Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Sphere.cc,v 1.90 2010-11-23 14:45:56 gcosmo Exp $ >> 28 // GEANT4 tag $Name: not supported by cvs2svn $ >> 29 // >> 30 // class G4Sphere >> 31 // 26 // Implementation for G4Sphere class 32 // Implementation for G4Sphere class 27 // 33 // 28 // 28.03.94 P.Kent: old C++ code converted to << 34 // History: 29 // 17.09.96 V.Grichine: final modifications to << 35 // 30 // 30.10.03 J.Apostolakis: new algorithm in In << 36 // 14.09.09 T.Nikitina: fix for phi section in DistanceToOut(p,v,..),as for G4Tubs,G4Cons >> 37 // 26.03.09 G.Cosmo : optimisations and uniform use of local radial tolerance >> 38 // 12.06.08 V.Grichine: fix for theta intersections in DistanceToOut(p,v,...) >> 39 // 22.07.05 O.Link : Added check for intersection with double cone 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor 40 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal 32 // 22.07.05 O.Link: Added check for intersecti << 41 // 16.09.04 V.Grichine: bug fixed in SurfaceNormal(p), theta normals 33 // 26.03.09 G.Cosmo: optimisations and uniform << 42 // 16.07.04 V.Grichine: bug fixed in DistanceToOut(p,v), Rmin go outside 34 // 26.10.16 E.Tcherniaev: re-implemented Calcu << 43 // 02.06.04 V.Grichine: bug fixed in DistanceToIn(p,v), on Rmax,Rmin go inside 35 // G4BoundingEnvelope, << 44 // 30.10.03 J.Apostolakis: new algorithm in Inside for SPhi-sections >> 45 // 29.10.03 J.Apostolakis: fix in Inside for SPhi-0.5*kAngTol < phi<SPhi, SPhi<0 >> 46 // 19.06.02 V.Grichine: bug fixed in Inside(p), && -> && fDTheta - kAngTolerance >> 47 // 30.01.02 V.Grichine: bug fixed in Inside(p), && -> || at l.451 >> 48 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...) >> 49 // 18.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...) >> 50 // 25.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), phi intersections >> 51 // 12.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), theta intersections >> 52 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...) >> 53 // 17.09.96 V.Grichine: final modifications to commit >> 54 // 28.03.94 P.Kent: old C++ code converted to tolerant geometry 36 // ------------------------------------------- 55 // -------------------------------------------------------------------- 37 56 38 #include "G4Sphere.hh" 57 #include "G4Sphere.hh" 39 58 40 #if !defined(G4GEOM_USE_USPHERE) << 41 << 42 #include "G4GeomTools.hh" << 43 #include "G4VoxelLimits.hh" 59 #include "G4VoxelLimits.hh" 44 #include "G4AffineTransform.hh" 60 #include "G4AffineTransform.hh" 45 #include "G4GeometryTolerance.hh" 61 #include "G4GeometryTolerance.hh" 46 #include "G4BoundingEnvelope.hh" << 47 62 48 #include "G4VPVParameterisation.hh" 63 #include "G4VPVParameterisation.hh" 49 64 50 #include "G4QuickRand.hh" << 65 #include "Randomize.hh" 51 66 52 #include "meshdefs.hh" 67 #include "meshdefs.hh" 53 68 54 #include "G4VGraphicsScene.hh" 69 #include "G4VGraphicsScene.hh" 55 #include "G4VisExtent.hh" 70 #include "G4VisExtent.hh" >> 71 #include "G4Polyhedron.hh" >> 72 #include "G4NURBS.hh" >> 73 #include "G4NURBSbox.hh" 56 74 57 using namespace CLHEP; 75 using namespace CLHEP; 58 76 59 // Private enum: Not for external use - used b 77 // Private enum: Not for external use - used by distanceToOut 60 78 61 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTh 79 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTheta,kETheta}; 62 80 63 // used by normal 81 // used by normal 64 82 65 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSThe 83 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSTheta,kNETheta}; 66 84 67 ////////////////////////////////////////////// 85 //////////////////////////////////////////////////////////////////////// 68 // 86 // 69 // constructor - check parameters, convert ang 87 // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 70 // - note if pDPhi>2PI then reset 88 // - note if pDPhi>2PI then reset to 2PI 71 89 72 G4Sphere::G4Sphere( const G4String& pName, 90 G4Sphere::G4Sphere( const G4String& pName, 73 G4double pRmin, G4do 91 G4double pRmin, G4double pRmax, 74 G4double pSPhi, G4do 92 G4double pSPhi, G4double pDPhi, 75 G4double pSTheta, G4 93 G4double pSTheta, G4double pDTheta ) 76 : G4CSGSolid(pName), fSPhi(0.0), fFullPhiSph << 94 : G4CSGSolid(pName), fEpsilon(2.e-11), >> 95 fFullPhiSphere(true), fFullThetaSphere(true) 77 { 96 { 78 kAngTolerance = G4GeometryTolerance::GetInst 97 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 79 kRadTolerance = G4GeometryTolerance::GetInst << 80 << 81 halfCarTolerance = 0.5*kCarTolerance; << 82 halfAngTolerance = 0.5*kAngTolerance; << 83 98 84 // Check radii and set radial tolerances 99 // Check radii and set radial tolerances 85 100 >> 101 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 86 if ( (pRmin >= pRmax) || (pRmax < 1.1*kRadTo 102 if ( (pRmin >= pRmax) || (pRmax < 1.1*kRadTolerance) || (pRmin < 0) ) 87 { 103 { 88 std::ostringstream message; 104 std::ostringstream message; 89 message << "Invalid radii for Solid: " << 105 message << "Invalid radii for Solid: " << GetName() << G4endl 90 << " pRmin = " << pRmin << 106 << " pRmin = " << pRmin << ", pRmax = " << pRmax; 91 G4Exception("G4Sphere::G4Sphere()", "GeomS 107 G4Exception("G4Sphere::G4Sphere()", "GeomSolids0002", 92 FatalException, message); 108 FatalException, message); 93 } 109 } 94 fRmin=pRmin; fRmax=pRmax; 110 fRmin=pRmin; fRmax=pRmax; 95 fRminTolerance = (fRmin) != 0.0 ? std::max( << 111 fRminTolerance = (fRmin) ? std::max( kRadTolerance, fEpsilon*fRmin ) : 0; 96 fRmaxTolerance = std::max( kRadTolerance, fE 112 fRmaxTolerance = std::max( kRadTolerance, fEpsilon*fRmax ); 97 113 98 // Check angles 114 // Check angles 99 115 100 CheckPhiAngles(pSPhi, pDPhi); 116 CheckPhiAngles(pSPhi, pDPhi); 101 CheckThetaAngles(pSTheta, pDTheta); 117 CheckThetaAngles(pSTheta, pDTheta); 102 } 118 } 103 119 104 ////////////////////////////////////////////// 120 /////////////////////////////////////////////////////////////////////// 105 // 121 // 106 // Fake default constructor - sets only member 122 // Fake default constructor - sets only member data and allocates memory 107 // for usage restri 123 // for usage restricted to object persistency. 108 // 124 // 109 G4Sphere::G4Sphere( __void__& a ) 125 G4Sphere::G4Sphere( __void__& a ) 110 : G4CSGSolid(a) << 126 : G4CSGSolid(a), fRminTolerance(0.), fRmaxTolerance(0.), >> 127 kAngTolerance(0.), kRadTolerance(0.), fEpsilon(0.), >> 128 fRmin(0.), fRmax(0.), fSPhi(0.), fDPhi(0.), fSTheta(0.), >> 129 fDTheta(0.), sinCPhi(0.), cosCPhi(0.), cosHDPhiOT(0.), cosHDPhiIT(0.), >> 130 sinSPhi(0.), cosSPhi(0.), sinEPhi(0.), cosEPhi(0.), hDPhi(0.), cPhi(0.), >> 131 ePhi(0.), sinSTheta(0.), cosSTheta(0.), sinETheta(0.), cosETheta(0.), >> 132 tanSTheta(0.), tanSTheta2(0.), tanETheta(0.), tanETheta2(0.), eTheta(0.), >> 133 fFullPhiSphere(false), fFullThetaSphere(false), fFullSphere(true) 111 { 134 { 112 } 135 } 113 136 114 ////////////////////////////////////////////// 137 ///////////////////////////////////////////////////////////////////// 115 // 138 // 116 // Destructor 139 // Destructor 117 140 118 G4Sphere::~G4Sphere() = default; << 141 G4Sphere::~G4Sphere() >> 142 { >> 143 } 119 144 120 ////////////////////////////////////////////// 145 ////////////////////////////////////////////////////////////////////////// 121 // 146 // 122 // Copy constructor 147 // Copy constructor 123 148 124 G4Sphere::G4Sphere(const G4Sphere&) = default; << 149 G4Sphere::G4Sphere(const G4Sphere& rhs) >> 150 : G4CSGSolid(rhs), fRminTolerance(rhs.fRminTolerance), >> 151 fRmaxTolerance(rhs.fRmaxTolerance), kAngTolerance(rhs.kAngTolerance), >> 152 kRadTolerance(rhs.kRadTolerance), fEpsilon(rhs.fEpsilon), >> 153 fRmin(rhs.fRmin), fRmax(rhs.fRmax), fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi), >> 154 fSTheta(rhs.fSTheta), fDTheta(rhs.fDTheta), >> 155 sinCPhi(rhs.sinCPhi), cosCPhi(rhs.cosCPhi), >> 156 cosHDPhiOT(rhs.cosHDPhiOT), cosHDPhiIT(rhs.cosHDPhiIT), >> 157 sinSPhi(rhs.sinSPhi), cosSPhi(rhs.cosSPhi), >> 158 sinEPhi(rhs.sinEPhi), cosEPhi(rhs.cosEPhi), >> 159 hDPhi(rhs.hDPhi), cPhi(rhs.cPhi), ePhi(rhs.ePhi), >> 160 sinSTheta(rhs.sinSTheta), cosSTheta(rhs.cosSTheta), >> 161 sinETheta(rhs.sinETheta), cosETheta(rhs.cosETheta), >> 162 tanSTheta(rhs.tanSTheta), tanSTheta2(rhs.tanSTheta2), >> 163 tanETheta(rhs.tanETheta), tanETheta2(rhs.tanETheta2), eTheta(rhs.eTheta), >> 164 fFullPhiSphere(rhs.fFullPhiSphere), fFullThetaSphere(rhs.fFullThetaSphere), >> 165 fFullSphere(rhs.fFullSphere) >> 166 { >> 167 } 125 168 126 ////////////////////////////////////////////// 169 ////////////////////////////////////////////////////////////////////////// 127 // 170 // 128 // Assignment operator 171 // Assignment operator 129 172 130 G4Sphere& G4Sphere::operator = (const G4Sphere << 173 G4Sphere& G4Sphere::operator = (const G4Sphere& rhs) 131 { 174 { 132 // Check assignment to self 175 // Check assignment to self 133 // 176 // 134 if (this == &rhs) { return *this; } 177 if (this == &rhs) { return *this; } 135 178 136 // Copy base class data 179 // Copy base class data 137 // 180 // 138 G4CSGSolid::operator=(rhs); 181 G4CSGSolid::operator=(rhs); 139 182 140 // Copy data 183 // Copy data 141 // 184 // 142 fRminTolerance = rhs.fRminTolerance; fRmaxT 185 fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance; 143 kAngTolerance = rhs.kAngTolerance; kRadTole 186 kAngTolerance = rhs.kAngTolerance; kRadTolerance = rhs.kRadTolerance; 144 fEpsilon = rhs.fEpsilon; fRmin = rhs.fRmin; 187 fEpsilon = rhs.fEpsilon; fRmin = rhs.fRmin; fRmax = rhs.fRmax; 145 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; fSThe 188 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; fSTheta = rhs.fSTheta; 146 fDTheta = rhs.fDTheta; sinCPhi = rhs.sinCPh 189 fDTheta = rhs.fDTheta; sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi; 147 cosHDPhi = rhs.cosHDPhi; << 148 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r 190 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT; 149 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh 191 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi; 150 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh 192 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi; 151 hDPhi = rhs.hDPhi; cPhi = rhs.cPhi; ePhi = 193 hDPhi = rhs.hDPhi; cPhi = rhs.cPhi; ePhi = rhs.ePhi; 152 sinSTheta = rhs.sinSTheta; cosSTheta = rhs. 194 sinSTheta = rhs.sinSTheta; cosSTheta = rhs.cosSTheta; 153 sinETheta = rhs.sinETheta; cosETheta = rhs. 195 sinETheta = rhs.sinETheta; cosETheta = rhs.cosETheta; 154 tanSTheta = rhs.tanSTheta; tanSTheta2 = rhs 196 tanSTheta = rhs.tanSTheta; tanSTheta2 = rhs.tanSTheta2; 155 tanETheta = rhs.tanETheta; tanETheta2 = rhs 197 tanETheta = rhs.tanETheta; tanETheta2 = rhs.tanETheta2; 156 eTheta = rhs.eTheta; fFullPhiSphere = rhs.f 198 eTheta = rhs.eTheta; fFullPhiSphere = rhs.fFullPhiSphere; 157 fFullThetaSphere = rhs.fFullThetaSphere; fF 199 fFullThetaSphere = rhs.fFullThetaSphere; fFullSphere = rhs.fFullSphere; 158 halfCarTolerance = rhs.halfCarTolerance; << 159 halfAngTolerance = rhs.halfAngTolerance; << 160 200 161 return *this; 201 return *this; 162 } 202 } 163 203 164 ////////////////////////////////////////////// 204 ////////////////////////////////////////////////////////////////////////// 165 // 205 // 166 // Dispatch to parameterisation for replicatio 206 // Dispatch to parameterisation for replication mechanism dimension 167 // computation & modification. 207 // computation & modification. 168 208 169 void G4Sphere::ComputeDimensions( G4VPVP 209 void G4Sphere::ComputeDimensions( G4VPVParameterisation* p, 170 const G4int 210 const G4int n, 171 const G4VPhy 211 const G4VPhysicalVolume* pRep) 172 { 212 { 173 p->ComputeDimensions(*this,n,pRep); 213 p->ComputeDimensions(*this,n,pRep); 174 } 214 } 175 215 176 ////////////////////////////////////////////// << 177 // << 178 // Get bounding box << 179 << 180 void G4Sphere::BoundingLimits(G4ThreeVector& p << 181 { << 182 G4double rmin = GetInnerRadius(); << 183 G4double rmax = GetOuterRadius(); << 184 << 185 // Find bounding box << 186 // << 187 if (GetDeltaThetaAngle() >= pi && GetDeltaPh << 188 { << 189 pMin.set(-rmax,-rmax,-rmax); << 190 pMax.set( rmax, rmax, rmax); << 191 } << 192 else << 193 { << 194 G4double sinStart = GetSinStartTheta(); << 195 G4double cosStart = GetCosStartTheta(); << 196 G4double sinEnd = GetSinEndTheta(); << 197 G4double cosEnd = GetCosEndTheta(); << 198 << 199 G4double stheta = GetStartThetaAngle(); << 200 G4double etheta = stheta + GetDeltaThetaAn << 201 G4double rhomin = rmin*std::min(sinStart,s << 202 G4double rhomax = rmax; << 203 if (stheta > halfpi) rhomax = rmax*sinStar << 204 if (etheta < halfpi) rhomax = rmax*sinEnd; << 205 << 206 G4TwoVector xymin,xymax; << 207 G4GeomTools::DiskExtent(rhomin,rhomax, << 208 GetSinStartPhi(),G << 209 GetSinEndPhi(),Get << 210 xymin,xymax); << 211 << 212 G4double zmin = std::min(rmin*cosEnd,rmax* << 213 G4double zmax = std::max(rmin*cosStart,rma << 214 pMin.set(xymin.x(),xymin.y(),zmin); << 215 pMax.set(xymax.x(),xymax.y(),zmax); << 216 } << 217 << 218 // Check correctness of the bounding box << 219 // << 220 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 221 { << 222 std::ostringstream message; << 223 message << "Bad bounding box (min >= max) << 224 << GetName() << " !" << 225 << "\npMin = " << pMin << 226 << "\npMax = " << pMax; << 227 G4Exception("G4Sphere::BoundingLimits()", << 228 JustWarning, message); << 229 DumpInfo(); << 230 } << 231 } << 232 << 233 ////////////////////////////////////////////// 216 //////////////////////////////////////////////////////////////////////////// 234 // 217 // 235 // Calculate extent under transform and specif 218 // Calculate extent under transform and specified limit 236 219 237 G4bool G4Sphere::CalculateExtent( const EAxis 220 G4bool G4Sphere::CalculateExtent( const EAxis pAxis, 238 const G4Voxe 221 const G4VoxelLimits& pVoxelLimit, 239 const G4Affi 222 const G4AffineTransform& pTransform, 240 G4doub 223 G4double& pMin, G4double& pMax ) const 241 { 224 { 242 G4ThreeVector bmin, bmax; << 225 if ( fFullSphere ) >> 226 { >> 227 // Special case handling for solid spheres-shells >> 228 // (rotation doesn't influence). >> 229 // Compute x/y/z mins and maxs for bounding box respecting limits, >> 230 // with early returns if outside limits. Then switch() on pAxis, >> 231 // and compute exact x and y limit for x/y case >> 232 >> 233 G4double xoffset,xMin,xMax; >> 234 G4double yoffset,yMin,yMax; >> 235 G4double zoffset,zMin,zMax; >> 236 >> 237 G4double diff1,diff2,delta,maxDiff,newMin,newMax; >> 238 G4double xoff1,xoff2,yoff1,yoff2; >> 239 >> 240 xoffset=pTransform.NetTranslation().x(); >> 241 xMin=xoffset-fRmax; >> 242 xMax=xoffset+fRmax; >> 243 if (pVoxelLimit.IsXLimited()) >> 244 { >> 245 if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance) >> 246 || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) ) >> 247 { >> 248 return false; >> 249 } >> 250 else >> 251 { >> 252 if (xMin<pVoxelLimit.GetMinXExtent()) >> 253 { >> 254 xMin=pVoxelLimit.GetMinXExtent(); >> 255 } >> 256 if (xMax>pVoxelLimit.GetMaxXExtent()) >> 257 { >> 258 xMax=pVoxelLimit.GetMaxXExtent(); >> 259 } >> 260 } >> 261 } >> 262 >> 263 yoffset=pTransform.NetTranslation().y(); >> 264 yMin=yoffset-fRmax; >> 265 yMax=yoffset+fRmax; >> 266 if (pVoxelLimit.IsYLimited()) >> 267 { >> 268 if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance) >> 269 || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) ) >> 270 { >> 271 return false; >> 272 } >> 273 else >> 274 { >> 275 if (yMin<pVoxelLimit.GetMinYExtent()) >> 276 { >> 277 yMin=pVoxelLimit.GetMinYExtent(); >> 278 } >> 279 if (yMax>pVoxelLimit.GetMaxYExtent()) >> 280 { >> 281 yMax=pVoxelLimit.GetMaxYExtent(); >> 282 } >> 283 } >> 284 } >> 285 >> 286 zoffset=pTransform.NetTranslation().z(); >> 287 zMin=zoffset-fRmax; >> 288 zMax=zoffset+fRmax; >> 289 if (pVoxelLimit.IsZLimited()) >> 290 { >> 291 if ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance) >> 292 || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) ) >> 293 { >> 294 return false; >> 295 } >> 296 else >> 297 { >> 298 if (zMin<pVoxelLimit.GetMinZExtent()) >> 299 { >> 300 zMin=pVoxelLimit.GetMinZExtent(); >> 301 } >> 302 if (zMax>pVoxelLimit.GetMaxZExtent()) >> 303 { >> 304 zMax=pVoxelLimit.GetMaxZExtent(); >> 305 } >> 306 } >> 307 } >> 308 >> 309 // Known to cut sphere >> 310 >> 311 switch (pAxis) >> 312 { >> 313 case kXAxis: >> 314 yoff1=yoffset-yMin; >> 315 yoff2=yMax-yoffset; >> 316 if ((yoff1>=0) && (yoff2>=0)) >> 317 { >> 318 // Y limits cross max/min x => no change >> 319 // >> 320 pMin=xMin; >> 321 pMax=xMax; >> 322 } >> 323 else >> 324 { >> 325 // Y limits don't cross max/min x => compute max delta x, >> 326 // hence new mins/maxs >> 327 // >> 328 delta=fRmax*fRmax-yoff1*yoff1; >> 329 diff1=(delta>0.) ? std::sqrt(delta) : 0.; >> 330 delta=fRmax*fRmax-yoff2*yoff2; >> 331 diff2=(delta>0.) ? std::sqrt(delta) : 0.; >> 332 maxDiff=(diff1>diff2) ? diff1:diff2; >> 333 newMin=xoffset-maxDiff; >> 334 newMax=xoffset+maxDiff; >> 335 pMin=(newMin<xMin) ? xMin : newMin; >> 336 pMax=(newMax>xMax) ? xMax : newMax; >> 337 } >> 338 break; >> 339 case kYAxis: >> 340 xoff1=xoffset-xMin; >> 341 xoff2=xMax-xoffset; >> 342 if ((xoff1>=0) && (xoff2>=0)) >> 343 { >> 344 // X limits cross max/min y => no change >> 345 // >> 346 pMin=yMin; >> 347 pMax=yMax; >> 348 } >> 349 else >> 350 { >> 351 // X limits don't cross max/min y => compute max delta y, >> 352 // hence new mins/maxs >> 353 // >> 354 delta=fRmax*fRmax-xoff1*xoff1; >> 355 diff1=(delta>0.) ? std::sqrt(delta) : 0.; >> 356 delta=fRmax*fRmax-xoff2*xoff2; >> 357 diff2=(delta>0.) ? std::sqrt(delta) : 0.; >> 358 maxDiff=(diff1>diff2) ? diff1:diff2; >> 359 newMin=yoffset-maxDiff; >> 360 newMax=yoffset+maxDiff; >> 361 pMin=(newMin<yMin) ? yMin : newMin; >> 362 pMax=(newMax>yMax) ? yMax : newMax; >> 363 } >> 364 break; >> 365 case kZAxis: >> 366 pMin=zMin; >> 367 pMax=zMax; >> 368 break; >> 369 default: >> 370 break; >> 371 } >> 372 pMin-=kCarTolerance; >> 373 pMax+=kCarTolerance; >> 374 >> 375 return true; >> 376 } >> 377 else // Transformed cutted sphere >> 378 { >> 379 G4int i,j,noEntries,noBetweenSections; >> 380 G4bool existsAfterClip=false; >> 381 >> 382 // Calculate rotated vertex coordinates 243 383 244 // Get bounding box << 384 G4ThreeVectorList* vertices; 245 BoundingLimits(bmin,bmax); << 385 G4int noPolygonVertices ; >> 386 vertices=CreateRotatedVertices(pTransform,noPolygonVertices); 246 387 247 // Find extent << 388 pMin=+kInfinity; 248 G4BoundingEnvelope bbox(bmin,bmax); << 389 pMax=-kInfinity; 249 return bbox.CalculateExtent(pAxis,pVoxelLimi << 390 >> 391 noEntries=vertices->size(); // noPolygonVertices*noPhiCrossSections >> 392 noBetweenSections=noEntries-noPolygonVertices; >> 393 >> 394 G4ThreeVectorList ThetaPolygon ; >> 395 for (i=0;i<noEntries;i+=noPolygonVertices) >> 396 { >> 397 for(j=0;j<(noPolygonVertices/2)-1;j++) >> 398 { >> 399 ThetaPolygon.push_back((*vertices)[i+j]) ; >> 400 ThetaPolygon.push_back((*vertices)[i+j+1]) ; >> 401 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-2-j]) ; >> 402 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1-j]) ; >> 403 CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax); >> 404 ThetaPolygon.clear() ; >> 405 } >> 406 } >> 407 for (i=0;i<noBetweenSections;i+=noPolygonVertices) >> 408 { >> 409 for(j=0;j<noPolygonVertices-1;j++) >> 410 { >> 411 ThetaPolygon.push_back((*vertices)[i+j]) ; >> 412 ThetaPolygon.push_back((*vertices)[i+j+1]) ; >> 413 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j+1]) ; >> 414 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j]) ; >> 415 CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax); >> 416 ThetaPolygon.clear() ; >> 417 } >> 418 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1]) ; >> 419 ThetaPolygon.push_back((*vertices)[i]) ; >> 420 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices]) ; >> 421 ThetaPolygon.push_back((*vertices)[i+2*noPolygonVertices-1]) ; >> 422 CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax); >> 423 ThetaPolygon.clear() ; >> 424 } >> 425 >> 426 if ((pMin!=kInfinity) || (pMax!=-kInfinity)) >> 427 { >> 428 existsAfterClip=true; >> 429 >> 430 // Add 2*tolerance to avoid precision troubles >> 431 // >> 432 pMin-=kCarTolerance; >> 433 pMax+=kCarTolerance; >> 434 } >> 435 else >> 436 { >> 437 // Check for case where completely enveloping clipping volume >> 438 // If point inside then we are confident that the solid completely >> 439 // envelopes the clipping volume. Hence set min/max extents according >> 440 // to clipping volume extents along the specified axis. >> 441 >> 442 G4ThreeVector clipCentre( >> 443 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, >> 444 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, >> 445 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5); >> 446 >> 447 if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside) >> 448 { >> 449 existsAfterClip=true; >> 450 pMin=pVoxelLimit.GetMinExtent(pAxis); >> 451 pMax=pVoxelLimit.GetMaxExtent(pAxis); >> 452 } >> 453 } >> 454 delete vertices; >> 455 return existsAfterClip; >> 456 } 250 } 457 } 251 458 252 ////////////////////////////////////////////// 459 /////////////////////////////////////////////////////////////////////////// 253 // 460 // 254 // Return whether point inside/outside/on surf 461 // Return whether point inside/outside/on surface 255 // Split into radius, phi, theta checks 462 // Split into radius, phi, theta checks 256 // Each check modifies 'in', or returns as app 463 // Each check modifies 'in', or returns as approprate 257 464 258 EInside G4Sphere::Inside( const G4ThreeVector& 465 EInside G4Sphere::Inside( const G4ThreeVector& p ) const 259 { 466 { 260 G4double rho,rho2,rad2,tolRMin,tolRMax; 467 G4double rho,rho2,rad2,tolRMin,tolRMax; 261 G4double pPhi,pTheta; 468 G4double pPhi,pTheta; 262 EInside in = kOutside; 469 EInside in = kOutside; 263 << 470 static const G4double halfAngTolerance = kAngTolerance*0.5; 264 const G4double halfRmaxTolerance = fRmaxTole 471 const G4double halfRmaxTolerance = fRmaxTolerance*0.5; 265 const G4double halfRminTolerance = fRminTole 472 const G4double halfRminTolerance = fRminTolerance*0.5; 266 const G4double Rmax_minus = fRmax - halfRmax 473 const G4double Rmax_minus = fRmax - halfRmaxTolerance; 267 const G4double Rmin_plus = (fRmin > 0) ? fR 474 const G4double Rmin_plus = (fRmin > 0) ? fRmin+halfRminTolerance : 0; 268 475 269 rho2 = p.x()*p.x() + p.y()*p.y() ; 476 rho2 = p.x()*p.x() + p.y()*p.y() ; 270 rad2 = rho2 + p.z()*p.z() ; 477 rad2 = rho2 + p.z()*p.z() ; 271 478 272 // Check radial surfaces. Sets 'in' 479 // Check radial surfaces. Sets 'in' 273 480 274 tolRMin = Rmin_plus; 481 tolRMin = Rmin_plus; 275 tolRMax = Rmax_minus; 482 tolRMax = Rmax_minus; 276 483 277 if(rad2 == 0.0) << 278 { << 279 if (fRmin > 0.0) << 280 { << 281 return in = kOutside; << 282 } << 283 if ( (!fFullPhiSphere) || (!fFullThetaSphe << 284 { << 285 return in = kSurface; << 286 } << 287 else << 288 { << 289 return in = kInside; << 290 } << 291 } << 292 << 293 if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad 484 if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad2 >= Rmin_plus*Rmin_plus) ) 294 { 485 { 295 in = kInside; 486 in = kInside; 296 } 487 } 297 else 488 else 298 { 489 { 299 tolRMax = fRmax + halfRmaxTolerance; 490 tolRMax = fRmax + halfRmaxTolerance; // outside case 300 tolRMin = std::max(fRmin-halfRminTolerance 491 tolRMin = std::max(fRmin-halfRminTolerance, 0.); // outside case 301 if ( (rad2 <= tolRMax*tolRMax) && (rad2 >= 492 if ( (rad2 <= tolRMax*tolRMax) && (rad2 >= tolRMin*tolRMin) ) 302 { 493 { 303 in = kSurface; 494 in = kSurface; 304 } 495 } 305 else 496 else 306 { 497 { 307 return in = kOutside; 498 return in = kOutside; 308 } 499 } 309 } 500 } 310 501 311 // Phi boundaries : Do not check if it has 502 // Phi boundaries : Do not check if it has no phi boundary! 312 503 313 if ( !fFullPhiSphere && (rho2 != 0.0) ) // << 504 if ( !fFullPhiSphere && rho2 ) // [fDPhi < twopi] and [p.x or p.y] 314 { 505 { 315 pPhi = std::atan2(p.y(),p.x()) ; 506 pPhi = std::atan2(p.y(),p.x()) ; 316 507 317 if ( pPhi < fSPhi - halfAngTolerance 508 if ( pPhi < fSPhi - halfAngTolerance ) { pPhi += twopi; } 318 else if ( pPhi > ePhi + halfAngTolerance ) 509 else if ( pPhi > ePhi + halfAngTolerance ) { pPhi -= twopi; } 319 << 510 320 if ( (pPhi < fSPhi - halfAngTolerance) 511 if ( (pPhi < fSPhi - halfAngTolerance) 321 || (pPhi > ePhi + halfAngTolerance) ) 512 || (pPhi > ePhi + halfAngTolerance) ) { return in = kOutside; } 322 << 513 323 else if (in == kInside) // else it's kSur 514 else if (in == kInside) // else it's kSurface anyway already 324 { 515 { 325 if ( (pPhi < fSPhi + halfAngTolerance) 516 if ( (pPhi < fSPhi + halfAngTolerance) 326 || (pPhi > ePhi - halfAngTolerance) ) << 517 || (pPhi > ePhi - halfAngTolerance) ) { in = kSurface; } 327 } 518 } 328 } 519 } 329 520 330 // Theta bondaries 521 // Theta bondaries 331 << 522 332 if ( ((rho2 != 0.0) || (p.z() != 0.0)) && (! << 523 if ( (rho2 || p.z()) && (!fFullThetaSphere) ) 333 { 524 { 334 rho = std::sqrt(rho2); 525 rho = std::sqrt(rho2); 335 pTheta = std::atan2(rho,p.z()); 526 pTheta = std::atan2(rho,p.z()); 336 527 337 if ( in == kInside ) 528 if ( in == kInside ) 338 { 529 { 339 if ( ((fSTheta > 0.0) && (pTheta < fSThe << 530 if ( (pTheta < fSTheta + halfAngTolerance) 340 || ((eTheta < pi) && (pTheta > eTheta << 531 || (pTheta > eTheta - halfAngTolerance) ) 341 { 532 { 342 if ( (( (fSTheta>0.0)&&(pTheta>=fSThet << 533 if ( (pTheta >= fSTheta - halfAngTolerance) 343 || (fSTheta == 0.0) ) << 534 && (pTheta <= eTheta + halfAngTolerance) ) 344 && ((eTheta==pi)||(pTheta <= eTheta << 345 { 535 { 346 in = kSurface; 536 in = kSurface; 347 } 537 } 348 else 538 else 349 { 539 { 350 in = kOutside; 540 in = kOutside; 351 } 541 } 352 } 542 } 353 } 543 } 354 else 544 else 355 { 545 { 356 if ( ((fSTheta > 0.0)&&(pTheta < fSThe << 546 if ( (pTheta < fSTheta - halfAngTolerance) 357 ||((eTheta < pi )&&(pTheta > eThet << 547 || (pTheta > eTheta + halfAngTolerance) ) 358 { 548 { 359 in = kOutside; 549 in = kOutside; 360 } 550 } 361 } 551 } 362 } 552 } 363 return in; 553 return in; 364 } 554 } 365 555 366 ////////////////////////////////////////////// 556 ///////////////////////////////////////////////////////////////////// 367 // 557 // 368 // Return unit normal of surface closest to p 558 // Return unit normal of surface closest to p 369 // - note if point on z axis, ignore phi divid 559 // - note if point on z axis, ignore phi divided sides 370 // - unsafe if point close to z axis a rmin=0 560 // - unsafe if point close to z axis a rmin=0 - no explicit checks 371 561 372 G4ThreeVector G4Sphere::SurfaceNormal( const G 562 G4ThreeVector G4Sphere::SurfaceNormal( const G4ThreeVector& p ) const 373 { 563 { 374 G4int noSurfaces = 0; << 564 G4int noSurfaces = 0; 375 G4double rho, rho2, radius, pTheta, pPhi=0.; << 565 G4double rho, rho2, rad, pTheta, pPhi=0.; 376 G4double distRMin = kInfinity; 566 G4double distRMin = kInfinity; 377 G4double distSPhi = kInfinity, distEPhi = kI 567 G4double distSPhi = kInfinity, distEPhi = kInfinity; 378 G4double distSTheta = kInfinity, distETheta 568 G4double distSTheta = kInfinity, distETheta = kInfinity; 379 G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0., 569 G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0.,0.,1.); 380 G4ThreeVector norm, sumnorm(0.,0.,0.); 570 G4ThreeVector norm, sumnorm(0.,0.,0.); 381 571 >> 572 static const G4double halfCarTolerance = 0.5*kCarTolerance; >> 573 static const G4double halfAngTolerance = 0.5*kAngTolerance; >> 574 382 rho2 = p.x()*p.x()+p.y()*p.y(); 575 rho2 = p.x()*p.x()+p.y()*p.y(); 383 radius = std::sqrt(rho2+p.z()*p.z()); << 576 rad = std::sqrt(rho2+p.z()*p.z()); 384 rho = std::sqrt(rho2); 577 rho = std::sqrt(rho2); 385 578 386 G4double distRMax = std::fabs(radius-fRma << 579 G4double distRMax = std::fabs(rad-fRmax); 387 if (fRmin != 0.0) distRMin = std::fabs(radi << 580 if (fRmin) distRMin = std::fabs(rad-fRmin); 388 << 581 389 if ( (rho != 0.0) && !fFullSphere ) << 582 if ( rho && !fFullSphere ) 390 { 583 { 391 pPhi = std::atan2(p.y(),p.x()); 584 pPhi = std::atan2(p.y(),p.x()); 392 585 393 if (pPhi < fSPhi-halfAngTolerance) { p 586 if (pPhi < fSPhi-halfAngTolerance) { pPhi += twopi; } 394 else if (pPhi > ePhi+halfAngTolerance) { p 587 else if (pPhi > ePhi+halfAngTolerance) { pPhi -= twopi; } 395 } 588 } 396 if ( !fFullPhiSphere ) 589 if ( !fFullPhiSphere ) 397 { 590 { 398 if ( rho != 0.0 ) << 591 if ( rho ) 399 { 592 { 400 distSPhi = std::fabs( pPhi-fSPhi ); << 593 distSPhi = std::fabs( pPhi-fSPhi ); 401 distEPhi = std::fabs( pPhi-ePhi ); << 594 distEPhi = std::fabs( pPhi-ePhi ); 402 } 595 } 403 else if( fRmin == 0.0 ) << 596 else if( !fRmin ) 404 { 597 { 405 distSPhi = 0.; << 598 distSPhi = 0.; 406 distEPhi = 0.; << 599 distEPhi = 0.; 407 } 600 } 408 nPs = G4ThreeVector(sinSPhi,-cosSPhi,0); 601 nPs = G4ThreeVector(sinSPhi,-cosSPhi,0); 409 nPe = G4ThreeVector(-sinEPhi,cosEPhi,0); 602 nPe = G4ThreeVector(-sinEPhi,cosEPhi,0); 410 } << 603 } 411 if ( !fFullThetaSphere ) 604 if ( !fFullThetaSphere ) 412 { 605 { 413 if ( rho != 0.0 ) << 606 if ( rho ) 414 { 607 { 415 pTheta = std::atan2(rho,p.z()); 608 pTheta = std::atan2(rho,p.z()); 416 distSTheta = std::fabs(pTheta-fSTheta); << 609 distSTheta = std::fabs(pTheta-fSTheta); 417 distETheta = std::fabs(pTheta-eTheta); 610 distETheta = std::fabs(pTheta-eTheta); 418 << 611 419 nTs = G4ThreeVector(-cosSTheta*p.x()/rho 612 nTs = G4ThreeVector(-cosSTheta*p.x()/rho, 420 -cosSTheta*p.y()/rho 613 -cosSTheta*p.y()/rho, 421 sinSTheta 614 sinSTheta ); 422 615 423 nTe = G4ThreeVector( cosETheta*p.x()/rho 616 nTe = G4ThreeVector( cosETheta*p.x()/rho, 424 cosETheta*p.y()/rho 617 cosETheta*p.y()/rho, 425 -sinETheta << 618 -sinETheta ); 426 } 619 } 427 else if( fRmin == 0.0 ) << 620 else if( !fRmin ) 428 { 621 { 429 if ( fSTheta != 0.0 ) << 622 if ( fSTheta ) 430 { << 623 { 431 distSTheta = 0.; 624 distSTheta = 0.; 432 nTs = G4ThreeVector(0.,0.,-1.); 625 nTs = G4ThreeVector(0.,0.,-1.); 433 } 626 } 434 if ( eTheta < pi ) 627 if ( eTheta < pi ) 435 { << 628 { 436 distETheta = 0.; 629 distETheta = 0.; 437 nTe = G4ThreeVector(0.,0.,1.); 630 nTe = G4ThreeVector(0.,0.,1.); 438 } 631 } 439 } << 632 } 440 } 633 } 441 if( radius != 0.0 ) { nR = G4ThreeVector(p. << 634 if( rad ) { nR = G4ThreeVector(p.x()/rad,p.y()/rad,p.z()/rad); } 442 635 443 if( distRMax <= halfCarTolerance ) 636 if( distRMax <= halfCarTolerance ) 444 { 637 { 445 ++noSurfaces; << 638 noSurfaces ++; 446 sumnorm += nR; 639 sumnorm += nR; 447 } 640 } 448 if( (fRmin != 0.0) && (distRMin <= halfCarTo << 641 if( fRmin && (distRMin <= halfCarTolerance) ) 449 { 642 { 450 ++noSurfaces; << 643 noSurfaces ++; 451 sumnorm -= nR; 644 sumnorm -= nR; 452 } 645 } 453 if( !fFullPhiSphere ) << 646 if( !fFullPhiSphere ) 454 { 647 { 455 if (distSPhi <= halfAngTolerance) 648 if (distSPhi <= halfAngTolerance) 456 { 649 { 457 ++noSurfaces; << 650 noSurfaces ++; 458 sumnorm += nPs; 651 sumnorm += nPs; 459 } 652 } 460 if (distEPhi <= halfAngTolerance) << 653 if (distEPhi <= halfAngTolerance) 461 { 654 { 462 ++noSurfaces; << 655 noSurfaces ++; 463 sumnorm += nPe; 656 sumnorm += nPe; 464 } 657 } 465 } 658 } 466 if ( !fFullThetaSphere ) 659 if ( !fFullThetaSphere ) 467 { 660 { 468 if ((distSTheta <= halfAngTolerance) && (f 661 if ((distSTheta <= halfAngTolerance) && (fSTheta > 0.)) 469 { 662 { 470 ++noSurfaces; << 663 noSurfaces ++; 471 if ((radius <= halfCarTolerance) && fFul << 664 if ((rad <= halfCarTolerance) && fFullPhiSphere) { sumnorm += nZ; } 472 else << 665 else { sumnorm += nTs; } 473 } << 666 } 474 if ((distETheta <= halfAngTolerance) && (e << 667 if ((distETheta <= halfAngTolerance) && (eTheta < pi)) 475 { << 668 { 476 ++noSurfaces; << 669 noSurfaces ++; 477 if ((radius <= halfCarTolerance) && fFul << 670 if ((rad <= halfCarTolerance) && fFullPhiSphere) { sumnorm -= nZ; } 478 else << 671 else { sumnorm += nTe; } 479 if(sumnorm.z() == 0.) { sumnorm += nZ; 672 if(sumnorm.z() == 0.) { sumnorm += nZ; } 480 } 673 } 481 } 674 } 482 if ( noSurfaces == 0 ) 675 if ( noSurfaces == 0 ) 483 { 676 { 484 #ifdef G4CSGDEBUG 677 #ifdef G4CSGDEBUG 485 G4Exception("G4Sphere::SurfaceNormal(p)", 678 G4Exception("G4Sphere::SurfaceNormal(p)", "GeomSolids1002", 486 JustWarning, "Point p is not o << 679 JustWarning, "Point p is not on surface !?" ); 487 #endif 680 #endif 488 norm = ApproxSurfaceNormal(p); 681 norm = ApproxSurfaceNormal(p); 489 } 682 } 490 else if ( noSurfaces == 1 ) { norm = sumnor 683 else if ( noSurfaces == 1 ) { norm = sumnorm; } 491 else { norm = sumnor 684 else { norm = sumnorm.unit(); } 492 return norm; 685 return norm; 493 } 686 } 494 687 495 688 496 ////////////////////////////////////////////// << 689 ///////////////////////////////////////////////////////////////////////////////////////////// 497 // 690 // 498 // Algorithm for SurfaceNormal() following the 691 // Algorithm for SurfaceNormal() following the original specification 499 // for points not on the surface 692 // for points not on the surface 500 693 501 G4ThreeVector G4Sphere::ApproxSurfaceNormal( c 694 G4ThreeVector G4Sphere::ApproxSurfaceNormal( const G4ThreeVector& p ) const 502 { 695 { 503 ENorm side; 696 ENorm side; 504 G4ThreeVector norm; 697 G4ThreeVector norm; 505 G4double rho,rho2,radius,pPhi,pTheta; << 698 G4double rho,rho2,rad,pPhi,pTheta; 506 G4double distRMin,distRMax,distSPhi,distEPhi 699 G4double distRMin,distRMax,distSPhi,distEPhi, 507 distSTheta,distETheta,distMin; 700 distSTheta,distETheta,distMin; 508 701 509 rho2=p.x()*p.x()+p.y()*p.y(); 702 rho2=p.x()*p.x()+p.y()*p.y(); 510 radius=std::sqrt(rho2+p.z()*p.z()); << 703 rad=std::sqrt(rho2+p.z()*p.z()); 511 rho=std::sqrt(rho2); 704 rho=std::sqrt(rho2); 512 705 513 // 706 // 514 // Distance to r shells 707 // Distance to r shells 515 // 708 // 516 709 517 distRMax=std::fabs(radius-fRmax); << 710 distRMax=std::fabs(rad-fRmax); 518 if (fRmin != 0.0) << 711 if (fRmin) 519 { 712 { 520 distRMin=std::fabs(radius-fRmin); << 713 distRMin=std::fabs(rad-fRmin); 521 << 714 522 if (distRMin<distRMax) 715 if (distRMin<distRMax) 523 { 716 { 524 distMin=distRMin; 717 distMin=distRMin; 525 side=kNRMin; 718 side=kNRMin; 526 } 719 } 527 else 720 else 528 { << 721 { 529 distMin=distRMax; 722 distMin=distRMax; 530 side=kNRMax; 723 side=kNRMax; 531 } 724 } 532 } 725 } 533 else 726 else 534 { 727 { 535 distMin=distRMax; 728 distMin=distRMax; 536 side=kNRMax; 729 side=kNRMax; 537 } 730 } 538 731 539 // 732 // 540 // Distance to phi planes 733 // Distance to phi planes 541 // 734 // 542 // Protected against (0,0,z) << 735 // Protected against (0,0,z) 543 << 736 544 pPhi = std::atan2(p.y(),p.x()); 737 pPhi = std::atan2(p.y(),p.x()); 545 if (pPhi<0) { pPhi += twopi; } 738 if (pPhi<0) { pPhi += twopi; } 546 739 547 if (!fFullPhiSphere && (rho != 0.0)) << 740 if (!fFullPhiSphere && rho) 548 { 741 { 549 if (fSPhi<0) 742 if (fSPhi<0) 550 { 743 { 551 distSPhi=std::fabs(pPhi-(fSPhi+twopi))*r 744 distSPhi=std::fabs(pPhi-(fSPhi+twopi))*rho; 552 } 745 } 553 else 746 else 554 { 747 { 555 distSPhi=std::fabs(pPhi-fSPhi)*rho; 748 distSPhi=std::fabs(pPhi-fSPhi)*rho; 556 } 749 } 557 750 558 distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho; 751 distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho; 559 752 560 // Find new minimum 753 // Find new minimum 561 // 754 // 562 if (distSPhi<distEPhi) 755 if (distSPhi<distEPhi) 563 { 756 { 564 if (distSPhi<distMin) 757 if (distSPhi<distMin) 565 { 758 { 566 distMin = distSPhi; << 759 distMin=distSPhi; 567 side = kNSPhi; << 760 side=kNSPhi; 568 } 761 } 569 } 762 } 570 else 763 else 571 { 764 { 572 if (distEPhi<distMin) 765 if (distEPhi<distMin) 573 { 766 { 574 distMin = distEPhi; << 767 distMin=distEPhi; 575 side = kNEPhi; << 768 side=kNEPhi; 576 } 769 } 577 } 770 } 578 } 771 } 579 772 580 // 773 // 581 // Distance to theta planes 774 // Distance to theta planes 582 // 775 // 583 776 584 if (!fFullThetaSphere && (radius != 0.0)) << 777 if (!fFullThetaSphere && rad) 585 { 778 { 586 pTheta=std::atan2(rho,p.z()); 779 pTheta=std::atan2(rho,p.z()); 587 distSTheta=std::fabs(pTheta-fSTheta)*radiu << 780 distSTheta=std::fabs(pTheta-fSTheta)*rad; 588 distETheta=std::fabs(pTheta-fSTheta-fDThet << 781 distETheta=std::fabs(pTheta-fSTheta-fDTheta)*rad; 589 782 590 // Find new minimum 783 // Find new minimum 591 // 784 // 592 if (distSTheta<distETheta) 785 if (distSTheta<distETheta) 593 { 786 { 594 if (distSTheta<distMin) 787 if (distSTheta<distMin) 595 { 788 { 596 distMin = distSTheta ; 789 distMin = distSTheta ; 597 side = kNSTheta ; 790 side = kNSTheta ; 598 } 791 } 599 } 792 } 600 else 793 else 601 { 794 { 602 if (distETheta<distMin) 795 if (distETheta<distMin) 603 { 796 { 604 distMin = distETheta ; 797 distMin = distETheta ; 605 side = kNETheta ; 798 side = kNETheta ; 606 } 799 } 607 } 800 } 608 } 801 } 609 802 610 switch (side) 803 switch (side) 611 { 804 { 612 case kNRMin: // Inner radius 805 case kNRMin: // Inner radius 613 norm=G4ThreeVector(-p.x()/radius,-p.y()/ << 806 norm=G4ThreeVector(-p.x()/rad,-p.y()/rad,-p.z()/rad); 614 break; 807 break; 615 case kNRMax: // Outer radius 808 case kNRMax: // Outer radius 616 norm=G4ThreeVector(p.x()/radius,p.y()/ra << 809 norm=G4ThreeVector(p.x()/rad,p.y()/rad,p.z()/rad); 617 break; 810 break; 618 case kNSPhi: 811 case kNSPhi: 619 norm=G4ThreeVector(sinSPhi,-cosSPhi,0); 812 norm=G4ThreeVector(sinSPhi,-cosSPhi,0); 620 break; 813 break; 621 case kNEPhi: 814 case kNEPhi: 622 norm=G4ThreeVector(-sinEPhi,cosEPhi,0); 815 norm=G4ThreeVector(-sinEPhi,cosEPhi,0); 623 break; 816 break; 624 case kNSTheta: 817 case kNSTheta: 625 norm=G4ThreeVector(-cosSTheta*std::cos(p 818 norm=G4ThreeVector(-cosSTheta*std::cos(pPhi), 626 -cosSTheta*std::sin(p 819 -cosSTheta*std::sin(pPhi), 627 sinSTheta 820 sinSTheta ); 628 break; 821 break; 629 case kNETheta: 822 case kNETheta: 630 norm=G4ThreeVector( cosETheta*std::cos(p 823 norm=G4ThreeVector( cosETheta*std::cos(pPhi), 631 cosETheta*std::sin(p 824 cosETheta*std::sin(pPhi), 632 -sinETheta 825 -sinETheta ); 633 break; 826 break; 634 default: // Should never reach th 827 default: // Should never reach this case ... 635 DumpInfo(); 828 DumpInfo(); 636 G4Exception("G4Sphere::ApproxSurfaceNorm 829 G4Exception("G4Sphere::ApproxSurfaceNormal()", 637 "GeomSolids1002", JustWarnin 830 "GeomSolids1002", JustWarning, 638 "Undefined side for valid su 831 "Undefined side for valid surface normal to solid."); 639 break; << 832 break; 640 } 833 } 641 834 642 return norm; 835 return norm; 643 } 836 } 644 837 645 ////////////////////////////////////////////// 838 /////////////////////////////////////////////////////////////////////////////// 646 // 839 // 647 // Calculate distance to shape from outside, a 840 // Calculate distance to shape from outside, along normalised vector 648 // - return kInfinity if no intersection, or i 841 // - return kInfinity if no intersection, or intersection distance <= tolerance 649 // 842 // 650 // -> If point is outside outer radius, comput 843 // -> If point is outside outer radius, compute intersection with rmax 651 // - if no intersection return 844 // - if no intersection return 652 // - if valid phi,theta return interse 845 // - if valid phi,theta return intersection Dist 653 // 846 // 654 // -> If shell, compute intersection with inne 847 // -> If shell, compute intersection with inner radius, taking largest +ve root 655 // - if valid phi,theta, save intersect 848 // - if valid phi,theta, save intersection 656 // 849 // 657 // -> If phi segmented, compute intersection w 850 // -> If phi segmented, compute intersection with phi half planes 658 // - if valid intersection(r,theta), re 851 // - if valid intersection(r,theta), return smallest intersection of 659 // inner shell & phi intersection 852 // inner shell & phi intersection 660 // 853 // 661 // -> If theta segmented, compute intersection 854 // -> If theta segmented, compute intersection with theta cones 662 // - if valid intersection(r,phi), retu 855 // - if valid intersection(r,phi), return smallest intersection of 663 // inner shell & theta intersection 856 // inner shell & theta intersection 664 // 857 // 665 // 858 // 666 // NOTE: 859 // NOTE: 667 // - `if valid' (above) implies tolerant check 860 // - `if valid' (above) implies tolerant checking of intersection points 668 // 861 // 669 // OPT: 862 // OPT: 670 // Move tolIO/ORmin/RMax2 precalcs to where th 863 // Move tolIO/ORmin/RMax2 precalcs to where they are needed - 671 // not required for most cases. 864 // not required for most cases. 672 // Avoid atan2 for non theta cut G4Sphere. 865 // Avoid atan2 for non theta cut G4Sphere. 673 866 674 G4double G4Sphere::DistanceToIn( const G4Three 867 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p, 675 const G4Three 868 const G4ThreeVector& v ) const 676 { 869 { 677 G4double snxt = kInfinity ; // snxt = d 870 G4double snxt = kInfinity ; // snxt = default return value 678 G4double rho2, rad2, pDotV2d, pDotV3d, pThet 871 G4double rho2, rad2, pDotV2d, pDotV3d, pTheta ; 679 G4double tolSTheta=0., tolETheta=0. ; 872 G4double tolSTheta=0., tolETheta=0. ; 680 const G4double dRmax = 100.*fRmax; 873 const G4double dRmax = 100.*fRmax; 681 874 >> 875 static const G4double halfCarTolerance = kCarTolerance*0.5; >> 876 static const G4double halfAngTolerance = kAngTolerance*0.5; 682 const G4double halfRmaxTolerance = fRmaxTole 877 const G4double halfRmaxTolerance = fRmaxTolerance*0.5; 683 const G4double halfRminTolerance = fRminTole 878 const G4double halfRminTolerance = fRminTolerance*0.5; 684 const G4double tolORMin2 = (fRmin>halfRminTo 879 const G4double tolORMin2 = (fRmin>halfRminTolerance) 685 ? (fRmin-halfRminTolerance)*(fR 880 ? (fRmin-halfRminTolerance)*(fRmin-halfRminTolerance) : 0; 686 const G4double tolIRMin2 = 881 const G4double tolIRMin2 = 687 (fRmin+halfRminTolerance)*(fRmi 882 (fRmin+halfRminTolerance)*(fRmin+halfRminTolerance); 688 const G4double tolORMax2 = 883 const G4double tolORMax2 = 689 (fRmax+halfRmaxTolerance)*(fRma 884 (fRmax+halfRmaxTolerance)*(fRmax+halfRmaxTolerance); 690 const G4double tolIRMax2 = 885 const G4double tolIRMax2 = 691 (fRmax-halfRmaxTolerance)*(fRma 886 (fRmax-halfRmaxTolerance)*(fRmax-halfRmaxTolerance); 692 887 693 // Intersection point 888 // Intersection point 694 // 889 // 695 G4double xi, yi, zi, rhoi, rhoi2, radi2, iTh 890 G4double xi, yi, zi, rhoi, rhoi2, radi2, iTheta ; 696 891 697 // Phi intersection 892 // Phi intersection 698 // 893 // 699 G4double Comp ; << 894 G4double Comp ; 700 895 701 // Phi precalcs 896 // Phi precalcs 702 // 897 // 703 G4double Dist, cosPsi ; 898 G4double Dist, cosPsi ; 704 899 705 // Theta precalcs 900 // Theta precalcs 706 // 901 // 707 G4double dist2STheta, dist2ETheta ; 902 G4double dist2STheta, dist2ETheta ; 708 G4double t1, t2, b, c, d2, d, sd = kInfinity << 903 G4double t1, t2, b, c, d2, d, s = kInfinity ; 709 904 710 // General Precalcs 905 // General Precalcs 711 // 906 // 712 rho2 = p.x()*p.x() + p.y()*p.y() ; 907 rho2 = p.x()*p.x() + p.y()*p.y() ; 713 rad2 = rho2 + p.z()*p.z() ; 908 rad2 = rho2 + p.z()*p.z() ; 714 pTheta = std::atan2(std::sqrt(rho2),p.z()) ; 909 pTheta = std::atan2(std::sqrt(rho2),p.z()) ; 715 910 716 pDotV2d = p.x()*v.x() + p.y()*v.y() ; 911 pDotV2d = p.x()*v.x() + p.y()*v.y() ; 717 pDotV3d = pDotV2d + p.z()*v.z() ; 912 pDotV3d = pDotV2d + p.z()*v.z() ; 718 913 719 // Theta precalcs 914 // Theta precalcs 720 // 915 // 721 if (!fFullThetaSphere) 916 if (!fFullThetaSphere) 722 { 917 { 723 tolSTheta = fSTheta - halfAngTolerance ; 918 tolSTheta = fSTheta - halfAngTolerance ; 724 tolETheta = eTheta + halfAngTolerance ; 919 tolETheta = eTheta + halfAngTolerance ; 725 << 726 // Special case rad2 = 0 comparing with di << 727 // << 728 if ((rad2!=0.0) || (fRmin!=0.0)) << 729 { << 730 // Keep going for computation of distanc << 731 } << 732 else // Positioned on the sphere's origin << 733 { << 734 G4double vTheta = std::atan2(std::sqrt(v << 735 if ( (vTheta < tolSTheta) || (vTheta > t << 736 { << 737 return snxt ; // kInfinity << 738 } << 739 return snxt = 0.0 ; << 740 } << 741 } 920 } 742 921 743 // Outer spherical shell intersection 922 // Outer spherical shell intersection 744 // - Only if outside tolerant fRmax 923 // - Only if outside tolerant fRmax 745 // - Check for if inside and outer G4Sphere 924 // - Check for if inside and outer G4Sphere heading through solid (-> 0) 746 // - No intersect -> no intersection with G4 925 // - No intersect -> no intersection with G4Sphere 747 // 926 // 748 // Shell eqn: x^2+y^2+z^2=RSPH^2 927 // Shell eqn: x^2+y^2+z^2=RSPH^2 749 // 928 // 750 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 929 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 751 // 930 // 752 // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+ << 931 // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2 753 // => rad2 +2sd(pDotV3d) + << 932 // => rad2 +2s(pDotV3d) +s^2 =R^2 754 // 933 // 755 // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2 << 934 // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2)) 756 935 757 c = rad2 - fRmax*fRmax ; 936 c = rad2 - fRmax*fRmax ; 758 937 759 if (c > fRmaxTolerance*fRmax) 938 if (c > fRmaxTolerance*fRmax) 760 { 939 { 761 // If outside tolerant boundary of outer G 940 // If outside tolerant boundary of outer G4Sphere 762 // [should be std::sqrt(rad2)-fRmax > half 941 // [should be std::sqrt(rad2)-fRmax > halfRmaxTolerance] 763 942 764 d2 = pDotV3d*pDotV3d - c ; 943 d2 = pDotV3d*pDotV3d - c ; 765 944 766 if ( d2 >= 0 ) 945 if ( d2 >= 0 ) 767 { 946 { 768 sd = -pDotV3d - std::sqrt(d2) ; << 947 s = -pDotV3d - std::sqrt(d2) ; 769 948 770 if (sd >= 0 ) << 949 if (s >= 0 ) 771 { 950 { 772 if ( sd>dRmax ) // Avoid rounding erro << 951 if ( s>dRmax ) // Avoid rounding errors due to precision issues seen on 773 { // 64 bits systems. Sp << 952 { // 64 bits systems. Split long distances and recompute 774 G4double fTerm = sd-std::fmod(sd,dRm << 953 G4double fTerm = s-std::fmod(s,dRmax); 775 sd = fTerm + DistanceToIn(p+fTerm*v, << 954 s = fTerm + DistanceToIn(p+fTerm*v,v); 776 } << 955 } 777 xi = p.x() + sd*v.x() ; << 956 xi = p.x() + s*v.x() ; 778 yi = p.y() + sd*v.y() ; << 957 yi = p.y() + s*v.y() ; 779 rhoi = std::sqrt(xi*xi + yi*yi) ; 958 rhoi = std::sqrt(xi*xi + yi*yi) ; 780 959 781 if (!fFullPhiSphere && (rhoi != 0.0)) << 960 if (!fFullPhiSphere && rhoi) // Check phi intersection 782 { 961 { 783 cosPsi = (xi*cosCPhi + yi*sinCPhi)/r 962 cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ; 784 963 785 if (cosPsi >= cosHDPhiOT) 964 if (cosPsi >= cosHDPhiOT) 786 { 965 { 787 if (!fFullThetaSphere) // Check 966 if (!fFullThetaSphere) // Check theta intersection 788 { 967 { 789 zi = p.z() + sd*v.z() ; << 968 zi = p.z() + s*v.z() ; 790 969 791 // rhoi & zi can never both be 0 970 // rhoi & zi can never both be 0 792 // (=>intersect at origin =>fRma 971 // (=>intersect at origin =>fRmax=0) 793 // 972 // 794 iTheta = std::atan2(rhoi,zi) ; 973 iTheta = std::atan2(rhoi,zi) ; 795 if ( (iTheta >= tolSTheta) && (i 974 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 796 { 975 { 797 return snxt = sd ; << 976 return snxt = s ; 798 } 977 } 799 } 978 } 800 else 979 else 801 { 980 { 802 return snxt=sd; << 981 return snxt=s; 803 } 982 } 804 } 983 } 805 } 984 } 806 else 985 else 807 { 986 { 808 if (!fFullThetaSphere) // Check t 987 if (!fFullThetaSphere) // Check theta intersection 809 { 988 { 810 zi = p.z() + sd*v.z() ; << 989 zi = p.z() + s*v.z() ; 811 990 812 // rhoi & zi can never both be 0 991 // rhoi & zi can never both be 0 813 // (=>intersect at origin => fRmax 992 // (=>intersect at origin => fRmax=0 !) 814 // 993 // 815 iTheta = std::atan2(rhoi,zi) ; 994 iTheta = std::atan2(rhoi,zi) ; 816 if ( (iTheta >= tolSTheta) && (iTh 995 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 817 { 996 { 818 return snxt=sd; << 997 return snxt=s; 819 } 998 } 820 } 999 } 821 else 1000 else 822 { 1001 { 823 return snxt = sd; << 1002 return snxt = s ; 824 } 1003 } 825 } << 1004 } 826 } 1005 } 827 } 1006 } 828 else // No intersection with G4Sphere 1007 else // No intersection with G4Sphere 829 { 1008 { 830 return snxt=kInfinity; 1009 return snxt=kInfinity; 831 } 1010 } 832 } 1011 } 833 else 1012 else 834 { 1013 { 835 // Inside outer radius 1014 // Inside outer radius 836 // check not inside, and heading through G 1015 // check not inside, and heading through G4Sphere (-> 0 to in) 837 1016 838 d2 = pDotV3d*pDotV3d - c ; 1017 d2 = pDotV3d*pDotV3d - c ; 839 1018 840 if ( (rad2 > tolIRMax2) 1019 if ( (rad2 > tolIRMax2) 841 && ( (d2 >= fRmaxTolerance*fRmax) && (pD 1020 && ( (d2 >= fRmaxTolerance*fRmax) && (pDotV3d < 0) ) ) 842 { 1021 { 843 if (!fFullPhiSphere) 1022 if (!fFullPhiSphere) 844 { 1023 { 845 // Use inner phi tolerant boundary -> 1024 // Use inner phi tolerant boundary -> if on tolerant 846 // phi boundaries, phi intersect code 1025 // phi boundaries, phi intersect code handles leaving/entering checks 847 1026 848 cosPsi = (p.x()*cosCPhi + p.y()*sinCPh 1027 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 849 1028 850 if (cosPsi>=cosHDPhiIT) 1029 if (cosPsi>=cosHDPhiIT) 851 { << 1030 { 852 // inside radii, delta r -ve, inside 1031 // inside radii, delta r -ve, inside phi 853 1032 854 if ( !fFullThetaSphere ) 1033 if ( !fFullThetaSphere ) 855 { 1034 { 856 if ( (pTheta >= tolSTheta + kAngTo 1035 if ( (pTheta >= tolSTheta + kAngTolerance) 857 && (pTheta <= tolETheta - kAngTo 1036 && (pTheta <= tolETheta - kAngTolerance) ) 858 { 1037 { 859 return snxt=0; 1038 return snxt=0; 860 } 1039 } 861 } 1040 } 862 else // strictly inside Theta in 1041 else // strictly inside Theta in both cases 863 { 1042 { 864 return snxt=0; 1043 return snxt=0; 865 } 1044 } 866 } 1045 } 867 } 1046 } 868 else 1047 else 869 { 1048 { 870 if ( !fFullThetaSphere ) 1049 if ( !fFullThetaSphere ) 871 { 1050 { 872 if ( (pTheta >= tolSTheta + kAngTole 1051 if ( (pTheta >= tolSTheta + kAngTolerance) 873 && (pTheta <= tolETheta - kAngTole 1052 && (pTheta <= tolETheta - kAngTolerance) ) 874 { 1053 { 875 return snxt=0; 1054 return snxt=0; 876 } 1055 } 877 } 1056 } 878 else // strictly inside Theta in bot 1057 else // strictly inside Theta in both cases 879 { 1058 { 880 return snxt=0; 1059 return snxt=0; 881 } 1060 } 882 } 1061 } 883 } 1062 } 884 } 1063 } 885 1064 886 // Inner spherical shell intersection 1065 // Inner spherical shell intersection 887 // - Always farthest root, because would hav 1066 // - Always farthest root, because would have passed through outer 888 // surface first. 1067 // surface first. 889 // - Tolerant check if travelling through so 1068 // - Tolerant check if travelling through solid 890 1069 891 if (fRmin != 0.0) << 1070 if (fRmin) 892 { 1071 { 893 c = rad2 - fRmin*fRmin ; 1072 c = rad2 - fRmin*fRmin ; 894 d2 = pDotV3d*pDotV3d - c ; 1073 d2 = pDotV3d*pDotV3d - c ; 895 1074 896 // Within tolerance inner radius of inner 1075 // Within tolerance inner radius of inner G4Sphere 897 // Check for immediate entry/already insid 1076 // Check for immediate entry/already inside and travelling outwards 898 1077 899 if ( (c > -halfRminTolerance) && (rad2 < t 1078 if ( (c > -halfRminTolerance) && (rad2 < tolIRMin2) 900 && ( (d2 < fRmin*kCarTolerance) || (pDot 1079 && ( (d2 < fRmin*kCarTolerance) || (pDotV3d >= 0) ) ) 901 { 1080 { 902 if ( !fFullPhiSphere ) 1081 if ( !fFullPhiSphere ) 903 { 1082 { 904 // Use inner phi tolerant boundary -> 1083 // Use inner phi tolerant boundary -> if on tolerant 905 // phi boundaries, phi intersect code 1084 // phi boundaries, phi intersect code handles leaving/entering checks 906 1085 907 cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi) 1086 cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)/std::sqrt(rho2) ; 908 if (cosPsi >= cosHDPhiIT) 1087 if (cosPsi >= cosHDPhiIT) 909 { << 1088 { 910 // inside radii, delta r -ve, inside 1089 // inside radii, delta r -ve, inside phi 911 // 1090 // 912 if ( !fFullThetaSphere ) 1091 if ( !fFullThetaSphere ) 913 { 1092 { 914 if ( (pTheta >= tolSTheta + kAngTo 1093 if ( (pTheta >= tolSTheta + kAngTolerance) 915 && (pTheta <= tolETheta - kAngTo 1094 && (pTheta <= tolETheta - kAngTolerance) ) 916 { 1095 { 917 return snxt=0; 1096 return snxt=0; 918 } 1097 } 919 } 1098 } 920 else 1099 else 921 { 1100 { 922 return snxt = 0 ; 1101 return snxt = 0 ; 923 } 1102 } 924 } 1103 } 925 } 1104 } 926 else 1105 else 927 { 1106 { 928 if ( !fFullThetaSphere ) 1107 if ( !fFullThetaSphere ) 929 { 1108 { 930 if ( (pTheta >= tolSTheta + kAngTole 1109 if ( (pTheta >= tolSTheta + kAngTolerance) 931 && (pTheta <= tolETheta - kAngTole 1110 && (pTheta <= tolETheta - kAngTolerance) ) 932 { 1111 { 933 return snxt = 0 ; 1112 return snxt = 0 ; 934 } 1113 } 935 } 1114 } 936 else 1115 else 937 { 1116 { 938 return snxt=0; 1117 return snxt=0; 939 } 1118 } 940 } 1119 } 941 } 1120 } 942 else // Not special tolerant case 1121 else // Not special tolerant case 943 { 1122 { 944 if (d2 >= 0) 1123 if (d2 >= 0) 945 { 1124 { 946 sd = -pDotV3d + std::sqrt(d2) ; << 1125 s = -pDotV3d + std::sqrt(d2) ; 947 if ( sd >= halfRminTolerance ) // It << 1126 if ( s >= halfRminTolerance ) // It was >= 0 ?? 948 { 1127 { 949 xi = p.x() + sd*v.x() ; << 1128 xi = p.x() + s*v.x() ; 950 yi = p.y() + sd*v.y() ; << 1129 yi = p.y() + s*v.y() ; 951 rhoi = std::sqrt(xi*xi+yi*yi) ; 1130 rhoi = std::sqrt(xi*xi+yi*yi) ; 952 1131 953 if ( !fFullPhiSphere && (rhoi != 0.0 << 1132 if ( !fFullPhiSphere && rhoi ) // Check phi intersection 954 { 1133 { 955 cosPsi = (xi*cosCPhi + yi*sinCPhi) 1134 cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ; 956 1135 957 if (cosPsi >= cosHDPhiOT) 1136 if (cosPsi >= cosHDPhiOT) 958 { 1137 { 959 if ( !fFullThetaSphere ) // Che 1138 if ( !fFullThetaSphere ) // Check theta intersection 960 { 1139 { 961 zi = p.z() + sd*v.z() ; << 1140 zi = p.z() + s*v.z() ; 962 1141 963 // rhoi & zi can never both be 1142 // rhoi & zi can never both be 0 964 // (=>intersect at origin =>fR 1143 // (=>intersect at origin =>fRmax=0) 965 // 1144 // 966 iTheta = std::atan2(rhoi,zi) ; 1145 iTheta = std::atan2(rhoi,zi) ; 967 if ( (iTheta >= tolSTheta) && 1146 if ( (iTheta >= tolSTheta) && (iTheta<=tolETheta) ) 968 { 1147 { 969 snxt = sd; << 1148 snxt = s ; 970 } 1149 } 971 } 1150 } 972 else 1151 else 973 { 1152 { 974 snxt=sd; << 1153 snxt=s; 975 } 1154 } 976 } 1155 } 977 } 1156 } 978 else 1157 else 979 { 1158 { 980 if ( !fFullThetaSphere ) // Chec 1159 if ( !fFullThetaSphere ) // Check theta intersection 981 { 1160 { 982 zi = p.z() + sd*v.z() ; << 1161 zi = p.z() + s*v.z() ; 983 1162 984 // rhoi & zi can never both be 0 1163 // rhoi & zi can never both be 0 985 // (=>intersect at origin => fRm 1164 // (=>intersect at origin => fRmax=0 !) 986 // 1165 // 987 iTheta = std::atan2(rhoi,zi) ; 1166 iTheta = std::atan2(rhoi,zi) ; 988 if ( (iTheta >= tolSTheta) && (i 1167 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 989 { 1168 { 990 snxt = sd; << 1169 snxt = s; 991 } 1170 } 992 } 1171 } 993 else 1172 else 994 { 1173 { 995 snxt = sd; << 1174 snxt = s; 996 } 1175 } 997 } 1176 } 998 } 1177 } 999 } 1178 } 1000 } 1179 } 1001 } 1180 } 1002 1181 1003 // Phi segment intersection 1182 // Phi segment intersection 1004 // 1183 // 1005 // o Tolerant of points inside phi planes b 1184 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1006 // 1185 // 1007 // o NOTE: Large duplication of code betwee 1186 // o NOTE: Large duplication of code between sphi & ephi checks 1008 // -> only diffs: sphi -> ephi, Com 1187 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1009 // intersection check <=0 -> >=0 1188 // intersection check <=0 -> >=0 1010 // -> Should use some form of loop 1189 // -> Should use some form of loop Construct 1011 // 1190 // 1012 if ( !fFullPhiSphere ) 1191 if ( !fFullPhiSphere ) 1013 { 1192 { 1014 // First phi surface ('S'tarting phi) 1193 // First phi surface ('S'tarting phi) 1015 // Comp = Component in outwards normal di 1194 // Comp = Component in outwards normal dirn 1016 // 1195 // 1017 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1196 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1018 << 1197 1019 if ( Comp < 0 ) 1198 if ( Comp < 0 ) 1020 { 1199 { 1021 Dist = p.y()*cosSPhi - p.x()*sinSPhi ; 1200 Dist = p.y()*cosSPhi - p.x()*sinSPhi ; 1022 1201 1023 if (Dist < halfCarTolerance) 1202 if (Dist < halfCarTolerance) 1024 { 1203 { 1025 sd = Dist/Comp ; << 1204 s = Dist/Comp ; 1026 1205 1027 if (sd < snxt) << 1206 if (s < snxt) 1028 { 1207 { 1029 if ( sd > 0 ) << 1208 if ( s > 0 ) 1030 { 1209 { 1031 xi = p.x() + sd*v.x() ; << 1210 xi = p.x() + s*v.x() ; 1032 yi = p.y() + sd*v.y() ; << 1211 yi = p.y() + s*v.y() ; 1033 zi = p.z() + sd*v.z() ; << 1212 zi = p.z() + s*v.z() ; 1034 rhoi2 = xi*xi + yi*yi ; 1213 rhoi2 = xi*xi + yi*yi ; 1035 radi2 = rhoi2 + zi*zi ; 1214 radi2 = rhoi2 + zi*zi ; 1036 } 1215 } 1037 else 1216 else 1038 { 1217 { 1039 sd = 0 ; << 1218 s = 0 ; 1040 xi = p.x() ; 1219 xi = p.x() ; 1041 yi = p.y() ; 1220 yi = p.y() ; 1042 zi = p.z() ; 1221 zi = p.z() ; 1043 rhoi2 = rho2 ; 1222 rhoi2 = rho2 ; 1044 radi2 = rad2 ; 1223 radi2 = rad2 ; 1045 } 1224 } 1046 if ( (radi2 <= tolORMax2) 1225 if ( (radi2 <= tolORMax2) 1047 && (radi2 >= tolORMin2) 1226 && (radi2 >= tolORMin2) 1048 && ((yi*cosCPhi-xi*sinCPhi) <= 0) 1227 && ((yi*cosCPhi-xi*sinCPhi) <= 0) ) 1049 { 1228 { 1050 // Check theta intersection 1229 // Check theta intersection 1051 // rhoi & zi can never both be 0 1230 // rhoi & zi can never both be 0 1052 // (=>intersect at origin =>fRmax 1231 // (=>intersect at origin =>fRmax=0) 1053 // 1232 // 1054 if ( !fFullThetaSphere ) 1233 if ( !fFullThetaSphere ) 1055 { 1234 { 1056 iTheta = std::atan2(std::sqrt(r 1235 iTheta = std::atan2(std::sqrt(rhoi2),zi) ; 1057 if ( (iTheta >= tolSTheta) && ( 1236 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 1058 { 1237 { 1059 // r and theta intersections 1238 // r and theta intersections good 1060 // - check intersecting with 1239 // - check intersecting with correct half-plane 1061 1240 1062 if ((yi*cosCPhi-xi*sinCPhi) < 1241 if ((yi*cosCPhi-xi*sinCPhi) <= 0) 1063 { 1242 { 1064 snxt = sd; << 1243 snxt = s ; 1065 } 1244 } 1066 } 1245 } 1067 } 1246 } 1068 else 1247 else 1069 { 1248 { 1070 snxt = sd; << 1249 snxt = s ; 1071 } 1250 } 1072 } 1251 } 1073 } 1252 } 1074 } 1253 } 1075 } 1254 } 1076 1255 1077 // Second phi surface ('E'nding phi) 1256 // Second phi surface ('E'nding phi) 1078 // Component in outwards normal dirn 1257 // Component in outwards normal dirn 1079 1258 1080 Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ; 1259 Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ; 1081 << 1260 1082 if (Comp < 0) 1261 if (Comp < 0) 1083 { 1262 { 1084 Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ; 1263 Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ; 1085 if ( Dist < halfCarTolerance ) 1264 if ( Dist < halfCarTolerance ) 1086 { 1265 { 1087 sd = Dist/Comp ; << 1266 s = Dist/Comp ; 1088 1267 1089 if ( sd < snxt ) << 1268 if ( s < snxt ) 1090 { 1269 { 1091 if (sd > 0) << 1270 if (s > 0) 1092 { 1271 { 1093 xi = p.x() + sd*v.x() ; << 1272 xi = p.x() + s*v.x() ; 1094 yi = p.y() + sd*v.y() ; << 1273 yi = p.y() + s*v.y() ; 1095 zi = p.z() + sd*v.z() ; << 1274 zi = p.z() + s*v.z() ; 1096 rhoi2 = xi*xi + yi*yi ; 1275 rhoi2 = xi*xi + yi*yi ; 1097 radi2 = rhoi2 + zi*zi ; 1276 radi2 = rhoi2 + zi*zi ; 1098 } 1277 } 1099 else 1278 else 1100 { 1279 { 1101 sd = 0 ; << 1280 s = 0 ; 1102 xi = p.x() ; 1281 xi = p.x() ; 1103 yi = p.y() ; 1282 yi = p.y() ; 1104 zi = p.z() ; 1283 zi = p.z() ; 1105 rhoi2 = rho2 ; 1284 rhoi2 = rho2 ; 1106 radi2 = rad2 ; 1285 radi2 = rad2 ; 1107 } 1286 } 1108 if ( (radi2 <= tolORMax2) 1287 if ( (radi2 <= tolORMax2) 1109 && (radi2 >= tolORMin2) 1288 && (radi2 >= tolORMin2) 1110 && ((yi*cosCPhi-xi*sinCPhi) >= 0) 1289 && ((yi*cosCPhi-xi*sinCPhi) >= 0) ) 1111 { 1290 { 1112 // Check theta intersection 1291 // Check theta intersection 1113 // rhoi & zi can never both be 0 1292 // rhoi & zi can never both be 0 1114 // (=>intersect at origin =>fRmax 1293 // (=>intersect at origin =>fRmax=0) 1115 // 1294 // 1116 if ( !fFullThetaSphere ) 1295 if ( !fFullThetaSphere ) 1117 { 1296 { 1118 iTheta = std::atan2(std::sqrt(r 1297 iTheta = std::atan2(std::sqrt(rhoi2),zi) ; 1119 if ( (iTheta >= tolSTheta) && ( 1298 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 1120 { 1299 { 1121 // r and theta intersections 1300 // r and theta intersections good 1122 // - check intersecting with 1301 // - check intersecting with correct half-plane 1123 1302 1124 if ((yi*cosCPhi-xi*sinCPhi) > 1303 if ((yi*cosCPhi-xi*sinCPhi) >= 0) 1125 { 1304 { 1126 snxt = sd; << 1305 snxt = s ; 1127 } 1306 } 1128 } 1307 } 1129 } 1308 } 1130 else 1309 else 1131 { 1310 { 1132 snxt = sd; << 1311 snxt = s ; 1133 } 1312 } 1134 } 1313 } 1135 } 1314 } 1136 } 1315 } 1137 } 1316 } 1138 } 1317 } 1139 1318 1140 // Theta segment intersection 1319 // Theta segment intersection 1141 1320 1142 if ( !fFullThetaSphere ) 1321 if ( !fFullThetaSphere ) 1143 { 1322 { 1144 1323 1145 // Intersection with theta surfaces 1324 // Intersection with theta surfaces 1146 // Known failure cases: 1325 // Known failure cases: 1147 // o Inside tolerance of stheta surface, 1326 // o Inside tolerance of stheta surface, skim 1148 // ~parallel to cone and Hit & enter e 1327 // ~parallel to cone and Hit & enter etheta surface [& visa versa] 1149 // 1328 // 1150 // To solve: Check 2nd root of etheta 1329 // To solve: Check 2nd root of etheta surface in addition to stheta 1151 // 1330 // 1152 // o start/end theta is exactly pi/2 << 1331 // o start/end theta is exactly pi/2 1153 // Intersections with cones 1332 // Intersections with cones 1154 // 1333 // 1155 // Cone equation: x^2+y^2=z^2tan^2(t) 1334 // Cone equation: x^2+y^2=z^2tan^2(t) 1156 // 1335 // 1157 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan 1336 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t) 1158 // 1337 // 1159 // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p << 1338 // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t)) 1160 // + sd^2(vx^2+vy^2-vz^2tan^2(t)) = << 1339 // + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0 1161 // 1340 // 1162 // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d << 1341 // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0 1163 // + (rho2-pz^2tan^2(t)) = 0 << 1164 1342 1165 if (fSTheta != 0.0) << 1343 if (fSTheta) 1166 { 1344 { 1167 dist2STheta = rho2 - p.z()*p.z()*tanSTh 1345 dist2STheta = rho2 - p.z()*p.z()*tanSTheta2 ; 1168 } 1346 } 1169 else 1347 else 1170 { 1348 { 1171 dist2STheta = kInfinity ; 1349 dist2STheta = kInfinity ; 1172 } 1350 } 1173 if ( eTheta < pi ) 1351 if ( eTheta < pi ) 1174 { 1352 { 1175 dist2ETheta=rho2-p.z()*p.z()*tanETheta2 1353 dist2ETheta=rho2-p.z()*p.z()*tanETheta2; 1176 } 1354 } 1177 else 1355 else 1178 { 1356 { 1179 dist2ETheta=kInfinity; 1357 dist2ETheta=kInfinity; 1180 } << 1358 } 1181 if ( pTheta < tolSTheta ) 1359 if ( pTheta < tolSTheta ) 1182 { 1360 { 1183 // Inside (theta<stheta-tol) stheta con << 1361 // Inside (theta<stheta-tol) s theta cone 1184 // First root of stheta cone, second if 1362 // First root of stheta cone, second if first root -ve 1185 1363 1186 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1364 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1187 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1365 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1188 if (t1 != 0.0) << 1366 if (t1) 1189 { << 1367 { 1190 b = t2/t1 ; 1368 b = t2/t1 ; 1191 c = dist2STheta/t1 ; 1369 c = dist2STheta/t1 ; 1192 d2 = b*b - c ; 1370 d2 = b*b - c ; 1193 1371 1194 if ( d2 >= 0 ) 1372 if ( d2 >= 0 ) 1195 { 1373 { 1196 d = std::sqrt(d2) ; << 1374 d = std::sqrt(d2) ; 1197 sd = -b - d ; // First root << 1375 s = -b - d ; // First root 1198 zi = p.z() + sd*v.z(); << 1376 zi = p.z() + s*v.z(); 1199 1377 1200 if ( (sd < 0) || (zi*(fSTheta - hal << 1378 if ( (s < 0) || (zi*(fSTheta - halfpi) > 0) ) 1201 { 1379 { 1202 sd = -b+d; // Second root << 1380 s = -b+d; // Second root 1203 } 1381 } 1204 if ((sd >= 0) && (sd < snxt)) << 1382 if ((s >= 0) && (s < snxt)) 1205 { 1383 { 1206 xi = p.x() + sd*v.x(); << 1384 xi = p.x() + s*v.x(); 1207 yi = p.y() + sd*v.y(); << 1385 yi = p.y() + s*v.y(); 1208 zi = p.z() + sd*v.z(); << 1386 zi = p.z() + s*v.z(); 1209 rhoi2 = xi*xi + yi*yi; 1387 rhoi2 = xi*xi + yi*yi; 1210 radi2 = rhoi2 + zi*zi; 1388 radi2 = rhoi2 + zi*zi; 1211 if ( (radi2 <= tolORMax2) 1389 if ( (radi2 <= tolORMax2) 1212 && (radi2 >= tolORMin2) 1390 && (radi2 >= tolORMin2) 1213 && (zi*(fSTheta - halfpi) <= 0) 1391 && (zi*(fSTheta - halfpi) <= 0) ) 1214 { 1392 { 1215 if ( !fFullPhiSphere && (rhoi2 << 1393 if ( !fFullPhiSphere && rhoi2 ) // Check phi intersection 1216 { 1394 { 1217 cosPsi = (xi*cosCPhi + yi*sin 1395 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1218 if (cosPsi >= cosHDPhiOT) 1396 if (cosPsi >= cosHDPhiOT) 1219 { 1397 { 1220 snxt = sd; << 1398 snxt = s ; 1221 } 1399 } 1222 } 1400 } 1223 else 1401 else 1224 { 1402 { 1225 snxt = sd; << 1403 snxt = s ; 1226 } 1404 } 1227 } 1405 } 1228 } 1406 } 1229 } 1407 } 1230 } 1408 } 1231 1409 1232 // Possible intersection with ETheta co << 1410 // Possible intersection with ETheta cone. 1233 // Second >= 0 root should be considere 1411 // Second >= 0 root should be considered 1234 << 1412 1235 if ( eTheta < pi ) 1413 if ( eTheta < pi ) 1236 { 1414 { 1237 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) 1415 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1238 t2 = pDotV2d - p.z()*v.z()*tanETheta2 1416 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1239 if (t1 != 0.0) << 1417 if (t1) 1240 { << 1418 { 1241 b = t2/t1 ; 1419 b = t2/t1 ; 1242 c = dist2ETheta/t1 ; 1420 c = dist2ETheta/t1 ; 1243 d2 = b*b - c ; 1421 d2 = b*b - c ; 1244 1422 1245 if (d2 >= 0) 1423 if (d2 >= 0) 1246 { 1424 { 1247 d = std::sqrt(d2) ; << 1425 d = std::sqrt(d2) ; 1248 sd = -b + d ; // Second root << 1426 s = -b + d ; // Second root 1249 1427 1250 if ( (sd >= 0) && (sd < snxt) ) << 1428 if ( (s >= 0) && (s < snxt) ) 1251 { 1429 { 1252 xi = p.x() + sd*v.x() ; << 1430 xi = p.x() + s*v.x() ; 1253 yi = p.y() + sd*v.y() ; << 1431 yi = p.y() + s*v.y() ; 1254 zi = p.z() + sd*v.z() ; << 1432 zi = p.z() + s*v.z() ; 1255 rhoi2 = xi*xi + yi*yi ; 1433 rhoi2 = xi*xi + yi*yi ; 1256 radi2 = rhoi2 + zi*zi ; 1434 radi2 = rhoi2 + zi*zi ; 1257 1435 1258 if ( (radi2 <= tolORMax2) 1436 if ( (radi2 <= tolORMax2) 1259 && (radi2 >= tolORMin2) 1437 && (radi2 >= tolORMin2) 1260 && (zi*(eTheta - halfpi) <= 0 1438 && (zi*(eTheta - halfpi) <= 0) ) 1261 { 1439 { 1262 if (!fFullPhiSphere && (rhoi2 << 1440 if (!fFullPhiSphere && rhoi2) // Check phi intersection 1263 { 1441 { 1264 cosPsi = (xi*cosCPhi + yi*s 1442 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1265 if (cosPsi >= cosHDPhiOT) 1443 if (cosPsi >= cosHDPhiOT) 1266 { 1444 { 1267 snxt = sd; << 1445 snxt = s ; 1268 } 1446 } 1269 } 1447 } 1270 else 1448 else 1271 { 1449 { 1272 snxt = sd; << 1450 snxt = s ; 1273 } 1451 } 1274 } 1452 } 1275 } 1453 } 1276 } 1454 } 1277 } 1455 } 1278 } 1456 } 1279 } << 1457 } 1280 else if ( pTheta > tolETheta ) << 1458 else if ( pTheta > tolETheta ) 1281 { << 1459 { 1282 // dist2ETheta<-kRadTolerance*0.5 && di 1460 // dist2ETheta<-kRadTolerance*0.5 && dist2STheta>0) 1283 // Inside (theta > etheta+tol) e-theta 1461 // Inside (theta > etheta+tol) e-theta cone 1284 // First root of etheta cone, second if 1462 // First root of etheta cone, second if first root 'imaginary' 1285 1463 1286 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1464 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1287 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1465 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1288 if (t1 != 0.0) << 1466 if (t1) 1289 { << 1467 { 1290 b = t2/t1 ; 1468 b = t2/t1 ; 1291 c = dist2ETheta/t1 ; 1469 c = dist2ETheta/t1 ; 1292 d2 = b*b - c ; 1470 d2 = b*b - c ; 1293 1471 1294 if (d2 >= 0) 1472 if (d2 >= 0) 1295 { 1473 { 1296 d = std::sqrt(d2) ; << 1474 d = std::sqrt(d2) ; 1297 sd = -b - d ; // First root << 1475 s = -b - d ; // First root 1298 zi = p.z() + sd*v.z(); << 1476 zi = p.z() + s*v.z(); 1299 1477 1300 if ( (sd < 0) || (zi*(eTheta - half << 1478 if ( (s < 0) || (zi*(eTheta - halfpi) > 0) ) 1301 { 1479 { 1302 sd = -b + d ; // second << 1480 s = -b + d ; // second root 1303 } 1481 } 1304 if ( (sd >= 0) && (sd < snxt) ) << 1482 if ( (s >= 0) && (s < snxt) ) 1305 { 1483 { 1306 xi = p.x() + sd*v.x() ; << 1484 xi = p.x() + s*v.x() ; 1307 yi = p.y() + sd*v.y() ; << 1485 yi = p.y() + s*v.y() ; 1308 zi = p.z() + sd*v.z() ; << 1486 zi = p.z() + s*v.z() ; 1309 rhoi2 = xi*xi + yi*yi ; 1487 rhoi2 = xi*xi + yi*yi ; 1310 radi2 = rhoi2 + zi*zi ; 1488 radi2 = rhoi2 + zi*zi ; 1311 1489 1312 if ( (radi2 <= tolORMax2) 1490 if ( (radi2 <= tolORMax2) 1313 && (radi2 >= tolORMin2) << 1491 && (radi2 >= tolORMin2) 1314 && (zi*(eTheta - halfpi) <= 0) 1492 && (zi*(eTheta - halfpi) <= 0) ) 1315 { 1493 { 1316 if (!fFullPhiSphere && (rhoi2 ! << 1494 if (!fFullPhiSphere && rhoi2) // Check phi intersection 1317 { 1495 { 1318 cosPsi = (xi*cosCPhi + yi*sin 1496 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1319 if (cosPsi >= cosHDPhiOT) 1497 if (cosPsi >= cosHDPhiOT) 1320 { 1498 { 1321 snxt = sd; << 1499 snxt = s ; 1322 } 1500 } 1323 } 1501 } 1324 else 1502 else 1325 { 1503 { 1326 snxt = sd; << 1504 snxt = s ; 1327 } 1505 } 1328 } 1506 } 1329 } 1507 } 1330 } 1508 } 1331 } 1509 } 1332 1510 1333 // Possible intersection with STheta co << 1511 // Possible intersection with STheta cone. 1334 // Second >= 0 root should be considere 1512 // Second >= 0 root should be considered 1335 << 1513 1336 if ( fSTheta != 0.0 ) << 1514 if ( fSTheta ) 1337 { 1515 { 1338 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) 1516 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1339 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 1517 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1340 if (t1 != 0.0) << 1518 if (t1) 1341 { << 1519 { 1342 b = t2/t1 ; 1520 b = t2/t1 ; 1343 c = dist2STheta/t1 ; 1521 c = dist2STheta/t1 ; 1344 d2 = b*b - c ; 1522 d2 = b*b - c ; 1345 1523 1346 if (d2 >= 0) 1524 if (d2 >= 0) 1347 { 1525 { 1348 d = std::sqrt(d2) ; << 1526 d = std::sqrt(d2) ; 1349 sd = -b + d ; // Second root << 1527 s = -b + d ; // Second root 1350 1528 1351 if ( (sd >= 0) && (sd < snxt) ) << 1529 if ( (s >= 0) && (s < snxt) ) 1352 { 1530 { 1353 xi = p.x() + sd*v.x() ; << 1531 xi = p.x() + s*v.x() ; 1354 yi = p.y() + sd*v.y() ; << 1532 yi = p.y() + s*v.y() ; 1355 zi = p.z() + sd*v.z() ; << 1533 zi = p.z() + s*v.z() ; 1356 rhoi2 = xi*xi + yi*yi ; 1534 rhoi2 = xi*xi + yi*yi ; 1357 radi2 = rhoi2 + zi*zi ; 1535 radi2 = rhoi2 + zi*zi ; 1358 1536 1359 if ( (radi2 <= tolORMax2) 1537 if ( (radi2 <= tolORMax2) 1360 && (radi2 >= tolORMin2) 1538 && (radi2 >= tolORMin2) 1361 && (zi*(fSTheta - halfpi) <= 1539 && (zi*(fSTheta - halfpi) <= 0) ) 1362 { 1540 { 1363 if (!fFullPhiSphere && (rhoi2 << 1541 if (!fFullPhiSphere && rhoi2) // Check phi intersection 1364 { 1542 { 1365 cosPsi = (xi*cosCPhi + yi*s 1543 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1366 if (cosPsi >= cosHDPhiOT) 1544 if (cosPsi >= cosHDPhiOT) 1367 { 1545 { 1368 snxt = sd; << 1546 snxt = s ; 1369 } 1547 } 1370 } 1548 } 1371 else 1549 else 1372 { 1550 { 1373 snxt = sd; << 1551 snxt = s ; 1374 } 1552 } 1375 } 1553 } 1376 } 1554 } 1377 } 1555 } 1378 } 1556 } 1379 } << 1557 } 1380 } << 1558 } 1381 else if ( (pTheta < tolSTheta + kAngToler 1559 else if ( (pTheta < tolSTheta + kAngTolerance) 1382 && (fSTheta > halfAngTolerance) ) 1560 && (fSTheta > halfAngTolerance) ) 1383 { 1561 { 1384 // In tolerance of stheta 1562 // In tolerance of stheta 1385 // If entering through solid [r,phi] => 1563 // If entering through solid [r,phi] => 0 to in 1386 // else try 2nd root 1564 // else try 2nd root 1387 1565 1388 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1566 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1389 if ( (t2>=0 && tolIRMin2<rad2 && rad2<t 1567 if ( (t2>=0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta<halfpi) 1390 || (t2<0 && tolIRMin2<rad2 && rad2<t 1568 || (t2<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta>halfpi) 1391 || (v.z()<0 && tolIRMin2<rad2 && rad2 1569 || (v.z()<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta==halfpi) ) 1392 { 1570 { 1393 if (!fFullPhiSphere && (rho2 != 0.0)) << 1571 if (!fFullPhiSphere && rho2) // Check phi intersection 1394 { 1572 { 1395 cosPsi = (p.x()*cosCPhi + p.y()*sin 1573 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 1396 if (cosPsi >= cosHDPhiIT) 1574 if (cosPsi >= cosHDPhiIT) 1397 { 1575 { 1398 return 0 ; 1576 return 0 ; 1399 } 1577 } 1400 } 1578 } 1401 else 1579 else 1402 { 1580 { 1403 return 0 ; 1581 return 0 ; 1404 } 1582 } 1405 } 1583 } 1406 1584 1407 // Not entering immediately/travelling 1585 // Not entering immediately/travelling through 1408 1586 1409 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1587 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1410 if (t1 != 0.0) << 1588 if (t1) 1411 { << 1589 { 1412 b = t2/t1 ; 1590 b = t2/t1 ; 1413 c = dist2STheta/t1 ; 1591 c = dist2STheta/t1 ; 1414 d2 = b*b - c ; 1592 d2 = b*b - c ; 1415 1593 1416 if (d2 >= 0) 1594 if (d2 >= 0) 1417 { 1595 { 1418 d = std::sqrt(d2) ; << 1596 d = std::sqrt(d2) ; 1419 sd = -b + d ; << 1597 s = -b + d ; 1420 if ( (sd >= halfCarTolerance) && (s << 1598 if ( (s >= halfCarTolerance) && (s < snxt) && (fSTheta < halfpi) ) 1421 { // ^^^^^^^^^^^^^^^^^^^^^ shoul << 1599 { // ^^^^^^^^^^^^^^^^^^^^^ shouldn't it be >=0 instead ? 1422 xi = p.x() + sd*v.x() ; << 1600 xi = p.x() + s*v.x() ; 1423 yi = p.y() + sd*v.y() ; << 1601 yi = p.y() + s*v.y() ; 1424 zi = p.z() + sd*v.z() ; << 1602 zi = p.z() + s*v.z() ; 1425 rhoi2 = xi*xi + yi*yi ; 1603 rhoi2 = xi*xi + yi*yi ; 1426 radi2 = rhoi2 + zi*zi ; 1604 radi2 = rhoi2 + zi*zi ; 1427 1605 1428 if ( (radi2 <= tolORMax2) 1606 if ( (radi2 <= tolORMax2) 1429 && (radi2 >= tolORMin2) 1607 && (radi2 >= tolORMin2) 1430 && (zi*(fSTheta - halfpi) <= 0) 1608 && (zi*(fSTheta - halfpi) <= 0) ) 1431 { 1609 { 1432 if ( !fFullPhiSphere && (rhoi2 << 1610 if ( !fFullPhiSphere && rhoi2 ) // Check phi intersection 1433 { 1611 { 1434 cosPsi = (xi*cosCPhi + yi*sin 1612 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1435 if ( cosPsi >= cosHDPhiOT ) 1613 if ( cosPsi >= cosHDPhiOT ) 1436 { 1614 { 1437 snxt = sd; << 1615 snxt = s ; 1438 } 1616 } 1439 } 1617 } 1440 else 1618 else 1441 { 1619 { 1442 snxt = sd; << 1620 snxt = s ; 1443 } 1621 } 1444 } 1622 } 1445 } 1623 } 1446 } 1624 } 1447 } 1625 } 1448 } << 1626 } 1449 else if ((pTheta > tolETheta-kAngToleranc 1627 else if ((pTheta > tolETheta-kAngTolerance) && (eTheta < pi-kAngTolerance)) 1450 { 1628 { 1451 1629 1452 // In tolerance of etheta 1630 // In tolerance of etheta 1453 // If entering through solid [r,phi] => 1631 // If entering through solid [r,phi] => 0 to in 1454 // else try 2nd root 1632 // else try 2nd root 1455 1633 1456 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1634 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1457 1635 1458 if ( ((t2<0) && (eTheta < halfpi) 1636 if ( ((t2<0) && (eTheta < halfpi) 1459 && (tolIRMin2 < rad2) && (rad2 < to 1637 && (tolIRMin2 < rad2) && (rad2 < tolIRMax2)) 1460 || ((t2>=0) && (eTheta > halfpi) 1638 || ((t2>=0) && (eTheta > halfpi) 1461 && (tolIRMin2 < rad2) && (rad2 < to 1639 && (tolIRMin2 < rad2) && (rad2 < tolIRMax2)) 1462 || ((v.z()>0) && (eTheta == halfpi) 1640 || ((v.z()>0) && (eTheta == halfpi) 1463 && (tolIRMin2 < rad2) && (rad2 < to 1641 && (tolIRMin2 < rad2) && (rad2 < tolIRMax2)) ) 1464 { 1642 { 1465 if (!fFullPhiSphere && (rho2 != 0.0)) << 1643 if (!fFullPhiSphere && rho2) // Check phi intersection 1466 { 1644 { 1467 cosPsi = (p.x()*cosCPhi + p.y()*sin 1645 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 1468 if (cosPsi >= cosHDPhiIT) 1646 if (cosPsi >= cosHDPhiIT) 1469 { 1647 { 1470 return 0 ; 1648 return 0 ; 1471 } 1649 } 1472 } 1650 } 1473 else 1651 else 1474 { 1652 { 1475 return 0 ; 1653 return 0 ; 1476 } 1654 } 1477 } 1655 } 1478 1656 1479 // Not entering immediately/travelling 1657 // Not entering immediately/travelling through 1480 1658 1481 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1659 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1482 if (t1 != 0.0) << 1660 if (t1) 1483 { << 1661 { 1484 b = t2/t1 ; 1662 b = t2/t1 ; 1485 c = dist2ETheta/t1 ; 1663 c = dist2ETheta/t1 ; 1486 d2 = b*b - c ; 1664 d2 = b*b - c ; 1487 1665 1488 if (d2 >= 0) 1666 if (d2 >= 0) 1489 { 1667 { 1490 d = std::sqrt(d2) ; << 1668 d = std::sqrt(d2) ; 1491 sd = -b + d ; << 1669 s = -b + d ; 1492 << 1670 1493 if ( (sd >= halfCarTolerance) << 1671 if ( (s >= halfCarTolerance) 1494 && (sd < snxt) && (eTheta > halfp << 1672 && (s < snxt) && (eTheta > halfpi) ) 1495 { << 1673 { 1496 xi = p.x() + sd*v.x() ; << 1674 xi = p.x() + s*v.x() ; 1497 yi = p.y() + sd*v.y() ; << 1675 yi = p.y() + s*v.y() ; 1498 zi = p.z() + sd*v.z() ; << 1676 zi = p.z() + s*v.z() ; 1499 rhoi2 = xi*xi + yi*yi ; 1677 rhoi2 = xi*xi + yi*yi ; 1500 radi2 = rhoi2 + zi*zi ; 1678 radi2 = rhoi2 + zi*zi ; 1501 1679 1502 if ( (radi2 <= tolORMax2) 1680 if ( (radi2 <= tolORMax2) 1503 && (radi2 >= tolORMin2) 1681 && (radi2 >= tolORMin2) 1504 && (zi*(eTheta - halfpi) <= 0) 1682 && (zi*(eTheta - halfpi) <= 0) ) 1505 { 1683 { 1506 if (!fFullPhiSphere && (rhoi2 ! << 1684 if (!fFullPhiSphere && rhoi2) // Check phi intersection 1507 { 1685 { 1508 cosPsi = (xi*cosCPhi + yi*sin 1686 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1509 if (cosPsi >= cosHDPhiOT) 1687 if (cosPsi >= cosHDPhiOT) 1510 { 1688 { 1511 snxt = sd; << 1689 snxt = s ; 1512 } 1690 } 1513 } 1691 } 1514 else 1692 else 1515 { 1693 { 1516 snxt = sd; << 1694 snxt = s ; 1517 } 1695 } 1518 } 1696 } 1519 } 1697 } 1520 } << 1698 } 1521 } << 1699 } 1522 } << 1700 } 1523 else 1701 else 1524 { 1702 { 1525 // stheta+tol<theta<etheta-tol 1703 // stheta+tol<theta<etheta-tol 1526 // For BOTH stheta & etheta check 2nd r 1704 // For BOTH stheta & etheta check 2nd root for validity [r,phi] 1527 1705 1528 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1706 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1529 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1707 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1530 if (t1 != 0.0) << 1708 if (t1) 1531 { << 1709 { 1532 b = t2/t1; 1710 b = t2/t1; 1533 c = dist2STheta/t1 ; 1711 c = dist2STheta/t1 ; 1534 d2 = b*b - c ; 1712 d2 = b*b - c ; 1535 1713 1536 if (d2 >= 0) 1714 if (d2 >= 0) 1537 { 1715 { 1538 d = std::sqrt(d2) ; << 1716 d = std::sqrt(d2) ; 1539 sd = -b + d ; // second root << 1717 s = -b + d ; // second root 1540 1718 1541 if ((sd >= 0) && (sd < snxt)) << 1719 if ((s >= 0) && (s < snxt)) 1542 { 1720 { 1543 xi = p.x() + sd*v.x() ; << 1721 xi = p.x() + s*v.x() ; 1544 yi = p.y() + sd*v.y() ; << 1722 yi = p.y() + s*v.y() ; 1545 zi = p.z() + sd*v.z() ; << 1723 zi = p.z() + s*v.z() ; 1546 rhoi2 = xi*xi + yi*yi ; 1724 rhoi2 = xi*xi + yi*yi ; 1547 radi2 = rhoi2 + zi*zi ; 1725 radi2 = rhoi2 + zi*zi ; 1548 1726 1549 if ( (radi2 <= tolORMax2) 1727 if ( (radi2 <= tolORMax2) 1550 && (radi2 >= tolORMin2) 1728 && (radi2 >= tolORMin2) 1551 && (zi*(fSTheta - halfpi) <= 0) 1729 && (zi*(fSTheta - halfpi) <= 0) ) 1552 { 1730 { 1553 if (!fFullPhiSphere && (rhoi2 ! << 1731 if (!fFullPhiSphere && rhoi2) // Check phi intersection 1554 { 1732 { 1555 cosPsi = (xi*cosCPhi + yi*sin 1733 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1556 if (cosPsi >= cosHDPhiOT) 1734 if (cosPsi >= cosHDPhiOT) 1557 { 1735 { 1558 snxt = sd; << 1736 snxt = s ; 1559 } 1737 } 1560 } 1738 } 1561 else 1739 else 1562 { 1740 { 1563 snxt = sd; << 1741 snxt = s ; 1564 } 1742 } 1565 } 1743 } 1566 } 1744 } 1567 } 1745 } 1568 } << 1746 } 1569 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1747 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1570 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1748 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1571 if (t1 != 0.0) << 1749 if (t1) 1572 { << 1750 { 1573 b = t2/t1 ; 1751 b = t2/t1 ; 1574 c = dist2ETheta/t1 ; 1752 c = dist2ETheta/t1 ; 1575 d2 = b*b - c ; 1753 d2 = b*b - c ; 1576 1754 1577 if (d2 >= 0) 1755 if (d2 >= 0) 1578 { 1756 { 1579 d = std::sqrt(d2) ; << 1757 d = std::sqrt(d2) ; 1580 sd = -b + d; // second root << 1758 s = -b + d; // second root 1581 1759 1582 if ((sd >= 0) && (sd < snxt)) << 1760 if ((s >= 0) && (s < snxt)) 1583 { 1761 { 1584 xi = p.x() + sd*v.x() ; << 1762 xi = p.x() + s*v.x() ; 1585 yi = p.y() + sd*v.y() ; << 1763 yi = p.y() + s*v.y() ; 1586 zi = p.z() + sd*v.z() ; << 1764 zi = p.z() + s*v.z() ; 1587 rhoi2 = xi*xi + yi*yi ; 1765 rhoi2 = xi*xi + yi*yi ; 1588 radi2 = rhoi2 + zi*zi ; 1766 radi2 = rhoi2 + zi*zi ; 1589 1767 1590 if ( (radi2 <= tolORMax2) 1768 if ( (radi2 <= tolORMax2) 1591 && (radi2 >= tolORMin2) 1769 && (radi2 >= tolORMin2) 1592 && (zi*(eTheta - halfpi) <= 0) 1770 && (zi*(eTheta - halfpi) <= 0) ) 1593 { 1771 { 1594 if (!fFullPhiSphere && (rhoi2 ! << 1772 if (!fFullPhiSphere && rhoi2) // Check phi intersection 1595 { 1773 { 1596 cosPsi = (xi*cosCPhi + yi*sin 1774 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1597 if ( cosPsi >= cosHDPhiOT ) 1775 if ( cosPsi >= cosHDPhiOT ) 1598 { 1776 { 1599 snxt = sd; << 1777 snxt=s; 1600 } 1778 } 1601 } 1779 } 1602 else 1780 else 1603 { 1781 { 1604 snxt = sd; << 1782 snxt = s ; 1605 } 1783 } 1606 } 1784 } 1607 } 1785 } 1608 } 1786 } 1609 } 1787 } 1610 } << 1788 } 1611 } 1789 } 1612 return snxt; 1790 return snxt; 1613 } 1791 } 1614 1792 1615 ///////////////////////////////////////////// 1793 ////////////////////////////////////////////////////////////////////// 1616 // 1794 // 1617 // Calculate distance (<= actual) to closest 1795 // Calculate distance (<= actual) to closest surface of shape from outside 1618 // - Calculate distance to radial planes 1796 // - Calculate distance to radial planes 1619 // - Only to phi planes if outside phi extent 1797 // - Only to phi planes if outside phi extent 1620 // - Only to theta planes if outside theta ex 1798 // - Only to theta planes if outside theta extent 1621 // - Return 0 if point inside 1799 // - Return 0 if point inside 1622 1800 1623 G4double G4Sphere::DistanceToIn( const G4Thre 1801 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p ) const 1624 { 1802 { 1625 G4double safe=0.0,safeRMin,safeRMax,safePhi 1803 G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta; 1626 G4double rho2,rds,rho; 1804 G4double rho2,rds,rho; 1627 G4double cosPsi; 1805 G4double cosPsi; 1628 G4double pTheta,dTheta1,dTheta2; 1806 G4double pTheta,dTheta1,dTheta2; 1629 rho2=p.x()*p.x()+p.y()*p.y(); 1807 rho2=p.x()*p.x()+p.y()*p.y(); 1630 rds=std::sqrt(rho2+p.z()*p.z()); 1808 rds=std::sqrt(rho2+p.z()*p.z()); 1631 rho=std::sqrt(rho2); 1809 rho=std::sqrt(rho2); 1632 1810 1633 // 1811 // 1634 // Distance to r shells 1812 // Distance to r shells 1635 // << 1813 // 1636 if (fRmin != 0.0) << 1814 if (fRmin) 1637 { 1815 { 1638 safeRMin=fRmin-rds; 1816 safeRMin=fRmin-rds; 1639 safeRMax=rds-fRmax; 1817 safeRMax=rds-fRmax; 1640 if (safeRMin>safeRMax) 1818 if (safeRMin>safeRMax) 1641 { 1819 { 1642 safe=safeRMin; 1820 safe=safeRMin; 1643 } 1821 } 1644 else 1822 else 1645 { 1823 { 1646 safe=safeRMax; 1824 safe=safeRMax; 1647 } 1825 } 1648 } 1826 } 1649 else 1827 else 1650 { 1828 { 1651 safe=rds-fRmax; 1829 safe=rds-fRmax; 1652 } 1830 } 1653 1831 1654 // 1832 // 1655 // Distance to phi extent 1833 // Distance to phi extent 1656 // 1834 // 1657 if (!fFullPhiSphere && (rho != 0.0)) << 1835 if (!fFullPhiSphere && rho) 1658 { 1836 { 1659 // Psi=angle from central phi to point 1837 // Psi=angle from central phi to point 1660 // 1838 // 1661 cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho; 1839 cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho; 1662 if (cosPsi<cosHDPhi) << 1840 if (cosPsi<std::cos(hDPhi)) 1663 { 1841 { 1664 // Point lies outside phi range 1842 // Point lies outside phi range 1665 // 1843 // 1666 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) 1844 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) 1667 { 1845 { 1668 safePhi=std::fabs(p.x()*sinSPhi-p.y() 1846 safePhi=std::fabs(p.x()*sinSPhi-p.y()*cosSPhi); 1669 } 1847 } 1670 else 1848 else 1671 { 1849 { 1672 safePhi=std::fabs(p.x()*sinEPhi-p.y() 1850 safePhi=std::fabs(p.x()*sinEPhi-p.y()*cosEPhi); 1673 } 1851 } 1674 if (safePhi>safe) { safe=safePhi; } 1852 if (safePhi>safe) { safe=safePhi; } 1675 } 1853 } 1676 } 1854 } 1677 // 1855 // 1678 // Distance to Theta extent 1856 // Distance to Theta extent 1679 // << 1857 // 1680 if ((rds!=0.0) && (!fFullThetaSphere)) 1858 if ((rds!=0.0) && (!fFullThetaSphere)) 1681 { 1859 { 1682 pTheta=std::acos(p.z()/rds); 1860 pTheta=std::acos(p.z()/rds); 1683 if (pTheta<0) { pTheta+=pi; } 1861 if (pTheta<0) { pTheta+=pi; } 1684 dTheta1=fSTheta-pTheta; 1862 dTheta1=fSTheta-pTheta; 1685 dTheta2=pTheta-eTheta; 1863 dTheta2=pTheta-eTheta; 1686 if (dTheta1>dTheta2) 1864 if (dTheta1>dTheta2) 1687 { 1865 { 1688 if (dTheta1>=0) // WHY ???? 1866 if (dTheta1>=0) // WHY ??????????? 1689 { 1867 { 1690 safeTheta=rds*std::sin(dTheta1); 1868 safeTheta=rds*std::sin(dTheta1); 1691 if (safe<=safeTheta) 1869 if (safe<=safeTheta) 1692 { 1870 { 1693 safe=safeTheta; 1871 safe=safeTheta; 1694 } 1872 } 1695 } 1873 } 1696 } 1874 } 1697 else 1875 else 1698 { 1876 { 1699 if (dTheta2>=0) 1877 if (dTheta2>=0) 1700 { 1878 { 1701 safeTheta=rds*std::sin(dTheta2); 1879 safeTheta=rds*std::sin(dTheta2); 1702 if (safe<=safeTheta) 1880 if (safe<=safeTheta) 1703 { 1881 { 1704 safe=safeTheta; 1882 safe=safeTheta; 1705 } 1883 } 1706 } 1884 } 1707 } 1885 } 1708 } 1886 } 1709 1887 1710 if (safe<0) { safe=0; } 1888 if (safe<0) { safe=0; } 1711 return safe; 1889 return safe; 1712 } 1890 } 1713 1891 1714 ///////////////////////////////////////////// 1892 ///////////////////////////////////////////////////////////////////// 1715 // 1893 // 1716 // Calculate distance to surface of shape fro 1894 // Calculate distance to surface of shape from 'inside', allowing for tolerance 1717 // - Only Calc rmax intersection if no valid 1895 // - Only Calc rmax intersection if no valid rmin intersection 1718 1896 1719 G4double G4Sphere::DistanceToOut( const G4Thr 1897 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p, 1720 const G4Thr 1898 const G4ThreeVector& v, 1721 const G4boo 1899 const G4bool calcNorm, 1722 G4boo << 1900 G4bool *validNorm, 1723 G4Thr << 1901 G4ThreeVector *n ) const 1724 { 1902 { 1725 G4double snxt = kInfinity; // snxt is d 1903 G4double snxt = kInfinity; // snxt is default return value 1726 G4double sphi= kInfinity,stheta= kInfinity; 1904 G4double sphi= kInfinity,stheta= kInfinity; 1727 ESide side=kNull,sidephi=kNull,sidetheta=kN << 1905 ESide side=kNull,sidephi=kNull,sidetheta=kNull; 1728 1906 >> 1907 static const G4double halfCarTolerance = kCarTolerance*0.5; >> 1908 static const G4double halfAngTolerance = kAngTolerance*0.5; 1729 const G4double halfRmaxTolerance = fRmaxTol 1909 const G4double halfRmaxTolerance = fRmaxTolerance*0.5; 1730 const G4double halfRminTolerance = fRminTol 1910 const G4double halfRminTolerance = fRminTolerance*0.5; 1731 const G4double Rmax_plus = fRmax + halfRma 1911 const G4double Rmax_plus = fRmax + halfRmaxTolerance; 1732 const G4double Rmin_minus = (fRmin) != 0.0 << 1912 const G4double Rmin_minus = (fRmin) ? fRmin-halfRminTolerance : 0; 1733 G4double t1,t2; 1913 G4double t1,t2; 1734 G4double b,c,d; 1914 G4double b,c,d; 1735 1915 1736 // Variables for phi intersection: 1916 // Variables for phi intersection: 1737 1917 1738 G4double pDistS,compS,pDistE,compE,sphi2,vp 1918 G4double pDistS,compS,pDistE,compE,sphi2,vphi; 1739 << 1919 1740 G4double rho2,rad2,pDotV2d,pDotV3d; 1920 G4double rho2,rad2,pDotV2d,pDotV3d; 1741 1921 1742 G4double xi,yi,zi; // Intersection poi 1922 G4double xi,yi,zi; // Intersection point 1743 1923 1744 // Theta precals 1924 // Theta precals 1745 // 1925 // 1746 G4double rhoSecTheta; 1926 G4double rhoSecTheta; 1747 G4double dist2STheta, dist2ETheta, distThet 1927 G4double dist2STheta, dist2ETheta, distTheta; 1748 G4double d2,sd; << 1928 G4double d2,s; 1749 1929 1750 // General Precalcs 1930 // General Precalcs 1751 // 1931 // 1752 rho2 = p.x()*p.x()+p.y()*p.y(); 1932 rho2 = p.x()*p.x()+p.y()*p.y(); 1753 rad2 = rho2+p.z()*p.z(); 1933 rad2 = rho2+p.z()*p.z(); 1754 1934 1755 pDotV2d = p.x()*v.x()+p.y()*v.y(); 1935 pDotV2d = p.x()*v.x()+p.y()*v.y(); 1756 pDotV3d = pDotV2d+p.z()*v.z(); 1936 pDotV3d = pDotV2d+p.z()*v.z(); 1757 1937 1758 // Radial Intersections from G4Sphere::Dist 1938 // Radial Intersections from G4Sphere::DistanceToIn 1759 // 1939 // 1760 // Outer spherical shell intersection 1940 // Outer spherical shell intersection 1761 // - Only if outside tolerant fRmax 1941 // - Only if outside tolerant fRmax 1762 // - Check for if inside and outer G4Sphere 1942 // - Check for if inside and outer G4Sphere heading through solid (-> 0) 1763 // - No intersect -> no intersection with G 1943 // - No intersect -> no intersection with G4Sphere 1764 // 1944 // 1765 // Shell eqn: x^2+y^2+z^2=RSPH^2 1945 // Shell eqn: x^2+y^2+z^2=RSPH^2 1766 // 1946 // 1767 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 1947 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 1768 // 1948 // 1769 // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz) << 1949 // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2 1770 // => rad2 +2sd(pDotV3d) << 1950 // => rad2 +2s(pDotV3d) +s^2 =R^2 1771 // 1951 // 1772 // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad << 1952 // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2)) 1773 1953 1774 if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2 1954 if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2 >= Rmin_minus*Rmin_minus) ) 1775 { 1955 { 1776 c = rad2 - fRmax*fRmax; 1956 c = rad2 - fRmax*fRmax; 1777 1957 1778 if (c < fRmaxTolerance*fRmax) << 1958 if (c < fRmaxTolerance*fRmax) 1779 { 1959 { 1780 // Within tolerant Outer radius << 1960 // Within tolerant Outer radius 1781 // << 1961 // 1782 // The test is 1962 // The test is 1783 // rad - fRmax < 0.5*kRadTolerance 1963 // rad - fRmax < 0.5*kRadTolerance 1784 // => rad < fRmax + 0.5*kRadTol 1964 // => rad < fRmax + 0.5*kRadTol 1785 // => rad2 < (fRmax + 0.5*kRadTol)^2 1965 // => rad2 < (fRmax + 0.5*kRadTol)^2 1786 // => rad2 < fRmax^2 + 2.*0.5*fRmax*kR 1966 // => rad2 < fRmax^2 + 2.*0.5*fRmax*kRadTol + 0.25*kRadTol*kRadTol 1787 // => rad2 - fRmax^2 <~ fRmax*kR << 1967 // => rad2 - fRmax^2 <~ fRmax*kRadTol 1788 1968 1789 d2 = pDotV3d*pDotV3d - c; 1969 d2 = pDotV3d*pDotV3d - c; 1790 1970 1791 if( (c >- fRmaxTolerance*fRmax) / 1971 if( (c >- fRmaxTolerance*fRmax) // on tolerant surface 1792 && ((pDotV3d >=0) || (d2 < 0)) ) / << 1972 && ((pDotV3d >=0) || (d2 < 0)) ) // leaving outside from Rmax 1793 / 1973 // not re-entering 1794 { 1974 { 1795 if(calcNorm) 1975 if(calcNorm) 1796 { 1976 { 1797 *validNorm = true ; 1977 *validNorm = true ; 1798 *n = G4ThreeVector(p.x()/fR 1978 *n = G4ThreeVector(p.x()/fRmax,p.y()/fRmax,p.z()/fRmax) ; 1799 } 1979 } 1800 return snxt = 0; 1980 return snxt = 0; 1801 } 1981 } 1802 else << 1982 else 1803 { 1983 { 1804 snxt = -pDotV3d+std::sqrt(d2); // 1984 snxt = -pDotV3d+std::sqrt(d2); // second root since inside Rmax 1805 side = kRMax ; << 1985 side = kRMax ; 1806 } 1986 } 1807 } 1987 } 1808 1988 1809 // Inner spherical shell intersection: 1989 // Inner spherical shell intersection: 1810 // Always first >=0 root, because would h 1990 // Always first >=0 root, because would have passed 1811 // from outside of Rmin surface . 1991 // from outside of Rmin surface . 1812 1992 1813 if (fRmin != 0.0) << 1993 if (fRmin) 1814 { 1994 { 1815 c = rad2 - fRmin*fRmin; 1995 c = rad2 - fRmin*fRmin; 1816 d2 = pDotV3d*pDotV3d - c; 1996 d2 = pDotV3d*pDotV3d - c; 1817 1997 1818 if (c >- fRminTolerance*fRmin) // 2.0 * 1998 if (c >- fRminTolerance*fRmin) // 2.0 * (0.5*kRadTolerance) * fRmin 1819 { 1999 { 1820 if ( (c < fRminTolerance*fRmin) 2000 if ( (c < fRminTolerance*fRmin) // leaving from Rmin 1821 && (d2 >= fRminTolerance*fRmin) && 2001 && (d2 >= fRminTolerance*fRmin) && (pDotV3d < 0) ) 1822 { 2002 { 1823 if(calcNorm) { *validNorm = false; << 2003 if(calcNorm) { *validNorm = false; } // Rmin surface is concave 1824 return snxt = 0 ; 2004 return snxt = 0 ; 1825 } 2005 } 1826 else 2006 else 1827 { << 2007 { 1828 if ( d2 >= 0. ) 2008 if ( d2 >= 0. ) 1829 { 2009 { 1830 sd = -pDotV3d-std::sqrt(d2); << 2010 s = -pDotV3d-std::sqrt(d2); 1831 2011 1832 if ( sd >= 0. ) // Always int << 2012 if ( s >= 0. ) // Always intersect Rmin first 1833 { 2013 { 1834 snxt = sd ; << 2014 snxt = s ; 1835 side = kRMin ; 2015 side = kRMin ; 1836 } 2016 } 1837 } 2017 } 1838 } 2018 } 1839 } 2019 } 1840 } 2020 } 1841 } 2021 } 1842 2022 1843 // Theta segment intersection 2023 // Theta segment intersection 1844 2024 1845 if ( !fFullThetaSphere ) 2025 if ( !fFullThetaSphere ) 1846 { 2026 { 1847 // Intersection with theta surfaces 2027 // Intersection with theta surfaces 1848 // 2028 // 1849 // Known failure cases: 2029 // Known failure cases: 1850 // o Inside tolerance of stheta surface, 2030 // o Inside tolerance of stheta surface, skim 1851 // ~parallel to cone and Hit & enter e 2031 // ~parallel to cone and Hit & enter etheta surface [& visa versa] 1852 // 2032 // 1853 // To solve: Check 2nd root of etheta 2033 // To solve: Check 2nd root of etheta surface in addition to stheta 1854 // 2034 // 1855 // o start/end theta is exactly pi/2 << 2035 // o start/end theta is exactly pi/2 1856 // 2036 // 1857 // Intersections with cones 2037 // Intersections with cones 1858 // 2038 // 1859 // Cone equation: x^2+y^2=z^2tan^2(t) 2039 // Cone equation: x^2+y^2=z^2tan^2(t) 1860 // 2040 // 1861 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan 2041 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t) 1862 // 2042 // 1863 // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p << 2043 // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t)) 1864 // + sd^2(vx^2+vy^2-vz^2tan^2(t)) = << 2044 // + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0 1865 // 2045 // 1866 // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d << 2046 // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0 1867 // + (rho2-pz^2tan^2(t)) = 0 << 1868 // 2047 // 1869 << 2048 1870 if(fSTheta != 0.0) // intersection with f << 2049 if(fSTheta) // intersection with first cons 1871 { 2050 { 1872 if( std::fabs(tanSTheta) > 5./kAngToler 2051 if( std::fabs(tanSTheta) > 5./kAngTolerance ) // kons is plane z=0 1873 { 2052 { 1874 if( v.z() > 0. ) << 2053 if( v.z() > 0. ) 1875 { 2054 { 1876 if ( std::fabs( p.z() ) <= halfRmax 2055 if ( std::fabs( p.z() ) <= halfRmaxTolerance ) 1877 { 2056 { 1878 if(calcNorm) 2057 if(calcNorm) 1879 { 2058 { 1880 *validNorm = true; 2059 *validNorm = true; 1881 *n = G4ThreeVector(0.,0.,1.); 2060 *n = G4ThreeVector(0.,0.,1.); 1882 } 2061 } 1883 return snxt = 0 ; 2062 return snxt = 0 ; 1884 } << 2063 } 1885 stheta = -p.z()/v.z(); 2064 stheta = -p.z()/v.z(); 1886 sidetheta = kSTheta; 2065 sidetheta = kSTheta; 1887 } 2066 } 1888 } 2067 } 1889 else // kons is not plane << 2068 else // kons is not plane 1890 { 2069 { 1891 t1 = 1-v.z()*v.z()*(1+tanSTh 2070 t1 = 1-v.z()*v.z()*(1+tanSTheta2); 1892 t2 = pDotV2d-p.z()*v.z()*tan 2071 t2 = pDotV2d-p.z()*v.z()*tanSTheta2; // ~vDotN if p on cons 1893 dist2STheta = rho2-p.z()*p.z()*tanSTh 2072 dist2STheta = rho2-p.z()*p.z()*tanSTheta2; // t3 1894 2073 1895 distTheta = std::sqrt(rho2)-p.z()*tan 2074 distTheta = std::sqrt(rho2)-p.z()*tanSTheta; 1896 2075 1897 if( std::fabs(t1) < halfAngTolerance 2076 if( std::fabs(t1) < halfAngTolerance ) // 1st order equation, 1898 { 2077 { // v parallel to kons 1899 if( v.z() > 0. ) 2078 if( v.z() > 0. ) 1900 { 2079 { 1901 if(std::fabs(distTheta) < halfRma 2080 if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface 1902 { 2081 { 1903 if( (fSTheta < halfpi) && (p.z( 2082 if( (fSTheta < halfpi) && (p.z() > 0.) ) 1904 { 2083 { 1905 if( calcNorm ) { *validNorm 2084 if( calcNorm ) { *validNorm = false; } 1906 return snxt = 0.; 2085 return snxt = 0.; 1907 } 2086 } 1908 else if( (fSTheta > halfpi) && 2087 else if( (fSTheta > halfpi) && (p.z() <= 0) ) 1909 { 2088 { 1910 if( calcNorm ) << 2089 if( calcNorm ) 1911 { 2090 { 1912 *validNorm = true; 2091 *validNorm = true; 1913 if (rho2 != 0.0) << 2092 if (rho2) 1914 { 2093 { 1915 rhoSecTheta = std::sqrt(r 2094 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 1916 << 2095 1917 *n = G4ThreeVector( p.x() << 2096 *n = G4ThreeVector( p.x()/rhoSecTheta, 1918 p.y() 2097 p.y()/rhoSecTheta, 1919 std:: 2098 std::sin(fSTheta) ); 1920 } 2099 } 1921 else *n = G4ThreeVector(0., 2100 else *n = G4ThreeVector(0.,0.,1.); 1922 } 2101 } 1923 return snxt = 0.; << 2102 return snxt = 0.; 1924 } 2103 } 1925 } 2104 } 1926 stheta = -0.5*dist2STheta/t2; 2105 stheta = -0.5*dist2STheta/t2; 1927 sidetheta = kSTheta; 2106 sidetheta = kSTheta; 1928 } << 2107 } 1929 } // 2nd order equation, 1st roo 2108 } // 2nd order equation, 1st root of fSTheta cone, 1930 else // 2nd if 1st root -ve 2109 else // 2nd if 1st root -ve 1931 { 2110 { 1932 if( std::fabs(distTheta) < halfRmax 2111 if( std::fabs(distTheta) < halfRmaxTolerance ) 1933 { 2112 { 1934 if( (fSTheta > halfpi) && (t2 >= 2113 if( (fSTheta > halfpi) && (t2 >= 0.) ) // leave 1935 { 2114 { 1936 if( calcNorm ) << 2115 if( calcNorm ) 1937 { 2116 { 1938 *validNorm = true; 2117 *validNorm = true; 1939 if (rho2 != 0.0) << 2118 if (rho2) 1940 { 2119 { 1941 rhoSecTheta = std::sqrt(rho 2120 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 1942 << 2121 1943 *n = G4ThreeVector( p.x()/r << 2122 *n = G4ThreeVector( p.x()/rhoSecTheta, 1944 p.y()/r 2123 p.y()/rhoSecTheta, 1945 std::si 2124 std::sin(fSTheta) ); 1946 } 2125 } 1947 else { *n = G4ThreeVector(0. 2126 else { *n = G4ThreeVector(0.,0.,1.); } 1948 } 2127 } 1949 return snxt = 0.; 2128 return snxt = 0.; 1950 } 2129 } 1951 else if( (fSTheta < halfpi) && (t 2130 else if( (fSTheta < halfpi) && (t2 < 0.) && (p.z() >=0.) ) // leave 1952 { 2131 { 1953 if( calcNorm ) { *validNorm = 2132 if( calcNorm ) { *validNorm = false; } 1954 return snxt = 0.; 2133 return snxt = 0.; 1955 } << 2134 } 1956 } 2135 } 1957 b = t2/t1; 2136 b = t2/t1; 1958 c = dist2STheta/t1; 2137 c = dist2STheta/t1; 1959 d2 = b*b - c ; 2138 d2 = b*b - c ; 1960 2139 1961 if ( d2 >= 0. ) 2140 if ( d2 >= 0. ) 1962 { 2141 { 1963 d = std::sqrt(d2); 2142 d = std::sqrt(d2); 1964 2143 1965 if( fSTheta > halfpi ) 2144 if( fSTheta > halfpi ) 1966 { 2145 { 1967 sd = -b - d; // First r << 2146 s = -b - d; // First root 1968 2147 1969 if ( ((std::fabs(s) < halfRmaxT 2148 if ( ((std::fabs(s) < halfRmaxTolerance) && (t2 < 0.)) 1970 || (sd < 0.) || ( (sd > 0.) << 2149 || (s < 0.) || ( (s > 0.) && (p.z() + s*v.z() > 0.) ) ) 1971 { 2150 { 1972 sd = -b + d ; // 2nd root << 2151 s = -b + d ; // 2nd root 1973 } 2152 } 1974 if( (sd > halfRmaxTolerance) && << 2153 if( (s > halfRmaxTolerance) && (p.z() + s*v.z() <= 0.) ) 1975 { 2154 { 1976 stheta = sd; << 2155 stheta = s; 1977 sidetheta = kSTheta; 2156 sidetheta = kSTheta; 1978 } 2157 } 1979 } 2158 } 1980 else // sTheta < pi/2, concave su 2159 else // sTheta < pi/2, concave surface, no normal 1981 { 2160 { 1982 sd = -b - d; // First r << 2161 s = -b - d; // First root 1983 2162 1984 if ( ( (std::fabs(sd) < halfRma << 2163 if ( ( (std::fabs(s) < halfRmaxTolerance) && (t2 >= 0.) ) 1985 || (sd < 0.) || ( (sd > 0.) & << 2164 || (s < 0.) || ( (s > 0.) && (p.z() + s*v.z() < 0.) ) ) 1986 { 2165 { 1987 sd = -b + d ; // 2nd root << 2166 s = -b + d ; // 2nd root 1988 } 2167 } 1989 if( (sd > halfRmaxTolerance) && << 2168 if( (s > halfRmaxTolerance) && (p.z() + s*v.z() >= 0.) ) 1990 { 2169 { 1991 stheta = sd; << 2170 stheta = s; 1992 sidetheta = kSTheta; 2171 sidetheta = kSTheta; 1993 } << 2172 } 1994 } 2173 } 1995 } 2174 } 1996 } 2175 } 1997 } 2176 } 1998 } 2177 } 1999 if (eTheta < pi) // intersection with sec 2178 if (eTheta < pi) // intersection with second cons 2000 { 2179 { 2001 if( std::fabs(tanETheta) > 5./kAngToler 2180 if( std::fabs(tanETheta) > 5./kAngTolerance ) // kons is plane z=0 2002 { 2181 { 2003 if( v.z() < 0. ) << 2182 if( v.z() < 0. ) 2004 { 2183 { 2005 if ( std::fabs( p.z() ) <= halfRmax 2184 if ( std::fabs( p.z() ) <= halfRmaxTolerance ) 2006 { 2185 { 2007 if(calcNorm) 2186 if(calcNorm) 2008 { 2187 { 2009 *validNorm = true; 2188 *validNorm = true; 2010 *n = G4ThreeVector(0.,0.,-1.); 2189 *n = G4ThreeVector(0.,0.,-1.); 2011 } 2190 } 2012 return snxt = 0 ; 2191 return snxt = 0 ; 2013 } << 2192 } 2014 sd = -p.z()/v.z(); << 2193 s = -p.z()/v.z(); 2015 2194 2016 if( sd < stheta ) << 2195 if( s < stheta ) 2017 { 2196 { 2018 stheta = sd; << 2197 stheta = s; 2019 sidetheta = kETheta; 2198 sidetheta = kETheta; 2020 } 2199 } 2021 } 2200 } 2022 } 2201 } 2023 else // kons is not plane << 2202 else // kons is not plane 2024 { 2203 { 2025 t1 = 1-v.z()*v.z()*(1+tanETh 2204 t1 = 1-v.z()*v.z()*(1+tanETheta2); 2026 t2 = pDotV2d-p.z()*v.z()*tan 2205 t2 = pDotV2d-p.z()*v.z()*tanETheta2; // ~vDotN if p on cons 2027 dist2ETheta = rho2-p.z()*p.z()*tanETh 2206 dist2ETheta = rho2-p.z()*p.z()*tanETheta2; // t3 2028 2207 2029 distTheta = std::sqrt(rho2)-p.z()*tan 2208 distTheta = std::sqrt(rho2)-p.z()*tanETheta; 2030 2209 2031 if( std::fabs(t1) < halfAngTolerance 2210 if( std::fabs(t1) < halfAngTolerance ) // 1st order equation, 2032 { 2211 { // v parallel to kons 2033 if( v.z() < 0. ) 2212 if( v.z() < 0. ) 2034 { 2213 { 2035 if(std::fabs(distTheta) < halfRma 2214 if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface 2036 { 2215 { 2037 if( (eTheta > halfpi) && (p.z() 2216 if( (eTheta > halfpi) && (p.z() < 0.) ) 2038 { 2217 { 2039 if( calcNorm ) { *validNorm 2218 if( calcNorm ) { *validNorm = false; } 2040 return snxt = 0.; 2219 return snxt = 0.; 2041 } 2220 } 2042 else if ( (eTheta < halfpi) && 2221 else if ( (eTheta < halfpi) && (p.z() >= 0) ) 2043 { 2222 { 2044 if( calcNorm ) << 2223 if( calcNorm ) 2045 { 2224 { 2046 *validNorm = true; 2225 *validNorm = true; 2047 if (rho2 != 0.0) << 2226 if (rho2) 2048 { 2227 { 2049 rhoSecTheta = std::sqrt(r 2228 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2050 *n = G4ThreeVector( p.x() << 2229 *n = G4ThreeVector( p.x()/rhoSecTheta, 2051 p.y() 2230 p.y()/rhoSecTheta, 2052 -sinE 2231 -sinETheta ); 2053 } 2232 } 2054 else { *n = G4ThreeVector( 2233 else { *n = G4ThreeVector(0.,0.,-1.); } 2055 } 2234 } 2056 return snxt = 0.; << 2235 return snxt = 0.; 2057 } 2236 } 2058 } 2237 } 2059 sd = -0.5*dist2ETheta/t2; << 2238 s = -0.5*dist2ETheta/t2; 2060 2239 2061 if( sd < stheta ) << 2240 if( s < stheta ) 2062 { 2241 { 2063 stheta = sd; << 2242 stheta = s; 2064 sidetheta = kETheta; 2243 sidetheta = kETheta; 2065 } 2244 } 2066 } << 2245 } 2067 } // 2nd order equation, 1st roo 2246 } // 2nd order equation, 1st root of fSTheta cone 2068 else // 2nd if 1st root -ve 2247 else // 2nd if 1st root -ve 2069 { 2248 { 2070 if ( std::fabs(distTheta) < halfRma 2249 if ( std::fabs(distTheta) < halfRmaxTolerance ) 2071 { 2250 { 2072 if( (eTheta < halfpi) && (t2 >= 0 2251 if( (eTheta < halfpi) && (t2 >= 0.) ) // leave 2073 { 2252 { 2074 if( calcNorm ) << 2253 if( calcNorm ) 2075 { 2254 { 2076 *validNorm = true; 2255 *validNorm = true; 2077 if (rho2 != 0.0) << 2256 if (rho2) 2078 { 2257 { 2079 rhoSecTheta = std::sqrt(r 2258 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2080 *n = G4ThreeVector( p.x() << 2259 *n = G4ThreeVector( p.x()/rhoSecTheta, 2081 p.y() 2260 p.y()/rhoSecTheta, 2082 -sinE 2261 -sinETheta ); 2083 } 2262 } 2084 else *n = G4ThreeVector(0.,0. 2263 else *n = G4ThreeVector(0.,0.,-1.); 2085 } << 2264 } 2086 return snxt = 0.; 2265 return snxt = 0.; 2087 } 2266 } 2088 else if ( (eTheta > halfpi) 2267 else if ( (eTheta > halfpi) 2089 && (t2 < 0.) && (p.z() <=0 2268 && (t2 < 0.) && (p.z() <=0.) ) // leave 2090 { 2269 { 2091 if( calcNorm ) { *validNorm = 2270 if( calcNorm ) { *validNorm = false; } 2092 return snxt = 0.; 2271 return snxt = 0.; 2093 } << 2272 } 2094 } 2273 } 2095 b = t2/t1; 2274 b = t2/t1; 2096 c = dist2ETheta/t1; 2275 c = dist2ETheta/t1; 2097 d2 = b*b - c ; 2276 d2 = b*b - c ; 2098 if ( (d2 <halfRmaxTolerance) && (d2 << 2277 2099 { << 2100 d2 = 0.; << 2101 } << 2102 if ( d2 >= 0. ) 2278 if ( d2 >= 0. ) 2103 { 2279 { 2104 d = std::sqrt(d2); 2280 d = std::sqrt(d2); 2105 2281 2106 if( eTheta < halfpi ) 2282 if( eTheta < halfpi ) 2107 { 2283 { 2108 sd = -b - d; // First r << 2284 s = -b - d; // First root 2109 2285 2110 if( ((std::fabs(sd) < halfRmaxT << 2286 if( ((std::fabs(s) < halfRmaxTolerance) && (t2 < 0.)) 2111 || (sd < 0.) ) << 2287 || (s < 0.) ) 2112 { 2288 { 2113 sd = -b + d ; // 2nd root << 2289 s = -b + d ; // 2nd root 2114 } 2290 } 2115 if( sd > halfRmaxTolerance ) << 2291 if( s > halfRmaxTolerance ) 2116 { 2292 { 2117 if( sd < stheta ) << 2293 if( s < stheta ) 2118 { 2294 { 2119 stheta = sd; << 2295 stheta = s; 2120 sidetheta = kETheta; 2296 sidetheta = kETheta; 2121 } 2297 } 2122 } 2298 } 2123 } 2299 } 2124 else // sTheta+fDTheta > pi/2, co 2300 else // sTheta+fDTheta > pi/2, concave surface, no normal 2125 { 2301 { 2126 sd = -b - d; // First r << 2302 s = -b - d; // First root 2127 2303 2128 if ( ((std::fabs(sd) < halfRmax << 2304 if ( ((std::fabs(s) < halfRmaxTolerance) && (t2 >= 0.)) 2129 || (sd < 0.) << 2305 || (s < 0.) || ( (s > 0.) && (p.z() + s*v.z() > 0.) ) ) 2130 || ( (sd > 0.) && (p.z() + sd << 2131 { 2306 { 2132 sd = -b + d ; // 2nd root << 2307 s = -b + d ; // 2nd root 2133 } 2308 } 2134 if ( ( sd>halfRmaxTolerance ) << 2309 if( (s > halfRmaxTolerance) && (p.z() + s*v.z() <= 0.) ) 2135 && ( p.z()+sd*v.z() <= halfRm << 2136 { 2310 { 2137 if( sd < stheta ) << 2311 if( s < stheta ) 2138 { 2312 { 2139 stheta = sd; << 2313 stheta = s; 2140 sidetheta = kETheta; 2314 sidetheta = kETheta; 2141 } 2315 } 2142 } << 2316 } 2143 } 2317 } 2144 } 2318 } 2145 } 2319 } 2146 } 2320 } 2147 } 2321 } 2148 2322 2149 } // end theta intersections 2323 } // end theta intersections 2150 2324 2151 // Phi Intersection 2325 // Phi Intersection 2152 << 2326 2153 if ( !fFullPhiSphere ) 2327 if ( !fFullPhiSphere ) 2154 { 2328 { 2155 if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 2329 if ( p.x() || p.y() ) // Check if on z axis (rho not needed later) 2156 { 2330 { 2157 // pDist -ve when inside 2331 // pDist -ve when inside 2158 2332 2159 pDistS=p.x()*sinSPhi-p.y()*cosSPhi; 2333 pDistS=p.x()*sinSPhi-p.y()*cosSPhi; 2160 pDistE=-p.x()*sinEPhi+p.y()*cosEPhi; 2334 pDistE=-p.x()*sinEPhi+p.y()*cosEPhi; 2161 2335 2162 // Comp -ve when in direction of outwar 2336 // Comp -ve when in direction of outwards normal 2163 2337 2164 compS = -sinSPhi*v.x()+cosSPhi*v.y() 2338 compS = -sinSPhi*v.x()+cosSPhi*v.y() ; 2165 compE = sinEPhi*v.x()-cosEPhi*v.y() 2339 compE = sinEPhi*v.x()-cosEPhi*v.y() ; 2166 sidephi = kNull ; 2340 sidephi = kNull ; 2167 2341 2168 if ( (pDistS <= 0) && (pDistE <= 0) ) 2342 if ( (pDistS <= 0) && (pDistE <= 0) ) 2169 { 2343 { 2170 // Inside both phi *full* planes 2344 // Inside both phi *full* planes 2171 2345 2172 if ( compS < 0 ) 2346 if ( compS < 0 ) 2173 { 2347 { 2174 sphi = pDistS/compS ; 2348 sphi = pDistS/compS ; 2175 xi = p.x()+sphi*v.x() ; 2349 xi = p.x()+sphi*v.x() ; 2176 yi = p.y()+sphi*v.y() ; 2350 yi = p.y()+sphi*v.y() ; 2177 2351 2178 // Check intersection with correct 2352 // Check intersection with correct half-plane (if not -> no intersect) 2179 // 2353 // 2180 if( (std::fabs(xi)<=kCarTolerance) 2354 if( (std::fabs(xi)<=kCarTolerance) && (std::fabs(yi)<=kCarTolerance) ) 2181 { 2355 { 2182 vphi = std::atan2(v.y(),v.x()); 2356 vphi = std::atan2(v.y(),v.x()); 2183 sidephi = kSPhi; 2357 sidephi = kSPhi; 2184 if ( ( (fSPhi-halfAngTolerance) < 2358 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2185 && ( (ePhi+halfAngTolerance) > 2359 && ( (ePhi+halfAngTolerance) >= vphi) ) 2186 { 2360 { 2187 sphi = kInfinity; 2361 sphi = kInfinity; 2188 } 2362 } 2189 } 2363 } 2190 else if ( ( yi*cosCPhi - xi*sinCPhi 2364 else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2191 { 2365 { 2192 sphi=kInfinity; 2366 sphi=kInfinity; 2193 } 2367 } 2194 else 2368 else 2195 { 2369 { 2196 sidephi = kSPhi ; 2370 sidephi = kSPhi ; 2197 if ( pDistS > -halfCarTolerance) << 2371 if ( pDistS > -halfCarTolerance) { sphi = 0; } // Leave by sphi 2198 } 2372 } 2199 } 2373 } 2200 else { sphi = kInfinity; } 2374 else { sphi = kInfinity; } 2201 2375 2202 if ( compE < 0 ) 2376 if ( compE < 0 ) 2203 { 2377 { 2204 sphi2=pDistE/compE ; 2378 sphi2=pDistE/compE ; 2205 if (sphi2 < sphi) // Only check fur 2379 if (sphi2 < sphi) // Only check further if < starting phi intersection 2206 { 2380 { 2207 xi = p.x()+sphi2*v.x() ; 2381 xi = p.x()+sphi2*v.x() ; 2208 yi = p.y()+sphi2*v.y() ; 2382 yi = p.y()+sphi2*v.y() ; 2209 2383 2210 // Check intersection with correc 2384 // Check intersection with correct half-plane 2211 // 2385 // 2212 if ( (std::fabs(xi)<=kCarToleranc << 2386 if ((std::fabs(xi)<=kCarTolerance) && (std::fabs(yi)<=kCarTolerance)) 2213 && (std::fabs(yi)<=kCarToleranc << 2214 { 2387 { 2215 // Leaving via ending phi 2388 // Leaving via ending phi 2216 // 2389 // 2217 vphi = std::atan2(v.y(),v.x()) 2390 vphi = std::atan2(v.y(),v.x()) ; 2218 << 2391 2219 if( (fSPhi-halfAngTolerance > v << 2392 if( !((fSPhi-halfAngTolerance <= vphi) 2220 ||(fSPhi+fDPhi+halfAngToler << 2393 &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) ) 2221 { << 2394 { 2222 sidephi = kEPhi; 2395 sidephi = kEPhi; 2223 if ( pDistE <= -halfCarTolera 2396 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2; } 2224 else 2397 else { sphi = 0.0; } 2225 } 2398 } 2226 } 2399 } 2227 else if ((yi*cosCPhi-xi*sinCPhi)> 2400 else if ((yi*cosCPhi-xi*sinCPhi)>=0) // Leaving via ending phi 2228 { 2401 { 2229 sidephi = kEPhi ; 2402 sidephi = kEPhi ; 2230 if ( pDistE <= -halfCarToleranc 2403 if ( pDistE <= -halfCarTolerance ) 2231 { 2404 { 2232 sphi=sphi2; 2405 sphi=sphi2; 2233 } 2406 } 2234 else << 2407 else 2235 { 2408 { 2236 sphi = 0 ; 2409 sphi = 0 ; 2237 } 2410 } 2238 } 2411 } 2239 } 2412 } 2240 } << 2413 } 2241 } 2414 } 2242 else if ((pDistS >= 0) && (pDistE >= 0) 2415 else if ((pDistS >= 0) && (pDistE >= 0)) // Outside both *full* phi planes 2243 { 2416 { 2244 if ( pDistS <= pDistE ) 2417 if ( pDistS <= pDistE ) 2245 { 2418 { 2246 sidephi = kSPhi ; 2419 sidephi = kSPhi ; 2247 } 2420 } 2248 else 2421 else 2249 { 2422 { 2250 sidephi = kEPhi ; 2423 sidephi = kEPhi ; 2251 } 2424 } 2252 if ( fDPhi > pi ) 2425 if ( fDPhi > pi ) 2253 { 2426 { 2254 if ( (compS < 0) && (compE < 0) ) 2427 if ( (compS < 0) && (compE < 0) ) { sphi = 0; } 2255 else 2428 else { sphi = kInfinity; } 2256 } 2429 } 2257 else 2430 else 2258 { 2431 { 2259 // if towards both >=0 then once in 2432 // if towards both >=0 then once inside (after error) 2260 // will remain inside 2433 // will remain inside 2261 2434 2262 if ( (compS >= 0) && (compE >= 0) ) 2435 if ( (compS >= 0) && (compE >= 0) ) { sphi = kInfinity; } 2263 else 2436 else { sphi = 0; } 2264 } << 2437 } 2265 } 2438 } 2266 else if ( (pDistS > 0) && (pDistE < 0) 2439 else if ( (pDistS > 0) && (pDistE < 0) ) 2267 { 2440 { 2268 // Outside full starting plane, insid 2441 // Outside full starting plane, inside full ending plane 2269 2442 2270 if ( fDPhi > pi ) 2443 if ( fDPhi > pi ) 2271 { 2444 { 2272 if ( compE < 0 ) 2445 if ( compE < 0 ) 2273 { 2446 { 2274 sphi = pDistE/compE ; 2447 sphi = pDistE/compE ; 2275 xi = p.x() + sphi*v.x() ; 2448 xi = p.x() + sphi*v.x() ; 2276 yi = p.y() + sphi*v.y() ; 2449 yi = p.y() + sphi*v.y() ; 2277 2450 2278 // Check intersection in correct 2451 // Check intersection in correct half-plane 2279 // (if not -> not leaving phi ext 2452 // (if not -> not leaving phi extent) 2280 // 2453 // 2281 if( (std::fabs(xi)<=kCarTolerance 2454 if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) ) 2282 { 2455 { 2283 vphi = std::atan2(v.y(),v.x()); 2456 vphi = std::atan2(v.y(),v.x()); 2284 sidephi = kSPhi; 2457 sidephi = kSPhi; 2285 if ( ( (fSPhi-halfAngTolerance) 2458 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2286 && ( (ePhi+halfAngTolerance) 2459 && ( (ePhi+halfAngTolerance) >= vphi) ) 2287 { 2460 { 2288 sphi = kInfinity; 2461 sphi = kInfinity; 2289 } 2462 } 2290 } 2463 } 2291 else if ( ( yi*cosCPhi - xi*sinCP 2464 else if ( ( yi*cosCPhi - xi*sinCPhi ) <= 0 ) 2292 { 2465 { 2293 sphi = kInfinity ; 2466 sphi = kInfinity ; 2294 } 2467 } 2295 else // Leaving via Ending phi 2468 else // Leaving via Ending phi 2296 { 2469 { 2297 sidephi = kEPhi ; 2470 sidephi = kEPhi ; 2298 if ( pDistE > -halfCarTolerance 2471 if ( pDistE > -halfCarTolerance ) { sphi = 0.; } 2299 } 2472 } 2300 } 2473 } 2301 else 2474 else 2302 { 2475 { 2303 sphi = kInfinity ; 2476 sphi = kInfinity ; 2304 } 2477 } 2305 } 2478 } 2306 else 2479 else 2307 { 2480 { 2308 if ( compS >= 0 ) 2481 if ( compS >= 0 ) 2309 { 2482 { 2310 if ( compE < 0 ) 2483 if ( compE < 0 ) 2311 { << 2484 { 2312 sphi = pDistE/compE ; 2485 sphi = pDistE/compE ; 2313 xi = p.x() + sphi*v.x() ; 2486 xi = p.x() + sphi*v.x() ; 2314 yi = p.y() + sphi*v.y() ; 2487 yi = p.y() + sphi*v.y() ; 2315 2488 2316 // Check intersection in correc 2489 // Check intersection in correct half-plane 2317 // (if not -> remain in extent) 2490 // (if not -> remain in extent) 2318 // 2491 // 2319 if( (std::fabs(xi)<=kCarToleran << 2492 if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) ) 2320 && (std::fabs(yi)<=kCarToleran << 2321 { 2493 { 2322 vphi = std::atan2(v.y(),v.x() 2494 vphi = std::atan2(v.y(),v.x()); 2323 sidephi = kSPhi; 2495 sidephi = kSPhi; 2324 if ( ( (fSPhi-halfAngToleranc 2496 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2325 && ( (ePhi+halfAngTolerance 2497 && ( (ePhi+halfAngTolerance) >= vphi) ) 2326 { 2498 { 2327 sphi = kInfinity; 2499 sphi = kInfinity; 2328 } 2500 } 2329 } 2501 } 2330 else if ( ( yi*cosCPhi - xi*sin 2502 else if ( ( yi*cosCPhi - xi*sinCPhi) <= 0 ) 2331 { 2503 { 2332 sphi=kInfinity; 2504 sphi=kInfinity; 2333 } 2505 } 2334 else // otherwise leaving via E 2506 else // otherwise leaving via Ending phi 2335 { 2507 { 2336 sidephi = kEPhi ; 2508 sidephi = kEPhi ; 2337 } 2509 } 2338 } 2510 } 2339 else sphi=kInfinity; 2511 else sphi=kInfinity; 2340 } 2512 } 2341 else // leaving immediately by star 2513 else // leaving immediately by starting phi 2342 { 2514 { 2343 sidephi = kSPhi ; 2515 sidephi = kSPhi ; 2344 sphi = 0 ; 2516 sphi = 0 ; 2345 } 2517 } 2346 } 2518 } 2347 } 2519 } 2348 else 2520 else 2349 { 2521 { 2350 // Must be pDistS < 0 && pDistE > 0 2522 // Must be pDistS < 0 && pDistE > 0 2351 // Inside full starting plane, outsid 2523 // Inside full starting plane, outside full ending plane 2352 2524 2353 if ( fDPhi > pi ) 2525 if ( fDPhi > pi ) 2354 { 2526 { 2355 if ( compS < 0 ) 2527 if ( compS < 0 ) 2356 { 2528 { 2357 sphi=pDistS/compS; 2529 sphi=pDistS/compS; 2358 xi=p.x()+sphi*v.x(); 2530 xi=p.x()+sphi*v.x(); 2359 yi=p.y()+sphi*v.y(); 2531 yi=p.y()+sphi*v.y(); 2360 << 2532 2361 // Check intersection in correct 2533 // Check intersection in correct half-plane 2362 // (if not -> not leaving phi ext 2534 // (if not -> not leaving phi extent) 2363 // 2535 // 2364 if( (std::fabs(xi)<=kCarTolerance 2536 if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) ) 2365 { 2537 { 2366 vphi = std::atan2(v.y(),v.x()) 2538 vphi = std::atan2(v.y(),v.x()) ; 2367 sidephi = kSPhi; 2539 sidephi = kSPhi; 2368 if ( ( (fSPhi-halfAngTolerance) 2540 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2369 && ( (ePhi+halfAngTolerance) 2541 && ( (ePhi+halfAngTolerance) >= vphi) ) 2370 { 2542 { 2371 sphi = kInfinity; 2543 sphi = kInfinity; 2372 } 2544 } 2373 } 2545 } 2374 else if ( ( yi*cosCPhi - xi*sinCP 2546 else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2375 { 2547 { 2376 sphi = kInfinity ; 2548 sphi = kInfinity ; 2377 } 2549 } 2378 else // Leaving via Starting phi 2550 else // Leaving via Starting phi 2379 { 2551 { 2380 sidephi = kSPhi ; 2552 sidephi = kSPhi ; 2381 if ( pDistS > -halfCarTolerance 2553 if ( pDistS > -halfCarTolerance ) { sphi = 0; } 2382 } 2554 } 2383 } 2555 } 2384 else 2556 else 2385 { 2557 { 2386 sphi = kInfinity ; 2558 sphi = kInfinity ; 2387 } 2559 } 2388 } 2560 } 2389 else 2561 else 2390 { 2562 { 2391 if ( compE >= 0 ) 2563 if ( compE >= 0 ) 2392 { 2564 { 2393 if ( compS < 0 ) 2565 if ( compS < 0 ) 2394 { 2566 { 2395 sphi = pDistS/compS ; 2567 sphi = pDistS/compS ; 2396 xi = p.x()+sphi*v.x() ; 2568 xi = p.x()+sphi*v.x() ; 2397 yi = p.y()+sphi*v.y() ; 2569 yi = p.y()+sphi*v.y() ; 2398 << 2570 2399 // Check intersection in correc 2571 // Check intersection in correct half-plane 2400 // (if not -> remain in extent) 2572 // (if not -> remain in extent) 2401 // 2573 // 2402 if( (std::fabs(xi)<=kCarToleran << 2574 if((std::fabs(xi)<=kCarTolerance) && (std::fabs(yi)<=kCarTolerance)) 2403 && (std::fabs(yi)<=kCarToleran << 2404 { 2575 { 2405 vphi = std::atan2(v.y(),v.x() 2576 vphi = std::atan2(v.y(),v.x()) ; 2406 sidephi = kSPhi; 2577 sidephi = kSPhi; 2407 if ( ( (fSPhi-halfAngToleranc 2578 if ( ( (fSPhi-halfAngTolerance) <= vphi) 2408 && ( (ePhi+halfAngTolerance 2579 && ( (ePhi+halfAngTolerance) >= vphi) ) 2409 { 2580 { 2410 sphi = kInfinity; 2581 sphi = kInfinity; 2411 } 2582 } 2412 } 2583 } 2413 else if ( ( yi*cosCPhi - xi*sin 2584 else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2414 { 2585 { 2415 sphi = kInfinity ; 2586 sphi = kInfinity ; 2416 } 2587 } 2417 else // otherwise leaving via S 2588 else // otherwise leaving via Starting phi 2418 { 2589 { 2419 sidephi = kSPhi ; 2590 sidephi = kSPhi ; 2420 } 2591 } 2421 } 2592 } 2422 else 2593 else 2423 { 2594 { 2424 sphi = kInfinity ; 2595 sphi = kInfinity ; 2425 } 2596 } 2426 } 2597 } 2427 else // leaving immediately by endi 2598 else // leaving immediately by ending 2428 { 2599 { 2429 sidephi = kEPhi ; 2600 sidephi = kEPhi ; 2430 sphi = 0 ; 2601 sphi = 0 ; 2431 } 2602 } 2432 } 2603 } 2433 } << 2604 } 2434 } 2605 } 2435 else 2606 else 2436 { 2607 { 2437 // On z axis + travel not || to z axis 2608 // On z axis + travel not || to z axis -> if phi of vector direction 2438 // within phi of shape, Step limited by 2609 // within phi of shape, Step limited by rmax, else Step =0 2439 2610 2440 if ( (v.x() != 0.0) || (v.y() != 0.0) ) << 2611 if ( v.x() || v.y() ) 2441 { 2612 { 2442 vphi = std::atan2(v.y(),v.x()) ; 2613 vphi = std::atan2(v.y(),v.x()) ; 2443 if ((fSPhi-halfAngTolerance < vphi) & 2614 if ((fSPhi-halfAngTolerance < vphi) && (vphi < ePhi+halfAngTolerance)) 2444 { 2615 { 2445 sphi = kInfinity; 2616 sphi = kInfinity; 2446 } 2617 } 2447 else 2618 else 2448 { 2619 { 2449 sidephi = kSPhi ; // arbitrary << 2620 sidephi = kSPhi ; // arbitrary 2450 sphi = 0 ; 2621 sphi = 0 ; 2451 } 2622 } 2452 } 2623 } 2453 else // travel along z - no phi inters 2624 else // travel along z - no phi intersection 2454 { 2625 { 2455 sphi = kInfinity ; 2626 sphi = kInfinity ; 2456 } 2627 } 2457 } 2628 } 2458 if ( sphi < snxt ) // Order intersecttio 2629 if ( sphi < snxt ) // Order intersecttions 2459 { 2630 { 2460 snxt = sphi ; 2631 snxt = sphi ; 2461 side = sidephi ; 2632 side = sidephi ; 2462 } 2633 } 2463 } 2634 } 2464 if (stheta < snxt ) // Order intersections 2635 if (stheta < snxt ) // Order intersections 2465 { 2636 { 2466 snxt = stheta ; 2637 snxt = stheta ; 2467 side = sidetheta ; 2638 side = sidetheta ; 2468 } 2639 } 2469 2640 2470 if (calcNorm) // Output switch operator 2641 if (calcNorm) // Output switch operator 2471 { 2642 { 2472 switch( side ) 2643 switch( side ) 2473 { 2644 { 2474 case kRMax: 2645 case kRMax: 2475 xi=p.x()+snxt*v.x(); 2646 xi=p.x()+snxt*v.x(); 2476 yi=p.y()+snxt*v.y(); 2647 yi=p.y()+snxt*v.y(); 2477 zi=p.z()+snxt*v.z(); 2648 zi=p.z()+snxt*v.z(); 2478 *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi 2649 *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi/fRmax); 2479 *validNorm=true; 2650 *validNorm=true; 2480 break; 2651 break; 2481 2652 2482 case kRMin: 2653 case kRMin: 2483 *validNorm=false; // Rmin is concave 2654 *validNorm=false; // Rmin is concave 2484 break; 2655 break; 2485 2656 2486 case kSPhi: 2657 case kSPhi: 2487 if ( fDPhi <= pi ) // Normal to P 2658 if ( fDPhi <= pi ) // Normal to Phi- 2488 { 2659 { 2489 *n=G4ThreeVector(sinSPhi,-cosSPhi,0 2660 *n=G4ThreeVector(sinSPhi,-cosSPhi,0); 2490 *validNorm=true; 2661 *validNorm=true; 2491 } 2662 } 2492 else { *validNorm=false; } 2663 else { *validNorm=false; } 2493 break ; 2664 break ; 2494 2665 2495 case kEPhi: 2666 case kEPhi: 2496 if ( fDPhi <= pi ) // Normal to 2667 if ( fDPhi <= pi ) // Normal to Phi+ 2497 { 2668 { 2498 *n=G4ThreeVector(-sinEPhi,cosEPhi,0 2669 *n=G4ThreeVector(-sinEPhi,cosEPhi,0); 2499 *validNorm=true; 2670 *validNorm=true; 2500 } 2671 } 2501 else { *validNorm=false; } 2672 else { *validNorm=false; } 2502 break; 2673 break; 2503 2674 2504 case kSTheta: 2675 case kSTheta: 2505 if( fSTheta == halfpi ) 2676 if( fSTheta == halfpi ) 2506 { 2677 { 2507 *n=G4ThreeVector(0.,0.,1.); 2678 *n=G4ThreeVector(0.,0.,1.); 2508 *validNorm=true; 2679 *validNorm=true; 2509 } 2680 } 2510 else if ( fSTheta > halfpi ) 2681 else if ( fSTheta > halfpi ) 2511 { 2682 { 2512 xi = p.x() + snxt*v.x(); 2683 xi = p.x() + snxt*v.x(); 2513 yi = p.y() + snxt*v.y(); 2684 yi = p.y() + snxt*v.y(); 2514 rho2=xi*xi+yi*yi; 2685 rho2=xi*xi+yi*yi; 2515 if (rho2 != 0.0) << 2686 if (rho2) 2516 { << 2687 { 2517 rhoSecTheta = std::sqrt(rho2*(1+t 2688 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 2518 *n = G4ThreeVector( xi/rhoSecThet 2689 *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta, 2519 -tanSTheta/std 2690 -tanSTheta/std::sqrt(1+tanSTheta2)); 2520 } 2691 } 2521 else 2692 else 2522 { 2693 { 2523 *n = G4ThreeVector(0.,0.,1.); 2694 *n = G4ThreeVector(0.,0.,1.); 2524 } 2695 } 2525 *validNorm=true; 2696 *validNorm=true; 2526 } 2697 } 2527 else { *validNorm=false; } // Conca 2698 else { *validNorm=false; } // Concave STheta cone 2528 break; 2699 break; 2529 2700 2530 case kETheta: 2701 case kETheta: 2531 if( eTheta == halfpi ) 2702 if( eTheta == halfpi ) 2532 { 2703 { 2533 *n = G4ThreeVector(0.,0.,-1 2704 *n = G4ThreeVector(0.,0.,-1.); 2534 *validNorm = true; 2705 *validNorm = true; 2535 } 2706 } 2536 else if ( eTheta < halfpi ) 2707 else if ( eTheta < halfpi ) 2537 { 2708 { 2538 xi=p.x()+snxt*v.x(); 2709 xi=p.x()+snxt*v.x(); 2539 yi=p.y()+snxt*v.y(); 2710 yi=p.y()+snxt*v.y(); 2540 rho2=xi*xi+yi*yi; 2711 rho2=xi*xi+yi*yi; 2541 if (rho2 != 0.0) << 2712 if (rho2) 2542 { << 2713 { 2543 rhoSecTheta = std::sqrt(rho2*(1+t 2714 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2544 *n = G4ThreeVector( xi/rhoSecThet 2715 *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta, 2545 -tanETheta/std 2716 -tanETheta/std::sqrt(1+tanETheta2) ); 2546 } 2717 } 2547 else 2718 else 2548 { 2719 { 2549 *n = G4ThreeVector(0.,0.,-1.); 2720 *n = G4ThreeVector(0.,0.,-1.); 2550 } 2721 } 2551 *validNorm=true; 2722 *validNorm=true; 2552 } 2723 } 2553 else { *validNorm=false; } // Conc 2724 else { *validNorm=false; } // Concave ETheta cone 2554 break; 2725 break; 2555 2726 2556 default: 2727 default: 2557 G4cout << G4endl; 2728 G4cout << G4endl; 2558 DumpInfo(); 2729 DumpInfo(); 2559 std::ostringstream message; 2730 std::ostringstream message; 2560 G4long oldprc = message.precision(16) << 2731 G4int oldprc = message.precision(16); 2561 message << "Undefined side for valid 2732 message << "Undefined side for valid surface normal to solid." 2562 << G4endl 2733 << G4endl 2563 << "Position:" << G4endl << 2734 << "Position:" << G4endl << G4endl 2564 << "p.x() = " << p.x()/mm < 2735 << "p.x() = " << p.x()/mm << " mm" << G4endl 2565 << "p.y() = " << p.y()/mm < 2736 << "p.y() = " << p.y()/mm << " mm" << G4endl 2566 << "p.z() = " << p.z()/mm < 2737 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 2567 << "Direction:" << G4endl << 2738 << "Direction:" << G4endl << G4endl 2568 << "v.x() = " << v.x() << G 2739 << "v.x() = " << v.x() << G4endl 2569 << "v.y() = " << v.y() << G 2740 << "v.y() = " << v.y() << G4endl 2570 << "v.z() = " << v.z() << G 2741 << "v.z() = " << v.z() << G4endl << G4endl 2571 << "Proposed distance :" << G 2742 << "Proposed distance :" << G4endl << G4endl 2572 << "snxt = " << snxt/mm << 2743 << "snxt = " << snxt/mm << " mm" << G4endl; 2573 message.precision(oldprc); 2744 message.precision(oldprc); 2574 G4Exception("G4Sphere::DistanceToOut( 2745 G4Exception("G4Sphere::DistanceToOut(p,v,..)", 2575 "GeomSolids1002", JustWar 2746 "GeomSolids1002", JustWarning, message); 2576 break; 2747 break; 2577 } 2748 } 2578 } 2749 } 2579 if (snxt == kInfinity) 2750 if (snxt == kInfinity) 2580 { 2751 { 2581 G4cout << G4endl; 2752 G4cout << G4endl; 2582 DumpInfo(); 2753 DumpInfo(); 2583 std::ostringstream message; 2754 std::ostringstream message; 2584 G4long oldprc = message.precision(16); << 2755 G4int oldprc = message.precision(16); 2585 message << "Logic error: snxt = kInfinity 2756 message << "Logic error: snxt = kInfinity ???" << G4endl 2586 << "Position:" << G4endl << G4en 2757 << "Position:" << G4endl << G4endl 2587 << "p.x() = " << p.x()/mm << " 2758 << "p.x() = " << p.x()/mm << " mm" << G4endl 2588 << "p.y() = " << p.y()/mm << " 2759 << "p.y() = " << p.y()/mm << " mm" << G4endl 2589 << "p.z() = " << p.z()/mm << " 2760 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 2590 << "Rp = "<< std::sqrt( p.x()*p.x 2761 << "Rp = "<< std::sqrt( p.x()*p.x()+p.y()*p.y()+p.z()*p.z() )/mm 2591 << " mm" << G4endl << G4endl 2762 << " mm" << G4endl << G4endl 2592 << "Direction:" << G4endl << G4en 2763 << "Direction:" << G4endl << G4endl 2593 << "v.x() = " << v.x() << G4end 2764 << "v.x() = " << v.x() << G4endl 2594 << "v.y() = " << v.y() << G4end 2765 << "v.y() = " << v.y() << G4endl 2595 << "v.z() = " << v.z() << G4end 2766 << "v.z() = " << v.z() << G4endl << G4endl 2596 << "Proposed distance :" << G4end 2767 << "Proposed distance :" << G4endl << G4endl 2597 << "snxt = " << snxt/mm << " m 2768 << "snxt = " << snxt/mm << " mm" << G4endl; 2598 message.precision(oldprc); 2769 message.precision(oldprc); 2599 G4Exception("G4Sphere::DistanceToOut(p,v, 2770 G4Exception("G4Sphere::DistanceToOut(p,v,..)", 2600 "GeomSolids1002", JustWarning 2771 "GeomSolids1002", JustWarning, message); 2601 } 2772 } 2602 2773 2603 return snxt; 2774 return snxt; 2604 } 2775 } 2605 2776 2606 ///////////////////////////////////////////// 2777 ///////////////////////////////////////////////////////////////////////// 2607 // 2778 // 2608 // Calculate distance (<=actual) to closest s 2779 // Calculate distance (<=actual) to closest surface of shape from inside 2609 2780 2610 G4double G4Sphere::DistanceToOut( const G4Thr 2781 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p ) const 2611 { 2782 { 2612 G4double safe=0.0,safeRMin,safeRMax,safePhi 2783 G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta; 2613 G4double rho2,rds,rho; 2784 G4double rho2,rds,rho; 2614 G4double pTheta,dTheta1 = kInfinity,dTheta2 << 2785 G4double pTheta,dTheta1,dTheta2; 2615 rho2=p.x()*p.x()+p.y()*p.y(); 2786 rho2=p.x()*p.x()+p.y()*p.y(); 2616 rds=std::sqrt(rho2+p.z()*p.z()); 2787 rds=std::sqrt(rho2+p.z()*p.z()); 2617 rho=std::sqrt(rho2); 2788 rho=std::sqrt(rho2); 2618 2789 2619 #ifdef G4CSGDEBUG 2790 #ifdef G4CSGDEBUG 2620 if( Inside(p) == kOutside ) 2791 if( Inside(p) == kOutside ) 2621 { 2792 { 2622 G4long old_prc = G4cout.precision(16); << 2793 G4int old_prc = G4cout.precision(16); 2623 G4cout << G4endl; 2794 G4cout << G4endl; 2624 DumpInfo(); 2795 DumpInfo(); 2625 G4cout << "Position:" << G4endl << G4en 2796 G4cout << "Position:" << G4endl << G4endl ; 2626 G4cout << "p.x() = " << p.x()/mm << " 2797 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 2627 G4cout << "p.y() = " << p.y()/mm << " 2798 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 2628 G4cout << "p.z() = " << p.z()/mm << " 2799 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 2629 G4cout.precision(old_prc) ; 2800 G4cout.precision(old_prc) ; 2630 G4Exception("G4Sphere::DistanceToOut(p)" 2801 G4Exception("G4Sphere::DistanceToOut(p)", 2631 "GeomSolids1002", JustWarnin 2802 "GeomSolids1002", JustWarning, "Point p is outside !?" ); 2632 } 2803 } 2633 #endif 2804 #endif 2634 2805 2635 // Distance to r shells << 2636 // 2806 // 2637 safeRMax = fRmax-rds; << 2807 // Distance to r shells 2638 safe = safeRMax; << 2808 // 2639 if (fRmin != 0.0) << 2809 if (fRmin) 2640 { 2810 { 2641 safeRMin = rds-fRmin; << 2811 safeRMin=rds-fRmin; 2642 safe = std::min( safeRMin, safeRMax ); << 2812 safeRMax=fRmax-rds; >> 2813 if (safeRMin<safeRMax) >> 2814 { >> 2815 safe=safeRMin; >> 2816 } >> 2817 else >> 2818 { >> 2819 safe=safeRMax; >> 2820 } 2643 } 2821 } 2644 << 2822 else 2645 // Distance to phi extent << 2646 // << 2647 if ( !fFullPhiSphere ) << 2648 { 2823 { 2649 if (rho>0.0) << 2824 safe=fRmax-rds; 2650 { << 2651 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) << 2652 { << 2653 safePhi=-(p.x()*sinSPhi-p.y()*cosS << 2654 } << 2655 else << 2656 { << 2657 safePhi=(p.x()*sinEPhi-p.y()*cosEP << 2658 } << 2659 } << 2660 else << 2661 { << 2662 safePhi = 0.0; // Distance to both P << 2663 } << 2664 // Both cases above can be improved - in << 2665 // although it may be costlier (good fo << 2666 << 2667 safe= std::min(safe, safePhi); << 2668 } 2825 } 2669 2826 2670 // Distance to Theta extent << 2671 // 2827 // 2672 if ( !fFullThetaSphere ) << 2828 // Distance to phi extent >> 2829 // >> 2830 if (!fFullPhiSphere && rho) 2673 { 2831 { 2674 if( rds > 0.0 ) << 2832 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) 2675 { 2833 { 2676 pTheta=std::acos(p.z()/rds); << 2834 safePhi=-(p.x()*sinSPhi-p.y()*cosSPhi); 2677 if (pTheta<0) { pTheta+=pi; } << 2678 if(fSTheta>0.) << 2679 { dTheta1=pTheta-fSTheta;} << 2680 if(eTheta<pi) << 2681 { dTheta2=eTheta-pTheta;} << 2682 << 2683 safeTheta=rds*std::sin(std::min(dTheta << 2684 } 2835 } 2685 else 2836 else 2686 { 2837 { 2687 safeTheta= 0.0; << 2838 safePhi=(p.x()*sinEPhi-p.y()*cosEPhi); 2688 // An improvement will be to return << 2689 } 2839 } 2690 safe = std::min( safe, safeTheta ); << 2840 if (safePhi<safe) { safe=safePhi; } 2691 } 2841 } 2692 2842 2693 if (safe<0.0) { safe=0; } << 2843 // 2694 // An improvement to return negative answ << 2844 // Distance to Theta extent >> 2845 // >> 2846 if (rds) >> 2847 { >> 2848 pTheta=std::acos(p.z()/rds); >> 2849 if (pTheta<0) { pTheta+=pi; } >> 2850 dTheta1=pTheta-fSTheta; >> 2851 dTheta2=eTheta-pTheta; >> 2852 if (dTheta1<dTheta2) { safeTheta=rds*std::sin(dTheta1); } >> 2853 else { safeTheta=rds*std::sin(dTheta2); } >> 2854 if (safe>safeTheta) { safe=safeTheta; } >> 2855 } 2695 2856 >> 2857 if (safe<0) { safe=0; } 2696 return safe; 2858 return safe; 2697 } 2859 } 2698 2860 2699 ///////////////////////////////////////////// 2861 ////////////////////////////////////////////////////////////////////////// 2700 // 2862 // >> 2863 // Create a List containing the transformed vertices >> 2864 // Ordering [0-3] -fDz cross section >> 2865 // [4-7] +fDz cross section such that [0] is below [4], >> 2866 // [1] below [5] etc. >> 2867 // Note: >> 2868 // Caller has deletion resposibility >> 2869 // Potential improvement: For last slice, use actual ending angle >> 2870 // to avoid rounding error problems. >> 2871 >> 2872 G4ThreeVectorList* >> 2873 G4Sphere::CreateRotatedVertices( const G4AffineTransform& pTransform, >> 2874 G4int& noPolygonVertices ) const >> 2875 { >> 2876 G4ThreeVectorList *vertices; >> 2877 G4ThreeVector vertex; >> 2878 G4double meshAnglePhi,meshRMax,crossAnglePhi, >> 2879 coscrossAnglePhi,sincrossAnglePhi,sAnglePhi; >> 2880 G4double meshTheta,crossTheta,startTheta; >> 2881 G4double rMaxX,rMaxY,rMinX,rMinY,rMinZ,rMaxZ; >> 2882 G4int crossSectionPhi,noPhiCrossSections,crossSectionTheta,noThetaSections; >> 2883 >> 2884 // Phi cross sections >> 2885 >> 2886 noPhiCrossSections = G4int(fDPhi/kMeshAngleDefault)+1; >> 2887 >> 2888 if (noPhiCrossSections<kMinMeshSections) >> 2889 { >> 2890 noPhiCrossSections=kMinMeshSections; >> 2891 } >> 2892 else if (noPhiCrossSections>kMaxMeshSections) >> 2893 { >> 2894 noPhiCrossSections=kMaxMeshSections; >> 2895 } >> 2896 meshAnglePhi=fDPhi/(noPhiCrossSections-1); >> 2897 >> 2898 // If complete in phi, set start angle such that mesh will be at fRMax >> 2899 // on the x axis. Will give better extent calculations when not rotated. >> 2900 >> 2901 if (fFullPhiSphere) >> 2902 { >> 2903 sAnglePhi = -meshAnglePhi*0.5; >> 2904 } >> 2905 else >> 2906 { >> 2907 sAnglePhi=fSPhi; >> 2908 } >> 2909 >> 2910 // Theta cross sections >> 2911 >> 2912 noThetaSections = G4int(fDTheta/kMeshAngleDefault)+1; >> 2913 >> 2914 if (noThetaSections<kMinMeshSections) >> 2915 { >> 2916 noThetaSections=kMinMeshSections; >> 2917 } >> 2918 else if (noThetaSections>kMaxMeshSections) >> 2919 { >> 2920 noThetaSections=kMaxMeshSections; >> 2921 } >> 2922 meshTheta=fDTheta/(noThetaSections-1); >> 2923 >> 2924 // If complete in Theta, set start angle such that mesh will be at fRMax >> 2925 // on the z axis. Will give better extent calculations when not rotated. >> 2926 >> 2927 if (fFullThetaSphere) >> 2928 { >> 2929 startTheta = -meshTheta*0.5; >> 2930 } >> 2931 else >> 2932 { >> 2933 startTheta=fSTheta; >> 2934 } >> 2935 >> 2936 meshRMax = (meshAnglePhi >= meshTheta) ? >> 2937 fRmax/std::cos(meshAnglePhi*0.5) : fRmax/std::cos(meshTheta*0.5); >> 2938 G4double* cosCrossTheta = new G4double[noThetaSections]; >> 2939 G4double* sinCrossTheta = new G4double[noThetaSections]; >> 2940 vertices=new G4ThreeVectorList(); >> 2941 if (vertices && cosCrossTheta && sinCrossTheta) >> 2942 { >> 2943 vertices->reserve(noPhiCrossSections*(noThetaSections*2)); >> 2944 for (crossSectionPhi=0; >> 2945 crossSectionPhi<noPhiCrossSections; crossSectionPhi++) >> 2946 { >> 2947 crossAnglePhi=sAnglePhi+crossSectionPhi*meshAnglePhi; >> 2948 coscrossAnglePhi=std::cos(crossAnglePhi); >> 2949 sincrossAnglePhi=std::sin(crossAnglePhi); >> 2950 for (crossSectionTheta=0; >> 2951 crossSectionTheta<noThetaSections;crossSectionTheta++) >> 2952 { >> 2953 // Compute coordinates of cross section at section crossSectionPhi >> 2954 // >> 2955 crossTheta=startTheta+crossSectionTheta*meshTheta; >> 2956 cosCrossTheta[crossSectionTheta]=std::cos(crossTheta); >> 2957 sinCrossTheta[crossSectionTheta]=std::sin(crossTheta); >> 2958 >> 2959 rMinX=fRmin*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi; >> 2960 rMinY=fRmin*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi; >> 2961 rMinZ=fRmin*cosCrossTheta[crossSectionTheta]; >> 2962 >> 2963 vertex=G4ThreeVector(rMinX,rMinY,rMinZ); >> 2964 vertices->push_back(pTransform.TransformPoint(vertex)); >> 2965 >> 2966 } // Theta forward >> 2967 >> 2968 for (crossSectionTheta=noThetaSections-1; >> 2969 crossSectionTheta>=0; crossSectionTheta--) >> 2970 { >> 2971 rMaxX=meshRMax*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi; >> 2972 rMaxY=meshRMax*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi; >> 2973 rMaxZ=meshRMax*cosCrossTheta[crossSectionTheta]; >> 2974 >> 2975 vertex=G4ThreeVector(rMaxX,rMaxY,rMaxZ); >> 2976 vertices->push_back(pTransform.TransformPoint(vertex)); >> 2977 >> 2978 } // Theta back >> 2979 } // Phi >> 2980 noPolygonVertices = noThetaSections*2 ; >> 2981 } >> 2982 else >> 2983 { >> 2984 DumpInfo(); >> 2985 G4Exception("G4Sphere::CreateRotatedVertices()", >> 2986 "GeomSolids0003", FatalException, >> 2987 "Error in allocation of vertices. Out of memory !"); >> 2988 } >> 2989 >> 2990 delete [] cosCrossTheta; >> 2991 delete [] sinCrossTheta; >> 2992 >> 2993 return vertices; >> 2994 } >> 2995 >> 2996 ////////////////////////////////////////////////////////////////////////// >> 2997 // 2701 // G4EntityType 2998 // G4EntityType 2702 2999 2703 G4GeometryType G4Sphere::GetEntityType() cons 3000 G4GeometryType G4Sphere::GetEntityType() const 2704 { 3001 { 2705 return {"G4Sphere"}; << 3002 return G4String("G4Sphere"); 2706 } 3003 } 2707 3004 2708 ///////////////////////////////////////////// 3005 ////////////////////////////////////////////////////////////////////////// 2709 // 3006 // 2710 // Make a clone of the object 3007 // Make a clone of the object 2711 // 3008 // 2712 G4VSolid* G4Sphere::Clone() const 3009 G4VSolid* G4Sphere::Clone() const 2713 { 3010 { 2714 return new G4Sphere(*this); 3011 return new G4Sphere(*this); 2715 } 3012 } 2716 3013 2717 ///////////////////////////////////////////// 3014 ////////////////////////////////////////////////////////////////////////// 2718 // 3015 // 2719 // Stream object contents to an output stream 3016 // Stream object contents to an output stream 2720 3017 2721 std::ostream& G4Sphere::StreamInfo( std::ostr 3018 std::ostream& G4Sphere::StreamInfo( std::ostream& os ) const 2722 { 3019 { 2723 G4long oldprc = os.precision(16); << 3020 G4int oldprc = os.precision(16); 2724 os << "------------------------------------ 3021 os << "-----------------------------------------------------------\n" 2725 << " *** Dump for solid - " << GetNam 3022 << " *** Dump for solid - " << GetName() << " ***\n" 2726 << " ================================ 3023 << " ===================================================\n" 2727 << " Solid type: G4Sphere\n" 3024 << " Solid type: G4Sphere\n" 2728 << " Parameters: \n" 3025 << " Parameters: \n" 2729 << " inner radius: " << fRmin/mm << " 3026 << " inner radius: " << fRmin/mm << " mm \n" 2730 << " outer radius: " << fRmax/mm << " 3027 << " outer radius: " << fRmax/mm << " mm \n" 2731 << " starting phi of segment : " << 3028 << " starting phi of segment : " << fSPhi/degree << " degrees \n" 2732 << " delta phi of segment : " << 3029 << " delta phi of segment : " << fDPhi/degree << " degrees \n" 2733 << " starting theta of segment: " << 3030 << " starting theta of segment: " << fSTheta/degree << " degrees \n" 2734 << " delta theta of segment : " << 3031 << " delta theta of segment : " << fDTheta/degree << " degrees \n" 2735 << "------------------------------------ 3032 << "-----------------------------------------------------------\n"; 2736 os.precision(oldprc); 3033 os.precision(oldprc); 2737 3034 2738 return os; 3035 return os; 2739 } 3036 } 2740 3037 2741 ///////////////////////////////////////////// 3038 //////////////////////////////////////////////////////////////////////////////// 2742 // 3039 // 2743 // Get volume << 3040 // GetPointOnSurface 2744 3041 2745 G4double G4Sphere::GetCubicVolume() << 3042 G4ThreeVector G4Sphere::GetPointOnSurface() const 2746 { 3043 { 2747 if (fCubicVolume == 0.) << 3044 G4double zRand, aOne, aTwo, aThr, aFou, aFiv, chose, phi, sinphi, cosphi; >> 3045 G4double height1, height2, slant1, slant2, costheta, sintheta,theta,rRand; >> 3046 >> 3047 height1 = (fRmax-fRmin)*cosSTheta; >> 3048 height2 = (fRmax-fRmin)*cosETheta; >> 3049 slant1 = std::sqrt(sqr((fRmax - fRmin)*sinSTheta) + height1*height1); >> 3050 slant2 = std::sqrt(sqr((fRmax - fRmin)*sinETheta) + height2*height2); >> 3051 rRand = RandFlat::shoot(fRmin,fRmax); >> 3052 >> 3053 aOne = fRmax*fRmax*fDPhi*(cosSTheta-cosETheta); >> 3054 aTwo = fRmin*fRmin*fDPhi*(cosSTheta-cosETheta); >> 3055 aThr = fDPhi*((fRmax + fRmin)*sinSTheta)*slant1; >> 3056 aFou = fDPhi*((fRmax + fRmin)*sinETheta)*slant2; >> 3057 aFiv = 0.5*fDTheta*(fRmax*fRmax-fRmin*fRmin); >> 3058 >> 3059 phi = RandFlat::shoot(fSPhi, ePhi); >> 3060 cosphi = std::cos(phi); >> 3061 sinphi = std::sin(phi); >> 3062 theta = RandFlat::shoot(fSTheta,eTheta); >> 3063 costheta = std::cos(theta); >> 3064 sintheta = std::sqrt(1.-sqr(costheta)); >> 3065 >> 3066 if(fFullPhiSphere) { aFiv = 0; } >> 3067 if(fSTheta == 0) { aThr=0; } >> 3068 if(eTheta == pi) { aFou = 0; } >> 3069 if(fSTheta == halfpi) { aThr = pi*(fRmax*fRmax-fRmin*fRmin); } >> 3070 if(eTheta == halfpi) { aFou = pi*(fRmax*fRmax-fRmin*fRmin); } >> 3071 >> 3072 chose = RandFlat::shoot(0.,aOne+aTwo+aThr+aFou+2.*aFiv); >> 3073 if( (chose>=0.) && (chose<aOne) ) >> 3074 { >> 3075 return G4ThreeVector(fRmax*sintheta*cosphi, >> 3076 fRmax*sintheta*sinphi, fRmax*costheta); >> 3077 } >> 3078 else if( (chose>=aOne) && (chose<aOne+aTwo) ) >> 3079 { >> 3080 return G4ThreeVector(fRmin*sintheta*cosphi, >> 3081 fRmin*sintheta*sinphi, fRmin*costheta); >> 3082 } >> 3083 else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThr) ) >> 3084 { >> 3085 if (fSTheta != halfpi) >> 3086 { >> 3087 zRand = RandFlat::shoot(fRmin*cosSTheta,fRmax*cosSTheta); >> 3088 return G4ThreeVector(tanSTheta*zRand*cosphi, >> 3089 tanSTheta*zRand*sinphi,zRand); >> 3090 } >> 3091 else >> 3092 { >> 3093 return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.); >> 3094 } >> 3095 } >> 3096 else if( (chose>=aOne+aTwo+aThr) && (chose<aOne+aTwo+aThr+aFou) ) 2748 { 3097 { 2749 G4double RRR = fRmax*fRmax*fRmax; << 3098 if(eTheta != halfpi) 2750 G4double rrr = fRmin*fRmin*fRmin; << 3099 { 2751 fCubicVolume = fDPhi*(cosSTheta - cosEThe << 3100 zRand = RandFlat::shoot(fRmin*cosETheta, fRmax*cosETheta); >> 3101 return G4ThreeVector (tanETheta*zRand*cosphi, >> 3102 tanETheta*zRand*sinphi,zRand); >> 3103 } >> 3104 else >> 3105 { >> 3106 return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.); >> 3107 } 2752 } 3108 } 2753 return fCubicVolume; << 3109 else if( (chose>=aOne+aTwo+aThr+aFou) && (chose<aOne+aTwo+aThr+aFou+aFiv) ) 2754 } << 2755 << 2756 ///////////////////////////////////////////// << 2757 // << 2758 // Get surface area << 2759 << 2760 G4double G4Sphere::GetSurfaceArea() << 2761 { << 2762 if (fSurfaceArea == 0.) << 2763 { 3110 { 2764 G4double RR = fRmax*fRmax; << 3111 return G4ThreeVector(rRand*sintheta*cosSPhi, 2765 G4double rr = fRmin*fRmin; << 3112 rRand*sintheta*sinSPhi,rRand*costheta); 2766 fSurfaceArea = fDPhi*(RR + rr)*(cosSTheta << 3113 } 2767 if (!fFullPhiSphere) fSurfaceArea += f << 3114 else 2768 if (fSTheta > 0) fSurfaceArea += 0 << 3115 { 2769 if (eTheta < CLHEP::pi) fSurfaceArea += 0 << 3116 return G4ThreeVector(rRand*sintheta*cosEPhi, >> 3117 rRand*sintheta*sinEPhi,rRand*costheta); 2770 } 3118 } 2771 return fSurfaceArea; << 2772 } 3119 } 2773 3120 2774 ///////////////////////////////////////////// 3121 //////////////////////////////////////////////////////////////////////////////// 2775 // 3122 // 2776 // Return a point randomly and uniformly sele << 3123 // GetSurfaceArea 2777 3124 2778 G4ThreeVector G4Sphere::GetPointOnSurface() c << 3125 G4double G4Sphere::GetSurfaceArea() 2779 { 3126 { 2780 G4double RR = fRmax*fRmax; << 3127 if(fSurfaceArea != 0.) {;} 2781 G4double rr = fRmin*fRmin; << 3128 else 2782 << 3129 { 2783 // Find surface areas << 3130 G4double Rsq=fRmax*fRmax; 2784 // << 3131 G4double rsq=fRmin*fRmin; 2785 G4double aInner = fDPhi*rr*(cosSTheta - c << 3132 2786 G4double aOuter = fDPhi*RR*(cosSTheta - c << 3133 fSurfaceArea = fDPhi*(rsq+Rsq)*(cosSTheta - cosETheta); 2787 G4double aPhi = (!fFullPhiSphere) ? fDT << 3134 if(!fFullPhiSphere) 2788 G4double aSTheta = (fSTheta > 0) ? 0.5*fDP << 3135 { 2789 G4double aETheta = (eTheta < pi) ? 0.5*fDP << 3136 fSurfaceArea = fSurfaceArea + fDTheta*(Rsq-rsq); 2790 G4double aTotal = aInner + aOuter + aPhi << 3137 } 2791 << 3138 if(fSTheta >0) 2792 // Select surface and generate a point << 3139 { 2793 // << 3140 G4double acos1=std::acos( std::pow(sinSTheta,2) * std::cos(fDPhi) 2794 G4double select = aTotal*G4QuickRand(); << 3141 + std::pow(cosSTheta,2)); 2795 G4double u = G4QuickRand(); << 3142 if(fDPhi>pi) 2796 G4double v = G4QuickRand(); << 3143 { 2797 if (select < aInner + aOuter) // << 3144 fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*(twopi-acos1); 2798 { << 3145 } 2799 G4double r = (select < aInner) ? fRmin << 3146 else 2800 G4double z = cosSTheta + (cosETheta - c << 3147 { 2801 G4double rho = std::sqrt(1. - z*z); << 3148 fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*acos1; 2802 G4double phi = fDPhi*v + fSPhi; << 3149 } 2803 return { r*rho*std::cos(phi), r*rho*std:: << 3150 } 2804 } << 3151 if(eTheta < pi) 2805 else if (select < aInner + aOuter + aPhi) / << 3152 { 2806 { << 3153 G4double acos2=std::acos( std::pow(sinETheta,2) * std::cos(fDPhi) 2807 G4double phi = (select < aInner + aOute << 3154 + std::pow(cosETheta,2)); 2808 G4double r = std::sqrt((RR - rr)*u + << 3155 if(fDPhi>pi) 2809 G4double theta = fDTheta*v + fSTheta; << 3156 { 2810 G4double z = std::cos(theta); << 3157 fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*(twopi-acos2); 2811 G4double rho = std::sin(theta); << 3158 } 2812 return { r*rho*std::cos(phi), r*rho*std:: << 3159 else 2813 } << 3160 { 2814 else // << 3161 fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*acos2; 2815 { << 3162 } 2816 G4double theta = (select < aTotal - aEThe << 3163 } 2817 G4double r = std::sqrt((RR - rr)*u + << 2818 G4double phi = fDPhi*v + fSPhi; << 2819 G4double z = std::cos(theta); << 2820 G4double rho = std::sin(theta); << 2821 return { r*rho*std::cos(phi), r*rho*std:: << 2822 } 3164 } >> 3165 return fSurfaceArea; 2823 } 3166 } 2824 3167 2825 ///////////////////////////////////////////// 3168 ///////////////////////////////////////////////////////////////////////////// 2826 // 3169 // 2827 // Methods for visualisation 3170 // Methods for visualisation 2828 3171 2829 G4VisExtent G4Sphere::GetExtent() const 3172 G4VisExtent G4Sphere::GetExtent() const 2830 { 3173 { 2831 return { -fRmax, fRmax,-fRmax, fRmax,-fRmax << 3174 return G4VisExtent(-fRmax, fRmax,-fRmax, fRmax,-fRmax, fRmax ); 2832 } 3175 } 2833 3176 2834 3177 2835 void G4Sphere::DescribeYourselfTo ( G4VGraphi 3178 void G4Sphere::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 2836 { 3179 { 2837 scene.AddSolid (*this); 3180 scene.AddSolid (*this); 2838 } 3181 } 2839 3182 2840 G4Polyhedron* G4Sphere::CreatePolyhedron () c 3183 G4Polyhedron* G4Sphere::CreatePolyhedron () const 2841 { 3184 { 2842 return new G4PolyhedronSphere (fRmin, fRmax 3185 return new G4PolyhedronSphere (fRmin, fRmax, fSPhi, fDPhi, fSTheta, fDTheta); 2843 } 3186 } 2844 3187 2845 #endif << 3188 G4NURBS* G4Sphere::CreateNURBS () const >> 3189 { >> 3190 return new G4NURBSbox (fRmax, fRmax, fRmax); // Box for now!!! >> 3191 } 2846 3192