi/it              1453                               zi/it                 ) ;
1408           *validNorm = true ;                    1454           *validNorm = true ;
1409         }                                        1455         }
1410         else                                     1456         else
1411         {                                        1457         {
1412           *validNorm = false ; // concave-con    1458           *validNorm = false ; // concave-convex part of Rmax
1413         }                                        1459         }
1414         break ;                                  1460         break ;
1415                                                  1461 
1416       case kRMin:                                1462       case kRMin:
1417         *validNorm = false ;  // Rmin is conc    1463         *validNorm = false ;  // Rmin is concave or concave-convex
1418         break;                                   1464         break;
1419                                                  1465 
1420       case kSPhi:                                1466       case kSPhi:
1421         if (fDPhi <= pi )                        1467         if (fDPhi <= pi )
1422         {                                        1468         {
1423           *n=G4ThreeVector(std::sin(fSPhi),-s    1469           *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
1424           *validNorm=true;                       1470           *validNorm=true;
1425         }                                        1471         }
1426         else                                     1472         else
1427         {                                        1473         {
1428           *validNorm = false ;                   1474           *validNorm = false ;
1429         }                                        1475         }
1430         break ;                                  1476         break ;
1431                                                  1477 
1432       case kEPhi:                                1478       case kEPhi:
1433         if (fDPhi <= pi)                         1479         if (fDPhi <= pi)
1434         {                                        1480         {
1435           *n=G4ThreeVector(-std::sin(fSPhi+fD    1481           *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
1436           *validNorm=true;                       1482           *validNorm=true;
1437         }                                        1483         }
1438         else                                     1484         else
1439         {                                        1485         {
1440           *validNorm = false ;                   1486           *validNorm = false ;
1441         }                                        1487         }
1442         break;                                   1488         break;
1443                                                  1489 
1444       default:                                   1490       default:
1445                                                  1491 
1446         // It seems we go here from time to t    1492         // It seems we go here from time to time ...
1447                                                  1493 
                                                   >> 1494         G4cout.precision(16);
1448         G4cout << G4endl;                        1495         G4cout << G4endl;
1449         DumpInfo();                              1496         DumpInfo();
1450         std::ostringstream message;           << 1497         G4cout << "Position:"  << G4endl << G4endl;
1451         G4long oldprc = message.precision(16) << 1498         G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl;
1452         message << "Undefined side for valid  << 1499         G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl;
1453                 << G4endl                     << 1500         G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl;
1454                 << "Position:"  << G4endl <<  << 1501         G4cout << "Direction:" << G4endl << G4endl;
1455                 << "p.x() = "   << p.x()/mm < << 1502         G4cout << "v.x() = "   << v.x() << G4endl;
1456                 << "p.y() = "   << p.y()/mm < << 1503         G4cout << "v.y() = "   << v.y() << G4endl;
1457                 << "p.z() = "   << p.z()/mm < << 1504         G4cout << "v.z() = "   << v.z() << G4endl << G4endl;
1458                 << "Direction:" << G4endl <<  << 1505         G4cout << "Proposed distance :" << G4endl << G4endl;
1459                 << "v.x() = "   << v.x() << G << 1506         G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl;
1460                 << "v.y() = "   << v.y() << G << 
1461                 << "v.z() = "   << v.z() << G << 
1462                 << "Proposed distance :" << G << 
1463                 << "snxt = " << snxt/mm << "  << 
1464         message.precision(oldprc);            << 
1465         G4Exception("G4Torus::DistanceToOut(p    1507         G4Exception("G4Torus::DistanceToOut(p,v,..)",
1466                     "GeomSolids1002",JustWarn << 1508                     "Notification",JustWarning,
                                                   >> 1509                     "Undefined side for valid surface normal to solid.");
1467         break;                                   1510         break;
1468     }                                            1511     }
1469   }                                              1512   }
1470   if ( snxt<halfCarTolerance )  { snxt=0 ; }  << 
1471                                                  1513 
1472   return snxt;                                   1514   return snxt;
1473 }                                                1515 }
1474                                                  1516 
1475 /////////////////////////////////////////////    1517 /////////////////////////////////////////////////////////////////////////
1476 //                                               1518 //
1477 // Calculate distance (<=actual) to closest s    1519 // Calculate distance (<=actual) to closest surface of shape from inside
1478                                                  1520 
1479 G4double G4Torus::DistanceToOut( const G4Thre    1521 G4double G4Torus::DistanceToOut( const G4ThreeVector& p ) const
1480 {                                                1522 {
1481   G4double safe=0.0,safeR1,safeR2;               1523   G4double safe=0.0,safeR1,safeR2;
1482   G4double rho,pt ;                           << 1524   G4double rho2,rho,pt2,pt ;
1483   G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;    1525   G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;
1484                                               << 1526   rho2 = p.x()*p.x() + p.y()*p.y() ;
1485   rho = std::hypot(p.x(),p.y());              << 1527   rho  = std::sqrt(rho2) ;
1486   pt  = std::hypot(p.z(),rho-fRtor);          << 1528   pt2  = std::fabs(rho2 + p.z()*p.z() + fRtor*fRtor - 2*fRtor*rho) ;
1487                                               << 1529   pt   = std::sqrt(pt2) ;
                                                   >> 1530 
1488 #ifdef G4CSGDEBUG                                1531 #ifdef G4CSGDEBUG
1489   if( Inside(p) == kOutside )                    1532   if( Inside(p) == kOutside )
1490   {                                              1533   {
1491      G4long oldprc = G4cout.precision(16) ;   << 1534      G4cout.precision(16) ;
1492      G4cout << G4endl ;                          1535      G4cout << G4endl ;
1493      DumpInfo();                                 1536      DumpInfo();
1494      G4cout << "Position:"  << G4endl << G4en    1537      G4cout << "Position:"  << G4endl << G4endl ;
1495      G4cout << "p.x() = "   << p.x()/mm << "     1538      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
1496      G4cout << "p.y() = "   << p.y()/mm << "     1539      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
1497      G4cout << "p.z() = "   << p.z()/mm << "     1540      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
1498      G4cout.precision(oldprc);                << 1541      G4Exception("G4Torus::DistanceToOut(p)", "Notification",
1499      G4Exception("G4Torus::DistanceToOut(p)", << 
1500                  JustWarning, "Point p is out    1542                  JustWarning, "Point p is outside !?" );
1501   }                                              1543   }
1502 #endif                                           1544 #endif
1503                                                  1545 
1504   if (fRmin != 0.0)                           << 1546   if (fRmin)
1505   {                                              1547   {
1506     safeR1 = pt - fRmin ;                        1548     safeR1 = pt - fRmin ;
1507     safeR2 = fRmax - pt ;                        1549     safeR2 = fRmax - pt ;
1508                                                  1550 
1509     if (safeR1 < safeR2)  { safe = safeR1 ; }    1551     if (safeR1 < safeR2)  { safe = safeR1 ; }
1510     else                  { safe = safeR2 ; }    1552     else                  { safe = safeR2 ; }
1511   }                                              1553   }
1512   else                                           1554   else
1513   {                                              1555   {
1514     safe = fRmax - pt ;                          1556     safe = fRmax - pt ;
1515   }                                              1557   }  
1516                                                  1558 
1517   // Check if phi divided, Calc distances clo    1559   // Check if phi divided, Calc distances closest phi plane
1518   //                                             1560   //
1519   if (fDPhi < twopi) // Above/below central p << 1561   if (fDPhi<twopi) // Above/below central phi of Torus?
1520   {                                              1562   {
1521     phiC    = fSPhi + fDPhi*0.5 ;                1563     phiC    = fSPhi + fDPhi*0.5 ;
1522     cosPhiC = std::cos(phiC) ;                   1564     cosPhiC = std::cos(phiC) ;
1523     sinPhiC = std::sin(phiC) ;                   1565     sinPhiC = std::sin(phiC) ;
1524                                                  1566 
1525     if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)        1567     if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)
1526     {                                            1568     {
1527       safePhi = -(p.x()*std::sin(fSPhi) - p.y    1569       safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1528     }                                            1570     }
1529     else                                         1571     else
1530     {                                            1572     {
1531       ePhi    = fSPhi + fDPhi ;                  1573       ePhi    = fSPhi + fDPhi ;
1532       safePhi = (p.x()*std::sin(ePhi) - p.y()    1574       safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1533     }                                            1575     }
1534     if (safePhi < safe)  { safe = safePhi ; }    1576     if (safePhi < safe)  { safe = safePhi ; }
1535   }                                              1577   }
1536   if (safe < 0)  { safe = 0 ; }                  1578   if (safe < 0)  { safe = 0 ; }
1537   return safe ;                                  1579   return safe ;  
1538 }                                                1580 }
1539                                                  1581 
1540 ///////////////////////////////////////////// << 1582 /////////////////////////////////////////////////////////////////////////////
1541 //                                               1583 //
1542 // Stream object contents to an output stream << 1584 // Create a List containing the transformed vertices
                                                   >> 1585 // Ordering [0-3] -fRtor cross section
                                                   >> 1586 //          [4-7] +fRtor cross section such that [0] is below [4],
                                                   >> 1587 //                                             [1] below [5] etc.
                                                   >> 1588 // Note:
                                                   >> 1589 //  Caller has deletion resposibility
                                                   >> 1590 //  Potential improvement: For last slice, use actual ending angle
                                                   >> 1591 //                         to avoid rounding error problems.
1543                                                  1592 
1544 G4GeometryType G4Torus::GetEntityType() const << 1593 G4ThreeVectorList*
                                                   >> 1594 G4Torus::CreateRotatedVertices( const G4AffineTransform& pTransform,
                                                   >> 1595                                       G4int& noPolygonVertices ) const
1545 {                                                1596 {
1546   return {"G4Torus"};                         << 1597   G4ThreeVectorList *vertices;
                                                   >> 1598   G4ThreeVector vertex0,vertex1,vertex2,vertex3;
                                                   >> 1599   G4double meshAngle,meshRMax,crossAngle,cosCrossAngle,sinCrossAngle,sAngle;
                                                   >> 1600   G4double rMaxX,rMaxY,rMinX,rMinY;
                                                   >> 1601   G4int crossSection,noCrossSections;
                                                   >> 1602 
                                                   >> 1603   // Compute no of cross-sections necessary to mesh tube
                                                   >> 1604   //
                                                   >> 1605   noCrossSections = G4int (fDPhi/kMeshAngleDefault) + 1 ;
                                                   >> 1606 
                                                   >> 1607   if (noCrossSections < kMinMeshSections)
                                                   >> 1608   {
                                                   >> 1609     noCrossSections = kMinMeshSections ;
                                                   >> 1610   }
                                                   >> 1611   else if (noCrossSections>kMaxMeshSections)
                                                   >> 1612   {
                                                   >> 1613     noCrossSections=kMaxMeshSections;
                                                   >> 1614   }
                                                   >> 1615   meshAngle = fDPhi/(noCrossSections - 1) ;
                                                   >> 1616   meshRMax  = (fRtor + fRmax)/std::cos(meshAngle*0.5) ;
                                                   >> 1617 
                                                   >> 1618   // If complete in phi, set start angle such that mesh will be at fRmax
                                                   >> 1619   // on the x axis. Will give better extent calculations when not rotated
                                                   >> 1620 
                                                   >> 1621   if ( (fDPhi == pi*2.0) && (fSPhi == 0) )
                                                   >> 1622   {
                                                   >> 1623     sAngle = -meshAngle*0.5 ;
                                                   >> 1624   }
                                                   >> 1625   else
                                                   >> 1626   {
                                                   >> 1627     sAngle = fSPhi ;
                                                   >> 1628   }
                                                   >> 1629   vertices = new G4ThreeVectorList();
                                                   >> 1630   vertices->reserve(noCrossSections*4) ;
                                                   >> 1631   
                                                   >> 1632   if (vertices)
                                                   >> 1633   {
                                                   >> 1634     for (crossSection=0;crossSection<noCrossSections;crossSection++)
                                                   >> 1635     {
                                                   >> 1636       // Compute coordinates of cross section at section crossSection
                                                   >> 1637 
                                                   >> 1638       crossAngle=sAngle+crossSection*meshAngle;
                                                   >> 1639       cosCrossAngle=std::cos(crossAngle);
                                                   >> 1640       sinCrossAngle=std::sin(crossAngle);
                                                   >> 1641 
                                                   >> 1642       rMaxX=meshRMax*cosCrossAngle;
                                                   >> 1643       rMaxY=meshRMax*sinCrossAngle;
                                                   >> 1644       rMinX=(fRtor-fRmax)*cosCrossAngle;
                                                   >> 1645       rMinY=(fRtor-fRmax)*sinCrossAngle;
                                                   >> 1646       vertex0=G4ThreeVector(rMinX,rMinY,-fRmax);
                                                   >> 1647       vertex1=G4ThreeVector(rMaxX,rMaxY,-fRmax);
                                                   >> 1648       vertex2=G4ThreeVector(rMaxX,rMaxY,+fRmax);
                                                   >> 1649       vertex3=G4ThreeVector(rMinX,rMinY,+fRmax);
                                                   >> 1650 
                                                   >> 1651       vertices->push_back(pTransform.TransformPoint(vertex0));
                                                   >> 1652       vertices->push_back(pTransform.TransformPoint(vertex1));
                                                   >> 1653       vertices->push_back(pTransform.TransformPoint(vertex2));
                                                   >> 1654       vertices->push_back(pTransform.TransformPoint(vertex3));
                                                   >> 1655     }
                                                   >> 1656     noPolygonVertices = 4 ;
                                                   >> 1657   }
                                                   >> 1658   else
                                                   >> 1659   {
                                                   >> 1660     DumpInfo();
                                                   >> 1661     G4Exception("G4Torus::CreateRotatedVertices()",
                                                   >> 1662                 "FatalError", FatalException,
                                                   >> 1663                 "Error in allocation of vertices. Out of memory !");
                                                   >> 1664   }
                                                   >> 1665   return vertices;
1547 }                                                1666 }
1548                                                  1667 
1549 /////////////////////////////////////////////    1668 //////////////////////////////////////////////////////////////////////////
1550 //                                               1669 //
1551 // Make a clone of the object                 << 1670 // Stream object contents to an output stream
1552 //                                            << 1671 
1553 G4VSolid* G4Torus::Clone() const              << 1672 G4GeometryType G4Torus::GetEntityType() const
1554 {                                                1673 {
1555   return new G4Torus(*this);                  << 1674   return G4String("G4Torus");
1556 }                                                1675 }
1557                                                  1676 
1558 /////////////////////////////////////////////    1677 //////////////////////////////////////////////////////////////////////////
1559 //                                               1678 //
1560 // Stream object contents to an output stream    1679 // Stream object contents to an output stream
1561                                                  1680 
1562 std::ostream& G4Torus::StreamInfo( std::ostre    1681 std::ostream& G4Torus::StreamInfo( std::ostream& os ) const
1563 {                                                1682 {
1564   G4long oldprc = os.precision(16);           << 
1565   os << "------------------------------------    1683   os << "-----------------------------------------------------------\n"
1566      << "    *** Dump for solid - " << GetNam    1684      << "    *** Dump for solid - " << GetName() << " ***\n"
1567      << "    ================================    1685      << "    ===================================================\n"
1568      << " Solid type: G4Torus\n"                 1686      << " Solid type: G4Torus\n"
1569      << " Parameters: \n"                        1687      << " Parameters: \n"
1570      << "    inner radius: " << fRmin/mm << "    1688      << "    inner radius: " << fRmin/mm << " mm \n"
1571      << "    outer radius: " << fRmax/mm << "    1689      << "    outer radius: " << fRmax/mm << " mm \n"
1572      << "    swept radius: " << fRtor/mm << "    1690      << "    swept radius: " << fRtor/mm << " mm \n"
1573      << "    starting phi: " << fSPhi/degree     1691      << "    starting phi: " << fSPhi/degree << " degrees \n"
1574      << "    delta phi   : " << fDPhi/degree     1692      << "    delta phi   : " << fDPhi/degree << " degrees \n"
1575      << "------------------------------------    1693      << "-----------------------------------------------------------\n";
1576   os.precision(oldprc);                       << 
1577                                                  1694 
1578   return os;                                     1695   return os;
1579 }                                                1696 }
1580                                                  1697 
1581 /////////////////////////////////////////////    1698 ////////////////////////////////////////////////////////////////////////////
1582 //                                               1699 //
1583 // GetPointOnSurface                             1700 // GetPointOnSurface
1584                                                  1701 
1585 G4ThreeVector G4Torus::GetPointOnSurface() co    1702 G4ThreeVector G4Torus::GetPointOnSurface() const
1586 {                                                1703 {
1587   G4double cosu, sinu,cosv, sinv, aOut, aIn,     1704   G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand;
1588                                                  1705    
1589   phi   = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi << 1706   phi   = RandFlat::shoot(fSPhi,fSPhi+fDPhi);
1590   theta = G4RandFlat::shoot(0.,twopi);        << 1707   theta = RandFlat::shoot(0.,2.*pi);
1591                                                  1708   
1592   cosu   = std::cos(phi);    sinu = std::sin(    1709   cosu   = std::cos(phi);    sinu = std::sin(phi);
1593   cosv   = std::cos(theta);  sinv = std::sin(    1710   cosv   = std::cos(theta);  sinv = std::sin(theta); 
1594                                                  1711 
1595   // compute the areas                           1712   // compute the areas
1596                                                  1713 
1597   aOut   = (fDPhi)*twopi*fRtor*fRmax;         << 1714   aOut   = (fDPhi)*2.*pi*fRtor*fRmax;
1598   aIn    = (fDPhi)*twopi*fRtor*fRmin;         << 1715   aIn    = (fDPhi)*2.*pi*fRtor*fRmin;
1599   aSide  = pi*(fRmax*fRmax-fRmin*fRmin);         1716   aSide  = pi*(fRmax*fRmax-fRmin*fRmin);
1600                                                  1717   
1601   if ((fSPhi == 0) && (fDPhi == twopi)){ aSid << 1718   if(fSPhi == 0 && fDPhi == twopi){ aSide = 0; }
1602   chose = G4RandFlat::shoot(0.,aOut + aIn + 2 << 1719   chose = RandFlat::shoot(0.,aOut + aIn + 2.*aSide);
1603                                                  1720 
1604   if(chose < aOut)                               1721   if(chose < aOut)
1605   {                                              1722   {
1606     return { (fRtor+fRmax*cosv)*cosu, (fRtor+ << 1723     return G4ThreeVector ((fRtor+fRmax*cosv)*cosu,
                                                   >> 1724                           (fRtor+fRmax*cosv)*sinu, fRmax*sinv);
1607   }                                              1725   }
1608   else if( (chose >= aOut) && (chose < aOut +    1726   else if( (chose >= aOut) && (chose < aOut + aIn) )
1609   {                                              1727   {
1610     return { (fRtor+fRmin*cosv)*cosu, (fRtor+ << 1728     return G4ThreeVector ((fRtor+fRmin*cosv)*cosu,
                                                   >> 1729                           (fRtor+fRmin*cosv)*sinu, fRmin*sinv);
1611   }                                              1730   }
1612   else if( (chose >= aOut + aIn) && (chose <     1731   else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) )
1613   {                                              1732   {
1614     rRand = GetRadiusInRing(fRmin,fRmax);     << 1733     rRand = RandFlat::shoot(fRmin,fRmax);
1615     return { (fRtor+rRand*cosv)*std::cos(fSPh << 1734     return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi),
1616              (fRtor+rRand*cosv)*std::sin(fSPh << 1735                           (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv);
1617   }                                              1736   }
1618   else                                           1737   else
1619   {                                              1738   {   
1620     rRand = GetRadiusInRing(fRmin,fRmax);     << 1739     rRand = RandFlat::shoot(fRmin,fRmax);
1621     return { (fRtor+rRand*cosv)*std::cos(fSPh << 1740     return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi),
1622              (fRtor+rRand*cosv)*std::sin(fSPh << 1741                           (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi), 
                                                   >> 1742                           rRand*sinv);
1623    }                                             1743    }
1624 }                                                1744 }
1625                                                  1745 
1626 /////////////////////////////////////////////    1746 ///////////////////////////////////////////////////////////////////////
1627 //                                               1747 //
1628 // Visualisation Functions                       1748 // Visualisation Functions
1629                                                  1749 
1630 void G4Torus::DescribeYourselfTo ( G4VGraphic    1750 void G4Torus::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
1631 {                                                1751 {
1632   scene.AddSolid (*this);                        1752   scene.AddSolid (*this);
1633 }                                                1753 }
1634                                                  1754 
1635 G4Polyhedron* G4Torus::CreatePolyhedron () co    1755 G4Polyhedron* G4Torus::CreatePolyhedron () const 
1636 {                                                1756 {
1637   return new G4PolyhedronTorus (fRmin, fRmax,    1757   return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi);
1638 }                                                1758 }
1639                                                  1759 
1640 #endif // !defined(G4GEOM_USE_TORUS) || !defi << 1760 G4NURBS* G4Torus::CreateNURBS () const 
                                                   >> 1761 {
                                                   >> 1762   G4NURBS* pNURBS;
                                                   >> 1763   if (fRmin != 0) 
                                                   >> 1764   {
                                                   >> 1765     if (fDPhi >= 2.0 * pi) 
                                                   >> 1766     {
                                                   >> 1767       pNURBS = new G4NURBStube(fRmin, fRmax, fRtor);
                                                   >> 1768     }
                                                   >> 1769     else 
                                                   >> 1770     {
                                                   >> 1771       pNURBS = new G4NURBStubesector(fRmin, fRmax, fRtor, fSPhi, fSPhi + fDPhi);
                                                   >> 1772     }
                                                   >> 1773   }
                                                   >> 1774   else 
                                                   >> 1775   {
                                                   >> 1776     if (fDPhi >= 2.0 * pi) 
                                                   >> 1777     {
                                                   >> 1778       pNURBS = new G4NURBScylinder (fRmax, fRtor);
                                                   >> 1779     }
                                                   >> 1780     else 
                                                   >> 1781     {
                                                   >> 1782       const G4double epsilon = 1.e-4; // Cylinder sector not yet available!
                                                   >> 1783       pNURBS = new G4NURBStubesector (epsilon, fRmax, fRtor,
                                                   >> 1784                                       fSPhi, fSPhi + fDPhi);
                                                   >> 1785     }
                                                   >> 1786   }
                                                   >> 1787   return pNURBS;
                                                   >> 1788 }
1641                                                  1789