Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // G4Torus implementation << 27 // 26 // 28 // 30.10.96 V.Grichine: first implementation w << 27 // $Id: G4Torus.cc 102528 2017-02-08 13:37:51Z gcosmo $ 29 // 26.05.00 V.Grichine: added new fuctions dev << 28 // 30 // 31.08.00 E.Medernach: numerical computation << 29 // 31 // 11.01.01 E.Medernach: Use G4PolynomialSolve << 30 // class G4Torus 32 // 03.05.05 V.Grichine: SurfaceNormal(p) accor << 31 // 33 // 25.08.05 O.Link: new methods for DistanceTo << 32 // Implementation 34 // 28.10.16 E.Tcherniaev: new CalculateExtent( << 33 // 35 // 16.12.16 H.Burkhardt: use radius difference 34 // 16.12.16 H.Burkhardt: use radius differences and hypot to improve precision 36 // ------------------------------------------- << 35 // 28.10.16 E.Tcherniaev: reimplemented CalculateExtent(), >> 36 // added Extent(), removed CreateRotatedVertices() >> 37 // 05.04.12 M.Kelsey: Use sqrt(r) in GetPointOnSurface() for uniform points >> 38 // 02.10.07 T.Nikitina: Bug fixed in SolveNumericJT(), b.969:segmentation fault. >> 39 // rootsrefined is used only if the number of refined roots >> 40 // is the same as for primary roots. >> 41 // 02.10.07 T.Nikitina: Bug fixed in CalculateExtent() for case of non-rotated >> 42 // full-phi torus:protect against negative value for sqrt, >> 43 // correct formula for delta. >> 44 // 20.11.05 V.Grichine: Bug fixed in Inside(p) for phi sections, b.810 >> 45 // 25.08.05 O.Link: new methods for DistanceToIn/Out using JTPolynomialSolver >> 46 // 07.06.05 V.Grichine: SurfaceNormal(p) for rho=0, Constructor as G4Cons >> 47 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal >> 48 // 18.03.04 V.Grichine: bug fixed in DistanceToIn(p) >> 49 // 11.01.01 E.Medernach: Use G4PolynomialSolver to find roots >> 50 // 03.10.00 E.Medernach: SafeNewton added >> 51 // 31.08.00 E.Medernach: numerical computation of roots wuth bounding >> 52 // volume technique >> 53 // 26.05.00 V.Grichine: new fuctions developed by O.Cremonesi were added >> 54 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...) >> 55 // 19.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...) >> 56 // 09.10.98 V.Grichine: modifications in Distance ToOut(p,v,...) >> 57 // 30.10.96 V.Grichine: first implementation with G4Tubs elements in Fs >> 58 // 37 59 38 #include "G4Torus.hh" 60 #include "G4Torus.hh" 39 61 40 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4 62 #if !(defined(G4GEOM_USE_UTORUS) && defined(G4GEOM_USE_SYS_USOLIDS)) 41 63 42 #include "G4GeomTools.hh" 64 #include "G4GeomTools.hh" 43 #include "G4VoxelLimits.hh" 65 #include "G4VoxelLimits.hh" 44 #include "G4AffineTransform.hh" 66 #include "G4AffineTransform.hh" 45 #include "G4BoundingEnvelope.hh" 67 #include "G4BoundingEnvelope.hh" 46 #include "G4GeometryTolerance.hh" 68 #include "G4GeometryTolerance.hh" 47 #include "G4JTPolynomialSolver.hh" 69 #include "G4JTPolynomialSolver.hh" 48 70 49 #include "G4VPVParameterisation.hh" 71 #include "G4VPVParameterisation.hh" 50 72 51 #include "meshdefs.hh" 73 #include "meshdefs.hh" 52 74 53 #include "Randomize.hh" 75 #include "Randomize.hh" 54 76 55 #include "G4VGraphicsScene.hh" 77 #include "G4VGraphicsScene.hh" 56 #include "G4Polyhedron.hh" 78 #include "G4Polyhedron.hh" 57 79 58 using namespace CLHEP; 80 using namespace CLHEP; 59 81 60 ////////////////////////////////////////////// 82 /////////////////////////////////////////////////////////////// 61 // 83 // 62 // Constructor - check parameters, convert ang 84 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 63 // - note if pdphi>2PI then reset 85 // - note if pdphi>2PI then reset to 2PI 64 86 65 G4Torus::G4Torus( const G4String& pName, << 87 G4Torus::G4Torus( const G4String &pName, 66 G4double pRmin, 88 G4double pRmin, 67 G4double pRmax, 89 G4double pRmax, 68 G4double pRtor, 90 G4double pRtor, 69 G4double pSPhi, 91 G4double pSPhi, 70 G4double pDPhi ) << 92 G4double pDPhi) 71 : G4CSGSolid(pName) 93 : G4CSGSolid(pName) 72 { 94 { 73 SetAllParameters(pRmin, pRmax, pRtor, pSPhi, 95 SetAllParameters(pRmin, pRmax, pRtor, pSPhi, pDPhi); 74 } 96 } 75 97 76 ////////////////////////////////////////////// 98 //////////////////////////////////////////////////////////////////////////// 77 // 99 // 78 // 100 // 79 101 80 void 102 void 81 G4Torus::SetAllParameters( G4double pRmin, 103 G4Torus::SetAllParameters( G4double pRmin, 82 G4double pRmax, 104 G4double pRmax, 83 G4double pRtor, 105 G4double pRtor, 84 G4double pSPhi, 106 G4double pSPhi, 85 G4double pDPhi ) 107 G4double pDPhi ) 86 { 108 { 87 const G4double fEpsilon = 4.e-11; // relati 109 const G4double fEpsilon = 4.e-11; // relative tolerance of radii 88 110 89 fCubicVolume = 0.; 111 fCubicVolume = 0.; 90 fSurfaceArea = 0.; 112 fSurfaceArea = 0.; 91 fRebuildPolyhedron = true; 113 fRebuildPolyhedron = true; 92 114 93 kRadTolerance = G4GeometryTolerance::GetInst 115 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 94 kAngTolerance = G4GeometryTolerance::GetInst 116 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 95 117 96 halfCarTolerance = 0.5*kCarTolerance; 118 halfCarTolerance = 0.5*kCarTolerance; 97 halfAngTolerance = 0.5*kAngTolerance; 119 halfAngTolerance = 0.5*kAngTolerance; 98 120 99 if ( pRtor >= pRmax+1.e3*kCarTolerance ) // 121 if ( pRtor >= pRmax+1.e3*kCarTolerance ) // Check swept radius, as in G4Cons 100 { 122 { 101 fRtor = pRtor ; 123 fRtor = pRtor ; 102 } 124 } 103 else 125 else 104 { 126 { 105 std::ostringstream message; 127 std::ostringstream message; 106 message << "Invalid swept radius for Solid 128 message << "Invalid swept radius for Solid: " << GetName() << G4endl 107 << " pRtor = " << pRtor << 129 << " pRtor = " << pRtor << ", pRmax = " << pRmax; 108 G4Exception("G4Torus::SetAllParameters()", 130 G4Exception("G4Torus::SetAllParameters()", 109 "GeomSolids0002", FatalExcepti 131 "GeomSolids0002", FatalException, message); 110 } 132 } 111 133 112 // Check radii, as in G4Cons 134 // Check radii, as in G4Cons 113 // 135 // 114 if ( pRmin < pRmax - 1.e2*kCarTolerance && p 136 if ( pRmin < pRmax - 1.e2*kCarTolerance && pRmin >= 0 ) 115 { 137 { 116 if (pRmin >= 1.e2*kCarTolerance) { fRmin = 138 if (pRmin >= 1.e2*kCarTolerance) { fRmin = pRmin ; } 117 else { fRmin = 139 else { fRmin = 0.0 ; } 118 fRmax = pRmax ; 140 fRmax = pRmax ; 119 } 141 } 120 else 142 else 121 { 143 { 122 std::ostringstream message; 144 std::ostringstream message; 123 message << "Invalid values of radii for So 145 message << "Invalid values of radii for Solid: " << GetName() << G4endl 124 << " pRmin = " << pRmin << 146 << " pRmin = " << pRmin << ", pRmax = " << pRmax; 125 G4Exception("G4Torus::SetAllParameters()", 147 G4Exception("G4Torus::SetAllParameters()", 126 "GeomSolids0002", FatalExcepti 148 "GeomSolids0002", FatalException, message); 127 } 149 } 128 150 129 // Relative tolerances 151 // Relative tolerances 130 // 152 // 131 fRminTolerance = (fRmin) != 0.0 << 153 fRminTolerance = (fRmin) 132 ? 0.5*std::max( kRadTolerance 154 ? 0.5*std::max( kRadTolerance, fEpsilon*(fRtor-fRmin )) : 0; 133 fRmaxTolerance = 0.5*std::max( kRadTolerance 155 fRmaxTolerance = 0.5*std::max( kRadTolerance, fEpsilon*(fRtor+fRmax) ); 134 156 135 // Check angles 157 // Check angles 136 // 158 // 137 if ( pDPhi >= twopi ) { fDPhi = twopi ; } 159 if ( pDPhi >= twopi ) { fDPhi = twopi ; } 138 else 160 else 139 { 161 { 140 if (pDPhi > 0) { fDPhi = pDPhi ; } 162 if (pDPhi > 0) { fDPhi = pDPhi ; } 141 else 163 else 142 { 164 { 143 std::ostringstream message; 165 std::ostringstream message; 144 message << "Invalid Z delta-Phi for Soli 166 message << "Invalid Z delta-Phi for Solid: " << GetName() << G4endl 145 << " pDPhi = " << pDPhi; 167 << " pDPhi = " << pDPhi; 146 G4Exception("G4Torus::SetAllParameters() 168 G4Exception("G4Torus::SetAllParameters()", 147 "GeomSolids0002", FatalExcep 169 "GeomSolids0002", FatalException, message); 148 } 170 } 149 } 171 } 150 172 151 // Ensure psphi in 0-2PI or -2PI-0 range if 173 // Ensure psphi in 0-2PI or -2PI-0 range if shape crosses 0 152 // 174 // 153 fSPhi = pSPhi; 175 fSPhi = pSPhi; 154 176 155 if (fSPhi < 0) { fSPhi = twopi-std::fmod(st 177 if (fSPhi < 0) { fSPhi = twopi-std::fmod(std::fabs(fSPhi),twopi) ; } 156 else { fSPhi = std::fmod(fSPhi,tw 178 else { fSPhi = std::fmod(fSPhi,twopi) ; } 157 179 158 if (fSPhi+fDPhi > twopi) { fSPhi-=twopi ; } 180 if (fSPhi+fDPhi > twopi) { fSPhi-=twopi ; } 159 } 181 } 160 182 161 ////////////////////////////////////////////// 183 /////////////////////////////////////////////////////////////////////// 162 // 184 // 163 // Fake default constructor - sets only member 185 // Fake default constructor - sets only member data and allocates memory 164 // for usage restri 186 // for usage restricted to object persistency. 165 // 187 // 166 G4Torus::G4Torus( __void__& a ) 188 G4Torus::G4Torus( __void__& a ) 167 : G4CSGSolid(a) << 189 : G4CSGSolid(a), fRmin(0.), fRmax(0.), fRtor(0.), fSPhi(0.), >> 190 fDPhi(0.), fRminTolerance(0.), fRmaxTolerance(0. ), >> 191 kRadTolerance(0.), kAngTolerance(0.), >> 192 halfCarTolerance(0.), halfAngTolerance(0.) 168 { 193 { 169 } 194 } 170 195 171 ////////////////////////////////////////////// 196 ////////////////////////////////////////////////////////////////////// 172 // 197 // 173 // Destructor 198 // Destructor 174 199 175 G4Torus::~G4Torus() = default; << 200 G4Torus::~G4Torus() >> 201 {} 176 202 177 ////////////////////////////////////////////// 203 ////////////////////////////////////////////////////////////////////////// 178 // 204 // 179 // Copy constructor 205 // Copy constructor 180 206 181 G4Torus::G4Torus(const G4Torus&) = default; << 207 G4Torus::G4Torus(const G4Torus& rhs) >> 208 : G4CSGSolid(rhs), fRmin(rhs.fRmin),fRmax(rhs.fRmax), >> 209 fRtor(rhs.fRtor),fSPhi(rhs.fSPhi),fDPhi(rhs.fDPhi), >> 210 fRminTolerance(rhs.fRminTolerance), fRmaxTolerance(rhs.fRmaxTolerance), >> 211 kRadTolerance(rhs.kRadTolerance), kAngTolerance(rhs.kAngTolerance), >> 212 halfCarTolerance(rhs.halfCarTolerance), >> 213 halfAngTolerance(rhs.halfAngTolerance) >> 214 { >> 215 } 182 216 183 ////////////////////////////////////////////// 217 ////////////////////////////////////////////////////////////////////////// 184 // 218 // 185 // Assignment operator 219 // Assignment operator 186 220 187 G4Torus& G4Torus::operator = (const G4Torus& r 221 G4Torus& G4Torus::operator = (const G4Torus& rhs) 188 { 222 { 189 // Check assignment to self 223 // Check assignment to self 190 // 224 // 191 if (this == &rhs) { return *this; } 225 if (this == &rhs) { return *this; } 192 226 193 // Copy base class data 227 // Copy base class data 194 // 228 // 195 G4CSGSolid::operator=(rhs); 229 G4CSGSolid::operator=(rhs); 196 230 197 // Copy data 231 // Copy data 198 // 232 // 199 fRmin = rhs.fRmin; fRmax = rhs.fRmax; 233 fRmin = rhs.fRmin; fRmax = rhs.fRmax; 200 fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi 234 fRtor = rhs.fRtor; fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 201 fRminTolerance = rhs.fRminTolerance; fRmaxT 235 fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance; 202 kRadTolerance = rhs.kRadTolerance; kAngTole 236 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 203 halfCarTolerance = rhs.halfCarTolerance; 237 halfCarTolerance = rhs.halfCarTolerance; 204 halfAngTolerance = rhs.halfAngTolerance; 238 halfAngTolerance = rhs.halfAngTolerance; 205 239 206 return *this; 240 return *this; 207 } 241 } 208 242 209 ////////////////////////////////////////////// 243 ////////////////////////////////////////////////////////////////////// 210 // 244 // 211 // Dispatch to parameterisation for replicatio 245 // Dispatch to parameterisation for replication mechanism dimension 212 // computation & modification. 246 // computation & modification. 213 247 214 void G4Torus::ComputeDimensions( G4VPVPa 248 void G4Torus::ComputeDimensions( G4VPVParameterisation* p, 215 const G4int n 249 const G4int n, 216 const G4VPhys 250 const G4VPhysicalVolume* pRep ) 217 { 251 { 218 p->ComputeDimensions(*this,n,pRep); 252 p->ComputeDimensions(*this,n,pRep); 219 } 253 } 220 254 221 255 222 256 223 ////////////////////////////////////////////// 257 //////////////////////////////////////////////////////////////////////////////// 224 // 258 // 225 // Calculate the real roots to torus surface. 259 // Calculate the real roots to torus surface. 226 // Returns negative solutions as well. 260 // Returns negative solutions as well. 227 261 228 void G4Torus::TorusRootsJT( const G4ThreeVecto 262 void G4Torus::TorusRootsJT( const G4ThreeVector& p, 229 const G4ThreeVecto 263 const G4ThreeVector& v, 230 G4double r, 264 G4double r, 231 std::vector< 265 std::vector<G4double>& roots ) const 232 { 266 { 233 267 234 G4int i, num ; 268 G4int i, num ; 235 G4double c[5], srd[4], si[4] ; 269 G4double c[5], srd[4], si[4] ; 236 270 237 G4double Rtor2 = fRtor*fRtor, r2 = r*r ; 271 G4double Rtor2 = fRtor*fRtor, r2 = r*r ; 238 272 239 G4double pDotV = p.x()*v.x() + p.y()*v.y() + 273 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ; 240 G4double pRad2 = p.x()*p.x() + p.y()*p.y() + 274 G4double pRad2 = p.x()*p.x() + p.y()*p.y() + p.z()*p.z() ; 241 275 242 G4double d=pRad2 - Rtor2; 276 G4double d=pRad2 - Rtor2; 243 c[0] = 1.0 ; 277 c[0] = 1.0 ; 244 c[1] = 4*pDotV ; 278 c[1] = 4*pDotV ; 245 c[2] = 2*( (d + 2*pDotV*pDotV - r2) + 2*Rto 279 c[2] = 2*( (d + 2*pDotV*pDotV - r2) + 2*Rtor2*v.z()*v.z()); 246 c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z 280 c[3] = 4*(pDotV*(d - r2) + 2*Rtor2*p.z()*v.z()) ; 247 c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r 281 c[4] = (d-r2)*(d-r2) +4*Rtor2*(p.z()*p.z()-r2); 248 282 249 G4JTPolynomialSolver torusEq; 283 G4JTPolynomialSolver torusEq; 250 284 251 num = torusEq.FindRoots( c, 4, srd, si ); 285 num = torusEq.FindRoots( c, 4, srd, si ); 252 286 253 for ( i = 0; i < num; ++i ) << 287 for ( i = 0; i < num; i++ ) 254 { 288 { 255 if( si[i] == 0. ) { roots.push_back(srd[i 289 if( si[i] == 0. ) { roots.push_back(srd[i]) ; } // store real roots 256 } 290 } 257 291 258 std::sort(roots.begin() , roots.end() ) ; / 292 std::sort(roots.begin() , roots.end() ) ; // sorting with < 259 } 293 } 260 294 261 ////////////////////////////////////////////// 295 ////////////////////////////////////////////////////////////////////////////// 262 // 296 // 263 // Interface for DistanceToIn and DistanceToOu 297 // Interface for DistanceToIn and DistanceToOut. 264 // Calls TorusRootsJT and returns the smalles 298 // Calls TorusRootsJT and returns the smalles possible distance to 265 // the surface. 299 // the surface. 266 // Attention: Difference in DistanceToIn/Out f 300 // Attention: Difference in DistanceToIn/Out for points p on the surface. 267 301 268 G4double G4Torus::SolveNumericJT( const G4Thre 302 G4double G4Torus::SolveNumericJT( const G4ThreeVector& p, 269 const G4Thre 303 const G4ThreeVector& v, 270 G4doub 304 G4double r, 271 G4bool 305 G4bool IsDistanceToIn ) const 272 { 306 { 273 G4double bigdist = 10*mm ; 307 G4double bigdist = 10*mm ; 274 G4double tmin = kInfinity ; 308 G4double tmin = kInfinity ; 275 G4double t, scal ; 309 G4double t, scal ; 276 310 277 // calculate the distances to the intersecti 311 // calculate the distances to the intersections with the Torus 278 // from a given point p and direction v. 312 // from a given point p and direction v. 279 // 313 // 280 std::vector<G4double> roots ; 314 std::vector<G4double> roots ; 281 std::vector<G4double> rootsrefined ; 315 std::vector<G4double> rootsrefined ; 282 TorusRootsJT(p,v,r,roots) ; 316 TorusRootsJT(p,v,r,roots) ; 283 317 284 G4ThreeVector ptmp ; 318 G4ThreeVector ptmp ; 285 319 286 // determine the smallest non-negative solut 320 // determine the smallest non-negative solution 287 // 321 // 288 for ( std::size_t k = 0 ; k<roots.size() ; + << 322 for ( size_t k = 0 ; k<roots.size() ; k++ ) 289 { 323 { 290 t = roots[k] ; 324 t = roots[k] ; 291 325 292 if ( t < -halfCarTolerance ) { continue ; 326 if ( t < -halfCarTolerance ) { continue ; } // skip negative roots 293 327 294 if ( t > bigdist && t<kInfinity ) // pr 328 if ( t > bigdist && t<kInfinity ) // problem with big distances 295 { 329 { 296 ptmp = p + t*v ; 330 ptmp = p + t*v ; 297 TorusRootsJT(ptmp,v,r,rootsrefined) ; 331 TorusRootsJT(ptmp,v,r,rootsrefined) ; 298 if ( rootsrefined.size()==roots.size() ) 332 if ( rootsrefined.size()==roots.size() ) 299 { 333 { 300 t = t + rootsrefined[k] ; 334 t = t + rootsrefined[k] ; 301 } 335 } 302 } 336 } 303 337 304 ptmp = p + t*v ; // calculate the positi 338 ptmp = p + t*v ; // calculate the position of the proposed intersection 305 339 306 G4double theta = std::atan2(ptmp.y(),ptmp. 340 G4double theta = std::atan2(ptmp.y(),ptmp.x()); 307 341 308 if ( fSPhi >= 0 ) 342 if ( fSPhi >= 0 ) 309 { 343 { 310 if ( theta < - halfAngTolerance ) { the 344 if ( theta < - halfAngTolerance ) { theta += twopi; } 311 if ( (std::fabs(theta) < halfAngToleranc 345 if ( (std::fabs(theta) < halfAngTolerance) 312 && (std::fabs(fSPhi + fDPhi - twopi) < 346 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 313 { 347 { 314 theta += twopi ; // 0 <= theta < 2pi 348 theta += twopi ; // 0 <= theta < 2pi 315 } 349 } 316 } 350 } 317 if ((fSPhi <= -pi )&&(theta>halfAngToleran 351 if ((fSPhi <= -pi )&&(theta>halfAngTolerance)) { theta = theta-twopi; } 318 352 319 // We have to verify if this root is insid 353 // We have to verify if this root is inside the region between 320 // fSPhi and fSPhi + fDPhi 354 // fSPhi and fSPhi + fDPhi 321 // 355 // 322 if ( (theta - fSPhi >= - halfAngTolerance) 356 if ( (theta - fSPhi >= - halfAngTolerance) 323 && (theta - (fSPhi + fDPhi) <= halfAngT 357 && (theta - (fSPhi + fDPhi) <= halfAngTolerance) ) 324 { 358 { 325 // check if P is on the surface, and cal 359 // check if P is on the surface, and called from DistanceToIn 326 // DistanceToIn has to return 0.0 if par 360 // DistanceToIn has to return 0.0 if particle is going inside the solid 327 361 328 if ( IsDistanceToIn ) << 362 if ( IsDistanceToIn == true ) 329 { 363 { 330 if (std::fabs(t) < halfCarTolerance ) 364 if (std::fabs(t) < halfCarTolerance ) 331 { 365 { 332 // compute scalar product at positio 366 // compute scalar product at position p : v.n 333 // ( n taken from SurfaceNormal, not 367 // ( n taken from SurfaceNormal, not normalized ) 334 368 335 scal = v* G4ThreeVector( p.x()*(1-fR 369 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())), 336 p.y()*(1-fR 370 p.y()*(1-fRtor/std::hypot(p.x(),p.y())), 337 p.z() ); 371 p.z() ); 338 372 339 // change sign in case of inner radi 373 // change sign in case of inner radius 340 // 374 // 341 if ( r == GetRmin() ) { scal = -sca 375 if ( r == GetRmin() ) { scal = -scal ; } 342 if ( scal < 0 ) { return 0.0 ; } 376 if ( scal < 0 ) { return 0.0 ; } 343 } 377 } 344 } 378 } 345 379 346 // check if P is on the surface, and cal 380 // check if P is on the surface, and called from DistanceToOut 347 // DistanceToIn has to return 0.0 if par 381 // DistanceToIn has to return 0.0 if particle is leaving the solid 348 382 349 if ( !IsDistanceToIn ) << 383 if ( IsDistanceToIn == false ) 350 { 384 { 351 if (std::fabs(t) < halfCarTolerance ) 385 if (std::fabs(t) < halfCarTolerance ) 352 { 386 { 353 // compute scalar product at positio 387 // compute scalar product at position p : v.n 354 // 388 // 355 scal = v* G4ThreeVector( p.x()*(1-fR 389 scal = v* G4ThreeVector( p.x()*(1-fRtor/std::hypot(p.x(),p.y())), 356 p.y()*(1-fR 390 p.y()*(1-fRtor/std::hypot(p.x(),p.y())), 357 p.z() ); 391 p.z() ); 358 392 359 // change sign in case of inner radi 393 // change sign in case of inner radius 360 // 394 // 361 if ( r == GetRmin() ) { scal = -sca 395 if ( r == GetRmin() ) { scal = -scal ; } 362 if ( scal > 0 ) { return 0.0 ; } 396 if ( scal > 0 ) { return 0.0 ; } 363 } 397 } 364 } 398 } 365 399 366 // check if distance is larger than 1/2 400 // check if distance is larger than 1/2 kCarTolerance 367 // 401 // 368 if( t > halfCarTolerance ) 402 if( t > halfCarTolerance ) 369 { 403 { 370 tmin = t ; 404 tmin = t ; 371 return tmin ; 405 return tmin ; 372 } 406 } 373 } 407 } 374 } 408 } 375 409 376 return tmin; 410 return tmin; 377 } 411 } 378 412 379 ////////////////////////////////////////////// 413 ///////////////////////////////////////////////////////////////////////////// 380 // 414 // 381 // Get bounding box 415 // Get bounding box 382 416 383 void G4Torus::BoundingLimits(G4ThreeVector& pM << 417 void G4Torus::Extent(G4ThreeVector& pMin, G4ThreeVector& pMax) const 384 { 418 { 385 G4double rmax = GetRmax(); 419 G4double rmax = GetRmax(); 386 G4double rtor = GetRtor(); 420 G4double rtor = GetRtor(); 387 G4double rint = rtor - rmax; 421 G4double rint = rtor - rmax; 388 G4double rext = rtor + rmax; 422 G4double rext = rtor + rmax; 389 G4double dz = rmax; 423 G4double dz = rmax; 390 424 391 // Find bounding box 425 // Find bounding box 392 // 426 // 393 if (GetDPhi() >= twopi) 427 if (GetDPhi() >= twopi) 394 { 428 { 395 pMin.set(-rext,-rext,-dz); 429 pMin.set(-rext,-rext,-dz); 396 pMax.set( rext, rext, dz); 430 pMax.set( rext, rext, dz); 397 } 431 } 398 else 432 else 399 { 433 { 400 G4TwoVector vmin,vmax; 434 G4TwoVector vmin,vmax; 401 G4GeomTools::DiskExtent(rint,rext, 435 G4GeomTools::DiskExtent(rint,rext, 402 GetSinStartPhi(),G 436 GetSinStartPhi(),GetCosStartPhi(), 403 GetSinEndPhi(),Get 437 GetSinEndPhi(),GetCosEndPhi(), 404 vmin,vmax); 438 vmin,vmax); 405 pMin.set(vmin.x(),vmin.y(),-dz); 439 pMin.set(vmin.x(),vmin.y(),-dz); 406 pMax.set(vmax.x(),vmax.y(), dz); 440 pMax.set(vmax.x(),vmax.y(), dz); 407 } 441 } 408 442 409 // Check correctness of the bounding box 443 // Check correctness of the bounding box 410 // 444 // 411 if (pMin.x() >= pMax.x() || pMin.y() >= pMax 445 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 412 { 446 { 413 std::ostringstream message; 447 std::ostringstream message; 414 message << "Bad bounding box (min >= max) 448 message << "Bad bounding box (min >= max) for solid: " 415 << GetName() << " !" 449 << GetName() << " !" 416 << "\npMin = " << pMin 450 << "\npMin = " << pMin 417 << "\npMax = " << pMax; 451 << "\npMax = " << pMax; 418 G4Exception("G4Torus::BoundingLimits()", " << 452 G4Exception("G4Torus::Extent()", "GeomMgt0001", JustWarning, message); 419 JustWarning, message); << 420 DumpInfo(); 453 DumpInfo(); 421 } 454 } 422 } 455 } 423 456 424 ////////////////////////////////////////////// 457 ///////////////////////////////////////////////////////////////////////////// 425 // 458 // 426 // Calculate extent under transform and specif 459 // Calculate extent under transform and specified limit 427 460 428 G4bool G4Torus::CalculateExtent( const EAxis p 461 G4bool G4Torus::CalculateExtent( const EAxis pAxis, 429 const G4Voxel 462 const G4VoxelLimits& pVoxelLimit, 430 const G4Affin 463 const G4AffineTransform& pTransform, 431 G4doubl 464 G4double& pMin, G4double& pMax) const 432 { 465 { 433 G4ThreeVector bmin, bmax; 466 G4ThreeVector bmin, bmax; 434 G4bool exist; 467 G4bool exist; 435 468 436 // Get bounding box 469 // Get bounding box 437 BoundingLimits(bmin,bmax); << 470 Extent(bmin,bmax); 438 471 439 // Check bounding box 472 // Check bounding box 440 G4BoundingEnvelope bbox(bmin,bmax); 473 G4BoundingEnvelope bbox(bmin,bmax); 441 #ifdef G4BBOX_EXTENT 474 #ifdef G4BBOX_EXTENT 442 return bbox.CalculateExtent(pAxis,pVoxelLimi << 475 if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 443 #endif 476 #endif 444 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVox 477 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 445 { 478 { 446 return exist = pMin < pMax; << 479 return exist = (pMin < pMax) ? true : false; 447 } 480 } 448 481 449 // Get parameters of the solid 482 // Get parameters of the solid 450 G4double rmin = GetRmin(); 483 G4double rmin = GetRmin(); 451 G4double rmax = GetRmax(); 484 G4double rmax = GetRmax(); 452 G4double rtor = GetRtor(); 485 G4double rtor = GetRtor(); 453 G4double dphi = GetDPhi(); 486 G4double dphi = GetDPhi(); 454 G4double sinStart = GetSinStartPhi(); 487 G4double sinStart = GetSinStartPhi(); 455 G4double cosStart = GetCosStartPhi(); 488 G4double cosStart = GetCosStartPhi(); 456 G4double sinEnd = GetSinEndPhi(); 489 G4double sinEnd = GetSinEndPhi(); 457 G4double cosEnd = GetCosEndPhi(); 490 G4double cosEnd = GetCosEndPhi(); 458 G4double rint = rtor - rmax; 491 G4double rint = rtor - rmax; 459 G4double rext = rtor + rmax; 492 G4double rext = rtor + rmax; 460 493 461 // Find bounding envelope and calculate exte 494 // Find bounding envelope and calculate extent 462 // 495 // 463 static const G4int NPHI = 24; // number of 496 static const G4int NPHI = 24; // number of steps for whole torus 464 static const G4int NDISK = 16; // number of 497 static const G4int NDISK = 16; // number of steps for disk 465 static const G4double sinHalfDisk = std::sin 498 static const G4double sinHalfDisk = std::sin(pi/NDISK); 466 static const G4double cosHalfDisk = std::cos 499 static const G4double cosHalfDisk = std::cos(pi/NDISK); 467 static const G4double sinStepDisk = 2.*sinHa 500 static const G4double sinStepDisk = 2.*sinHalfDisk*cosHalfDisk; 468 static const G4double cosStepDisk = 1. - 2.* 501 static const G4double cosStepDisk = 1. - 2.*sinHalfDisk*sinHalfDisk; 469 502 470 G4double astep = (360/NPHI)*deg; // max angl 503 G4double astep = (360/NPHI)*deg; // max angle for one slice in phi 471 G4int kphi = (dphi <= astep) ? 1 : (G4in 504 G4int kphi = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1; 472 G4double ang = dphi/kphi; 505 G4double ang = dphi/kphi; 473 506 474 G4double sinHalf = std::sin(0.5*ang); 507 G4double sinHalf = std::sin(0.5*ang); 475 G4double cosHalf = std::cos(0.5*ang); 508 G4double cosHalf = std::cos(0.5*ang); 476 G4double sinStep = 2.*sinHalf*cosHalf; 509 G4double sinStep = 2.*sinHalf*cosHalf; 477 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 510 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 478 511 479 // define vectors for bounding envelope 512 // define vectors for bounding envelope 480 G4ThreeVectorList pols[NDISK+1]; 513 G4ThreeVectorList pols[NDISK+1]; 481 for (auto & pol : pols) pol.resize(4); << 514 for (G4int k=0; k<NDISK+1; ++k) pols[k].resize(4); 482 515 483 std::vector<const G4ThreeVectorList *> polyg 516 std::vector<const G4ThreeVectorList *> polygons; 484 polygons.resize(NDISK+1); 517 polygons.resize(NDISK+1); 485 for (G4int k=0; k<NDISK+1; ++k) polygons[k] 518 for (G4int k=0; k<NDISK+1; ++k) polygons[k] = &pols[k]; 486 519 487 // set internal and external reference circl 520 // set internal and external reference circles 488 G4TwoVector rzmin[NDISK]; 521 G4TwoVector rzmin[NDISK]; 489 G4TwoVector rzmax[NDISK]; 522 G4TwoVector rzmax[NDISK]; 490 523 491 if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+ 524 if ((rtor-rmin*sinHalfDisk)/cosHalf > (rtor+rmin*sinHalfDisk)) rmin = 0; 492 rmax /= cosHalfDisk; 525 rmax /= cosHalfDisk; 493 G4double sinCurDisk = sinHalfDisk; 526 G4double sinCurDisk = sinHalfDisk; 494 G4double cosCurDisk = cosHalfDisk; 527 G4double cosCurDisk = cosHalfDisk; 495 for (G4int k=0; k<NDISK; ++k) 528 for (G4int k=0; k<NDISK; ++k) 496 { 529 { 497 G4double rmincur = rtor + rmin*cosCurDisk; 530 G4double rmincur = rtor + rmin*cosCurDisk; 498 if (cosCurDisk < 0 && rmin > 0) rmincur /= 531 if (cosCurDisk < 0 && rmin > 0) rmincur /= cosHalf; 499 rzmin[k].set(rmincur,rmin*sinCurDisk); 532 rzmin[k].set(rmincur,rmin*sinCurDisk); 500 533 501 G4double rmaxcur = rtor + rmax*cosCurDisk; 534 G4double rmaxcur = rtor + rmax*cosCurDisk; 502 if (cosCurDisk > 0) rmaxcur /= cosHalf; 535 if (cosCurDisk > 0) rmaxcur /= cosHalf; 503 rzmax[k].set(rmaxcur,rmax*sinCurDisk); 536 rzmax[k].set(rmaxcur,rmax*sinCurDisk); 504 537 505 G4double sinTmpDisk = sinCurDisk; 538 G4double sinTmpDisk = sinCurDisk; 506 sinCurDisk = sinCurDisk*cosStepDisk + cosC 539 sinCurDisk = sinCurDisk*cosStepDisk + cosCurDisk*sinStepDisk; 507 cosCurDisk = cosCurDisk*cosStepDisk - sinT 540 cosCurDisk = cosCurDisk*cosStepDisk - sinTmpDisk*sinStepDisk; 508 } 541 } 509 542 510 // Loop along slices in Phi. The extent is c 543 // Loop along slices in Phi. The extent is calculated as cumulative 511 // extent of the slices 544 // extent of the slices 512 pMin = kInfinity; 545 pMin = kInfinity; 513 pMax = -kInfinity; 546 pMax = -kInfinity; 514 G4double eminlim = pVoxelLimit.GetMinExtent( 547 G4double eminlim = pVoxelLimit.GetMinExtent(pAxis); 515 G4double emaxlim = pVoxelLimit.GetMaxExtent( 548 G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis); 516 G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = 549 G4double sinCur1 = 0, cosCur1 = 0, sinCur2 = 0, cosCur2 = 0; 517 for (G4int i=0; i<kphi+1; ++i) 550 for (G4int i=0; i<kphi+1; ++i) 518 { 551 { 519 if (i == 0) 552 if (i == 0) 520 { 553 { 521 sinCur1 = sinStart; 554 sinCur1 = sinStart; 522 cosCur1 = cosStart; 555 cosCur1 = cosStart; 523 sinCur2 = sinCur1*cosHalf + cosCur1*sinH 556 sinCur2 = sinCur1*cosHalf + cosCur1*sinHalf; 524 cosCur2 = cosCur1*cosHalf - sinCur1*sinH 557 cosCur2 = cosCur1*cosHalf - sinCur1*sinHalf; 525 } 558 } 526 else 559 else 527 { 560 { 528 sinCur1 = sinCur2; 561 sinCur1 = sinCur2; 529 cosCur1 = cosCur2; 562 cosCur1 = cosCur2; 530 sinCur2 = (i == kphi) ? sinEnd : sinCur1 563 sinCur2 = (i == kphi) ? sinEnd : sinCur1*cosStep + cosCur1*sinStep; 531 cosCur2 = (i == kphi) ? cosEnd : cosCur1 564 cosCur2 = (i == kphi) ? cosEnd : cosCur1*cosStep - sinCur1*sinStep; 532 } 565 } 533 for (G4int k=0; k<NDISK; ++k) 566 for (G4int k=0; k<NDISK; ++k) 534 { 567 { 535 G4double r1 = rzmin[k].x(), r2 = rzmax[k 568 G4double r1 = rzmin[k].x(), r2 = rzmax[k].x(); 536 G4double z1 = rzmin[k].y(), z2 = rzmax[k 569 G4double z1 = rzmin[k].y(), z2 = rzmax[k].y(); 537 pols[k][0].set(r1*cosCur1,r1*sinCur1,z1) 570 pols[k][0].set(r1*cosCur1,r1*sinCur1,z1); 538 pols[k][1].set(r2*cosCur1,r2*sinCur1,z2) 571 pols[k][1].set(r2*cosCur1,r2*sinCur1,z2); 539 pols[k][2].set(r2*cosCur2,r2*sinCur2,z2) 572 pols[k][2].set(r2*cosCur2,r2*sinCur2,z2); 540 pols[k][3].set(r1*cosCur2,r1*sinCur2,z1) 573 pols[k][3].set(r1*cosCur2,r1*sinCur2,z1); 541 } 574 } 542 pols[NDISK] = pols[0]; 575 pols[NDISK] = pols[0]; 543 576 544 // get bounding box of current slice 577 // get bounding box of current slice 545 G4TwoVector vmin,vmax; 578 G4TwoVector vmin,vmax; 546 G4GeomTools:: 579 G4GeomTools:: 547 DiskExtent(rint,rext,sinCur1,cosCur1,sin 580 DiskExtent(rint,rext,sinCur1,cosCur1,sinCur2,cosCur2,vmin,vmax); 548 bmin.setX(vmin.x()); bmin.setY(vmin.y()); 581 bmin.setX(vmin.x()); bmin.setY(vmin.y()); 549 bmax.setX(vmax.x()); bmax.setY(vmax.y()); 582 bmax.setX(vmax.x()); bmax.setY(vmax.y()); 550 583 551 // set bounding envelope for current slice 584 // set bounding envelope for current slice and adjust extent 552 G4double emin,emax; 585 G4double emin,emax; 553 G4BoundingEnvelope benv(bmin,bmax,polygons 586 G4BoundingEnvelope benv(bmin,bmax,polygons); 554 if (!benv.CalculateExtent(pAxis,pVoxelLimi 587 if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue; 555 if (emin < pMin) pMin = emin; 588 if (emin < pMin) pMin = emin; 556 if (emax > pMax) pMax = emax; 589 if (emax > pMax) pMax = emax; 557 if (eminlim > pMin && emaxlim < pMax) brea 590 if (eminlim > pMin && emaxlim < pMax) break; // max possible extent 558 } 591 } 559 return (pMin < pMax); 592 return (pMin < pMax); 560 } 593 } 561 594 562 ////////////////////////////////////////////// 595 ////////////////////////////////////////////////////////////////////////////// 563 // 596 // 564 // Return whether point inside/outside/on surf 597 // Return whether point inside/outside/on surface 565 598 566 EInside G4Torus::Inside( const G4ThreeVector& 599 EInside G4Torus::Inside( const G4ThreeVector& p ) const 567 { 600 { 568 G4double r, pt2, pPhi, tolRMin, tolRMax ; 601 G4double r, pt2, pPhi, tolRMin, tolRMax ; 569 602 570 EInside in = kOutside ; 603 EInside in = kOutside ; 571 604 572 // General precals 605 // General precals 573 // 606 // 574 r = std::hypot(p.x(),p.y()); 607 r = std::hypot(p.x(),p.y()); 575 pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor); 608 pt2 = p.z()*p.z() + (r-fRtor)*(r-fRtor); 576 609 577 if (fRmin != 0.0) tolRMin = fRmin + fRminTol << 610 if (fRmin) tolRMin = fRmin + fRminTolerance ; 578 else tolRMin = 0 ; 611 else tolRMin = 0 ; 579 612 580 tolRMax = fRmax - fRmaxTolerance; 613 tolRMax = fRmax - fRmaxTolerance; 581 614 582 if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax 615 if (pt2 >= tolRMin*tolRMin && pt2 <= tolRMax*tolRMax ) 583 { 616 { 584 if ( fDPhi == twopi || pt2 == 0 ) // on t 617 if ( fDPhi == twopi || pt2 == 0 ) // on torus swept axis 585 { 618 { 586 in = kInside ; 619 in = kInside ; 587 } 620 } 588 else 621 else 589 { 622 { 590 // Try inner tolerant phi boundaries (=> 623 // Try inner tolerant phi boundaries (=>inside) 591 // if not inside, try outer tolerant phi 624 // if not inside, try outer tolerant phi boundaries 592 625 593 pPhi = std::atan2(p.y(),p.x()) ; 626 pPhi = std::atan2(p.y(),p.x()) ; 594 627 595 if ( pPhi < -halfAngTolerance ) { pPhi 628 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi 596 if ( fSPhi >= 0 ) 629 if ( fSPhi >= 0 ) 597 { 630 { 598 if ( (std::fabs(pPhi) < halfAngToleran 631 if ( (std::fabs(pPhi) < halfAngTolerance) 599 && (std::fabs(fSPhi + fDPhi - twop 632 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 600 { 633 { 601 pPhi += twopi ; // 0 <= pPhi < 2pi 634 pPhi += twopi ; // 0 <= pPhi < 2pi 602 } 635 } 603 if ( (pPhi >= fSPhi + halfAngTolerance 636 if ( (pPhi >= fSPhi + halfAngTolerance) 604 && (pPhi <= fSPhi + fDPhi - halfAn 637 && (pPhi <= fSPhi + fDPhi - halfAngTolerance) ) 605 { 638 { 606 in = kInside ; 639 in = kInside ; 607 } 640 } 608 else if ( (pPhi >= fSPhi - halfAngTo 641 else if ( (pPhi >= fSPhi - halfAngTolerance) 609 && (pPhi <= fSPhi + fDPhi + h 642 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 610 { 643 { 611 in = kSurface ; 644 in = kSurface ; 612 } 645 } 613 } 646 } 614 else // fSPhi < 0 647 else // fSPhi < 0 615 { 648 { 616 if ( (pPhi <= fSPhi + twopi - halfAn 649 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 617 && (pPhi >= fSPhi + fDPhi + halfA 650 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 618 else 651 else 619 { 652 { 620 in = kSurface ; 653 in = kSurface ; 621 } 654 } 622 } 655 } 623 } 656 } 624 } 657 } 625 else // Try generous boundaries 658 else // Try generous boundaries 626 { 659 { 627 tolRMin = fRmin - fRminTolerance ; 660 tolRMin = fRmin - fRminTolerance ; 628 tolRMax = fRmax + fRmaxTolerance ; 661 tolRMax = fRmax + fRmaxTolerance ; 629 662 630 if (tolRMin < 0 ) { tolRMin = 0 ; } 663 if (tolRMin < 0 ) { tolRMin = 0 ; } 631 664 632 if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= t 665 if ( (pt2 >= tolRMin*tolRMin) && (pt2 <= tolRMax*tolRMax) ) 633 { 666 { 634 if ( (fDPhi == twopi) || (pt2 == 0) ) // 667 if ( (fDPhi == twopi) || (pt2 == 0) ) // Continuous in phi or on z-axis 635 { 668 { 636 in = kSurface ; 669 in = kSurface ; 637 } 670 } 638 else // Try outer tolerant phi boundarie 671 else // Try outer tolerant phi boundaries only 639 { 672 { 640 pPhi = std::atan2(p.y(),p.x()) ; 673 pPhi = std::atan2(p.y(),p.x()) ; 641 674 642 if ( pPhi < -halfAngTolerance ) { pPh 675 if ( pPhi < -halfAngTolerance ) { pPhi += twopi ; } // 0<=pPhi<2pi 643 if ( fSPhi >= 0 ) 676 if ( fSPhi >= 0 ) 644 { 677 { 645 if ( (std::fabs(pPhi) < halfAngToler 678 if ( (std::fabs(pPhi) < halfAngTolerance) 646 && (std::fabs(fSPhi + fDPhi - twop 679 && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) ) 647 { 680 { 648 pPhi += twopi ; // 0 <= pPhi < 2pi 681 pPhi += twopi ; // 0 <= pPhi < 2pi 649 } 682 } 650 if ( (pPhi >= fSPhi - halfAngToleran 683 if ( (pPhi >= fSPhi - halfAngTolerance) 651 && (pPhi <= fSPhi + fDPhi + halfAn 684 && (pPhi <= fSPhi + fDPhi + halfAngTolerance) ) 652 { 685 { 653 in = kSurface; 686 in = kSurface; 654 } 687 } 655 } 688 } 656 else // fSPhi < 0 689 else // fSPhi < 0 657 { 690 { 658 if ( (pPhi <= fSPhi + twopi - halfAn 691 if ( (pPhi <= fSPhi + twopi - halfAngTolerance) 659 && (pPhi >= fSPhi + fDPhi + halfA 692 && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} 660 else 693 else 661 { 694 { 662 in = kSurface ; 695 in = kSurface ; 663 } 696 } 664 } 697 } 665 } 698 } 666 } 699 } 667 } 700 } 668 return in ; 701 return in ; 669 } 702 } 670 703 671 ////////////////////////////////////////////// 704 ///////////////////////////////////////////////////////////////////////////// 672 // 705 // 673 // Return unit normal of surface closest to p 706 // Return unit normal of surface closest to p 674 // - note if point on z axis, ignore phi divid 707 // - note if point on z axis, ignore phi divided sides 675 // - unsafe if point close to z axis a rmin=0 708 // - unsafe if point close to z axis a rmin=0 - no explicit checks 676 709 677 G4ThreeVector G4Torus::SurfaceNormal( const G4 710 G4ThreeVector G4Torus::SurfaceNormal( const G4ThreeVector& p ) const 678 { 711 { 679 G4int noSurfaces = 0; 712 G4int noSurfaces = 0; 680 G4double rho, pt, pPhi; 713 G4double rho, pt, pPhi; 681 G4double distRMin = kInfinity; 714 G4double distRMin = kInfinity; 682 G4double distSPhi = kInfinity, distEPhi = kI 715 G4double distSPhi = kInfinity, distEPhi = kInfinity; 683 716 684 // To cope with precision loss 717 // To cope with precision loss 685 // 718 // 686 const G4double delta = std::max(10.0*kCarTol 719 const G4double delta = std::max(10.0*kCarTolerance, 687 1.0e-8*(fRto 720 1.0e-8*(fRtor+fRmax)); 688 const G4double dAngle = 10.0*kAngTolerance; 721 const G4double dAngle = 10.0*kAngTolerance; 689 722 690 G4ThreeVector nR, nPs, nPe; 723 G4ThreeVector nR, nPs, nPe; 691 G4ThreeVector norm, sumnorm(0.,0.,0.); 724 G4ThreeVector norm, sumnorm(0.,0.,0.); 692 725 693 rho = std::hypot(p.x(),p.y()); 726 rho = std::hypot(p.x(),p.y()); 694 pt = std::hypot(p.z(),rho-fRtor); 727 pt = std::hypot(p.z(),rho-fRtor); 695 728 696 G4double distRMax = std::fabs(pt - fRmax); 729 G4double distRMax = std::fabs(pt - fRmax); 697 if(fRmin != 0.0) distRMin = std::fabs(pt - f << 730 if(fRmin) distRMin = std::fabs(pt - fRmin); 698 731 699 if( rho > delta && pt != 0.0 ) 732 if( rho > delta && pt != 0.0 ) 700 { 733 { 701 G4double redFactor= (rho-fRtor)/rho; 734 G4double redFactor= (rho-fRtor)/rho; 702 nR = G4ThreeVector( p.x()*redFactor, // p 735 nR = G4ThreeVector( p.x()*redFactor, // p.x()*(1.-fRtor/rho), 703 p.y()*redFactor, // p 736 p.y()*redFactor, // p.y()*(1.-fRtor/rho), 704 p.z() ); 737 p.z() ); 705 nR *= 1.0/pt; 738 nR *= 1.0/pt; 706 } 739 } 707 740 708 if ( fDPhi < twopi ) // && rho ) // old limi 741 if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z) 709 { 742 { 710 if ( rho != 0.0 ) << 743 if ( rho ) 711 { 744 { 712 pPhi = std::atan2(p.y(),p.x()); 745 pPhi = std::atan2(p.y(),p.x()); 713 746 714 if(pPhi < fSPhi-delta) { pPhi 747 if(pPhi < fSPhi-delta) { pPhi += twopi; } 715 else if(pPhi > fSPhi+fDPhi+delta) { pPhi 748 else if(pPhi > fSPhi+fDPhi+delta) { pPhi -= twopi; } 716 749 717 distSPhi = std::fabs( pPhi - fSPhi ); 750 distSPhi = std::fabs( pPhi - fSPhi ); 718 distEPhi = std::fabs(pPhi-fSPhi-fDPhi); 751 distEPhi = std::fabs(pPhi-fSPhi-fDPhi); 719 } 752 } 720 nPs = G4ThreeVector(std::sin(fSPhi),-std:: 753 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 721 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi) 754 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 722 } 755 } 723 if( distRMax <= delta ) 756 if( distRMax <= delta ) 724 { 757 { 725 ++noSurfaces; << 758 noSurfaces ++; 726 sumnorm += nR; 759 sumnorm += nR; 727 } 760 } 728 else if( (fRmin != 0.0) && (distRMin <= delt << 761 else if( fRmin && (distRMin <= delta) ) // Must not be on both Outer and Inner 729 { 762 { 730 ++noSurfaces; << 763 noSurfaces ++; 731 sumnorm -= nR; 764 sumnorm -= nR; 732 } 765 } 733 766 734 // To be on one of the 'phi' surfaces, 767 // To be on one of the 'phi' surfaces, 735 // it must be within the 'tube' - with tole 768 // it must be within the 'tube' - with tolerance 736 769 737 if( (fDPhi < twopi) && (fRmin-delta <= pt) & 770 if( (fDPhi < twopi) && (fRmin-delta <= pt) && (pt <= (fRmax+delta)) ) 738 { 771 { 739 if (distSPhi <= dAngle) 772 if (distSPhi <= dAngle) 740 { 773 { 741 ++noSurfaces; << 774 noSurfaces ++; 742 sumnorm += nPs; 775 sumnorm += nPs; 743 } 776 } 744 if (distEPhi <= dAngle) 777 if (distEPhi <= dAngle) 745 { 778 { 746 ++noSurfaces; << 779 noSurfaces ++; 747 sumnorm += nPe; 780 sumnorm += nPe; 748 } 781 } 749 } 782 } 750 if ( noSurfaces == 0 ) 783 if ( noSurfaces == 0 ) 751 { 784 { 752 #ifdef G4CSGDEBUG 785 #ifdef G4CSGDEBUG 753 G4ExceptionDescription ed; 786 G4ExceptionDescription ed; 754 ed.precision(16); 787 ed.precision(16); 755 788 756 EInside inIt= Inside( p ); 789 EInside inIt= Inside( p ); 757 790 758 if( inIt != kSurface ) 791 if( inIt != kSurface ) 759 { 792 { 760 ed << " ERROR> Surface Normal was cal 793 ed << " ERROR> Surface Normal was called for Torus," 761 << " with point not on surface." << 794 << " with point not on surface." << G4endl; 762 } 795 } 763 else 796 else 764 { 797 { 765 ed << " ERROR> Surface Normal has not 798 ed << " ERROR> Surface Normal has not found a surface, " 766 << " despite the point being on the 799 << " despite the point being on the surface. " <<G4endl; 767 } 800 } 768 801 769 if( inIt != kInside) 802 if( inIt != kInside) 770 { 803 { 771 ed << " Safety (Dist To In) = " << D 804 ed << " Safety (Dist To In) = " << DistanceToIn(p) << G4endl; 772 } 805 } 773 if( inIt != kOutside) 806 if( inIt != kOutside) 774 { 807 { 775 ed << " Safety (Dist to Out) = " << D 808 ed << " Safety (Dist to Out) = " << DistanceToOut(p) << G4endl; 776 } 809 } 777 ed << " Coordinates of point : " << p << 810 ed << " Coordinates of point : " << p << G4endl; 778 ed << " Parameters of solid : " << G4end 811 ed << " Parameters of solid : " << G4endl << *this << G4endl; 779 812 780 if( inIt == kSurface ) 813 if( inIt == kSurface ) 781 { 814 { 782 G4Exception("G4Torus::SurfaceNormal(p) 815 G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002", 783 JustWarning, ed, 816 JustWarning, ed, 784 "Failing to find normal, e 817 "Failing to find normal, even though point is on surface!"); 785 } 818 } 786 else 819 else 787 { 820 { 788 static const char* NameInside[3]= { "I 821 static const char* NameInside[3]= { "Inside", "Surface", "Outside" }; 789 ed << " The point is " << NameInside[ 822 ed << " The point is " << NameInside[inIt] << " the solid. "<< G4endl; 790 G4Exception("G4Torus::SurfaceNormal(p) 823 G4Exception("G4Torus::SurfaceNormal(p)", "GeomSolids1002", 791 JustWarning, ed, "Point p 824 JustWarning, ed, "Point p is not on surface !?" ); 792 } 825 } 793 #endif 826 #endif 794 norm = ApproxSurfaceNormal(p); 827 norm = ApproxSurfaceNormal(p); 795 } 828 } 796 else if ( noSurfaces == 1 ) { norm = sumnor 829 else if ( noSurfaces == 1 ) { norm = sumnorm; } 797 else { norm = sumnor 830 else { norm = sumnorm.unit(); } 798 831 799 return norm ; 832 return norm ; 800 } 833 } 801 834 802 ////////////////////////////////////////////// 835 ////////////////////////////////////////////////////////////////////////////// 803 // 836 // 804 // Algorithm for SurfaceNormal() following the 837 // Algorithm for SurfaceNormal() following the original specification 805 // for points not on the surface 838 // for points not on the surface 806 839 807 G4ThreeVector G4Torus::ApproxSurfaceNormal( co 840 G4ThreeVector G4Torus::ApproxSurfaceNormal( const G4ThreeVector& p ) const 808 { 841 { 809 ENorm side ; 842 ENorm side ; 810 G4ThreeVector norm; 843 G4ThreeVector norm; 811 G4double rho,pt,phi; 844 G4double rho,pt,phi; 812 G4double distRMin,distRMax,distSPhi,distEPhi 845 G4double distRMin,distRMax,distSPhi,distEPhi,distMin; 813 846 814 rho = std::hypot(p.x(),p.y()); 847 rho = std::hypot(p.x(),p.y()); 815 pt = std::hypot(p.z(),rho-fRtor); 848 pt = std::hypot(p.z(),rho-fRtor); 816 849 817 #ifdef G4CSGDEBUG 850 #ifdef G4CSGDEBUG 818 G4cout << " G4Torus::ApproximateSurfaceNorma 851 G4cout << " G4Torus::ApproximateSurfaceNormal called for point " << p 819 << G4endl; 852 << G4endl; 820 #endif 853 #endif 821 854 822 distRMax = std::fabs(pt - fRmax) ; 855 distRMax = std::fabs(pt - fRmax) ; 823 856 824 if(fRmin != 0.0) // First minimum radius << 857 if(fRmin) // First minimum radius 825 { 858 { 826 distRMin = std::fabs(pt - fRmin) ; 859 distRMin = std::fabs(pt - fRmin) ; 827 860 828 if (distRMin < distRMax) 861 if (distRMin < distRMax) 829 { 862 { 830 distMin = distRMin ; 863 distMin = distRMin ; 831 side = kNRMin ; 864 side = kNRMin ; 832 } 865 } 833 else 866 else 834 { 867 { 835 distMin = distRMax ; 868 distMin = distRMax ; 836 side = kNRMax ; 869 side = kNRMax ; 837 } 870 } 838 } 871 } 839 else 872 else 840 { 873 { 841 distMin = distRMax ; 874 distMin = distRMax ; 842 side = kNRMax ; 875 side = kNRMax ; 843 } 876 } 844 if ( (fDPhi < twopi) && (rho != 0.0) ) << 877 if ( (fDPhi < twopi) && rho ) 845 { 878 { 846 phi = std::atan2(p.y(),p.x()) ; // Protect 879 phi = std::atan2(p.y(),p.x()) ; // Protected against (0,0,z) (above rho!=0) 847 880 848 if (phi < 0) { phi += twopi ; } 881 if (phi < 0) { phi += twopi ; } 849 882 850 if (fSPhi < 0 ) { distSPhi = std::fabs(ph 883 if (fSPhi < 0 ) { distSPhi = std::fabs(phi-(fSPhi+twopi))*rho ; } 851 else { distSPhi = std::fabs(ph 884 else { distSPhi = std::fabs(phi-fSPhi)*rho ; } 852 885 853 distEPhi = std::fabs(phi - fSPhi - fDPhi)* 886 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 854 887 855 if (distSPhi < distEPhi) // Find new minim 888 if (distSPhi < distEPhi) // Find new minimum 856 { 889 { 857 if (distSPhi<distMin) side = kNSPhi ; 890 if (distSPhi<distMin) side = kNSPhi ; 858 } 891 } 859 else 892 else 860 { 893 { 861 if (distEPhi < distMin) { side = kNEPhi 894 if (distEPhi < distMin) { side = kNEPhi ; } 862 } 895 } 863 } 896 } 864 switch (side) 897 switch (side) 865 { 898 { 866 case kNRMin: // Inner radius 899 case kNRMin: // Inner radius 867 norm = G4ThreeVector( -p.x()*(1-fRtor/rh 900 norm = G4ThreeVector( -p.x()*(1-fRtor/rho)/pt, 868 -p.y()*(1-fRtor/rh 901 -p.y()*(1-fRtor/rho)/pt, 869 -p.z()/pt 902 -p.z()/pt ) ; 870 break ; 903 break ; 871 case kNRMax: // Outer radius 904 case kNRMax: // Outer radius 872 norm = G4ThreeVector( p.x()*(1-fRtor/rho 905 norm = G4ThreeVector( p.x()*(1-fRtor/rho)/pt, 873 p.y()*(1-fRtor/rho 906 p.y()*(1-fRtor/rho)/pt, 874 p.z()/pt 907 p.z()/pt ) ; 875 break; 908 break; 876 case kNSPhi: 909 case kNSPhi: 877 norm = G4ThreeVector(std::sin(fSPhi),-st 910 norm = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0) ; 878 break; 911 break; 879 case kNEPhi: 912 case kNEPhi: 880 norm = G4ThreeVector(-std::sin(fSPhi+fDP 913 norm = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0) ; 881 break; 914 break; 882 default: // Should never reach th 915 default: // Should never reach this case ... 883 DumpInfo(); 916 DumpInfo(); 884 G4Exception("G4Torus::ApproxSurfaceNorma 917 G4Exception("G4Torus::ApproxSurfaceNormal()", 885 "GeomSolids1002", JustWarnin 918 "GeomSolids1002", JustWarning, 886 "Undefined side for valid su 919 "Undefined side for valid surface normal to solid."); 887 break ; 920 break ; 888 } 921 } 889 return norm ; 922 return norm ; 890 } 923 } 891 924 892 ////////////////////////////////////////////// 925 /////////////////////////////////////////////////////////////////////// 893 // 926 // 894 // Calculate distance to shape from outside, a 927 // Calculate distance to shape from outside, along normalised vector 895 // - return kInfinity if no intersection, or i 928 // - return kInfinity if no intersection, or intersection distance <= tolerance 896 // 929 // 897 // - Compute the intersection with the z plane 930 // - Compute the intersection with the z planes 898 // - if at valid r, phi, return 931 // - if at valid r, phi, return 899 // 932 // 900 // -> If point is outer outer radius, compute 933 // -> If point is outer outer radius, compute intersection with rmax 901 // - if at valid phi,z return 934 // - if at valid phi,z return 902 // 935 // 903 // -> Compute intersection with inner radius, 936 // -> Compute intersection with inner radius, taking largest +ve root 904 // - if valid (phi), save intersction 937 // - if valid (phi), save intersction 905 // 938 // 906 // -> If phi segmented, compute intersectio 939 // -> If phi segmented, compute intersections with phi half planes 907 // - return smallest of valid phi inter 940 // - return smallest of valid phi intersections and 908 // inner radius intersection 941 // inner radius intersection 909 // 942 // 910 // NOTE: 943 // NOTE: 911 // - Precalculations for phi trigonometry are 944 // - Precalculations for phi trigonometry are Done `just in time' 912 // - `if valid' implies tolerant checking of i 945 // - `if valid' implies tolerant checking of intersection points 913 946 914 G4double G4Torus::DistanceToIn( const G4ThreeV 947 G4double G4Torus::DistanceToIn( const G4ThreeVector& p, 915 const G4ThreeV 948 const G4ThreeVector& v ) const 916 { 949 { 917 // Get bounding box of full torus << 918 // << 919 G4double boxDx = fRtor + fRmax; << 920 G4double boxDy = boxDx; << 921 G4double boxDz = fRmax; << 922 G4double boxMax = boxDx; << 923 G4double boxMin = boxDz; << 924 950 925 // Check if point is traveling away << 926 // << 927 G4double distX = std::abs(p.x()) - boxDx; << 928 G4double distY = std::abs(p.y()) - boxDy; << 929 G4double distZ = std::abs(p.z()) - boxDz; << 930 if (distX >= -halfCarTolerance && p.x()*v.x( << 931 if (distY >= -halfCarTolerance && p.y()*v.y( << 932 if (distZ >= -halfCarTolerance && p.z()*v.z( << 933 << 934 // Calculate safety distance to bounding box << 935 // If point is too far, move it closer and c << 936 // << 937 G4double Dmax = 32*boxMax; << 938 G4double safe = std::max(std::max(distX,dist << 939 if (safe > Dmax) << 940 { << 941 G4double dist = safe - 1.e-8*safe - boxMin << 942 dist += DistanceToIn(p + dist*v, v); << 943 return (dist >= kInfinity) ? kInfinity : d << 944 } << 945 << 946 // Find intersection with torus << 947 // << 948 G4double snxt=kInfinity, sphi=kInfinity; // 951 G4double snxt=kInfinity, sphi=kInfinity; // snxt = default return value 949 952 950 G4double sd[4] ; 953 G4double sd[4] ; 951 954 952 // Precalculated trig for phi intersections 955 // Precalculated trig for phi intersections - used by r,z intersections to 953 // 956 // check validity 954 957 955 G4bool seg; // true if segmented 958 G4bool seg; // true if segmented 956 G4double hDPhi; // half dphi 959 G4double hDPhi; // half dphi 957 G4double cPhi,sinCPhi=0.,cosCPhi=0.; // cen 960 G4double cPhi,sinCPhi=0.,cosCPhi=0.; // central phi 958 961 959 G4double tolORMin2; // `generous' radii squ 962 G4double tolORMin2; // `generous' radii squared 960 G4double tolORMax2; 963 G4double tolORMax2; 961 964 962 G4double Dist,xi,yi,zi,rhoi,it2; // Intersec 965 G4double Dist,xi,yi,zi,rhoi,it2; // Intersection point variables 963 966 964 G4double Comp; 967 G4double Comp; 965 G4double cosSPhi,sinSPhi; // Trig for 968 G4double cosSPhi,sinSPhi; // Trig for phi start intersect 966 G4double ePhi,cosEPhi,sinEPhi; // for phi e 969 G4double ePhi,cosEPhi,sinEPhi; // for phi end intersect 967 970 968 // Set phi divided flag and precalcs 971 // Set phi divided flag and precalcs 969 // 972 // 970 if ( fDPhi < twopi ) 973 if ( fDPhi < twopi ) 971 { 974 { 972 seg = true ; 975 seg = true ; 973 hDPhi = 0.5*fDPhi ; // half delta 976 hDPhi = 0.5*fDPhi ; // half delta phi 974 cPhi = fSPhi + hDPhi ; 977 cPhi = fSPhi + hDPhi ; 975 sinCPhi = std::sin(cPhi) ; 978 sinCPhi = std::sin(cPhi) ; 976 cosCPhi = std::cos(cPhi) ; 979 cosCPhi = std::cos(cPhi) ; 977 } 980 } 978 else 981 else 979 { 982 { 980 seg = false ; 983 seg = false ; 981 } 984 } 982 985 983 if (fRmin > fRminTolerance) // Calculate tol 986 if (fRmin > fRminTolerance) // Calculate tolerant rmin and rmax 984 { 987 { 985 tolORMin2 = (fRmin - fRminTolerance)*(fRmi 988 tolORMin2 = (fRmin - fRminTolerance)*(fRmin - fRminTolerance) ; 986 } 989 } 987 else 990 else 988 { 991 { 989 tolORMin2 = 0 ; 992 tolORMin2 = 0 ; 990 } 993 } 991 tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax 994 tolORMax2 = (fRmax + fRmaxTolerance)*(fRmax + fRmaxTolerance) ; 992 995 993 // Intersection with Rmax (possible return) 996 // Intersection with Rmax (possible return) and Rmin (must also check phi) 994 997 995 snxt = SolveNumericJT(p,v,fRmax,true); 998 snxt = SolveNumericJT(p,v,fRmax,true); 996 999 997 if (fRmin != 0.0) // Possible Rmin intersec << 1000 if (fRmin) // Possible Rmin intersection 998 { 1001 { 999 sd[0] = SolveNumericJT(p,v,fRmin,true); 1002 sd[0] = SolveNumericJT(p,v,fRmin,true); 1000 if ( sd[0] < snxt ) { snxt = sd[0] ; } 1003 if ( sd[0] < snxt ) { snxt = sd[0] ; } 1001 } 1004 } 1002 1005 1003 // 1006 // 1004 // Phi segment intersection 1007 // Phi segment intersection 1005 // 1008 // 1006 // o Tolerant of points inside phi planes b 1009 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1007 // 1010 // 1008 // o NOTE: Large duplication of code betwee 1011 // o NOTE: Large duplication of code between sphi & ephi checks 1009 // -> only diffs: sphi -> ephi, Com 1012 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1010 // intersection check <=0 -> >=0 1013 // intersection check <=0 -> >=0 1011 // -> use some form of loop Constru 1014 // -> use some form of loop Construct ? 1012 1015 1013 if (seg) 1016 if (seg) 1014 { 1017 { 1015 sinSPhi = std::sin(fSPhi) ; // First phi 1018 sinSPhi = std::sin(fSPhi) ; // First phi surface ('S'tarting phi) 1016 cosSPhi = std::cos(fSPhi) ; 1019 cosSPhi = std::cos(fSPhi) ; 1017 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1020 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; // Component in outwards 1018 1021 // normal direction 1019 if (Comp < 0 ) 1022 if (Comp < 0 ) 1020 { 1023 { 1021 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) 1024 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1022 1025 1023 if (Dist < halfCarTolerance) 1026 if (Dist < halfCarTolerance) 1024 { 1027 { 1025 sphi = Dist/Comp ; 1028 sphi = Dist/Comp ; 1026 if (sphi < snxt) 1029 if (sphi < snxt) 1027 { 1030 { 1028 if ( sphi < 0 ) { sphi = 0 ; } 1031 if ( sphi < 0 ) { sphi = 0 ; } 1029 1032 1030 xi = p.x() + sphi*v.x() ; 1033 xi = p.x() + sphi*v.x() ; 1031 yi = p.y() + sphi*v.y() ; 1034 yi = p.y() + sphi*v.y() ; 1032 zi = p.z() + sphi*v.z() ; 1035 zi = p.z() + sphi*v.z() ; 1033 rhoi = std::hypot(xi,yi); 1036 rhoi = std::hypot(xi,yi); 1034 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR 1037 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor); 1035 1038 1036 if ( it2 >= tolORMin2 && it2 <= tol 1039 if ( it2 >= tolORMin2 && it2 <= tolORMax2 ) 1037 { 1040 { 1038 // r intersection is good - check 1041 // r intersection is good - check intersecting 1039 // with correct half-plane 1042 // with correct half-plane 1040 // 1043 // 1041 if ((yi*cosCPhi-xi*sinCPhi)<=0) 1044 if ((yi*cosCPhi-xi*sinCPhi)<=0) { snxt=sphi; } 1042 } 1045 } 1043 } 1046 } 1044 } 1047 } 1045 } 1048 } 1046 ePhi=fSPhi+fDPhi; // Second phi surfac 1049 ePhi=fSPhi+fDPhi; // Second phi surface ('E'nding phi) 1047 sinEPhi=std::sin(ePhi); 1050 sinEPhi=std::sin(ePhi); 1048 cosEPhi=std::cos(ePhi); 1051 cosEPhi=std::cos(ePhi); 1049 Comp=-(v.x()*sinEPhi-v.y()*cosEPhi); 1052 Comp=-(v.x()*sinEPhi-v.y()*cosEPhi); 1050 1053 1051 if ( Comp < 0 ) // Component in outward 1054 if ( Comp < 0 ) // Component in outwards normal dirn 1052 { 1055 { 1053 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) 1056 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1054 1057 1055 if (Dist < halfCarTolerance ) 1058 if (Dist < halfCarTolerance ) 1056 { 1059 { 1057 sphi = Dist/Comp ; 1060 sphi = Dist/Comp ; 1058 1061 1059 if (sphi < snxt ) 1062 if (sphi < snxt ) 1060 { 1063 { 1061 if (sphi < 0 ) { sphi = 0 ; } 1064 if (sphi < 0 ) { sphi = 0 ; } 1062 1065 1063 xi = p.x() + sphi*v.x() ; 1066 xi = p.x() + sphi*v.x() ; 1064 yi = p.y() + sphi*v.y() ; 1067 yi = p.y() + sphi*v.y() ; 1065 zi = p.z() + sphi*v.z() ; 1068 zi = p.z() + sphi*v.z() ; 1066 rhoi = std::hypot(xi,yi); 1069 rhoi = std::hypot(xi,yi); 1067 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fR 1070 it2 = zi*zi + (rhoi-fRtor)*(rhoi-fRtor); 1068 1071 1069 if (it2 >= tolORMin2 && it2 <= tolO 1072 if (it2 >= tolORMin2 && it2 <= tolORMax2) 1070 { 1073 { 1071 // z and r intersections good - c 1074 // z and r intersections good - check intersecting 1072 // with correct half-plane 1075 // with correct half-plane 1073 // 1076 // 1074 if ((yi*cosCPhi-xi*sinCPhi)>=0) 1077 if ((yi*cosCPhi-xi*sinCPhi)>=0) { snxt=sphi; } 1075 } 1078 } 1076 } 1079 } 1077 } 1080 } 1078 } 1081 } 1079 } 1082 } 1080 if(snxt < halfCarTolerance) { snxt = 0.0 ; 1083 if(snxt < halfCarTolerance) { snxt = 0.0 ; } 1081 1084 1082 return snxt ; 1085 return snxt ; 1083 } 1086 } 1084 1087 1085 ///////////////////////////////////////////// 1088 ///////////////////////////////////////////////////////////////////////////// 1086 // 1089 // 1087 // Calculate distance (<= actual) to closest 1090 // Calculate distance (<= actual) to closest surface of shape from outside 1088 // - Calculate distance to z, radial planes 1091 // - Calculate distance to z, radial planes 1089 // - Only to phi planes if outside phi extent 1092 // - Only to phi planes if outside phi extent 1090 // - Return 0 if point inside 1093 // - Return 0 if point inside 1091 1094 1092 G4double G4Torus::DistanceToIn( const G4Three 1095 G4double G4Torus::DistanceToIn( const G4ThreeVector& p ) const 1093 { 1096 { 1094 G4double safe=0.0, safe1, safe2 ; 1097 G4double safe=0.0, safe1, safe2 ; 1095 G4double phiC, cosPhiC, sinPhiC, safePhi, e 1098 G4double phiC, cosPhiC, sinPhiC, safePhi, ePhi, cosPsi ; 1096 G4double rho, pt ; 1099 G4double rho, pt ; 1097 1100 1098 rho = std::hypot(p.x(),p.y()); 1101 rho = std::hypot(p.x(),p.y()); 1099 pt = std::hypot(p.z(),rho-fRtor); 1102 pt = std::hypot(p.z(),rho-fRtor); 1100 safe1 = fRmin - pt ; 1103 safe1 = fRmin - pt ; 1101 safe2 = pt - fRmax ; 1104 safe2 = pt - fRmax ; 1102 1105 1103 if (safe1 > safe2) { safe = safe1; } 1106 if (safe1 > safe2) { safe = safe1; } 1104 else { safe = safe2; } 1107 else { safe = safe2; } 1105 1108 1106 if ( fDPhi < twopi && (rho != 0.0) ) << 1109 if ( fDPhi < twopi && rho ) 1107 { 1110 { 1108 phiC = fSPhi + fDPhi*0.5 ; 1111 phiC = fSPhi + fDPhi*0.5 ; 1109 cosPhiC = std::cos(phiC) ; 1112 cosPhiC = std::cos(phiC) ; 1110 sinPhiC = std::sin(phiC) ; 1113 sinPhiC = std::sin(phiC) ; 1111 cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC) 1114 cosPsi = (p.x()*cosPhiC + p.y()*sinPhiC)/rho ; 1112 1115 1113 if (cosPsi < std::cos(fDPhi*0.5) ) // Psi 1116 if (cosPsi < std::cos(fDPhi*0.5) ) // Psi=angle from central phi to point 1114 { // Poi 1117 { // Point lies outside phi range 1115 if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 1118 if ((p.y()*cosPhiC - p.x()*sinPhiC) <= 0 ) 1116 { 1119 { 1117 safePhi = std::fabs(p.x()*std::sin(fS 1120 safePhi = std::fabs(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1118 } 1121 } 1119 else 1122 else 1120 { 1123 { 1121 ePhi = fSPhi + fDPhi ; 1124 ePhi = fSPhi + fDPhi ; 1122 safePhi = std::fabs(p.x()*std::sin(eP 1125 safePhi = std::fabs(p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1123 } 1126 } 1124 if (safePhi > safe) { safe = safePhi ; 1127 if (safePhi > safe) { safe = safePhi ; } 1125 } 1128 } 1126 } 1129 } 1127 if (safe < 0 ) { safe = 0 ; } 1130 if (safe < 0 ) { safe = 0 ; } 1128 return safe; 1131 return safe; 1129 } 1132 } 1130 1133 1131 ///////////////////////////////////////////// 1134 /////////////////////////////////////////////////////////////////////////// 1132 // 1135 // 1133 // Calculate distance to surface of shape fro 1136 // Calculate distance to surface of shape from `inside', allowing for tolerance 1134 // - Only Calc rmax intersection if no valid 1137 // - Only Calc rmax intersection if no valid rmin intersection 1135 // 1138 // 1136 1139 1137 G4double G4Torus::DistanceToOut( const G4Thre 1140 G4double G4Torus::DistanceToOut( const G4ThreeVector& p, 1138 const G4Thre 1141 const G4ThreeVector& v, 1139 const G4bool 1142 const G4bool calcNorm, 1140 G4bool << 1143 G4bool *validNorm, 1141 G4Thre << 1144 G4ThreeVector *n ) const 1142 { 1145 { 1143 ESide side = kNull, sidephi = kNull ; 1146 ESide side = kNull, sidephi = kNull ; 1144 G4double snxt = kInfinity, sphi, sd[4] ; 1147 G4double snxt = kInfinity, sphi, sd[4] ; 1145 1148 1146 // Vars for phi intersection 1149 // Vars for phi intersection 1147 // 1150 // 1148 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, c 1151 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi; 1149 G4double cPhi, sinCPhi, cosCPhi ; 1152 G4double cPhi, sinCPhi, cosCPhi ; 1150 G4double pDistS, compS, pDistE, compE, sphi 1153 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, zi, vphi ; 1151 1154 1152 // Radial Intersections Defenitions & Gener 1155 // Radial Intersections Defenitions & General Precals 1153 1156 1154 //////////////////////// new calculation // 1157 //////////////////////// new calculation ////////////////////// 1155 1158 1156 #if 1 1159 #if 1 1157 1160 1158 // This is the version with the calculation 1161 // This is the version with the calculation of CalcNorm = true 1159 // To be done: Check the precision of this 1162 // To be done: Check the precision of this calculation. 1160 // If you want return always validNorm = fa 1163 // If you want return always validNorm = false, then take the version below 1161 1164 1162 1165 1163 G4double rho = std::hypot(p.x(),p.y()); 1166 G4double rho = std::hypot(p.x(),p.y()); 1164 G4double pt = hypot(p.z(),rho-fRtor); 1167 G4double pt = hypot(p.z(),rho-fRtor); 1165 1168 1166 G4double pDotV = p.x()*v.x() + p.y()*v.y() 1169 G4double pDotV = p.x()*v.x() + p.y()*v.y() + p.z()*v.z() ; 1167 1170 1168 G4double tolRMax = fRmax - fRmaxTolerance ; 1171 G4double tolRMax = fRmax - fRmaxTolerance ; 1169 1172 1170 G4double vDotNmax = pDotV - fRtor*(v.x()* 1173 G4double vDotNmax = pDotV - fRtor*(v.x()*p.x() + v.y()*p.y())/rho ; 1171 G4double pDotxyNmax = (1 - fRtor/rho) ; 1174 G4double pDotxyNmax = (1 - fRtor/rho) ; 1172 1175 1173 if( (pt*pt > tolRMax*tolRMax) && (vDotNmax 1176 if( (pt*pt > tolRMax*tolRMax) && (vDotNmax >= 0) ) 1174 { 1177 { 1175 // On tolerant boundary & heading outward 1178 // On tolerant boundary & heading outwards (or perpendicular to) outer 1176 // radial surface -> leaving immediately 1179 // radial surface -> leaving immediately with *n for really convex part 1177 // only 1180 // only 1178 1181 1179 if ( calcNorm && (pDotxyNmax >= -2.*fRmax 1182 if ( calcNorm && (pDotxyNmax >= -2.*fRmaxTolerance) ) 1180 { 1183 { 1181 *n = G4ThreeVector( p.x()*(1 - fRtor/rh 1184 *n = G4ThreeVector( p.x()*(1 - fRtor/rho)/pt, 1182 p.y()*(1 - fRtor/rh 1185 p.y()*(1 - fRtor/rho)/pt, 1183 p.z()/pt 1186 p.z()/pt ) ; 1184 *validNorm = true ; 1187 *validNorm = true ; 1185 } 1188 } 1186 1189 1187 return snxt = 0 ; // Leaving by Rmax imme 1190 return snxt = 0 ; // Leaving by Rmax immediately 1188 } 1191 } 1189 1192 1190 snxt = SolveNumericJT(p,v,fRmax,false); 1193 snxt = SolveNumericJT(p,v,fRmax,false); 1191 side = kRMax ; 1194 side = kRMax ; 1192 1195 1193 // rmin 1196 // rmin 1194 1197 1195 if ( fRmin != 0.0 ) << 1198 if ( fRmin ) 1196 { 1199 { 1197 G4double tolRMin = fRmin + fRminTolerance 1200 G4double tolRMin = fRmin + fRminTolerance ; 1198 1201 1199 if ( (pt*pt < tolRMin*tolRMin) && (vDotNm 1202 if ( (pt*pt < tolRMin*tolRMin) && (vDotNmax < 0) ) 1200 { 1203 { 1201 if (calcNorm) { *validNorm = false ; } 1204 if (calcNorm) { *validNorm = false ; } // Concave surface of the torus 1202 return snxt = 0 ; 1205 return snxt = 0 ; // Leaving by Rmin immediately 1203 } 1206 } 1204 1207 1205 sd[0] = SolveNumericJT(p,v,fRmin,false); 1208 sd[0] = SolveNumericJT(p,v,fRmin,false); 1206 if ( sd[0] < snxt ) 1209 if ( sd[0] < snxt ) 1207 { 1210 { 1208 snxt = sd[0] ; 1211 snxt = sd[0] ; 1209 side = kRMin ; 1212 side = kRMin ; 1210 } 1213 } 1211 } 1214 } 1212 1215 1213 #else 1216 #else 1214 1217 1215 // this is the "conservative" version which 1218 // this is the "conservative" version which return always validnorm = false 1216 // NOTE: using this version the unit test t 1219 // NOTE: using this version the unit test testG4Torus will break 1217 1220 1218 snxt = SolveNumericJT(p,v,fRmax,false); 1221 snxt = SolveNumericJT(p,v,fRmax,false); 1219 side = kRMax ; 1222 side = kRMax ; 1220 1223 1221 if ( fRmin ) 1224 if ( fRmin ) 1222 { 1225 { 1223 sd[0] = SolveNumericJT(p,v,fRmin,false); 1226 sd[0] = SolveNumericJT(p,v,fRmin,false); 1224 if ( sd[0] < snxt ) 1227 if ( sd[0] < snxt ) 1225 { 1228 { 1226 snxt = sd[0] ; 1229 snxt = sd[0] ; 1227 side = kRMin ; 1230 side = kRMin ; 1228 } 1231 } 1229 } 1232 } 1230 1233 1231 if ( calcNorm && (snxt == 0.0) ) 1234 if ( calcNorm && (snxt == 0.0) ) 1232 { 1235 { 1233 *validNorm = false ; // Leaving solid, 1236 *validNorm = false ; // Leaving solid, but possible re-intersection 1234 return snxt ; 1237 return snxt ; 1235 } 1238 } 1236 1239 1237 #endif 1240 #endif 1238 1241 1239 if (fDPhi < twopi) // Phi Intersections 1242 if (fDPhi < twopi) // Phi Intersections 1240 { 1243 { 1241 sinSPhi = std::sin(fSPhi) ; 1244 sinSPhi = std::sin(fSPhi) ; 1242 cosSPhi = std::cos(fSPhi) ; 1245 cosSPhi = std::cos(fSPhi) ; 1243 ePhi = fSPhi + fDPhi ; 1246 ePhi = fSPhi + fDPhi ; 1244 sinEPhi = std::sin(ePhi) ; 1247 sinEPhi = std::sin(ePhi) ; 1245 cosEPhi = std::cos(ePhi) ; 1248 cosEPhi = std::cos(ePhi) ; 1246 cPhi = fSPhi + fDPhi*0.5 ; 1249 cPhi = fSPhi + fDPhi*0.5 ; 1247 sinCPhi = std::sin(cPhi) ; 1250 sinCPhi = std::sin(cPhi) ; 1248 cosCPhi = std::cos(cPhi) ; 1251 cosCPhi = std::cos(cPhi) ; 1249 1252 1250 // angle calculation with correction 1253 // angle calculation with correction 1251 // of difference in domain of atan2 and S 1254 // of difference in domain of atan2 and Sphi 1252 // 1255 // 1253 vphi = std::atan2(v.y(),v.x()) ; 1256 vphi = std::atan2(v.y(),v.x()) ; 1254 1257 1255 if ( vphi < fSPhi - halfAngTolerance ) 1258 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1256 else if ( vphi > ePhi + halfAngTolerance 1259 else if ( vphi > ePhi + halfAngTolerance ) { vphi -= twopi; } 1257 1260 1258 if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 1261 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 1259 { 1262 { 1260 pDistS = p.x()*sinSPhi - p.y()*cosSPhi 1263 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; // pDist -ve when inside 1261 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi 1264 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1262 1265 1263 // Comp -ve when in direction of outwar 1266 // Comp -ve when in direction of outwards normal 1264 // 1267 // 1265 compS = -sinSPhi*v.x() + cosSPhi*v.y( 1268 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1266 compE = sinEPhi*v.x() - cosEPhi*v.y() 1269 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1267 sidephi = kNull ; 1270 sidephi = kNull ; 1268 1271 1269 if( ( (fDPhi <= pi) && ( (pDistS <= hal 1272 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1270 && (pDistE <= hal 1273 && (pDistE <= halfCarTolerance) ) ) 1271 || ( (fDPhi > pi) && ((pDistS <= hal << 1274 || ( (fDPhi > pi) && !((pDistS > halfCarTolerance) 1272 || (pDistE <= ha << 1275 && (pDistE > halfCarTolerance) ) ) ) 1273 { 1276 { 1274 // Inside both phi *full* planes 1277 // Inside both phi *full* planes 1275 1278 1276 if ( compS < 0 ) 1279 if ( compS < 0 ) 1277 { 1280 { 1278 sphi = pDistS/compS ; 1281 sphi = pDistS/compS ; 1279 1282 1280 if (sphi >= -halfCarTolerance) 1283 if (sphi >= -halfCarTolerance) 1281 { 1284 { 1282 xi = p.x() + sphi*v.x() ; 1285 xi = p.x() + sphi*v.x() ; 1283 yi = p.y() + sphi*v.y() ; 1286 yi = p.y() + sphi*v.y() ; 1284 1287 1285 // Check intersecting with correc 1288 // Check intersecting with correct half-plane 1286 // (if not -> no intersect) 1289 // (if not -> no intersect) 1287 // 1290 // 1288 if ( (std::fabs(xi)<=kCarToleranc 1291 if ( (std::fabs(xi)<=kCarTolerance) 1289 && (std::fabs(yi)<=kCarToleranc 1292 && (std::fabs(yi)<=kCarTolerance) ) 1290 { 1293 { 1291 sidephi = kSPhi; 1294 sidephi = kSPhi; 1292 if ( ((fSPhi-halfAngTolerance)< 1295 if ( ((fSPhi-halfAngTolerance)<=vphi) 1293 && ((ePhi+halfAngTolerance)>= 1296 && ((ePhi+halfAngTolerance)>=vphi) ) 1294 { 1297 { 1295 sphi = kInfinity; 1298 sphi = kInfinity; 1296 } 1299 } 1297 } 1300 } 1298 else if ( yi*cosCPhi-xi*sinCPhi > 1301 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1299 { 1302 { 1300 sphi = kInfinity ; 1303 sphi = kInfinity ; 1301 } 1304 } 1302 else 1305 else 1303 { 1306 { 1304 sidephi = kSPhi ; 1307 sidephi = kSPhi ; 1305 } 1308 } 1306 } 1309 } 1307 else 1310 else 1308 { 1311 { 1309 sphi = kInfinity ; 1312 sphi = kInfinity ; 1310 } 1313 } 1311 } 1314 } 1312 else 1315 else 1313 { 1316 { 1314 sphi = kInfinity ; 1317 sphi = kInfinity ; 1315 } 1318 } 1316 1319 1317 if ( compE < 0 ) 1320 if ( compE < 0 ) 1318 { 1321 { 1319 sphi2 = pDistE/compE ; 1322 sphi2 = pDistE/compE ; 1320 1323 1321 // Only check further if < starting 1324 // Only check further if < starting phi intersection 1322 // 1325 // 1323 if ( (sphi2 > -kCarTolerance) && (s 1326 if ( (sphi2 > -kCarTolerance) && (sphi2 < sphi) ) 1324 { 1327 { 1325 xi = p.x() + sphi2*v.x() ; 1328 xi = p.x() + sphi2*v.x() ; 1326 yi = p.y() + sphi2*v.y() ; 1329 yi = p.y() + sphi2*v.y() ; 1327 1330 1328 if ( (std::fabs(xi)<=kCarToleranc 1331 if ( (std::fabs(xi)<=kCarTolerance) 1329 && (std::fabs(yi)<=kCarToleranc 1332 && (std::fabs(yi)<=kCarTolerance) ) 1330 { 1333 { 1331 // Leaving via ending phi 1334 // Leaving via ending phi 1332 // 1335 // 1333 if( (fSPhi-halfAngTolerance > v << 1336 if( !( (fSPhi-halfAngTolerance <= vphi) 1334 || (ePhi+halfAngTolerance < << 1337 && (ePhi+halfAngTolerance >= vphi) ) ) 1335 { 1338 { 1336 sidephi = kEPhi ; 1339 sidephi = kEPhi ; 1337 sphi = sphi2; 1340 sphi = sphi2; 1338 } 1341 } 1339 } 1342 } 1340 else // Check intersecting wit 1343 else // Check intersecting with correct half-plane 1341 { 1344 { 1342 if ( (yi*cosCPhi-xi*sinCPhi) >= 1345 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1343 { 1346 { 1344 // Leaving via ending phi 1347 // Leaving via ending phi 1345 // 1348 // 1346 sidephi = kEPhi ; 1349 sidephi = kEPhi ; 1347 sphi = sphi2; 1350 sphi = sphi2; 1348 1351 1349 } 1352 } 1350 } 1353 } 1351 } 1354 } 1352 } 1355 } 1353 } 1356 } 1354 else 1357 else 1355 { 1358 { 1356 sphi = kInfinity ; 1359 sphi = kInfinity ; 1357 } 1360 } 1358 } 1361 } 1359 else 1362 else 1360 { 1363 { 1361 // On z axis + travel not || to z axis 1364 // On z axis + travel not || to z axis -> if phi of vector direction 1362 // within phi of shape, Step limited by 1365 // within phi of shape, Step limited by rmax, else Step =0 1363 1366 1364 vphi = std::atan2(v.y(),v.x()); 1367 vphi = std::atan2(v.y(),v.x()); 1365 1368 1366 if ( ( fSPhi-halfAngTolerance <= vphi ) 1369 if ( ( fSPhi-halfAngTolerance <= vphi ) && 1367 ( vphi <= ( ePhi+halfAngTolerance 1370 ( vphi <= ( ePhi+halfAngTolerance ) ) ) 1368 { 1371 { 1369 sphi = kInfinity; 1372 sphi = kInfinity; 1370 } 1373 } 1371 else 1374 else 1372 { 1375 { 1373 sidephi = kSPhi ; // arbitrary 1376 sidephi = kSPhi ; // arbitrary 1374 sphi=0; 1377 sphi=0; 1375 } 1378 } 1376 } 1379 } 1377 1380 1378 // Order intersections 1381 // Order intersections 1379 1382 1380 if (sphi<snxt) 1383 if (sphi<snxt) 1381 { 1384 { 1382 snxt=sphi; 1385 snxt=sphi; 1383 side=sidephi; 1386 side=sidephi; 1384 } 1387 } 1385 } 1388 } 1386 1389 1387 G4double rhoi,it,iDotxyNmax ; 1390 G4double rhoi,it,iDotxyNmax ; 1388 // Note: by numerical computation we know w 1391 // Note: by numerical computation we know where the ray hits the torus 1389 // So I propose to return the side where th 1392 // So I propose to return the side where the ray hits 1390 1393 1391 if (calcNorm) 1394 if (calcNorm) 1392 { 1395 { 1393 switch(side) 1396 switch(side) 1394 { 1397 { 1395 case kRMax: // n is 1398 case kRMax: // n is unit vector 1396 xi = p.x() + snxt*v.x() ; 1399 xi = p.x() + snxt*v.x() ; 1397 yi = p.y() + snxt*v.y() ; 1400 yi = p.y() + snxt*v.y() ; 1398 zi = p.z() + snxt*v.z() ; 1401 zi = p.z() + snxt*v.z() ; 1399 rhoi = std::hypot(xi,yi); 1402 rhoi = std::hypot(xi,yi); 1400 it = hypot(zi,rhoi-fRtor); 1403 it = hypot(zi,rhoi-fRtor); 1401 1404 1402 iDotxyNmax = (1-fRtor/rhoi) ; 1405 iDotxyNmax = (1-fRtor/rhoi) ; 1403 if(iDotxyNmax >= -2.*fRmaxTolerance) 1406 if(iDotxyNmax >= -2.*fRmaxTolerance) // really convex part of Rmax 1404 { 1407 { 1405 *n = G4ThreeVector( xi*(1-fRtor/rho 1408 *n = G4ThreeVector( xi*(1-fRtor/rhoi)/it, 1406 yi*(1-fRtor/rho 1409 yi*(1-fRtor/rhoi)/it, 1407 zi/it 1410 zi/it ) ; 1408 *validNorm = true ; 1411 *validNorm = true ; 1409 } 1412 } 1410 else 1413 else 1411 { 1414 { 1412 *validNorm = false ; // concave-con 1415 *validNorm = false ; // concave-convex part of Rmax 1413 } 1416 } 1414 break ; 1417 break ; 1415 1418 1416 case kRMin: 1419 case kRMin: 1417 *validNorm = false ; // Rmin is conc 1420 *validNorm = false ; // Rmin is concave or concave-convex 1418 break; 1421 break; 1419 1422 1420 case kSPhi: 1423 case kSPhi: 1421 if (fDPhi <= pi ) 1424 if (fDPhi <= pi ) 1422 { 1425 { 1423 *n=G4ThreeVector(std::sin(fSPhi),-s 1426 *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 1424 *validNorm=true; 1427 *validNorm=true; 1425 } 1428 } 1426 else 1429 else 1427 { 1430 { 1428 *validNorm = false ; 1431 *validNorm = false ; 1429 } 1432 } 1430 break ; 1433 break ; 1431 1434 1432 case kEPhi: 1435 case kEPhi: 1433 if (fDPhi <= pi) 1436 if (fDPhi <= pi) 1434 { 1437 { 1435 *n=G4ThreeVector(-std::sin(fSPhi+fD 1438 *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 1436 *validNorm=true; 1439 *validNorm=true; 1437 } 1440 } 1438 else 1441 else 1439 { 1442 { 1440 *validNorm = false ; 1443 *validNorm = false ; 1441 } 1444 } 1442 break; 1445 break; 1443 1446 1444 default: 1447 default: 1445 1448 1446 // It seems we go here from time to t 1449 // It seems we go here from time to time ... 1447 1450 1448 G4cout << G4endl; 1451 G4cout << G4endl; 1449 DumpInfo(); 1452 DumpInfo(); 1450 std::ostringstream message; 1453 std::ostringstream message; 1451 G4long oldprc = message.precision(16) << 1454 G4int oldprc = message.precision(16); 1452 message << "Undefined side for valid 1455 message << "Undefined side for valid surface normal to solid." 1453 << G4endl 1456 << G4endl 1454 << "Position:" << G4endl << 1457 << "Position:" << G4endl << G4endl 1455 << "p.x() = " << p.x()/mm < 1458 << "p.x() = " << p.x()/mm << " mm" << G4endl 1456 << "p.y() = " << p.y()/mm < 1459 << "p.y() = " << p.y()/mm << " mm" << G4endl 1457 << "p.z() = " << p.z()/mm < 1460 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1458 << "Direction:" << G4endl << 1461 << "Direction:" << G4endl << G4endl 1459 << "v.x() = " << v.x() << G 1462 << "v.x() = " << v.x() << G4endl 1460 << "v.y() = " << v.y() << G 1463 << "v.y() = " << v.y() << G4endl 1461 << "v.z() = " << v.z() << G 1464 << "v.z() = " << v.z() << G4endl << G4endl 1462 << "Proposed distance :" << G 1465 << "Proposed distance :" << G4endl << G4endl 1463 << "snxt = " << snxt/mm << " 1466 << "snxt = " << snxt/mm << " mm" << G4endl; 1464 message.precision(oldprc); 1467 message.precision(oldprc); 1465 G4Exception("G4Torus::DistanceToOut(p 1468 G4Exception("G4Torus::DistanceToOut(p,v,..)", 1466 "GeomSolids1002",JustWarn 1469 "GeomSolids1002",JustWarning, message); 1467 break; 1470 break; 1468 } 1471 } 1469 } 1472 } 1470 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1473 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1471 1474 1472 return snxt; 1475 return snxt; 1473 } 1476 } 1474 1477 1475 ///////////////////////////////////////////// 1478 ///////////////////////////////////////////////////////////////////////// 1476 // 1479 // 1477 // Calculate distance (<=actual) to closest s 1480 // Calculate distance (<=actual) to closest surface of shape from inside 1478 1481 1479 G4double G4Torus::DistanceToOut( const G4Thre 1482 G4double G4Torus::DistanceToOut( const G4ThreeVector& p ) const 1480 { 1483 { 1481 G4double safe=0.0,safeR1,safeR2; 1484 G4double safe=0.0,safeR1,safeR2; 1482 G4double rho,pt ; 1485 G4double rho,pt ; 1483 G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi; 1486 G4double safePhi,phiC,cosPhiC,sinPhiC,ePhi; 1484 1487 1485 rho = std::hypot(p.x(),p.y()); 1488 rho = std::hypot(p.x(),p.y()); 1486 pt = std::hypot(p.z(),rho-fRtor); 1489 pt = std::hypot(p.z(),rho-fRtor); 1487 1490 1488 #ifdef G4CSGDEBUG 1491 #ifdef G4CSGDEBUG 1489 if( Inside(p) == kOutside ) 1492 if( Inside(p) == kOutside ) 1490 { 1493 { 1491 G4long oldprc = G4cout.precision(16) ; << 1494 G4int oldprc = G4cout.precision(16) ; 1492 G4cout << G4endl ; 1495 G4cout << G4endl ; 1493 DumpInfo(); 1496 DumpInfo(); 1494 G4cout << "Position:" << G4endl << G4en 1497 G4cout << "Position:" << G4endl << G4endl ; 1495 G4cout << "p.x() = " << p.x()/mm << " 1498 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 1496 G4cout << "p.y() = " << p.y()/mm << " 1499 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 1497 G4cout << "p.z() = " << p.z()/mm << " 1500 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 1498 G4cout.precision(oldprc); 1501 G4cout.precision(oldprc); 1499 G4Exception("G4Torus::DistanceToOut(p)", 1502 G4Exception("G4Torus::DistanceToOut(p)", "GeomSolids1002", 1500 JustWarning, "Point p is out 1503 JustWarning, "Point p is outside !?" ); 1501 } 1504 } 1502 #endif 1505 #endif 1503 1506 1504 if (fRmin != 0.0) << 1507 if (fRmin) 1505 { 1508 { 1506 safeR1 = pt - fRmin ; 1509 safeR1 = pt - fRmin ; 1507 safeR2 = fRmax - pt ; 1510 safeR2 = fRmax - pt ; 1508 1511 1509 if (safeR1 < safeR2) { safe = safeR1 ; } 1512 if (safeR1 < safeR2) { safe = safeR1 ; } 1510 else { safe = safeR2 ; } 1513 else { safe = safeR2 ; } 1511 } 1514 } 1512 else 1515 else 1513 { 1516 { 1514 safe = fRmax - pt ; 1517 safe = fRmax - pt ; 1515 } 1518 } 1516 1519 1517 // Check if phi divided, Calc distances clo 1520 // Check if phi divided, Calc distances closest phi plane 1518 // 1521 // 1519 if (fDPhi < twopi) // Above/below central p << 1522 if (fDPhi<twopi) // Above/below central phi of Torus? 1520 { 1523 { 1521 phiC = fSPhi + fDPhi*0.5 ; 1524 phiC = fSPhi + fDPhi*0.5 ; 1522 cosPhiC = std::cos(phiC) ; 1525 cosPhiC = std::cos(phiC) ; 1523 sinPhiC = std::sin(phiC) ; 1526 sinPhiC = std::sin(phiC) ; 1524 1527 1525 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0) 1528 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0) 1526 { 1529 { 1527 safePhi = -(p.x()*std::sin(fSPhi) - p.y 1530 safePhi = -(p.x()*std::sin(fSPhi) - p.y()*std::cos(fSPhi)) ; 1528 } 1531 } 1529 else 1532 else 1530 { 1533 { 1531 ePhi = fSPhi + fDPhi ; 1534 ePhi = fSPhi + fDPhi ; 1532 safePhi = (p.x()*std::sin(ePhi) - p.y() 1535 safePhi = (p.x()*std::sin(ePhi) - p.y()*std::cos(ePhi)) ; 1533 } 1536 } 1534 if (safePhi < safe) { safe = safePhi ; } 1537 if (safePhi < safe) { safe = safePhi ; } 1535 } 1538 } 1536 if (safe < 0) { safe = 0 ; } 1539 if (safe < 0) { safe = 0 ; } 1537 return safe ; 1540 return safe ; 1538 } 1541 } 1539 1542 1540 ///////////////////////////////////////////// 1543 ////////////////////////////////////////////////////////////////////////// 1541 // 1544 // 1542 // Stream object contents to an output stream 1545 // Stream object contents to an output stream 1543 1546 1544 G4GeometryType G4Torus::GetEntityType() const 1547 G4GeometryType G4Torus::GetEntityType() const 1545 { 1548 { 1546 return {"G4Torus"}; << 1549 return G4String("G4Torus"); 1547 } 1550 } 1548 1551 1549 ///////////////////////////////////////////// 1552 ////////////////////////////////////////////////////////////////////////// 1550 // 1553 // 1551 // Make a clone of the object 1554 // Make a clone of the object 1552 // 1555 // 1553 G4VSolid* G4Torus::Clone() const 1556 G4VSolid* G4Torus::Clone() const 1554 { 1557 { 1555 return new G4Torus(*this); 1558 return new G4Torus(*this); 1556 } 1559 } 1557 1560 1558 ///////////////////////////////////////////// 1561 ////////////////////////////////////////////////////////////////////////// 1559 // 1562 // 1560 // Stream object contents to an output stream 1563 // Stream object contents to an output stream 1561 1564 1562 std::ostream& G4Torus::StreamInfo( std::ostre 1565 std::ostream& G4Torus::StreamInfo( std::ostream& os ) const 1563 { 1566 { 1564 G4long oldprc = os.precision(16); << 1567 G4int oldprc = os.precision(16); 1565 os << "------------------------------------ 1568 os << "-----------------------------------------------------------\n" 1566 << " *** Dump for solid - " << GetNam 1569 << " *** Dump for solid - " << GetName() << " ***\n" 1567 << " ================================ 1570 << " ===================================================\n" 1568 << " Solid type: G4Torus\n" 1571 << " Solid type: G4Torus\n" 1569 << " Parameters: \n" 1572 << " Parameters: \n" 1570 << " inner radius: " << fRmin/mm << " 1573 << " inner radius: " << fRmin/mm << " mm \n" 1571 << " outer radius: " << fRmax/mm << " 1574 << " outer radius: " << fRmax/mm << " mm \n" 1572 << " swept radius: " << fRtor/mm << " 1575 << " swept radius: " << fRtor/mm << " mm \n" 1573 << " starting phi: " << fSPhi/degree 1576 << " starting phi: " << fSPhi/degree << " degrees \n" 1574 << " delta phi : " << fDPhi/degree 1577 << " delta phi : " << fDPhi/degree << " degrees \n" 1575 << "------------------------------------ 1578 << "-----------------------------------------------------------\n"; 1576 os.precision(oldprc); 1579 os.precision(oldprc); 1577 1580 1578 return os; 1581 return os; 1579 } 1582 } 1580 1583 1581 ///////////////////////////////////////////// 1584 //////////////////////////////////////////////////////////////////////////// 1582 // 1585 // 1583 // GetPointOnSurface 1586 // GetPointOnSurface 1584 1587 1585 G4ThreeVector G4Torus::GetPointOnSurface() co 1588 G4ThreeVector G4Torus::GetPointOnSurface() const 1586 { 1589 { 1587 G4double cosu, sinu,cosv, sinv, aOut, aIn, 1590 G4double cosu, sinu,cosv, sinv, aOut, aIn, aSide, chose, phi, theta, rRand; 1588 1591 1589 phi = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi 1592 phi = G4RandFlat::shoot(fSPhi,fSPhi+fDPhi); 1590 theta = G4RandFlat::shoot(0.,twopi); 1593 theta = G4RandFlat::shoot(0.,twopi); 1591 1594 1592 cosu = std::cos(phi); sinu = std::sin( 1595 cosu = std::cos(phi); sinu = std::sin(phi); 1593 cosv = std::cos(theta); sinv = std::sin( 1596 cosv = std::cos(theta); sinv = std::sin(theta); 1594 1597 1595 // compute the areas 1598 // compute the areas 1596 1599 1597 aOut = (fDPhi)*twopi*fRtor*fRmax; 1600 aOut = (fDPhi)*twopi*fRtor*fRmax; 1598 aIn = (fDPhi)*twopi*fRtor*fRmin; 1601 aIn = (fDPhi)*twopi*fRtor*fRmin; 1599 aSide = pi*(fRmax*fRmax-fRmin*fRmin); 1602 aSide = pi*(fRmax*fRmax-fRmin*fRmin); 1600 1603 1601 if ((fSPhi == 0) && (fDPhi == twopi)){ aSid 1604 if ((fSPhi == 0) && (fDPhi == twopi)){ aSide = 0; } 1602 chose = G4RandFlat::shoot(0.,aOut + aIn + 2 1605 chose = G4RandFlat::shoot(0.,aOut + aIn + 2.*aSide); 1603 1606 1604 if(chose < aOut) 1607 if(chose < aOut) 1605 { 1608 { 1606 return { (fRtor+fRmax*cosv)*cosu, (fRtor+ << 1609 return G4ThreeVector ((fRtor+fRmax*cosv)*cosu, >> 1610 (fRtor+fRmax*cosv)*sinu, fRmax*sinv); 1607 } 1611 } 1608 else if( (chose >= aOut) && (chose < aOut + 1612 else if( (chose >= aOut) && (chose < aOut + aIn) ) 1609 { 1613 { 1610 return { (fRtor+fRmin*cosv)*cosu, (fRtor+ << 1614 return G4ThreeVector ((fRtor+fRmin*cosv)*cosu, >> 1615 (fRtor+fRmin*cosv)*sinu, fRmin*sinv); 1611 } 1616 } 1612 else if( (chose >= aOut + aIn) && (chose < 1617 else if( (chose >= aOut + aIn) && (chose < aOut + aIn + aSide) ) 1613 { 1618 { 1614 rRand = GetRadiusInRing(fRmin,fRmax); 1619 rRand = GetRadiusInRing(fRmin,fRmax); 1615 return { (fRtor+rRand*cosv)*std::cos(fSPh << 1620 return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi), 1616 (fRtor+rRand*cosv)*std::sin(fSPh << 1621 (fRtor+rRand*cosv)*std::sin(fSPhi), rRand*sinv); 1617 } 1622 } 1618 else 1623 else 1619 { 1624 { 1620 rRand = GetRadiusInRing(fRmin,fRmax); 1625 rRand = GetRadiusInRing(fRmin,fRmax); 1621 return { (fRtor+rRand*cosv)*std::cos(fSPh << 1626 return G4ThreeVector ((fRtor+rRand*cosv)*std::cos(fSPhi+fDPhi), 1622 (fRtor+rRand*cosv)*std::sin(fSPh << 1627 (fRtor+rRand*cosv)*std::sin(fSPhi+fDPhi), >> 1628 rRand*sinv); 1623 } 1629 } 1624 } 1630 } 1625 1631 1626 ///////////////////////////////////////////// 1632 /////////////////////////////////////////////////////////////////////// 1627 // 1633 // 1628 // Visualisation Functions 1634 // Visualisation Functions 1629 1635 1630 void G4Torus::DescribeYourselfTo ( G4VGraphic 1636 void G4Torus::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1631 { 1637 { 1632 scene.AddSolid (*this); 1638 scene.AddSolid (*this); 1633 } 1639 } 1634 1640 1635 G4Polyhedron* G4Torus::CreatePolyhedron () co 1641 G4Polyhedron* G4Torus::CreatePolyhedron () const 1636 { 1642 { 1637 return new G4PolyhedronTorus (fRmin, fRmax, 1643 return new G4PolyhedronTorus (fRmin, fRmax, fRtor, fSPhi, fDPhi); 1638 } 1644 } 1639 1645 1640 #endif // !defined(G4GEOM_USE_TORUS) || !defi 1646 #endif // !defined(G4GEOM_USE_TORUS) || !defined(G4GEOM_USE_SYS_USOLIDS) 1641 1647