Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Torus.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Torus.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Torus.cc (Version 10.6.p2)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // G4Torus implementation                          26 // G4Torus implementation
 27 //                                                 27 //
 28 // 30.10.96 V.Grichine: first implementation w     28 // 30.10.96 V.Grichine: first implementation with G4Tubs elements in Fs
 29 // 26.05.00 V.Grichine: added new fuctions dev     29 // 26.05.00 V.Grichine: added new fuctions developed by O.Cremonesi
 30 // 31.08.00 E.Medernach: numerical computation     30 // 31.08.00 E.Medernach: numerical computation of roots with bounding volume
 31 // 11.01.01 E.Medernach: Use G4PolynomialSolve     31 // 11.01.01 E.Medernach: Use G4PolynomialSolver to find roots
 32 // 03.05.05 V.Grichine: SurfaceNormal(p) accor     32 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal
 33 // 25.08.05 O.Link: new methods for DistanceTo     33 // 25.08.05 O.Link: new methods for DistanceToIn/Out using JTPolynomialSolver
 34 // 28.10.16 E.Tcherniaev: new CalculateExtent(     34 // 28.10.16 E.Tcherniaev: new CalculateExtent(); removed CreateRotatedVertices()
 35 // 16.12.16 H.Burkhardt: use radius difference     35 // 16.12.16 H.Burkhardt: use radius differences and hypot to improve precision
 36 // -------------------------------------------     36 // --------------------------------------------------------------------
 37                                                    37 
 38 #include "G4Torus.hh"                              38 #include "G4Torus.hh"
 39                                                    39 
 40 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4     40 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4GEOM_USE_SYS_USOLIDS))
 41                                                    41 
 42 #include "G4GeomTools.hh"                          42 #include "G4GeomTools.hh"
 43 #include "G4VoxelLimits.hh"                        43 #include "G4VoxelLimits.hh"
 44 #include "G4AffineTransform.hh"                    44 #include "G4AffineTransform.hh"
 45 #include "G4BoundingEnvelope.hh"                   45 #include "G4BoundingEnvelope.hh"
 46 #include "G4GeometryTolerance.hh"                  46 #include "G4GeometryTolerance.hh"
 47 #include "G4JTPolynomialSolver.hh"                 47 #include "G4JTPolynomialSolver.hh"
 48                                                    48 
 49 #include "G4VPVParameterisation.hh"                49 #include "G4VPVParameterisation.hh"
 50                                                    50 
 51 #include "meshdefs.hh"                             51 #include "meshdefs.hh"
 52                                                    52 
 53 #include "Randomize.hh"                            53 #include "Randomize.hh"
 54                                                    54 
 55 #include "G4VGraphicsScene.hh"                     55 #include "G4VGraphicsScene.hh"
 56 #include "G4Polyhedron.hh"                         56 #include "G4Polyhedron.hh"
 57                                                    57 
 58 using namespace CLHEP;                             58 using namespace CLHEP;
 59                                                    59 
 60 //////////////////////////////////////////////     60 ///////////////////////////////////////////////////////////////
 61 //                                                 61 //
 62 // Constructor - check parameters, convert ang     62 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 63 //             - note if pdphi>2PI then reset      63 //             - note if pdphi>2PI then reset to 2PI
 64                                                    64 
 65 G4Torus::G4Torus( const G4String& pName,       <<  65 G4Torus::G4Torus( const G4String &pName,
 66                         G4double pRmin,            66                         G4double pRmin,
 67                         G4double pRmax,            67                         G4double pRmax,
 68                         G4double pRtor,            68                         G4double pRtor,
 69                         G4double pSPhi,            69                         G4double pSPhi,
 70                         G4double pDPhi )       <<  70                         G4double pDPhi)
 71   : G4CSGSolid(pName)                              71   : G4CSGSolid(pName)
 72 {                                                  72 {
 73   SetAllParameters(pRmin, pRmax, pRtor, pSPhi,     73   SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi);
 74 }                                                  74 }
 75                                                    75 
 76 //////////////////////////////////////////////     76 ////////////////////////////////////////////////////////////////////////////
 77 //                                                 77 //
 78 //                                                 78 //
 79                                                    79 
 80 void                                               80 void
 81 G4Torus::SetAllParameters( G4double pRmin,         81 G4Torus::SetAllParameters( G4double pRmin,
 82                            G4double pRmax,         82                            G4double pRmax,
 83                            G4double pRtor,         83                            G4double pRtor,
 84                            G4double pSPhi,         84                            G4double pSPhi,
 85                            G4double pDPhi )        85                            G4double pDPhi )
 86 {                                                  86 {
 87   const G4double fEpsilon = 4.e-11;  // relati     87   const G4double fEpsilon = 4.e-11;  // relative tolerance of radii
 88                                                    88 
 89   fCubicVolume = 0.;                               89   fCubicVolume = 0.;
 90   fSurfaceArea = 0.;                               90   fSurfaceArea = 0.;
 91   fRebuildPolyhedron = true;                       91   fRebuildPolyhedron = true;
 92                                                    92 
 93   kRadTolerance = G4GeometryTolerance::GetInst     93   kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance();
 94   kAngTolerance = G4GeometryTolerance::GetInst     94   kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance();
 95                                                    95 
 96   halfCarTolerance = 0.5*kCarTolerance;            96   halfCarTolerance = 0.5*kCarTolerance;
 97   halfAngTolerance = 0.5*kAngTolerance;            97   halfAngTolerance = 0.5*kAngTolerance;
 98                                                    98 
 99   if ( pRtor >= pRmax+1.e3*kCarTolerance )  //     99   if ( pRtor >= pRmax+1.e3*kCarTolerance )  // Check swept radius, as in G4Cons
100   {                                               100   {
101     fRtor = pRtor ;                               101     fRtor = pRtor ;
102   }                                               102   }
103   else                                            103   else
104   {                                               104   {
105     std::ostringstream message;                   105     std::ostringstream message;
106     message << "Invalid swept radius for Solid    106     message << "Invalid swept radius for Solid: " << GetName() << G4endl
107             << "        pRtor = " << pRtor <<     107             << "        pRtor = " << pRtor << ", pRmax = " << pRmax;
108     G4Exception("G4Torus::SetAllParameters()",    108     G4Exception("G4Torus::SetAllParameters()",
109                 "GeomSolids0002", FatalExcepti    109                 "GeomSolids0002", FatalException, message);
110   }                                               110   }
111                                                   111 
112   // Check radii, as in G4Cons                    112   // Check radii, as in G4Cons
113   //                                              113   //
114   if ( pRmin < pRmax - 1.e2*kCarTolerance && p    114   if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 )
115   {                                               115   {
116     if (pRmin >= 1.e2*kCarTolerance) { fRmin =    116     if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; }
117     else                             { fRmin =    117     else                             { fRmin = 0.0   ; }
118     fRmax = pRmax ;                               118     fRmax = pRmax ;
119   }                                               119   }
120   else                                            120   else
121   {                                               121   {
122     std::ostringstream message;                   122     std::ostringstream message;
123     message << "Invalid values of radii for So    123     message << "Invalid values of radii for Solid: " << GetName() << G4endl
124             << "        pRmin = " << pRmin <<     124             << "        pRmin = " << pRmin << ", pRmax = " << pRmax;
125     G4Exception("G4Torus::SetAllParameters()",    125     G4Exception("G4Torus::SetAllParameters()",
126                 "GeomSolids0002", FatalExcepti    126                 "GeomSolids0002", FatalException, message);
127   }                                               127   }
128                                                   128 
129   // Relative tolerances                          129   // Relative tolerances
130   //                                              130   //
131   fRminTolerance = (fRmin) != 0.0              << 131   fRminTolerance = (fRmin)
132                  ? 0.5*std::max( kRadTolerance    132                  ? 0.5*std::max( kRadTolerance, fEpsilon*(fRtor-fRmin )) : 0;
133   fRmaxTolerance = 0.5*std::max( kRadTolerance    133   fRmaxTolerance = 0.5*std::max( kRadTolerance, fEpsilon*(fRtor+fRmax) );
134                                                   134 
135   // Check angles                                 135   // Check angles
136   //                                              136   //
137   if ( pDPhi >= twopi )  { fDPhi = twopi ; }      137   if ( pDPhi >= twopi )  { fDPhi = twopi ; }
138   else                                            138   else
139   {                                               139   {
140     if (pDPhi > 0)       { fDPhi = pDPhi ; }      140     if (pDPhi > 0)       { fDPhi = pDPhi ; }
141     else                                          141     else
142     {                                             142     {
143       std::ostringstream message;                 143       std::ostringstream message;
144       message << "Invalid Z delta-Phi for Soli    144       message << "Invalid Z delta-Phi for Solid: " << GetName() << G4endl
145               << "        pDPhi = " << pDPhi;     145               << "        pDPhi = " << pDPhi;
146       G4Exception("G4Torus::SetAllParameters()    146       G4Exception("G4Torus::SetAllParameters()",
147                   "GeomSolids0002", FatalExcep    147                   "GeomSolids0002", FatalException, message);
148     }                                             148     }
149   }                                               149   }
150                                                   150   
151   // Ensure psphi in 0-2PI or -2PI-0 range if     151   // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0
152   //                                              152   //
153   fSPhi = pSPhi;                                  153   fSPhi = pSPhi;
154                                                   154 
155   if (fSPhi < 0)  { fSPhi = twopi-std::fmod(st    155   if (fSPhi < 0)  { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; }
156   else            { fSPhi = std::fmod(fSPhi,tw    156   else            { fSPhi = std::fmod(fSPhi,twopi) ; }
157                                                   157 
158   if (fSPhi+fDPhi > twopi)  { fSPhi-=twopi ; }    158   if (fSPhi+fDPhi > twopi)  { fSPhi-=twopi ; }
159 }                                                 159 }
160                                                   160 
161 //////////////////////////////////////////////    161 ///////////////////////////////////////////////////////////////////////
162 //                                                162 //
163 // Fake default constructor - sets only member    163 // Fake default constructor - sets only member data and allocates memory
164 //                            for usage restri    164 //                            for usage restricted to object persistency.
165 //                                                165 //
166 G4Torus::G4Torus( __void__& a )                   166 G4Torus::G4Torus( __void__& a )
167   : G4CSGSolid(a)                              << 167   : G4CSGSolid(a), fRmin(0.), fRmax(0.), fRtor(0.), fSPhi(0.),
                                                   >> 168     fDPhi(0.), fRminTolerance(0.), fRmaxTolerance(0. ),
                                                   >> 169     kRadTolerance(0.), kAngTolerance(0.),
                                                   >> 170     halfCarTolerance(0.), halfAngTolerance(0.)
168 {                                                 171 {
169 }                                                 172 }
170                                                   173 
171 //////////////////////////////////////////////    174 //////////////////////////////////////////////////////////////////////
172 //                                                175 //
173 // Destructor                                     176 // Destructor
174                                                   177 
175 G4Torus::~G4Torus() = default;                 << 178 G4Torus::~G4Torus()
                                                   >> 179 {}
176                                                   180 
177 //////////////////////////////////////////////    181 //////////////////////////////////////////////////////////////////////////
178 //                                                182 //
179 // Copy constructor                               183 // Copy constructor
180                                                   184 
181 G4Torus::G4Torus(const G4Torus&) = default;    << 185 G4Torus::G4Torus(const G4Torus& rhs)
                                                   >> 186   : G4CSGSolid(rhs), fRmin(rhs.fRmin),fRmax(rhs.fRmax),
                                                   >> 187     fRtor(rhs.fRtor), fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi),
                                                   >> 188     fRminTolerance(rhs.fRminTolerance), fRmaxTolerance(rhs.fRmaxTolerance),
                                                   >> 189     kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance),
                                                   >> 190     halfCarTolerance(rhs.halfCarTolerance),
                                                   >> 191     halfAngTolerance(rhs.halfAngTolerance)
                                                   >> 192 {
                                                   >> 193 }
182                                                   194 
183 //////////////////////////////////////////////    195 //////////////////////////////////////////////////////////////////////////
184 //                                                196 //
185 // Assignment operator                            197 // Assignment operator
186                                                   198 
187 G4Torus& G4Torus::operator = (const G4Torus& r    199 G4Torus& G4Torus::operator = (const G4Torus& rhs) 
188 {                                                 200 {
189    // Check assignment to self                    201    // Check assignment to self
190    //                                             202    //
191    if (this == &rhs)  { return *this; }           203    if (this == &rhs)  { return *this; }
192                                                   204 
193    // Copy base class data                        205    // Copy base class data
194    //                                             206    //
195    G4CSGSolid::operator=(rhs);                    207    G4CSGSolid::operator=(rhs);
196                                                   208 
197    // Copy data                                   209    // Copy data
198    //                                             210    //
199    fRmin = rhs.fRmin; fRmax = rhs.fRmax;          211    fRmin = rhs.fRmin; fRmax = rhs.fRmax;
200    fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi    212    fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi;
201    fRminTolerance = rhs.fRminTolerance; fRmaxT    213    fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance;
202    kRadTolerance = rhs.kRadTolerance; kAngTole    214    kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance;
203    halfCarTolerance = rhs.halfCarTolerance;       215    halfCarTolerance = rhs.halfCarTolerance;
204    halfAngTolerance = rhs.halfAngTolerance;       216    halfAngTolerance = rhs.halfAngTolerance;
205                                                   217 
206    return *this;                                  218    return *this;
207 }                                                 219 }
208                                                   220 
209 //////////////////////////////////////////////    221 //////////////////////////////////////////////////////////////////////
210 //                                                222 //
211 // Dispatch to parameterisation for replicatio    223 // Dispatch to parameterisation for replication mechanism dimension
212 // computation & modification.                    224 // computation & modification.
213                                                   225 
214 void G4Torus::ComputeDimensions(       G4VPVPa    226 void G4Torus::ComputeDimensions(       G4VPVParameterisation* p,
215                                  const G4int n    227                                  const G4int n,
216                                  const G4VPhys    228                                  const G4VPhysicalVolume* pRep )
217 {                                                 229 {
218   p->ComputeDimensions(*this,n,pRep);             230   p->ComputeDimensions(*this,n,pRep);
219 }                                                 231 }
220                                                   232 
221                                                   233 
222                                                   234 
223 //////////////////////////////////////////////    235 ////////////////////////////////////////////////////////////////////////////////
224 //                                                236 //
225 // Calculate the real roots to torus surface.     237 // Calculate the real roots to torus surface. 
226 // Returns negative solutions as well.            238 // Returns negative solutions as well.
227                                                   239 
228 void G4Torus::TorusRootsJT( const G4ThreeVecto    240 void G4Torus::TorusRootsJT( const G4ThreeVector& p,
229                             const G4ThreeVecto    241                             const G4ThreeVector& v,
230                                   G4double r,     242                                   G4double r,
231                                   std::vector<    243                                   std::vector<G4double>& roots ) const
232 {                                                 244 {
233                                                   245 
234   G4int i, num ;                                  246   G4int i, num ;
235   G4double c[5], srd[4], si[4] ;                  247   G4double c[5], srd[4], si[4] ;
236                                                   248 
237   G4double Rtor2 = fRtor*fRtor, r2 = r*r  ;       249   G4double Rtor2 = fRtor*fRtor, r2 = r*r  ;
238                                                   250 
239   G4double pDotV = p.x()*v.x() + p.y()*v.y() +    251   G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
240   G4double pRad2 = p.x()*p.x() + p.y()*p.y() +    252   G4double pRad2 = p.x()*p.x() + p.y()*p.y() + p.z()*p.z() ;
241                                                   253 
242   G4double d=pRad2 - Rtor2;                       254   G4double d=pRad2 - Rtor2;
243   c[0] = 1.0 ;                                    255   c[0] = 1.0 ;
244   c[1] = 4*pDotV ;                                256   c[1] = 4*pDotV ;
245   c[2] = 2*( (d + 2*pDotV*pDotV  - r2) + 2*Rto    257   c[2] = 2*( (d + 2*pDotV*pDotV  - r2) + 2*Rtor2*v.z()*v.z());
246   c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z    258   c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z()) ;
247   c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r    259   c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r2);
248                                                   260 
249   G4JTPolynomialSolver  torusEq;                  261   G4JTPolynomialSolver  torusEq;
250                                                   262 
251   num = torusEq.FindRoots( c, 4, srd, si );       263   num = torusEq.FindRoots( c, 4, srd, si );
252                                                   264   
253   for ( i = 0; i < num; ++i )                     265   for ( i = 0; i < num; ++i ) 
254   {                                               266   {
255     if( si[i] == 0. )  { roots.push_back(srd[i    267     if( si[i] == 0. )  { roots.push_back(srd[i]) ; }  // store real roots
256   }                                               268   }  
257                                                   269 
258   std::sort(roots.begin() , roots.end() ) ;  /    270   std::sort(roots.begin() , roots.end() ) ;  // sorting  with <
259 }                                                 271 }
260                                                   272 
261 //////////////////////////////////////////////    273 //////////////////////////////////////////////////////////////////////////////
262 //                                                274 //
263 // Interface for DistanceToIn and DistanceToOu    275 // Interface for DistanceToIn and DistanceToOut.
264 // Calls TorusRootsJT and returns the smalles     276 // Calls TorusRootsJT and returns the smalles possible distance to 
265 // the surface.                                   277 // the surface.
266 // Attention: Difference in DistanceToIn/Out f    278 // Attention: Difference in DistanceToIn/Out for points p on the surface.
267                                                   279 
268 G4double G4Torus::SolveNumericJT( const G4Thre    280 G4double G4Torus::SolveNumericJT( const G4ThreeVector& p,
269                                   const G4Thre    281                                   const G4ThreeVector& v,
270                                         G4doub    282                                         G4double r,
271                                         G4bool    283                                         G4bool IsDistanceToIn ) const
272 {                                                 284 {
273   G4double bigdist = 10*mm ;                      285   G4double bigdist = 10*mm ;
274   G4double tmin = kInfinity ;                     286   G4double tmin = kInfinity ;
275   G4double t, scal ;                              287   G4double t, scal ;
276                                                   288 
277   // calculate the distances to the intersecti    289   // calculate the distances to the intersections with the Torus
278   // from a given point p and direction v.        290   // from a given point p and direction v.
279   //                                              291   //
280   std::vector<G4double> roots ;                   292   std::vector<G4double> roots ;
281   std::vector<G4double> rootsrefined ;            293   std::vector<G4double> rootsrefined ;
282   TorusRootsJT(p,v,r,roots) ;                     294   TorusRootsJT(p,v,r,roots) ;
283                                                   295 
284   G4ThreeVector ptmp ;                            296   G4ThreeVector ptmp ;
285                                                   297 
286   // determine the smallest non-negative solut    298   // determine the smallest non-negative solution
287   //                                              299   //
288   for ( std::size_t k = 0 ; k<roots.size() ; + << 300   for ( size_t k = 0 ; k<roots.size() ; ++k )
289   {                                               301   {
290     t = roots[k] ;                                302     t = roots[k] ;
291                                                   303 
292     if ( t < -halfCarTolerance )  { continue ;    304     if ( t < -halfCarTolerance )  { continue ; }  // skip negative roots
293                                                   305 
294     if ( t > bigdist && t<kInfinity )    // pr    306     if ( t > bigdist && t<kInfinity )    // problem with big distances
295     {                                             307     {
296       ptmp = p + t*v ;                            308       ptmp = p + t*v ;
297       TorusRootsJT(ptmp,v,r,rootsrefined) ;       309       TorusRootsJT(ptmp,v,r,rootsrefined) ;
298       if ( rootsrefined.size()==roots.size() )    310       if ( rootsrefined.size()==roots.size() )
299       {                                           311       {
300         t = t + rootsrefined[k] ;                 312         t = t + rootsrefined[k] ;
301       }                                           313       }
302     }                                             314     }
303                                                   315 
304     ptmp = p + t*v ;   // calculate the positi    316     ptmp = p + t*v ;   // calculate the position of the proposed intersection
305                                                   317 
306     G4double theta = std::atan2(ptmp.y(),ptmp.    318     G4double theta = std::atan2(ptmp.y(),ptmp.x());
307                                                   319     
308     if ( fSPhi >= 0 )                             320     if ( fSPhi >= 0 )
309     {                                             321     {
310       if ( theta < - halfAngTolerance )  { the    322       if ( theta < - halfAngTolerance )  { theta += twopi; }
311       if ( (std::fabs(theta) < halfAngToleranc    323       if ( (std::fabs(theta) < halfAngTolerance)
312         && (std::fabs(fSPhi + fDPhi - twopi) <    324         && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
313       {                                           325       { 
314         theta += twopi ; // 0 <= theta < 2pi      326         theta += twopi ; // 0 <= theta < 2pi
315       }                                           327       }
316     }                                             328     }
317     if ((fSPhi <= -pi )&&(theta>halfAngToleran    329     if ((fSPhi <= -pi )&&(theta>halfAngTolerance)) { theta = theta-twopi; }
318                                                   330        
319     // We have to verify if this root is insid    331     // We have to verify if this root is inside the region between
320     // fSPhi and fSPhi + fDPhi                    332     // fSPhi and fSPhi + fDPhi
321     //                                            333     //
322     if ( (theta - fSPhi >= - halfAngTolerance)    334     if ( (theta - fSPhi >= - halfAngTolerance)
323       && (theta - (fSPhi + fDPhi) <=  halfAngT    335       && (theta - (fSPhi + fDPhi) <=  halfAngTolerance) )
324     {                                             336     {
325       // check if P is on the surface, and cal    337       // check if P is on the surface, and called from DistanceToIn
326       // DistanceToIn has to return 0.0 if par    338       // DistanceToIn has to return 0.0 if particle is going inside the solid
327                                                   339 
328       if ( IsDistanceToIn )                    << 340       if ( IsDistanceToIn == true )
329       {                                           341       {
330         if (std::fabs(t) < halfCarTolerance )     342         if (std::fabs(t) < halfCarTolerance )
331         {                                         343         {
332           // compute scalar product at positio    344           // compute scalar product at position p : v.n
333           // ( n taken from SurfaceNormal, not    345           // ( n taken from SurfaceNormal, not normalized )
334                                                   346 
335           scal = v* G4ThreeVector( p.x()*(1-fR    347           scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())),
336                                    p.y()*(1-fR    348                                    p.y()*(1-fRtor/std::hypot(p.x(),p.y())),
337                                    p.z() );       349                                    p.z() );
338                                                   350 
339           // change sign in case of inner radi    351           // change sign in case of inner radius
340           //                                      352           //
341           if ( r == GetRmin() )  { scal = -sca    353           if ( r == GetRmin() )  { scal = -scal ; }
342           if ( scal < 0 )  { return 0.0  ; }      354           if ( scal < 0 )  { return 0.0  ; }
343         }                                         355         }
344       }                                           356       }
345                                                   357 
346       // check if P is on the surface, and cal    358       // check if P is on the surface, and called from DistanceToOut
347       // DistanceToIn has to return 0.0 if par    359       // DistanceToIn has to return 0.0 if particle is leaving the solid
348                                                   360 
349       if ( !IsDistanceToIn )                   << 361       if ( IsDistanceToIn == false )
350       {                                           362       {
351         if (std::fabs(t) < halfCarTolerance )     363         if (std::fabs(t) < halfCarTolerance )
352         {                                         364         {
353           // compute scalar product at positio    365           // compute scalar product at position p : v.n   
354           //                                      366           //
355           scal = v* G4ThreeVector( p.x()*(1-fR    367           scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())),
356                                    p.y()*(1-fR    368                                    p.y()*(1-fRtor/std::hypot(p.x(),p.y())),
357                                    p.z() );       369                                    p.z() );
358                                                   370 
359           // change sign in case of inner radi    371           // change sign in case of inner radius
360           //                                      372           //
361           if ( r == GetRmin() )  { scal = -sca    373           if ( r == GetRmin() )  { scal = -scal ; }
362           if ( scal > 0 )  { return 0.0  ; }      374           if ( scal > 0 )  { return 0.0  ; }
363         }                                         375         }
364       }                                           376       }
365                                                   377 
366       // check if distance is larger than 1/2     378       // check if distance is larger than 1/2 kCarTolerance
367       //                                          379       //
368       if(  t > halfCarTolerance  )                380       if(  t > halfCarTolerance  )
369       {                                           381       {
370         tmin = t  ;                               382         tmin = t  ;
371         return tmin  ;                            383         return tmin  ;
372       }                                           384       }
373     }                                             385     }
374   }                                               386   }
375                                                   387 
376   return tmin;                                    388   return tmin;
377 }                                                 389 }
378                                                   390 
379 //////////////////////////////////////////////    391 /////////////////////////////////////////////////////////////////////////////
380 //                                                392 //
381 // Get bounding box                               393 // Get bounding box
382                                                   394 
383 void G4Torus::BoundingLimits(G4ThreeVector& pM    395 void G4Torus::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
384 {                                                 396 {
385   G4double rmax = GetRmax();                      397   G4double rmax = GetRmax();
386   G4double rtor = GetRtor();                      398   G4double rtor = GetRtor();
387   G4double rint = rtor - rmax;                    399   G4double rint = rtor - rmax;
388   G4double rext = rtor + rmax;                    400   G4double rext = rtor + rmax;
389   G4double dz   = rmax;                           401   G4double dz   = rmax;
390                                                   402 
391   // Find bounding box                            403   // Find bounding box
392   //                                              404   //
393   if (GetDPhi() >= twopi)                         405   if (GetDPhi() >= twopi)
394   {                                               406   {
395     pMin.set(-rext,-rext,-dz);                    407     pMin.set(-rext,-rext,-dz);
396     pMax.set( rext, rext, dz);                    408     pMax.set( rext, rext, dz);
397   }                                               409   }
398   else                                            410   else
399   {                                               411   {
400     G4TwoVector vmin,vmax;                        412     G4TwoVector vmin,vmax;
401     G4GeomTools::DiskExtent(rint,rext,            413     G4GeomTools::DiskExtent(rint,rext,
402                             GetSinStartPhi(),G    414                             GetSinStartPhi(),GetCosStartPhi(),
403                             GetSinEndPhi(),Get    415                             GetSinEndPhi(),GetCosEndPhi(),
404                             vmin,vmax);           416                             vmin,vmax);
405     pMin.set(vmin.x(),vmin.y(),-dz);              417     pMin.set(vmin.x(),vmin.y(),-dz);
406     pMax.set(vmax.x(),vmax.y(), dz);              418     pMax.set(vmax.x(),vmax.y(), dz);
407   }                                               419   }
408                                                   420 
409   // Check correctness of the bounding box        421   // Check correctness of the bounding box
410   //                                              422   //
411   if (pMin.x() >= pMax.x() || pMin.y() >= pMax    423   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
412   {                                               424   {
413     std::ostringstream message;                   425     std::ostringstream message;
414     message << "Bad bounding box (min >= max)     426     message << "Bad bounding box (min >= max) for solid: "
415             << GetName() << " !"                  427             << GetName() << " !"
416             << "\npMin = " << pMin                428             << "\npMin = " << pMin
417             << "\npMax = " << pMax;               429             << "\npMax = " << pMax;
418     G4Exception("G4Torus::BoundingLimits()", "    430     G4Exception("G4Torus::BoundingLimits()", "GeomMgt0001",
419                 JustWarning, message);            431                 JustWarning, message);
420     DumpInfo();                                   432     DumpInfo();
421   }                                               433   }
422 }                                                 434 }
423                                                   435 
424 //////////////////////////////////////////////    436 /////////////////////////////////////////////////////////////////////////////
425 //                                                437 //
426 // Calculate extent under transform and specif    438 // Calculate extent under transform and specified limit
427                                                   439 
428 G4bool G4Torus::CalculateExtent( const EAxis p    440 G4bool G4Torus::CalculateExtent( const EAxis pAxis,
429                                  const G4Voxel    441                                  const G4VoxelLimits& pVoxelLimit,
430                                  const G4Affin    442                                  const G4AffineTransform& pTransform,
431                                        G4doubl    443                                        G4double& pMin, G4double& pMax) const
432 {                                                 444 {
433   G4ThreeVector bmin, bmax;                       445   G4ThreeVector bmin, bmax;
434   G4bool exist;                                   446   G4bool exist;
435                                                   447 
436   // Get bounding box                             448   // Get bounding box
437   BoundingLimits(bmin,bmax);                      449   BoundingLimits(bmin,bmax);
438                                                   450 
439   // Check bounding box                           451   // Check bounding box
440   G4BoundingEnvelope bbox(bmin,bmax);             452   G4BoundingEnvelope bbox(bmin,bmax);
441 #ifdef G4BBOX_EXTENT                              453 #ifdef G4BBOX_EXTENT
442   return bbox.CalculateExtent(pAxis,pVoxelLimi    454   return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
443 #endif                                            455 #endif
444   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox    456   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
445   {                                               457   {
446     return exist = pMin < pMax;                << 458     return exist = (pMin < pMax) ? true : false;
447   }                                               459   }
448                                                   460 
449   // Get parameters of the solid                  461   // Get parameters of the solid
450   G4double rmin = GetRmin();                      462   G4double rmin = GetRmin();
451   G4double rmax = GetRmax();                      463   G4double rmax = GetRmax();
452   G4double rtor = GetRtor();                      464   G4double rtor = GetRtor();
453   G4double dphi = GetDPhi();                      465   G4double dphi = GetDPhi();
454   G4double sinStart = GetSinStartPhi();           466   G4double sinStart = GetSinStartPhi();
455   G4double cosStart = GetCosStartPhi();           467   G4double cosStart = GetCosStartPhi();
456   G4double sinEnd   = GetSinEndPhi();             468   G4double sinEnd   = GetSinEndPhi();
457   G4double cosEnd   = GetCosEndPhi();             469   G4double cosEnd   = GetCosEndPhi();
458   G4double rint = rtor - rmax;                    470   G4double rint = rtor - rmax;
459   G4double rext = rtor + rmax;                    471   G4double rext = rtor + rmax;
460                                                   472 
461   // Find bounding envelope and calculate exte    473   // Find bounding envelope and calculate extent
462   //                                              474   //
463   static const G4int NPHI  = 24; // number of     475   static const G4int NPHI  = 24; // number of steps for whole torus
464   static const G4int NDISK = 16; // number of     476   static const G4int NDISK = 16; // number of steps for disk
465   static const G4double sinHalfDisk = std::sin    477   static const G4double sinHalfDisk = std::sin(pi/NDISK);
466   static const G4double cosHalfDisk = std::cos    478   static const G4double cosHalfDisk = std::cos(pi/NDISK);
467   static const G4double sinStepDisk = 2.*sinHa    479   static const G4double sinStepDisk = 2.*sinHalfDisk*cosHalfDisk;
468   static const G4double cosStepDisk = 1. - 2.*    480   static const G4double cosStepDisk = 1. - 2.*sinHalfDisk*sinHalfDisk;
469                                                   481 
470   G4double astep = (360/NPHI)*deg; // max angl    482   G4double astep = (360/NPHI)*deg; // max angle for one slice in phi
471   G4int    kphi  = (dphi <= astep) ? 1 : (G4in    483   G4int    kphi  = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
472   G4double ang   = dphi/kphi;                     484   G4double ang   = dphi/kphi;
473                                                   485 
474   G4double sinHalf = std::sin(0.5*ang);           486   G4double sinHalf = std::sin(0.5*ang);
475   G4double cosHalf = std::cos(0.5*ang);           487   G4double cosHalf = std::cos(0.5*ang);
476   G4double sinStep = 2.*sinHalf*cosHalf;          488   G4double sinStep = 2.*sinHalf*cosHalf;
477   G4double cosStep = 1. - 2.*sinHalf*sinHalf;     489   G4double cosStep = 1. - 2.*sinHalf*sinHalf;
478                                                   490 
479   // define vectors for bounding envelope         491   // define vectors for bounding envelope
480   G4ThreeVectorList pols[NDISK+1];                492   G4ThreeVectorList pols[NDISK+1];
481   for (auto & pol : pols) pol.resize(4);       << 493   for (G4int k=0; k<NDISK+1; ++k) pols[k].resize(4);
482                                                   494 
483   std::vector<const G4ThreeVectorList *> polyg    495   std::vector<const G4ThreeVectorList *> polygons;
484   polygons.resize(NDISK+1);                       496   polygons.resize(NDISK+1);
485   for (G4int k=0; k<NDISK+1; ++k) polygons[k]     497   for (G4int k=0; k<NDISK+1; ++k) polygons[k] = &pols[k];
486                                                   498 
487   // set internal and external reference circl    499   // set internal and external reference circles
488   G4TwoVector rzmin[NDISK];                       500   G4TwoVector rzmin[NDISK];
489   G4TwoVector rzmax[NDISK];                       501   G4TwoVector rzmax[NDISK];
490                                                   502 
491   if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+    503   if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+rmin*sinHalfDisk)) rmin = 0;
492   rmax /= cosHalfDisk;                            504   rmax /= cosHalfDisk;
493   G4double sinCurDisk = sinHalfDisk;              505   G4double sinCurDisk = sinHalfDisk;
494   G4double cosCurDisk = cosHalfDisk;              506   G4double cosCurDisk = cosHalfDisk;
495   for (G4int k=0; k<NDISK; ++k)                   507   for (G4int k=0; k<NDISK; ++k)
496   {                                               508   {
497     G4double rmincur = rtor + rmin*cosCurDisk;    509     G4double rmincur = rtor + rmin*cosCurDisk;
498     if (cosCurDisk < 0 && rmin > 0) rmincur /=    510     if (cosCurDisk < 0 && rmin > 0) rmincur /= cosHalf;
499     rzmin[k].set(rmincur,rmin*sinCurDisk);        511     rzmin[k].set(rmincur,rmin*sinCurDisk);
500                                                   512 
501     G4double rmaxcur = rtor + rmax*cosCurDisk;    513     G4double rmaxcur = rtor + rmax*cosCurDisk;
502     if (cosCurDisk > 0) rmaxcur /= cosHalf;       514     if (cosCurDisk > 0) rmaxcur /= cosHalf;
503     rzmax[k].set(rmaxcur,rmax*sinCurDisk);        515     rzmax[k].set(rmaxcur,rmax*sinCurDisk);
504                                                   516 
505     G4double sinTmpDisk = sinCurDisk;             517     G4double sinTmpDisk = sinCurDisk;
506     sinCurDisk = sinCurDisk*cosStepDisk + cosC    518     sinCurDisk = sinCurDisk*cosStepDisk + cosCurDisk*sinStepDisk;
507     cosCurDisk = cosCurDisk*cosStepDisk - sinT    519     cosCurDisk = cosCurDisk*cosStepDisk - sinTmpDisk*sinStepDisk;
508   }                                               520   }
509                                                   521 
510   // Loop along slices in Phi. The extent is c    522   // Loop along slices in Phi. The extent is calculated as cumulative
511   // extent of the slices                         523   // extent of the slices
512   pMin =  kInfinity;                              524   pMin =  kInfinity;
513   pMax = -kInfinity;                              525   pMax = -kInfinity;
514   G4double eminlim = pVoxelLimit.GetMinExtent(    526   G4double eminlim = pVoxelLimit.GetMinExtent(pAxis);
515   G4double emaxlim = pVoxelLimit.GetMaxExtent(    527   G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis);
516   G4double sinCur1 = 0, cosCur1 = 0, sinCur2 =    528   G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = 0, cosCur2 = 0;
517   for (G4int i=0; i<kphi+1; ++i)                  529   for (G4int i=0; i<kphi+1; ++i)
518   {                                               530   {
519     if (i == 0)                                   531     if (i == 0)
520     {                                             532     {
521       sinCur1 = sinStart;                         533       sinCur1 = sinStart;
522       cosCur1 = cosStart;                         534       cosCur1 = cosStart;
523       sinCur2 = sinCur1*cosHalf + cosCur1*sinH    535       sinCur2 = sinCur1*cosHalf + cosCur1*sinHalf;
524       cosCur2 = cosCur1*cosHalf - sinCur1*sinH    536       cosCur2 = cosCur1*cosHalf - sinCur1*sinHalf;
525     }                                             537     }
526     else                                          538     else
527     {                                             539     {
528       sinCur1 = sinCur2;                          540       sinCur1 = sinCur2;
529       cosCur1 = cosCur2;                          541       cosCur1 = cosCur2;
530       sinCur2 = (i == kphi) ? sinEnd : sinCur1    542       sinCur2 = (i == kphi) ? sinEnd : sinCur1*cosStep + cosCur1*sinStep;
531       cosCur2 = (i == kphi) ? cosEnd : cosCur1    543       cosCur2 = (i == kphi) ? cosEnd : cosCur1*cosStep - sinCur1*sinStep;
532     }                                             544     }
533     for (G4int k=0; k<NDISK; ++k)                 545     for (G4int k=0; k<NDISK; ++k)
534     {                                             546     {
535       G4double r1 = rzmin[k].x(), r2 = rzmax[k    547       G4double r1 = rzmin[k].x(), r2 = rzmax[k].x();
536       G4double z1 = rzmin[k].y(), z2 = rzmax[k    548       G4double z1 = rzmin[k].y(), z2 = rzmax[k].y();
537       pols[k][0].set(r1*cosCur1,r1*sinCur1,z1)    549       pols[k][0].set(r1*cosCur1,r1*sinCur1,z1);
538       pols[k][1].set(r2*cosCur1,r2*sinCur1,z2)    550       pols[k][1].set(r2*cosCur1,r2*sinCur1,z2);
539       pols[k][2].set(r2*cosCur2,r2*sinCur2,z2)    551       pols[k][2].set(r2*cosCur2,r2*sinCur2,z2);
540       pols[k][3].set(r1*cosCur2,r1*sinCur2,z1)    552       pols[k][3].set(r1*cosCur2,r1*sinCur2,z1);
541     }                                             553     }
542     pols[NDISK] = pols[0];                        554     pols[NDISK] = pols[0];
543                                                   555 
544     // get bounding box of current slice          556     // get bounding box of current slice
545     G4TwoVector vmin,vmax;                        557     G4TwoVector vmin,vmax;
546     G4GeomTools::                                 558     G4GeomTools::
547       DiskExtent(rint,rext,sinCur1,cosCur1,sin    559       DiskExtent(rint,rext,sinCur1,cosCur1,sinCur2,cosCur2,vmin,vmax);
548     bmin.setX(vmin.x()); bmin.setY(vmin.y());     560     bmin.setX(vmin.x()); bmin.setY(vmin.y());
549     bmax.setX(vmax.x()); bmax.setY(vmax.y());     561     bmax.setX(vmax.x()); bmax.setY(vmax.y());
550                                                   562 
551     // set bounding envelope for current slice    563     // set bounding envelope for current slice and adjust extent
552     G4double emin,emax;                           564     G4double emin,emax;
553     G4BoundingEnvelope benv(bmin,bmax,polygons    565     G4BoundingEnvelope benv(bmin,bmax,polygons);
554     if (!benv.CalculateExtent(pAxis,pVoxelLimi    566     if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue;
555     if (emin < pMin) pMin = emin;                 567     if (emin < pMin) pMin = emin;
556     if (emax > pMax) pMax = emax;                 568     if (emax > pMax) pMax = emax;
557     if (eminlim > pMin && emaxlim < pMax) brea    569     if (eminlim > pMin && emaxlim < pMax) break; // max possible extent
558   }                                               570   }
559   return (pMin < pMax);                           571   return (pMin < pMax);
560 }                                                 572 }
561                                                   573 
562 //////////////////////////////////////////////    574 //////////////////////////////////////////////////////////////////////////////
563 //                                                575 //
564 // Return whether point inside/outside/on surf    576 // Return whether point inside/outside/on surface
565                                                   577 
566 EInside G4Torus::Inside( const G4ThreeVector&     578 EInside G4Torus::Inside( const G4ThreeVector& p ) const
567 {                                                 579 {
568   G4double r, pt2, pPhi, tolRMin, tolRMax ;       580   G4double r, pt2, pPhi, tolRMin, tolRMax ;
569                                                   581 
570   EInside in = kOutside ;                         582   EInside in = kOutside ;
571                                                   583 
572   // General precals                              584   // General precals
573   //                                              585   //
574   r   = std::hypot(p.x(),p.y());                  586   r   = std::hypot(p.x(),p.y());
575   pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor);        587   pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor);
576                                                   588 
577   if (fRmin != 0.0) tolRMin = fRmin + fRminTol << 589   if (fRmin) tolRMin = fRmin + fRminTolerance ;
578   else       tolRMin = 0 ;                        590   else       tolRMin = 0 ;
579                                                   591 
580   tolRMax = fRmax - fRmaxTolerance;               592   tolRMax = fRmax - fRmaxTolerance;
581                                                   593       
582   if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax    594   if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax )
583   {                                               595   {
584     if ( fDPhi == twopi || pt2 == 0 )  // on t    596     if ( fDPhi == twopi || pt2 == 0 )  // on torus swept axis
585     {                                             597     {
586       in = kInside ;                              598       in = kInside ;
587     }                                             599     }
588     else                                          600     else
589     {                                             601     {
590       // Try inner tolerant phi boundaries (=>    602       // Try inner tolerant phi boundaries (=>inside)
591       // if not inside, try outer tolerant phi    603       // if not inside, try outer tolerant phi boundaries
592                                                   604 
593       pPhi = std::atan2(p.y(),p.x()) ;            605       pPhi = std::atan2(p.y(),p.x()) ;
594                                                   606 
595       if ( pPhi < -halfAngTolerance )  { pPhi     607       if ( pPhi < -halfAngTolerance )  { pPhi += twopi ; }  // 0<=pPhi<2pi
596       if ( fSPhi >= 0 )                           608       if ( fSPhi >= 0 )
597       {                                           609       {
598         if ( (std::fabs(pPhi) < halfAngToleran    610         if ( (std::fabs(pPhi) < halfAngTolerance)
599             && (std::fabs(fSPhi + fDPhi - twop    611             && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
600         {                                         612         { 
601             pPhi += twopi ; // 0 <= pPhi < 2pi    613             pPhi += twopi ; // 0 <= pPhi < 2pi
602         }                                         614         }
603         if ( (pPhi >= fSPhi + halfAngTolerance    615         if ( (pPhi >= fSPhi + halfAngTolerance)
604             && (pPhi <= fSPhi + fDPhi - halfAn    616             && (pPhi <= fSPhi + fDPhi - halfAngTolerance) )
605         {                                         617         {
606           in = kInside ;                          618           in = kInside ;
607         }                                         619         }
608           else if ( (pPhi >= fSPhi - halfAngTo    620           else if ( (pPhi >= fSPhi - halfAngTolerance)
609                  && (pPhi <= fSPhi + fDPhi + h    621                  && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
610         {                                         622         {
611           in = kSurface ;                         623           in = kSurface ;
612         }                                         624         }
613       }                                           625       }
614       else  // fSPhi < 0                          626       else  // fSPhi < 0
615       {                                           627       {
616           if ( (pPhi <= fSPhi + twopi - halfAn    628           if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
617             && (pPhi >= fSPhi + fDPhi  + halfA    629             && (pPhi >= fSPhi + fDPhi  + halfAngTolerance) )  {;}
618           else                                    630           else
619           {                                       631           {
620             in = kSurface ;                       632             in = kSurface ;
621           }                                       633           }
622       }                                           634       }
623     }                                             635     }
624   }                                               636   }
625   else   // Try generous boundaries               637   else   // Try generous boundaries
626   {                                               638   {
627     tolRMin = fRmin - fRminTolerance ;            639     tolRMin = fRmin - fRminTolerance ;
628     tolRMax = fRmax + fRmaxTolerance ;            640     tolRMax = fRmax + fRmaxTolerance ;
629                                                   641 
630     if (tolRMin < 0 )  { tolRMin = 0 ; }          642     if (tolRMin < 0 )  { tolRMin = 0 ; }
631                                                   643 
632     if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= t    644     if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) )
633     {                                             645     {
634       if ( (fDPhi == twopi) || (pt2 == 0) ) //    646       if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis
635       {                                           647       {
636         in = kSurface ;                           648         in = kSurface ;
637       }                                           649       }
638       else // Try outer tolerant phi boundarie    650       else // Try outer tolerant phi boundaries only
639       {                                           651       {
640         pPhi = std::atan2(p.y(),p.x()) ;          652         pPhi = std::atan2(p.y(),p.x()) ;
641                                                   653 
642         if ( pPhi < -halfAngTolerance )  { pPh    654         if ( pPhi < -halfAngTolerance )  { pPhi += twopi ; }  // 0<=pPhi<2pi
643         if ( fSPhi >= 0 )                         655         if ( fSPhi >= 0 )
644         {                                         656         {
645           if ( (std::fabs(pPhi) < halfAngToler    657           if ( (std::fabs(pPhi) < halfAngTolerance)
646             && (std::fabs(fSPhi + fDPhi - twop    658             && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
647           {                                       659           { 
648             pPhi += twopi ; // 0 <= pPhi < 2pi    660             pPhi += twopi ; // 0 <= pPhi < 2pi
649           }                                       661           }
650           if ( (pPhi >= fSPhi - halfAngToleran    662           if ( (pPhi >= fSPhi - halfAngTolerance)
651             && (pPhi <= fSPhi + fDPhi + halfAn    663             && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
652           {                                       664           {
653             in = kSurface;                        665             in = kSurface;
654           }                                       666           }
655         }                                         667         }
656         else  // fSPhi < 0                        668         else  // fSPhi < 0
657         {                                         669         {
658           if ( (pPhi <= fSPhi + twopi - halfAn    670           if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
659             && (pPhi >= fSPhi + fDPhi  + halfA    671             && (pPhi >= fSPhi + fDPhi  + halfAngTolerance) )  {;}
660           else                                    672           else
661           {                                       673           {
662             in = kSurface ;                       674             in = kSurface ;
663           }                                       675           }
664         }                                         676         }
665       }                                           677       }
666     }                                             678     }
667   }                                               679   }
668   return in ;                                     680   return in ;
669 }                                                 681 }
670                                                   682 
671 //////////////////////////////////////////////    683 /////////////////////////////////////////////////////////////////////////////
672 //                                                684 //
673 // Return unit normal of surface closest to p     685 // Return unit normal of surface closest to p
674 // - note if point on z axis, ignore phi divid    686 // - note if point on z axis, ignore phi divided sides
675 // - unsafe if point close to z axis a rmin=0     687 // - unsafe if point close to z axis a rmin=0 - no explicit checks
676                                                   688 
677 G4ThreeVector G4Torus::SurfaceNormal( const G4    689 G4ThreeVector G4Torus::SurfaceNormal( const G4ThreeVector& p ) const
678 {                                                 690 {
679   G4int noSurfaces = 0;                           691   G4int noSurfaces = 0;  
680   G4double rho, pt, pPhi;                         692   G4double rho, pt, pPhi;
681   G4double distRMin = kInfinity;                  693   G4double distRMin = kInfinity;
682   G4double distSPhi = kInfinity, distEPhi = kI    694   G4double distSPhi = kInfinity, distEPhi = kInfinity;
683                                                   695 
684   // To cope with precision loss                  696   // To cope with precision loss
685   //                                              697   //
686   const G4double delta = std::max(10.0*kCarTol    698   const G4double delta = std::max(10.0*kCarTolerance,
687                                   1.0e-8*(fRto    699                                   1.0e-8*(fRtor+fRmax));
688   const G4double dAngle = 10.0*kAngTolerance;     700   const G4double dAngle = 10.0*kAngTolerance;
689                                                   701 
690   G4ThreeVector nR, nPs, nPe;                     702   G4ThreeVector nR, nPs, nPe;
691   G4ThreeVector norm, sumnorm(0.,0.,0.);          703   G4ThreeVector norm, sumnorm(0.,0.,0.);
692                                                   704 
693   rho = std::hypot(p.x(),p.y());                  705   rho = std::hypot(p.x(),p.y());
694   pt  = std::hypot(p.z(),rho-fRtor);              706   pt  = std::hypot(p.z(),rho-fRtor);
695                                                   707 
696   G4double  distRMax = std::fabs(pt - fRmax);     708   G4double  distRMax = std::fabs(pt - fRmax);
697   if(fRmin != 0.0) distRMin = std::fabs(pt - f << 709   if(fRmin) distRMin = std::fabs(pt - fRmin);
698                                                   710 
699   if( rho > delta && pt != 0.0 )                  711   if( rho > delta && pt != 0.0 )
700   {                                               712   {
701     G4double redFactor= (rho-fRtor)/rho;          713     G4double redFactor= (rho-fRtor)/rho;
702     nR = G4ThreeVector( p.x()*redFactor,  // p    714     nR = G4ThreeVector( p.x()*redFactor,  // p.x()*(1.-fRtor/rho),
703                         p.y()*redFactor,  // p    715                         p.y()*redFactor,  // p.y()*(1.-fRtor/rho),
704                         p.z()          );         716                         p.z()          );
705     nR *= 1.0/pt;                                 717     nR *= 1.0/pt;
706   }                                               718   }
707                                                   719 
708   if ( fDPhi < twopi ) // && rho ) // old limi    720   if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z)
709   {                                               721   {
710     if ( rho != 0.0 )                          << 722     if ( rho )
711     {                                             723     {
712       pPhi = std::atan2(p.y(),p.x());             724       pPhi = std::atan2(p.y(),p.x());
713                                                   725 
714       if(pPhi < fSPhi-delta)            { pPhi    726       if(pPhi < fSPhi-delta)            { pPhi += twopi; }
715       else if(pPhi > fSPhi+fDPhi+delta) { pPhi    727       else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; }
716                                                   728 
717       distSPhi = std::fabs( pPhi - fSPhi );       729       distSPhi = std::fabs( pPhi - fSPhi );
718       distEPhi = std::fabs(pPhi-fSPhi-fDPhi);     730       distEPhi = std::fabs(pPhi-fSPhi-fDPhi);
719     }                                             731     }
720     nPs = G4ThreeVector(std::sin(fSPhi),-std::    732     nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
721     nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi)    733     nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
722   }                                               734   } 
723   if( distRMax <= delta )                         735   if( distRMax <= delta )
724   {                                               736   {
725     ++noSurfaces;                                 737     ++noSurfaces;
726     sumnorm += nR;                                738     sumnorm += nR;
727   }                                               739   }
728   else if( (fRmin != 0.0) && (distRMin <= delt << 740   else if( fRmin && (distRMin <= delta) ) // Must not be on both Outer and Inner
729   {                                               741   {
730     ++noSurfaces;                                 742     ++noSurfaces;
731     sumnorm -= nR;                                743     sumnorm -= nR;
732   }                                               744   }
733                                                   745 
734   //  To be on one of the 'phi' surfaces,         746   //  To be on one of the 'phi' surfaces,
735   //  it must be within the 'tube' - with tole    747   //  it must be within the 'tube' - with tolerance
736                                                   748 
737   if( (fDPhi < twopi) && (fRmin-delta <= pt) &    749   if( (fDPhi < twopi) && (fRmin-delta <= pt) && (pt <= (fRmax+delta)) )
738   {                                               750   {
739     if (distSPhi <= dAngle)                       751     if (distSPhi <= dAngle)
740     {                                             752     {
741       ++noSurfaces;                               753       ++noSurfaces;
742       sumnorm += nPs;                             754       sumnorm += nPs;
743     }                                             755     }
744     if (distEPhi <= dAngle)                       756     if (distEPhi <= dAngle) 
745     {                                             757     {
746       ++noSurfaces;                               758       ++noSurfaces;
747       sumnorm += nPe;                             759       sumnorm += nPe;
748     }                                             760     }
749   }                                               761   }
750   if ( noSurfaces == 0 )                          762   if ( noSurfaces == 0 )
751   {                                               763   {
752 #ifdef G4CSGDEBUG                                 764 #ifdef G4CSGDEBUG
753      G4ExceptionDescription ed;                   765      G4ExceptionDescription ed;
754      ed.precision(16);                            766      ed.precision(16);
755                                                   767 
756      EInside  inIt= Inside( p );                  768      EInside  inIt= Inside( p );
757                                                   769      
758      if( inIt != kSurface )                       770      if( inIt != kSurface )
759      {                                            771      {
760         ed << " ERROR>  Surface Normal was cal    772         ed << " ERROR>  Surface Normal was called for Torus,"
761            << " with point not on surface." <<    773            << " with point not on surface." << G4endl;
762      }                                            774      }
763      else                                         775      else
764      {                                            776      {
765         ed << " ERROR>  Surface Normal has not    777         ed << " ERROR>  Surface Normal has not found a surface, "
766            << " despite the point being on the    778            << " despite the point being on the surface. " <<G4endl;
767      }                                            779      }
768                                                   780 
769      if( inIt != kInside)                         781      if( inIt != kInside)
770      {                                            782      {
771          ed << " Safety (Dist To In)  = " << D    783          ed << " Safety (Dist To In)  = " << DistanceToIn(p) << G4endl;
772      }                                            784      }
773      if( inIt != kOutside)                        785      if( inIt != kOutside)
774      {                                            786      {
775          ed << " Safety (Dist to Out) = " << D    787          ed << " Safety (Dist to Out) = " << DistanceToOut(p) << G4endl;
776      }                                            788      }
777      ed << " Coordinates of point : " << p <<     789      ed << " Coordinates of point : " << p << G4endl;
778      ed << " Parameters  of solid : " << G4end    790      ed << " Parameters  of solid : " << G4endl << *this << G4endl;
779                                                   791 
780      if( inIt == kSurface )                       792      if( inIt == kSurface )
781      {                                            793      {
782         G4Exception("G4Torus::SurfaceNormal(p)    794         G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002",
783                     JustWarning, ed,              795                     JustWarning, ed,
784                     "Failing to find normal, e    796                     "Failing to find normal, even though point is on surface!");
785      }                                            797      }
786      else                                         798      else
787      {                                            799      {
788         static const char* NameInside[3]= { "I    800         static const char* NameInside[3]= { "Inside", "Surface", "Outside" };
789         ed << "  The point is " << NameInside[    801         ed << "  The point is " << NameInside[inIt] << " the solid. "<< G4endl;
790         G4Exception("G4Torus::SurfaceNormal(p)    802         G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002",
791                     JustWarning, ed, "Point p     803                     JustWarning, ed, "Point p is not on surface !?" );
792      }                                            804      }
793 #endif                                            805 #endif
794      norm = ApproxSurfaceNormal(p);               806      norm = ApproxSurfaceNormal(p);
795   }                                               807   }
796   else if ( noSurfaces == 1 )  { norm = sumnor    808   else if ( noSurfaces == 1 )  { norm = sumnorm; }
797   else                         { norm = sumnor    809   else                         { norm = sumnorm.unit(); }
798                                                   810 
799   return norm ;                                   811   return norm ;
800 }                                                 812 }
801                                                   813 
802 //////////////////////////////////////////////    814 //////////////////////////////////////////////////////////////////////////////
803 //                                                815 //
804 // Algorithm for SurfaceNormal() following the    816 // Algorithm for SurfaceNormal() following the original specification
805 // for points not on the surface                  817 // for points not on the surface
806                                                   818 
807 G4ThreeVector G4Torus::ApproxSurfaceNormal( co    819 G4ThreeVector G4Torus::ApproxSurfaceNormal( const G4ThreeVector& p ) const
808 {                                                 820 {
809   ENorm side ;                                    821   ENorm side ;
810   G4ThreeVector norm;                             822   G4ThreeVector norm;
811   G4double rho,pt,phi;                            823   G4double rho,pt,phi;
812   G4double distRMin,distRMax,distSPhi,distEPhi    824   G4double distRMin,distRMax,distSPhi,distEPhi,distMin;
813                                                   825 
814   rho = std::hypot(p.x(),p.y());                  826   rho = std::hypot(p.x(),p.y());
815   pt  = std::hypot(p.z(),rho-fRtor);              827   pt  = std::hypot(p.z(),rho-fRtor);
816                                                   828 
817 #ifdef G4CSGDEBUG                                 829 #ifdef G4CSGDEBUG
818   G4cout << " G4Torus::ApproximateSurfaceNorma    830   G4cout << " G4Torus::ApproximateSurfaceNormal called for point " << p
819          << G4endl;                               831          << G4endl;
820 #endif                                            832 #endif
821                                                   833    
822   distRMax = std::fabs(pt - fRmax) ;              834   distRMax = std::fabs(pt - fRmax) ;
823                                                   835 
824   if(fRmin != 0.0)  // First minimum radius    << 836   if(fRmin)  // First minimum radius
825   {                                               837   {
826     distRMin = std::fabs(pt - fRmin) ;            838     distRMin = std::fabs(pt - fRmin) ;
827                                                   839 
828     if (distRMin < distRMax)                      840     if (distRMin < distRMax)
829     {                                             841     {
830       distMin = distRMin ;                        842       distMin = distRMin ;
831       side    = kNRMin ;                          843       side    = kNRMin ;
832     }                                             844     }
833     else                                          845     else
834     {                                             846     {
835       distMin = distRMax ;                        847       distMin = distRMax ;
836       side    = kNRMax ;                          848       side    = kNRMax ;
837     }                                             849     }
838   }                                               850   }
839   else                                            851   else
840   {                                               852   {
841     distMin = distRMax ;                          853     distMin = distRMax ;
842     side    = kNRMax ;                            854     side    = kNRMax ;
843   }                                               855   }    
844   if ( (fDPhi < twopi) && (rho != 0.0) )       << 856   if ( (fDPhi < twopi) && rho )
845   {                                               857   {
846     phi = std::atan2(p.y(),p.x()) ; // Protect    858     phi = std::atan2(p.y(),p.x()) ; // Protected against (0,0,z) (above rho!=0)
847                                                   859 
848     if (phi < 0)  { phi += twopi ; }              860     if (phi < 0)  { phi += twopi ; }
849                                                   861 
850     if (fSPhi < 0 )  { distSPhi = std::fabs(ph    862     if (fSPhi < 0 )  { distSPhi = std::fabs(phi-(fSPhi+twopi))*rho ; }
851     else             { distSPhi = std::fabs(ph    863     else             { distSPhi = std::fabs(phi-fSPhi)*rho ; }
852                                                   864 
853     distEPhi = std::fabs(phi - fSPhi - fDPhi)*    865     distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ;
854                                                   866 
855     if (distSPhi < distEPhi) // Find new minim    867     if (distSPhi < distEPhi) // Find new minimum
856     {                                             868     {
857       if (distSPhi<distMin) side = kNSPhi ;       869       if (distSPhi<distMin) side = kNSPhi ;
858     }                                             870     }
859     else                                          871     else
860     {                                             872     {
861       if (distEPhi < distMin)  { side = kNEPhi    873       if (distEPhi < distMin)  { side = kNEPhi ; }
862     }                                             874     }
863   }                                               875   }  
864   switch (side)                                   876   switch (side)
865   {                                               877   {
866     case kNRMin:      // Inner radius             878     case kNRMin:      // Inner radius
867       norm = G4ThreeVector( -p.x()*(1-fRtor/rh    879       norm = G4ThreeVector( -p.x()*(1-fRtor/rho)/pt,
868                             -p.y()*(1-fRtor/rh    880                             -p.y()*(1-fRtor/rho)/pt,
869                             -p.z()/pt             881                             -p.z()/pt                 ) ;
870       break ;                                     882       break ;
871     case kNRMax:      // Outer radius             883     case kNRMax:      // Outer radius
872       norm = G4ThreeVector( p.x()*(1-fRtor/rho    884       norm = G4ThreeVector( p.x()*(1-fRtor/rho)/pt,
873                             p.y()*(1-fRtor/rho    885                             p.y()*(1-fRtor/rho)/pt,
874                             p.z()/pt              886                             p.z()/pt                  ) ;
875       break;                                      887       break;
876     case kNSPhi:                                  888     case kNSPhi:
877       norm = G4ThreeVector(std::sin(fSPhi),-st    889       norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ;
878       break;                                      890       break;
879     case kNEPhi:                                  891     case kNEPhi:
880       norm = G4ThreeVector(-std::sin(fSPhi+fDP    892       norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ;
881       break;                                      893       break;
882     default:          // Should never reach th    894     default:          // Should never reach this case ...
883       DumpInfo();                                 895       DumpInfo();
884       G4Exception("G4Torus::ApproxSurfaceNorma    896       G4Exception("G4Torus::ApproxSurfaceNormal()",
885                   "GeomSolids1002", JustWarnin    897                   "GeomSolids1002", JustWarning,
886                   "Undefined side for valid su    898                   "Undefined side for valid surface normal to solid.");
887       break ;                                     899       break ;
888   }                                               900   } 
889   return norm ;                                   901   return norm ;
890 }                                                 902 }
891                                                   903 
892 //////////////////////////////////////////////    904 ///////////////////////////////////////////////////////////////////////
893 //                                                905 //
894 // Calculate distance to shape from outside, a    906 // Calculate distance to shape from outside, along normalised vector
895 // - return kInfinity if no intersection, or i    907 // - return kInfinity if no intersection, or intersection distance <= tolerance
896 //                                                908 //
897 // - Compute the intersection with the z plane    909 // - Compute the intersection with the z planes 
898 //        - if at valid r, phi, return            910 //        - if at valid r, phi, return
899 //                                                911 //
900 // -> If point is outer outer radius, compute     912 // -> If point is outer outer radius, compute intersection with rmax
901 //        - if at valid phi,z return              913 //        - if at valid phi,z return
902 //                                                914 //
903 // -> Compute intersection with inner radius,     915 // -> Compute intersection with inner radius, taking largest +ve root
904 //        - if valid (phi), save intersction      916 //        - if valid (phi), save intersction
905 //                                                917 //
906 //    -> If phi segmented, compute intersectio    918 //    -> If phi segmented, compute intersections with phi half planes
907 //        - return smallest of valid phi inter    919 //        - return smallest of valid phi intersections and
908 //          inner radius intersection             920 //          inner radius intersection
909 //                                                921 //
910 // NOTE:                                          922 // NOTE:
911 // - Precalculations for phi trigonometry are     923 // - Precalculations for phi trigonometry are Done `just in time'
912 // - `if valid' implies tolerant checking of i    924 // - `if valid' implies tolerant checking of intersection points
913                                                   925 
914 G4double G4Torus::DistanceToIn( const G4ThreeV    926 G4double G4Torus::DistanceToIn( const G4ThreeVector& p,
915                                 const G4ThreeV    927                                 const G4ThreeVector& v ) const
916 {                                                 928 {
917   // Get bounding box of full torus               929   // Get bounding box of full torus
918   //                                              930   //
919   G4double boxDx  = fRtor + fRmax;                931   G4double boxDx  = fRtor + fRmax;
920   G4double boxDy  = boxDx;                        932   G4double boxDy  = boxDx;
921   G4double boxDz  = fRmax;                        933   G4double boxDz  = fRmax;
922   G4double boxMax = boxDx;                        934   G4double boxMax = boxDx;
923   G4double boxMin = boxDz;                        935   G4double boxMin = boxDz;
924                                                   936 
925   // Check if point is traveling away             937   // Check if point is traveling away
926   //                                              938   //
927   G4double distX = std::abs(p.x()) - boxDx;       939   G4double distX = std::abs(p.x()) - boxDx;
928   G4double distY = std::abs(p.y()) - boxDy;       940   G4double distY = std::abs(p.y()) - boxDy;
929   G4double distZ = std::abs(p.z()) - boxDz;       941   G4double distZ = std::abs(p.z()) - boxDz;
930   if (distX >= -halfCarTolerance && p.x()*v.x(    942   if (distX >= -halfCarTolerance && p.x()*v.x() >= 0) return kInfinity;
931   if (distY >= -halfCarTolerance && p.y()*v.y(    943   if (distY >= -halfCarTolerance && p.y()*v.y() >= 0) return kInfinity;
932   if (distZ >= -halfCarTolerance && p.z()*v.z(    944   if (distZ >= -halfCarTolerance && p.z()*v.z() >= 0) return kInfinity;
933                                                   945 
934   // Calculate safety distance to bounding box    946   // Calculate safety distance to bounding box
935   // If point is too far, move it closer and c    947   // If point is too far, move it closer and calculate distance
936   //                                              948   //
937   G4double Dmax = 32*boxMax;                      949   G4double Dmax = 32*boxMax; 
938   G4double safe = std::max(std::max(distX,dist    950   G4double safe = std::max(std::max(distX,distY),distZ);
939   if (safe > Dmax)                                951   if (safe > Dmax)
940   {                                               952   {
941     G4double dist = safe - 1.e-8*safe - boxMin    953     G4double dist = safe - 1.e-8*safe - boxMin; // stay outside after the move
942     dist += DistanceToIn(p + dist*v, v);          954     dist += DistanceToIn(p + dist*v, v);
943     return (dist >= kInfinity) ? kInfinity : d    955     return (dist >= kInfinity) ? kInfinity : dist;
944   }                                               956   }
945                                                   957 
946   // Find intersection with torus                 958   // Find intersection with torus
947   //                                              959   //
948   G4double snxt=kInfinity, sphi=kInfinity; //     960   G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value
949                                                   961 
950   G4double  sd[4] ;                               962   G4double  sd[4] ;
951                                                   963 
952   // Precalculated trig for phi intersections     964   // Precalculated trig for phi intersections - used by r,z intersections to
953   //                                              965   //                                            check validity
954                                                   966 
955   G4bool seg;        // true if segmented         967   G4bool seg;        // true if segmented
956   G4double hDPhi;    // half dphi                 968   G4double hDPhi;    // half dphi
957   G4double cPhi,sinCPhi=0.,cosCPhi=0.;  // cen    969   G4double cPhi,sinCPhi=0.,cosCPhi=0.;  // central phi
958                                                   970 
959   G4double tolORMin2;  // `generous' radii squ    971   G4double tolORMin2;  // `generous' radii squared
960   G4double tolORMax2;                             972   G4double tolORMax2;
961                                                   973 
962   G4double Dist,xi,yi,zi,rhoi,it2; // Intersec    974   G4double Dist,xi,yi,zi,rhoi,it2; // Intersection point variables
963                                                   975 
964   G4double Comp;                                  976   G4double Comp;
965   G4double cosSPhi,sinSPhi;       // Trig for     977   G4double cosSPhi,sinSPhi;       // Trig for phi start intersect
966   G4double ePhi,cosEPhi,sinEPhi;  // for phi e    978   G4double ePhi,cosEPhi,sinEPhi;  // for phi end intersect
967                                                   979 
968   // Set phi divided flag and precalcs            980   // Set phi divided flag and precalcs
969   //                                              981   //
970   if ( fDPhi < twopi )                            982   if ( fDPhi < twopi )
971   {                                               983   {
972     seg        = true ;                           984     seg        = true ;
973     hDPhi      = 0.5*fDPhi ;    // half delta     985     hDPhi      = 0.5*fDPhi ;    // half delta phi
974     cPhi       = fSPhi + hDPhi ;                  986     cPhi       = fSPhi + hDPhi ;
975     sinCPhi    = std::sin(cPhi) ;                 987     sinCPhi    = std::sin(cPhi) ;
976     cosCPhi    = std::cos(cPhi) ;                 988     cosCPhi    = std::cos(cPhi) ;
977   }                                               989   }
978   else                                            990   else
979   {                                               991   {
980     seg = false ;                                 992     seg = false ;
981   }                                               993   }
982                                                   994 
983   if (fRmin > fRminTolerance) // Calculate tol    995   if (fRmin > fRminTolerance) // Calculate tolerant rmin and rmax
984   {                                               996   {
985     tolORMin2 = (fRmin - fRminTolerance)*(fRmi    997     tolORMin2 = (fRmin - fRminTolerance)*(fRmin - fRminTolerance) ;
986   }                                               998   }
987   else                                            999   else
988   {                                               1000   {
989     tolORMin2 = 0 ;                               1001     tolORMin2 = 0 ;
990   }                                               1002   }
991   tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax     1003   tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax + fRmaxTolerance) ;
992                                                   1004 
993   // Intersection with Rmax (possible return)     1005   // Intersection with Rmax (possible return) and Rmin (must also check phi)
994                                                   1006 
995   snxt = SolveNumericJT(p,v,fRmax,true);          1007   snxt = SolveNumericJT(p,v,fRmax,true);
996                                                   1008 
997   if (fRmin != 0.0)  // Possible Rmin intersec << 1009   if (fRmin)  // Possible Rmin intersection
998   {                                               1010   {
999     sd[0] = SolveNumericJT(p,v,fRmin,true);       1011     sd[0] = SolveNumericJT(p,v,fRmin,true);
1000     if ( sd[0] < snxt )  { snxt = sd[0] ; }      1012     if ( sd[0] < snxt )  { snxt = sd[0] ; }
1001   }                                              1013   }
1002                                                  1014 
1003   //                                             1015   //
1004   // Phi segment intersection                    1016   // Phi segment intersection
1005   //                                             1017   //
1006   // o Tolerant of points inside phi planes b    1018   // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1007   //                                             1019   //
1008   // o NOTE: Large duplication of code betwee    1020   // o NOTE: Large duplication of code between sphi & ephi checks
1009   //         -> only diffs: sphi -> ephi, Com    1021   //         -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1010   //            intersection check <=0 -> >=0    1022   //            intersection check <=0 -> >=0
1011   //         -> use some form of loop Constru    1023   //         -> use some form of loop Construct ?
1012                                                  1024 
1013   if (seg)                                       1025   if (seg)
1014   {                                              1026   {
1015     sinSPhi = std::sin(fSPhi) ; // First phi     1027     sinSPhi = std::sin(fSPhi) ; // First phi surface ('S'tarting phi)
1016     cosSPhi = std::cos(fSPhi) ;                  1028     cosSPhi = std::cos(fSPhi) ;
1017     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;    1029     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;  // Component in outwards
1018                                                  1030                                                // normal direction
1019     if (Comp < 0 )                               1031     if (Comp < 0 )
1020     {                                            1032     {
1021       Dist = (p.y()*cosSPhi - p.x()*sinSPhi)     1033       Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
1022                                                  1034 
1023       if (Dist < halfCarTolerance)               1035       if (Dist < halfCarTolerance)
1024       {                                          1036       {
1025         sphi = Dist/Comp ;                       1037         sphi = Dist/Comp ;
1026         if (sphi < snxt)                         1038         if (sphi < snxt)
1027         {                                        1039         {
1028           if ( sphi < 0 )  { sphi = 0 ; }        1040           if ( sphi < 0 )  { sphi = 0 ; }
1029                                                  1041 
1030           xi    = p.x() + sphi*v.x() ;           1042           xi    = p.x() + sphi*v.x() ;
1031           yi    = p.y() + sphi*v.y() ;           1043           yi    = p.y() + sphi*v.y() ;
1032           zi    = p.z() + sphi*v.z() ;           1044           zi    = p.z() + sphi*v.z() ;
1033           rhoi = std::hypot(xi,yi);              1045           rhoi = std::hypot(xi,yi);
1034           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR    1046           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor);
1035                                                  1047 
1036           if ( it2 >= tolORMin2 && it2 <= tol    1048           if ( it2 >= tolORMin2 && it2 <= tolORMax2 )
1037           {                                      1049           {
1038             // r intersection is good - check    1050             // r intersection is good - check intersecting
1039             // with correct half-plane           1051             // with correct half-plane
1040             //                                   1052             //
1041             if ((yi*cosCPhi-xi*sinCPhi)<=0)      1053             if ((yi*cosCPhi-xi*sinCPhi)<=0)  { snxt=sphi; }
1042           }                                      1054           }
1043         }                                        1055         }
1044       }                                          1056       }
1045     }                                            1057     }
1046     ePhi=fSPhi+fDPhi;    // Second phi surfac    1058     ePhi=fSPhi+fDPhi;    // Second phi surface ('E'nding phi)
1047     sinEPhi=std::sin(ePhi);                      1059     sinEPhi=std::sin(ePhi);
1048     cosEPhi=std::cos(ePhi);                      1060     cosEPhi=std::cos(ePhi);
1049     Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);         1061     Comp=-(v.x()*sinEPhi-v.y()*cosEPhi);
1050                                                  1062         
1051     if ( Comp < 0 )   // Component in outward    1063     if ( Comp < 0 )   // Component in outwards normal dirn
1052     {                                            1064     {
1053       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi)    1065       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1054                                                  1066 
1055       if (Dist < halfCarTolerance )              1067       if (Dist < halfCarTolerance )
1056       {                                          1068       {
1057         sphi = Dist/Comp ;                       1069         sphi = Dist/Comp ;
1058                                                  1070 
1059         if (sphi < snxt )                        1071         if (sphi < snxt )
1060         {                                        1072         {
1061           if (sphi < 0 )  { sphi = 0 ; }         1073           if (sphi < 0 )  { sphi = 0 ; }
1062                                                  1074        
1063           xi    = p.x() + sphi*v.x() ;           1075           xi    = p.x() + sphi*v.x() ;
1064           yi    = p.y() + sphi*v.y() ;           1076           yi    = p.y() + sphi*v.y() ;
1065           zi    = p.z() + sphi*v.z() ;           1077           zi    = p.z() + sphi*v.z() ;
1066           rhoi = std::hypot(xi,yi);              1078           rhoi = std::hypot(xi,yi);
1067           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR    1079           it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor);
1068                                                  1080 
1069           if (it2 >= tolORMin2 && it2 <= tolO    1081           if (it2 >= tolORMin2 && it2 <= tolORMax2)
1070           {                                      1082           {
1071             // z and r intersections good - c    1083             // z and r intersections good - check intersecting
1072             // with correct half-plane           1084             // with correct half-plane
1073             //                                   1085             //
1074             if ((yi*cosCPhi-xi*sinCPhi)>=0)      1086             if ((yi*cosCPhi-xi*sinCPhi)>=0)  { snxt=sphi; }
1075           }                                      1087           }    
1076         }                                        1088         }
1077       }                                          1089       }
1078     }                                            1090     }
1079   }                                              1091   }
1080   if(snxt < halfCarTolerance)  { snxt = 0.0 ;    1092   if(snxt < halfCarTolerance)  { snxt = 0.0 ; }
1081                                                  1093 
1082   return snxt ;                                  1094   return snxt ;
1083 }                                                1095 }
1084                                                  1096 
1085 /////////////////////////////////////////////    1097 /////////////////////////////////////////////////////////////////////////////
1086 //                                               1098 //
1087 // Calculate distance (<= actual) to closest     1099 // Calculate distance (<= actual) to closest surface of shape from outside
1088 // - Calculate distance to z, radial planes      1100 // - Calculate distance to z, radial planes
1089 // - Only to phi planes if outside phi extent    1101 // - Only to phi planes if outside phi extent
1090 // - Return 0 if point inside                    1102 // - Return 0 if point inside
1091                                                  1103 
1092 G4double G4Torus::DistanceToIn( const G4Three    1104 G4double G4Torus::DistanceToIn( const G4ThreeVector& p ) const
1093 {                                                1105 {
1094   G4double safe=0.0, safe1, safe2 ;              1106   G4double safe=0.0, safe1, safe2 ;
1095   G4double phiC, cosPhiC, sinPhiC, safePhi, e    1107   G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ;
1096   G4double rho, pt ;                             1108   G4double rho, pt ;
1097                                                  1109   
1098   rho = std::hypot(p.x(),p.y());                 1110   rho = std::hypot(p.x(),p.y());
1099   pt  = std::hypot(p.z(),rho-fRtor);             1111   pt  = std::hypot(p.z(),rho-fRtor);
1100   safe1 = fRmin - pt ;                           1112   safe1 = fRmin - pt ;
1101   safe2 = pt - fRmax ;                           1113   safe2 = pt - fRmax ;
1102                                                  1114 
1103   if (safe1 > safe2)  { safe = safe1; }          1115   if (safe1 > safe2)  { safe = safe1; }
1104   else                { safe = safe2; }          1116   else                { safe = safe2; }
1105                                                  1117 
1106   if ( fDPhi < twopi && (rho != 0.0) )        << 1118   if ( fDPhi < twopi && rho )
1107   {                                              1119   {
1108     phiC    = fSPhi + fDPhi*0.5 ;                1120     phiC    = fSPhi + fDPhi*0.5 ;
1109     cosPhiC = std::cos(phiC) ;                   1121     cosPhiC = std::cos(phiC) ;
1110     sinPhiC = std::sin(phiC) ;                   1122     sinPhiC = std::sin(phiC) ;
1111     cosPsi  = (p.x()*cosPhiC + p.y()*sinPhiC)    1123     cosPsi  = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ;
1112                                                  1124 
1113     if (cosPsi < std::cos(fDPhi*0.5) ) // Psi    1125     if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point
1114     {                                  // Poi    1126     {                                  // Point lies outside phi range
1115       if ((p.y()*cosPhiC - p.x()*sinPhiC) <=     1127       if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 )
1116       {                                          1128       {
1117         safePhi = std::fabs(p.x()*std::sin(fS    1129         safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1118       }                                          1130       }
1119       else                                       1131       else
1120       {                                          1132       {
1121         ePhi    = fSPhi + fDPhi ;                1133         ePhi    = fSPhi + fDPhi ;
1122         safePhi = std::fabs(p.x()*std::sin(eP    1134         safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1123       }                                          1135       }
1124       if (safePhi > safe)  { safe = safePhi ;    1136       if (safePhi > safe)  { safe = safePhi ; }
1125     }                                            1137     }
1126   }                                              1138   }
1127   if (safe < 0 )  { safe = 0 ; }                 1139   if (safe < 0 )  { safe = 0 ; }
1128   return safe;                                   1140   return safe;
1129 }                                                1141 }
1130                                                  1142 
1131 /////////////////////////////////////////////    1143 ///////////////////////////////////////////////////////////////////////////
1132 //                                               1144 //
1133 // Calculate distance to surface of shape fro    1145 // Calculate distance to surface of shape from `inside', allowing for tolerance
1134 // - Only Calc rmax intersection if no valid     1146 // - Only Calc rmax intersection if no valid rmin intersection
1135 //                                               1147 //
1136                                                  1148 
1137 G4double G4Torus::DistanceToOut( const G4Thre    1149 G4double G4Torus::DistanceToOut( const G4ThreeVector& p,
1138                                  const G4Thre    1150                                  const G4ThreeVector& v,
1139                                  const G4bool    1151                                  const G4bool calcNorm,
1140                                        G4bool    1152                                        G4bool* validNorm,
1141                                        G4Thre    1153                                        G4ThreeVector* n ) const
1142 {                                                1154 {
1143   ESide    side = kNull, sidephi = kNull ;       1155   ESide    side = kNull, sidephi = kNull ;
1144   G4double snxt = kInfinity, sphi, sd[4] ;       1156   G4double snxt = kInfinity, sphi, sd[4] ;
1145                                                  1157 
1146   // Vars for phi intersection                   1158   // Vars for phi intersection
1147   //                                             1159   //
1148   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, c    1160   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi;
1149   G4double cPhi, sinCPhi, cosCPhi ;              1161   G4double cPhi, sinCPhi, cosCPhi ;
1150   G4double pDistS, compS, pDistE, compE, sphi    1162   G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ;
1151                                                  1163 
1152   // Radial Intersections Defenitions & Gener    1164   // Radial Intersections Defenitions & General Precals
1153                                                  1165 
1154   //////////////////////// new calculation //    1166   //////////////////////// new calculation //////////////////////
1155                                                  1167 
1156 #if 1                                            1168 #if 1
1157                                                  1169 
1158   // This is the version with the calculation    1170   // This is the version with the calculation of CalcNorm = true 
1159   // To be done: Check the precision of this     1171   // To be done: Check the precision of this calculation.
1160   // If you want return always validNorm = fa    1172   // If you want return always validNorm = false, then take the version below
1161                                                  1173   
1162                                                  1174   
1163   G4double rho = std::hypot(p.x(),p.y());        1175   G4double rho = std::hypot(p.x(),p.y());
1164   G4double pt = hypot(p.z(),rho-fRtor);          1176   G4double pt = hypot(p.z(),rho-fRtor);
1165                                                  1177 
1166   G4double pDotV = p.x()*v.x() + p.y()*v.y()     1178   G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ;
1167                                                  1179 
1168   G4double tolRMax = fRmax - fRmaxTolerance ;    1180   G4double tolRMax = fRmax - fRmaxTolerance ;
1169                                                  1181    
1170   G4double vDotNmax   = pDotV - fRtor*(v.x()*    1182   G4double vDotNmax   = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ;
1171   G4double pDotxyNmax = (1 - fRtor/rho) ;        1183   G4double pDotxyNmax = (1 - fRtor/rho) ;
1172                                                  1184 
1173   if( (pt*pt > tolRMax*tolRMax) && (vDotNmax     1185   if( (pt*pt > tolRMax*tolRMax) && (vDotNmax >= 0) )
1174   {                                              1186   {
1175     // On tolerant boundary & heading outward    1187     // On tolerant boundary & heading outwards (or perpendicular to) outer
1176     // radial surface -> leaving immediately     1188     // radial surface -> leaving immediately with *n for really convex part
1177     // only                                      1189     // only
1178                                                  1190       
1179     if ( calcNorm && (pDotxyNmax >= -2.*fRmax    1191     if ( calcNorm && (pDotxyNmax >= -2.*fRmaxTolerance) ) 
1180     {                                            1192     {
1181       *n = G4ThreeVector( p.x()*(1 - fRtor/rh    1193       *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt,
1182                           p.y()*(1 - fRtor/rh    1194                           p.y()*(1 - fRtor/rho)/pt,
1183                           p.z()/pt               1195                           p.z()/pt                  ) ;
1184       *validNorm = true ;                        1196       *validNorm = true ;
1185     }                                            1197     }
1186                                                  1198      
1187     return snxt = 0 ; // Leaving by Rmax imme    1199     return snxt = 0 ; // Leaving by Rmax immediately
1188   }                                              1200   }
1189                                                  1201   
1190   snxt = SolveNumericJT(p,v,fRmax,false);        1202   snxt = SolveNumericJT(p,v,fRmax,false);  
1191   side = kRMax ;                                 1203   side = kRMax ;
1192                                                  1204 
1193   // rmin                                        1205   // rmin
1194                                                  1206 
1195   if ( fRmin != 0.0 )                         << 1207   if ( fRmin )
1196   {                                              1208   {
1197     G4double tolRMin = fRmin + fRminTolerance    1209     G4double tolRMin = fRmin + fRminTolerance ;
1198                                                  1210 
1199     if ( (pt*pt < tolRMin*tolRMin) && (vDotNm    1211     if ( (pt*pt < tolRMin*tolRMin) && (vDotNmax < 0) )
1200     {                                            1212     {
1201       if (calcNorm)  { *validNorm = false ; }    1213       if (calcNorm)  { *validNorm = false ; } // Concave surface of the torus
1202       return  snxt = 0 ;                         1214       return  snxt = 0 ;                      // Leaving by Rmin immediately
1203     }                                            1215     }
1204                                                  1216     
1205     sd[0] = SolveNumericJT(p,v,fRmin,false);     1217     sd[0] = SolveNumericJT(p,v,fRmin,false);
1206     if ( sd[0] < snxt )                          1218     if ( sd[0] < snxt )
1207     {                                            1219     {
1208       snxt = sd[0] ;                             1220       snxt = sd[0] ;
1209       side = kRMin ;                             1221       side = kRMin ;
1210     }                                            1222     }
1211   }                                              1223   }
1212                                                  1224 
1213 #else                                            1225 #else
1214                                                  1226 
1215   // this is the "conservative" version which    1227   // this is the "conservative" version which return always validnorm = false
1216   // NOTE: using this version the unit test t    1228   // NOTE: using this version the unit test testG4Torus will break
1217                                                  1229 
1218   snxt = SolveNumericJT(p,v,fRmax,false);        1230   snxt = SolveNumericJT(p,v,fRmax,false);  
1219   side = kRMax ;                                 1231   side = kRMax ;
1220                                                  1232 
1221   if ( fRmin )                                   1233   if ( fRmin )
1222   {                                              1234   {
1223     sd[0] = SolveNumericJT(p,v,fRmin,false);     1235     sd[0] = SolveNumericJT(p,v,fRmin,false);
1224     if ( sd[0] < snxt )                          1236     if ( sd[0] < snxt )
1225     {                                            1237     {
1226       snxt = sd[0] ;                             1238       snxt = sd[0] ;
1227       side = kRMin ;                             1239       side = kRMin ;
1228     }                                            1240     }
1229   }                                              1241   }
1230                                                  1242 
1231   if ( calcNorm && (snxt == 0.0) )               1243   if ( calcNorm && (snxt == 0.0) )
1232   {                                              1244   {
1233     *validNorm = false ;    // Leaving solid,    1245     *validNorm = false ;    // Leaving solid, but possible re-intersection
1234     return snxt  ;                               1246     return snxt  ;
1235   }                                              1247   }
1236                                                  1248 
1237 #endif                                           1249 #endif
1238                                                  1250   
1239   if (fDPhi < twopi)  // Phi Intersections       1251   if (fDPhi < twopi)  // Phi Intersections
1240   {                                              1252   {
1241     sinSPhi = std::sin(fSPhi) ;                  1253     sinSPhi = std::sin(fSPhi) ;
1242     cosSPhi = std::cos(fSPhi) ;                  1254     cosSPhi = std::cos(fSPhi) ;
1243     ePhi    = fSPhi + fDPhi ;                    1255     ePhi    = fSPhi + fDPhi ;
1244     sinEPhi = std::sin(ePhi) ;                   1256     sinEPhi = std::sin(ePhi) ;
1245     cosEPhi = std::cos(ePhi) ;                   1257     cosEPhi = std::cos(ePhi) ;
1246     cPhi    = fSPhi + fDPhi*0.5 ;                1258     cPhi    = fSPhi + fDPhi*0.5 ;
1247     sinCPhi = std::sin(cPhi) ;                   1259     sinCPhi = std::sin(cPhi) ;
1248     cosCPhi = std::cos(cPhi) ;                   1260     cosCPhi = std::cos(cPhi) ;
1249                                                  1261     
1250     // angle calculation with correction         1262     // angle calculation with correction 
1251     // of difference in domain of atan2 and S    1263     // of difference in domain of atan2 and Sphi
1252     //                                           1264     //
1253     vphi = std::atan2(v.y(),v.x()) ;             1265     vphi = std::atan2(v.y(),v.x()) ;
1254                                                  1266      
1255     if ( vphi < fSPhi - halfAngTolerance  )      1267     if ( vphi < fSPhi - halfAngTolerance  )    { vphi += twopi; }
1256     else if ( vphi > ePhi + halfAngTolerance     1268     else if ( vphi > ePhi + halfAngTolerance ) { vphi -= twopi; }
1257                                                  1269 
1258     if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 1270     if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
1259     {                                            1271     {
1260       pDistS = p.x()*sinSPhi - p.y()*cosSPhi     1272       pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside
1261       pDistE = -p.x()*sinEPhi + p.y()*cosEPhi    1273       pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1262                                                  1274 
1263       // Comp -ve when in direction of outwar    1275       // Comp -ve when in direction of outwards normal
1264       //                                         1276       //
1265       compS   = -sinSPhi*v.x() + cosSPhi*v.y(    1277       compS   = -sinSPhi*v.x() + cosSPhi*v.y() ;
1266       compE   = sinEPhi*v.x() - cosEPhi*v.y()    1278       compE   = sinEPhi*v.x() - cosEPhi*v.y() ;
1267       sidephi = kNull ;                          1279       sidephi = kNull ;
1268                                                  1280      
1269       if( ( (fDPhi <= pi) && ( (pDistS <= hal    1281       if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance)
1270                             && (pDistE <= hal    1282                             && (pDistE <= halfCarTolerance) ) )
1271        || ( (fDPhi >  pi) && ((pDistS <=  hal << 1283        || ( (fDPhi >  pi) && !((pDistS >  halfCarTolerance)
1272                             || (pDistE <=  ha << 1284                             && (pDistE >  halfCarTolerance) ) )  )
1273       {                                          1285       {
1274         // Inside both phi *full* planes         1286         // Inside both phi *full* planes
1275                                                  1287 
1276         if ( compS < 0 )                         1288         if ( compS < 0 )
1277         {                                        1289         {
1278           sphi = pDistS/compS ;                  1290           sphi = pDistS/compS ;
1279                                                  1291             
1280           if (sphi >= -halfCarTolerance)         1292           if (sphi >= -halfCarTolerance)
1281           {                                      1293           {
1282             xi = p.x() + sphi*v.x() ;            1294             xi = p.x() + sphi*v.x() ;
1283             yi = p.y() + sphi*v.y() ;            1295             yi = p.y() + sphi*v.y() ;
1284                                                  1296               
1285             // Check intersecting with correc    1297             // Check intersecting with correct half-plane
1286             // (if not -> no intersect)          1298             // (if not -> no intersect)
1287             //                                   1299             //
1288             if ( (std::fabs(xi)<=kCarToleranc    1300             if ( (std::fabs(xi)<=kCarTolerance)
1289               && (std::fabs(yi)<=kCarToleranc    1301               && (std::fabs(yi)<=kCarTolerance) )
1290             {                                    1302             {
1291               sidephi = kSPhi;                   1303               sidephi = kSPhi;
1292               if ( ((fSPhi-halfAngTolerance)<    1304               if ( ((fSPhi-halfAngTolerance)<=vphi)
1293                 && ((ePhi+halfAngTolerance)>=    1305                 && ((ePhi+halfAngTolerance)>=vphi) )
1294               {                                  1306               {
1295                 sphi = kInfinity;                1307                 sphi = kInfinity;
1296               }                                  1308               }
1297             }                                    1309             }
1298             else if ( yi*cosCPhi-xi*sinCPhi >    1310             else if ( yi*cosCPhi-xi*sinCPhi >=0 )
1299             {                                    1311             {
1300               sphi = kInfinity ;                 1312               sphi = kInfinity ;
1301             }                                    1313             }
1302             else                                 1314             else
1303             {                                    1315             {
1304               sidephi = kSPhi ;                  1316               sidephi = kSPhi ;
1305             }                                    1317             }       
1306           }                                      1318           }
1307           else                                   1319           else
1308           {                                      1320           {
1309             sphi = kInfinity ;                   1321             sphi = kInfinity ;
1310           }                                      1322           }
1311         }                                        1323         }
1312         else                                     1324         else
1313         {                                        1325         {
1314           sphi = kInfinity ;                     1326           sphi = kInfinity ;
1315         }                                        1327         }
1316                                                  1328 
1317         if ( compE < 0 )                         1329         if ( compE < 0 )
1318         {                                        1330         {
1319           sphi2 = pDistE/compE ;                 1331           sphi2 = pDistE/compE ;
1320                                                  1332             
1321           // Only check further if < starting    1333           // Only check further if < starting phi intersection
1322           //                                     1334           //
1323           if ( (sphi2 > -kCarTolerance) && (s    1335           if ( (sphi2 > -kCarTolerance) && (sphi2 < sphi) )
1324           {                                      1336           {
1325             xi = p.x() + sphi2*v.x() ;           1337             xi = p.x() + sphi2*v.x() ;
1326             yi = p.y() + sphi2*v.y() ;           1338             yi = p.y() + sphi2*v.y() ;
1327                                                  1339               
1328             if ( (std::fabs(xi)<=kCarToleranc    1340             if ( (std::fabs(xi)<=kCarTolerance)
1329               && (std::fabs(yi)<=kCarToleranc    1341               && (std::fabs(yi)<=kCarTolerance) )
1330             {                                    1342             {
1331               // Leaving via ending phi          1343               // Leaving via ending phi
1332               //                                 1344               //
1333               if( (fSPhi-halfAngTolerance > v << 1345               if( !( (fSPhi-halfAngTolerance <= vphi)
1334                   || (ePhi+halfAngTolerance < << 1346                   && (ePhi+halfAngTolerance >= vphi) ) )
1335               {                                  1347               {
1336                 sidephi = kEPhi ;                1348                 sidephi = kEPhi ;
1337                 sphi = sphi2;                    1349                 sphi = sphi2;
1338               }                                  1350               }
1339             }                                    1351             } 
1340             else    // Check intersecting wit    1352             else    // Check intersecting with correct half-plane 
1341             {                                    1353             {
1342               if ( (yi*cosCPhi-xi*sinCPhi) >=    1354               if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1343               {                                  1355               {
1344                 // Leaving via ending phi        1356                 // Leaving via ending phi
1345                 //                               1357                 //
1346                 sidephi = kEPhi ;                1358                 sidephi = kEPhi ;
1347                 sphi = sphi2;                    1359                 sphi = sphi2;
1348                                                  1360                
1349               }                                  1361               }
1350             }                                    1362             }
1351           }                                      1363           }
1352         }                                        1364         }
1353       }                                          1365       }
1354       else                                       1366       else
1355       {                                          1367       {
1356         sphi = kInfinity ;                       1368         sphi = kInfinity ;
1357       }                                          1369       }
1358     }                                            1370     } 
1359     else                                         1371     else
1360     {                                            1372     {
1361       // On z axis + travel not || to z axis     1373       // On z axis + travel not || to z axis -> if phi of vector direction
1362       // within phi of shape, Step limited by    1374       // within phi of shape, Step limited by rmax, else Step =0
1363                                                  1375 
1364       vphi = std::atan2(v.y(),v.x());            1376       vphi = std::atan2(v.y(),v.x());
1365                                                  1377  
1366       if ( ( fSPhi-halfAngTolerance <= vphi )    1378       if ( ( fSPhi-halfAngTolerance <= vphi ) && 
1367            ( vphi <= ( ePhi+halfAngTolerance     1379            ( vphi <= ( ePhi+halfAngTolerance ) ) )
1368       {                                          1380       {
1369         sphi = kInfinity;                        1381         sphi = kInfinity;
1370       }                                          1382       }
1371       else                                       1383       else
1372       {                                          1384       {
1373         sidephi = kSPhi ; // arbitrary           1385         sidephi = kSPhi ; // arbitrary 
1374         sphi=0;                                  1386         sphi=0;
1375       }                                          1387       }
1376     }                                            1388     }
1377                                                  1389 
1378     // Order intersections                       1390     // Order intersections
1379                                                  1391 
1380     if (sphi<snxt)                               1392     if (sphi<snxt)
1381     {                                            1393     {
1382       snxt=sphi;                                 1394       snxt=sphi;
1383       side=sidephi;                              1395       side=sidephi;
1384     }                                            1396     }     
1385   }                                              1397   }
1386                                                  1398 
1387   G4double rhoi,it,iDotxyNmax ;                  1399   G4double rhoi,it,iDotxyNmax ;
1388   // Note: by numerical computation we know w    1400   // Note: by numerical computation we know where the ray hits the torus
1389   // So I propose to return the side where th    1401   // So I propose to return the side where the ray hits
1390                                                  1402 
1391   if (calcNorm)                                  1403   if (calcNorm)
1392   {                                              1404   {
1393     switch(side)                                 1405     switch(side)
1394     {                                            1406     {
1395       case kRMax:                     // n is    1407       case kRMax:                     // n is unit vector 
1396         xi    = p.x() + snxt*v.x() ;             1408         xi    = p.x() + snxt*v.x() ;
1397         yi    = p.y() + snxt*v.y() ;             1409         yi    = p.y() + snxt*v.y() ;
1398         zi    = p.z() + snxt*v.z() ;             1410         zi    = p.z() + snxt*v.z() ;
1399         rhoi = std::hypot(xi,yi);                1411         rhoi = std::hypot(xi,yi);
1400         it = hypot(zi,rhoi-fRtor);               1412         it = hypot(zi,rhoi-fRtor);
1401                                                  1413 
1402         iDotxyNmax = (1-fRtor/rhoi) ;            1414         iDotxyNmax = (1-fRtor/rhoi) ;
1403         if(iDotxyNmax >= -2.*fRmaxTolerance)     1415         if(iDotxyNmax >= -2.*fRmaxTolerance) // really convex part of Rmax
1404         {                                        1416         {                       
1405           *n = G4ThreeVector( xi*(1-fRtor/rho    1417           *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it,
1406                               yi*(1-fRtor/rho    1418                               yi*(1-fRtor/rhoi)/it,
1407                               zi/it              1419                               zi/it                 ) ;
1408           *validNorm = true ;                    1420           *validNorm = true ;
1409         }                                        1421         }
1410         else                                     1422         else
1411         {                                        1423         {
1412           *validNorm = false ; // concave-con    1424           *validNorm = false ; // concave-convex part of Rmax
1413         }                                        1425         }
1414         break ;                                  1426         break ;
1415                                                  1427 
1416       case kRMin:                                1428       case kRMin:
1417         *validNorm = false ;  // Rmin is conc    1429         *validNorm = false ;  // Rmin is concave or concave-convex
1418         break;                                   1430         break;
1419                                                  1431 
1420       case kSPhi:                                1432       case kSPhi:
1421         if (fDPhi <= pi )                        1433         if (fDPhi <= pi )
1422         {                                        1434         {
1423           *n=G4ThreeVector(std::sin(fSPhi),-s    1435           *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
1424           *validNorm=true;                       1436           *validNorm=true;
1425         }                                        1437         }
1426         else                                     1438         else
1427         {                                        1439         {
1428           *validNorm = false ;                   1440           *validNorm = false ;
1429         }                                        1441         }
1430         break ;                                  1442         break ;
1431                                                  1443 
1432       case kEPhi:                                1444       case kEPhi:
1433         if (fDPhi <= pi)                         1445         if (fDPhi <= pi)
1434         {                                        1446         {
1435           *n=G4ThreeVector(-std::sin(fSPhi+fD    1447           *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
1436           *validNorm=true;                       1448           *validNorm=true;
1437         }                                        1449         }
1438         else                                     1450         else
1439         {                                        1451         {
1440           *validNorm = false ;                   1452           *validNorm = false ;
1441         }                                        1453         }
1442         break;                                   1454         break;
1443                                                  1455 
1444       default:                                   1456       default:
1445                                                  1457 
1446         // It seems we go here from time to t    1458         // It seems we go here from time to time ...
1447                                                  1459 
1448         G4cout << G4endl;                        1460         G4cout << G4endl;
1449         DumpInfo();                              1461         DumpInfo();
1450         std::ostringstream message;              1462         std::ostringstream message;
1451         G4long oldprc = message.precision(16) << 1463         G4int oldprc = message.precision(16);
1452         message << "Undefined side for valid     1464         message << "Undefined side for valid surface normal to solid."
1453                 << G4endl                        1465                 << G4endl
1454                 << "Position:"  << G4endl <<     1466                 << "Position:"  << G4endl << G4endl
1455                 << "p.x() = "   << p.x()/mm <    1467                 << "p.x() = "   << p.x()/mm << " mm" << G4endl
1456                 << "p.y() = "   << p.y()/mm <    1468                 << "p.y() = "   << p.y()/mm << " mm" << G4endl
1457                 << "p.z() = "   << p.z()/mm <    1469                 << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl
1458                 << "Direction:" << G4endl <<     1470                 << "Direction:" << G4endl << G4endl
1459                 << "v.x() = "   << v.x() << G    1471                 << "v.x() = "   << v.x() << G4endl
1460                 << "v.y() = "   << v.y() << G    1472                 << "v.y() = "   << v.y() << G4endl
1461                 << "v.z() = "   << v.z() << G    1473                 << "v.z() = "   << v.z() << G4endl << G4endl
1462                 << "Proposed distance :" << G    1474                 << "Proposed distance :" << G4endl << G4endl
1463                 << "snxt = " << snxt/mm << "     1475                 << "snxt = " << snxt/mm << " mm" << G4endl;
1464         message.precision(oldprc);               1476         message.precision(oldprc);
1465         G4Exception("G4Torus::DistanceToOut(p    1477         G4Exception("G4Torus::DistanceToOut(p,v,..)",
1466                     "GeomSolids1002",JustWarn    1478                     "GeomSolids1002",JustWarning, message);
1467         break;                                   1479         break;
1468     }                                            1480     }
1469   }                                              1481   }
1470   if ( snxt<halfCarTolerance )  { snxt=0 ; }     1482   if ( snxt<halfCarTolerance )  { snxt=0 ; }
1471                                                  1483 
1472   return snxt;                                   1484   return snxt;
1473 }                                                1485 }
1474                                                  1486 
1475 /////////////////////////////////////////////    1487 /////////////////////////////////////////////////////////////////////////
1476 //                                               1488 //
1477 // Calculate distance (<=actual) to closest s    1489 // Calculate distance (<=actual) to closest surface of shape from inside
1478                                                  1490 
1479 G4double G4Torus::DistanceToOut( const G4Thre    1491 G4double G4Torus::DistanceToOut( const G4ThreeVector& p ) const
1480 {                                                1492 {
1481   G4double safe=0.0,safeR1,safeR2;               1493   G4double safe=0.0,safeR1,safeR2;
1482   G4double rho,pt ;                              1494   G4double rho,pt ;
1483   G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;    1495   G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi;
1484                                                  1496   
1485   rho = std::hypot(p.x(),p.y());                 1497   rho = std::hypot(p.x(),p.y());
1486   pt  = std::hypot(p.z(),rho-fRtor);             1498   pt  = std::hypot(p.z(),rho-fRtor);
1487                                                  1499   
1488 #ifdef G4CSGDEBUG                                1500 #ifdef G4CSGDEBUG
1489   if( Inside(p) == kOutside )                    1501   if( Inside(p) == kOutside )
1490   {                                              1502   {
1491      G4long oldprc = G4cout.precision(16) ;   << 1503      G4int oldprc = G4cout.precision(16) ;
1492      G4cout << G4endl ;                          1504      G4cout << G4endl ;
1493      DumpInfo();                                 1505      DumpInfo();
1494      G4cout << "Position:"  << G4endl << G4en    1506      G4cout << "Position:"  << G4endl << G4endl ;
1495      G4cout << "p.x() = "   << p.x()/mm << "     1507      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
1496      G4cout << "p.y() = "   << p.y()/mm << "     1508      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
1497      G4cout << "p.z() = "   << p.z()/mm << "     1509      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
1498      G4cout.precision(oldprc);                   1510      G4cout.precision(oldprc);
1499      G4Exception("G4Torus::DistanceToOut(p)",    1511      G4Exception("G4Torus::DistanceToOut(p)", "GeomSolids1002",
1500                  JustWarning, "Point p is out    1512                  JustWarning, "Point p is outside !?" );
1501   }                                              1513   }
1502 #endif                                           1514 #endif
1503                                                  1515 
1504   if (fRmin != 0.0)                           << 1516   if (fRmin)
1505   {                                              1517   {
1506     safeR1 = pt - fRmin ;                        1518     safeR1 = pt - fRmin ;
1507     safeR2 = fRmax - pt ;                        1519     safeR2 = fRmax - pt ;
1508                                                  1520 
1509     if (safeR1 < safeR2)  { safe = safeR1 ; }    1521     if (safeR1 < safeR2)  { safe = safeR1 ; }
1510     else                  { safe = safeR2 ; }    1522     else                  { safe = safeR2 ; }
1511   }                                              1523   }
1512   else                                           1524   else
1513   {                                              1525   {
1514     safe = fRmax - pt ;                          1526     safe = fRmax - pt ;
1515   }                                              1527   }  
1516                                                  1528 
1517   // Check if phi divided, Calc distances clo    1529   // Check if phi divided, Calc distances closest phi plane
1518   //                                             1530   //
1519   if (fDPhi < twopi) // Above/below central p    1531   if (fDPhi < twopi) // Above/below central phi of Torus?
1520   {                                              1532   {
1521     phiC    = fSPhi + fDPhi*0.5 ;                1533     phiC    = fSPhi + fDPhi*0.5 ;
1522     cosPhiC = std::cos(phiC) ;                   1534     cosPhiC = std::cos(phiC) ;
1523     sinPhiC = std::sin(phiC) ;                   1535     sinPhiC = std::sin(phiC) ;
1524                                                  1536 
1525     if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)        1537     if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)
1526     {                                            1538     {
1527       safePhi = -(p.x()*std::sin(fSPhi) - p.y    1539       safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ;
1528     }                                            1540     }
1529     else                                         1541     else
1530     {                                            1542     {
1531       ePhi    = fSPhi + fDPhi ;                  1543       ePhi    = fSPhi + fDPhi ;
1532       safePhi = (p.x()*std::sin(ePhi) - p.y()    1544       safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ;
1533     }                                            1545     }
1534     if (safePhi < safe)  { safe = safePhi ; }    1546     if (safePhi < safe)  { safe = safePhi ; }
1535   }                                              1547   }
1536   if (safe < 0)  { safe = 0 ; }                  1548   if (safe < 0)  { safe = 0 ; }
1537   return safe ;                                  1549   return safe ;  
1538 }                                                1550 }
1539                                                  1551 
1540 /////////////////////////////////////////////    1552 //////////////////////////////////////////////////////////////////////////
1541 //                                               1553 //
1542 // Stream object contents to an output stream    1554 // Stream object contents to an output stream
1543                                                  1555 
1544 G4GeometryType G4Torus::GetEntityType() const    1556 G4GeometryType G4Torus::GetEntityType() const
1545 {                                                1557 {
1546   return {"G4Torus"};                         << 1558   return G4String("G4Torus");
1547 }                                                1559 }
1548                                                  1560 
1549 /////////////////////////////////////////////    1561 //////////////////////////////////////////////////////////////////////////
1550 //                                               1562 //
1551 // Make a clone of the object                    1563 // Make a clone of the object
1552 //                                               1564 //
1553 G4VSolid* G4Torus::Clone() const                 1565 G4VSolid* G4Torus::Clone() const
1554 {                                                1566 {
1555   return new G4Torus(*this);                     1567   return new G4Torus(*this);
1556 }                                                1568 }
1557                                                  1569 
1558 /////////////////////////////////////////////    1570 //////////////////////////////////////////////////////////////////////////
1559 //                                               1571 //
1560 // Stream object contents to an output stream    1572 // Stream object contents to an output stream
1561                                                  1573 
1562 std::ostream& G4Torus::StreamInfo( std::ostre    1574 std::ostream& G4Torus::StreamInfo( std::ostream& os ) const
1563 {                                                1575 {
1564   G4long oldprc = os.precision(16);           << 1576   G4int oldprc = os.precision(16);
1565   os << "------------------------------------    1577   os << "-----------------------------------------------------------\n"
1566      << "    *** Dump for solid - " << GetNam    1578      << "    *** Dump for solid - " << GetName() << " ***\n"
1567      << "    ================================    1579      << "    ===================================================\n"
1568      << " Solid type: G4Torus\n"                 1580      << " Solid type: G4Torus\n"
1569      << " Parameters: \n"                        1581      << " Parameters: \n"
1570      << "    inner radius: " << fRmin/mm << "    1582      << "    inner radius: " << fRmin/mm << " mm \n"
1571      << "    outer radius: " << fRmax/mm << "    1583      << "    outer radius: " << fRmax/mm << " mm \n"
1572      << "    swept radius: " << fRtor/mm << "    1584      << "    swept radius: " << fRtor/mm << " mm \n"
1573      << "    starting phi: " << fSPhi/degree     1585      << "    starting phi: " << fSPhi/degree << " degrees \n"
1574      << "    delta phi   : " << fDPhi/degree     1586      << "    delta phi   : " << fDPhi/degree << " degrees \n"
1575      << "------------------------------------    1587      << "-----------------------------------------------------------\n";
1576   os.precision(oldprc);                          1588   os.precision(oldprc);
1577                                                  1589 
1578   return os;                                     1590   return os;
1579 }                                                1591 }
1580                                                  1592 
1581 /////////////////////////////////////////////    1593 ////////////////////////////////////////////////////////////////////////////
1582 //                                               1594 //
1583 // GetPointOnSurface                             1595 // GetPointOnSurface
1584                                                  1596 
1585 G4ThreeVector G4Torus::GetPointOnSurface() co    1597 G4ThreeVector G4Torus::GetPointOnSurface() const
1586 {                                                1598 {
1587   G4double cosu, sinu,cosv, sinv, aOut, aIn,     1599   G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand;
1588                                                  1600    
1589   phi   = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi    1601   phi   = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi);
1590   theta = G4RandFlat::shoot(0.,twopi);           1602   theta = G4RandFlat::shoot(0.,twopi);
1591                                                  1603   
1592   cosu   = std::cos(phi);    sinu = std::sin(    1604   cosu   = std::cos(phi);    sinu = std::sin(phi);
1593   cosv   = std::cos(theta);  sinv = std::sin(    1605   cosv   = std::cos(theta);  sinv = std::sin(theta); 
1594                                                  1606 
1595   // compute the areas                           1607   // compute the areas
1596                                                  1608 
1597   aOut   = (fDPhi)*twopi*fRtor*fRmax;            1609   aOut   = (fDPhi)*twopi*fRtor*fRmax;
1598   aIn    = (fDPhi)*twopi*fRtor*fRmin;            1610   aIn    = (fDPhi)*twopi*fRtor*fRmin;
1599   aSide  = pi*(fRmax*fRmax-fRmin*fRmin);         1611   aSide  = pi*(fRmax*fRmax-fRmin*fRmin);
1600                                                  1612   
1601   if ((fSPhi == 0) && (fDPhi == twopi)){ aSid    1613   if ((fSPhi == 0) && (fDPhi == twopi)){ aSide = 0; }
1602   chose = G4RandFlat::shoot(0.,aOut + aIn + 2    1614   chose = G4RandFlat::shoot(0.,aOut + aIn + 2.*aSide);
1603                                                  1615 
1604   if(chose < aOut)                               1616   if(chose < aOut)
1605   {                                              1617   {
1606     return { (fRtor+fRmax*cosv)*cosu, (fRtor+ << 1618     return G4ThreeVector ((fRtor+fRmax*cosv)*cosu,
                                                   >> 1619                           (fRtor+fRmax*cosv)*sinu, fRmax*sinv);
1607   }                                              1620   }
1608   else if( (chose >= aOut) && (chose < aOut +    1621   else if( (chose >= aOut) && (chose < aOut + aIn) )
1609   {                                              1622   {
1610     return { (fRtor+fRmin*cosv)*cosu, (fRtor+ << 1623     return G4ThreeVector ((fRtor+fRmin*cosv)*cosu,
                                                   >> 1624                           (fRtor+fRmin*cosv)*sinu, fRmin*sinv);
1611   }                                              1625   }
1612   else if( (chose >= aOut + aIn) && (chose <     1626   else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) )
1613   {                                              1627   {
1614     rRand = GetRadiusInRing(fRmin,fRmax);        1628     rRand = GetRadiusInRing(fRmin,fRmax);
1615     return { (fRtor+rRand*cosv)*std::cos(fSPh << 1629     return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi),
1616              (fRtor+rRand*cosv)*std::sin(fSPh << 1630                           (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv);
1617   }                                              1631   }
1618   else                                           1632   else
1619   {                                              1633   {   
1620     rRand = GetRadiusInRing(fRmin,fRmax);        1634     rRand = GetRadiusInRing(fRmin,fRmax);
1621     return { (fRtor+rRand*cosv)*std::cos(fSPh << 1635     return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi),
1622              (fRtor+rRand*cosv)*std::sin(fSPh << 1636                           (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi), 
                                                   >> 1637                           rRand*sinv);
1623    }                                             1638    }
1624 }                                                1639 }
1625                                                  1640 
1626 /////////////////////////////////////////////    1641 ///////////////////////////////////////////////////////////////////////
1627 //                                               1642 //
1628 // Visualisation Functions                       1643 // Visualisation Functions
1629                                                  1644 
1630 void G4Torus::DescribeYourselfTo ( G4VGraphic    1645 void G4Torus::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 
1631 {                                                1646 {
1632   scene.AddSolid (*this);                        1647   scene.AddSolid (*this);
1633 }                                                1648 }
1634                                                  1649 
1635 G4Polyhedron* G4Torus::CreatePolyhedron () co    1650 G4Polyhedron* G4Torus::CreatePolyhedron () const 
1636 {                                                1651 {
1637   return new G4PolyhedronTorus (fRmin, fRmax,    1652   return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi);
1638 }                                                1653 }
1639                                                  1654 
1640 #endif // !defined(G4GEOM_USE_TORUS) || !defi    1655 #endif // !defined(G4GEOM_USE_TORUS) || !defined(G4GEOM_USE_SYS_USOLIDS)
1641                                                  1656