Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // >> 26 // >> 27 // $Id: G4Sphere.cc,v 1.57.2.2 2008/09/02 12:36:53 gcosmo Exp $ >> 28 // GEANT4 tag $Name: geant4-09-01-patch-03 $ >> 29 // >> 30 // class G4Sphere >> 31 // 26 // Implementation for G4Sphere class 32 // Implementation for G4Sphere class 27 // 33 // 28 // 28.03.94 P.Kent: old C++ code converted to << 34 // History: 29 // 17.09.96 V.Grichine: final modifications to << 35 // 30 // 30.10.03 J.Apostolakis: new algorithm in In << 36 // 12.06.08 V.Grichine: fix for theta intersections in DistanceToOut(p,v,...) >> 37 // 22.07.05 O.Link : Added check for intersection with double cone 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor 38 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal 32 // 22.07.05 O.Link: Added check for intersecti << 39 // 16.09.04 V.Grichine: bug fixed in SurfaceNormal(p), theta normals 33 // 26.03.09 G.Cosmo: optimisations and uniform << 40 // 16.07.04 V.Grichine: bug fixed in DistanceToOut(p,v), Rmin go outside 34 // 26.10.16 E.Tcherniaev: re-implemented Calcu << 41 // 02.06.04 V.Grichine: bug fixed in DistanceToIn(p,v), on Rmax,Rmin go inside 35 // G4BoundingEnvelope, << 42 // 30.10.03 J.Apostolakis: new algorithm in Inside for SPhi-sections >> 43 // 29.10.03 J.Apostolakis: fix in Inside for SPhi-0.5*kAngTol < phi < SPhi, SPhi<0 >> 44 // 19.06.02 V.Grichine: bug fixed in Inside(p), && -> && fDTheta - kAngTolerance >> 45 // 30.01.02 V.Grichine: bug fixed in Inside(p), && -> || at l.451 >> 46 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...) >> 47 // 18.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...) >> 48 // 25.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), phi intersections >> 49 // 12.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), theta intersections >> 50 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...) >> 51 // 17.09.96 V.Grichine: final modifications to commit >> 52 // 28.03.94 P.Kent: old C++ code converted to tolerant geometry 36 // ------------------------------------------- 53 // -------------------------------------------------------------------- 37 54 38 #include "G4Sphere.hh" << 55 #include <assert.h> 39 56 40 #if !defined(G4GEOM_USE_USPHERE) << 57 #include "G4Sphere.hh" 41 58 42 #include "G4GeomTools.hh" << 43 #include "G4VoxelLimits.hh" 59 #include "G4VoxelLimits.hh" 44 #include "G4AffineTransform.hh" 60 #include "G4AffineTransform.hh" 45 #include "G4GeometryTolerance.hh" 61 #include "G4GeometryTolerance.hh" 46 #include "G4BoundingEnvelope.hh" << 47 62 48 #include "G4VPVParameterisation.hh" 63 #include "G4VPVParameterisation.hh" 49 64 50 #include "G4QuickRand.hh" << 65 #include "Randomize.hh" 51 66 52 #include "meshdefs.hh" 67 #include "meshdefs.hh" 53 68 54 #include "G4VGraphicsScene.hh" 69 #include "G4VGraphicsScene.hh" 55 #include "G4VisExtent.hh" 70 #include "G4VisExtent.hh" >> 71 #include "G4Polyhedron.hh" >> 72 #include "G4NURBS.hh" >> 73 #include "G4NURBSbox.hh" 56 74 57 using namespace CLHEP; 75 using namespace CLHEP; 58 76 59 // Private enum: Not for external use - used b 77 // Private enum: Not for external use - used by distanceToOut 60 78 61 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTh 79 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTheta,kETheta}; 62 80 63 // used by normal 81 // used by normal 64 82 65 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSThe 83 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSTheta,kNETheta}; 66 84 67 ////////////////////////////////////////////// 85 //////////////////////////////////////////////////////////////////////// 68 // 86 // 69 // constructor - check parameters, convert ang 87 // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 70 // - note if pDPhi>2PI then reset 88 // - note if pDPhi>2PI then reset to 2PI 71 89 72 G4Sphere::G4Sphere( const G4String& pName, 90 G4Sphere::G4Sphere( const G4String& pName, 73 G4double pRmin, G4do 91 G4double pRmin, G4double pRmax, 74 G4double pSPhi, G4do 92 G4double pSPhi, G4double pDPhi, 75 G4double pSTheta, G4 93 G4double pSTheta, G4double pDTheta ) 76 : G4CSGSolid(pName), fSPhi(0.0), fFullPhiSph << 94 : G4CSGSolid(pName) 77 { 95 { 78 kAngTolerance = G4GeometryTolerance::GetInst << 96 fEpsilon = 1.0e-14; 79 kRadTolerance = G4GeometryTolerance::GetInst << 80 97 81 halfCarTolerance = 0.5*kCarTolerance; << 98 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 82 halfAngTolerance = 0.5*kAngTolerance; << 99 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 83 100 84 // Check radii and set radial tolerances << 101 // Check radii 85 102 86 if ( (pRmin >= pRmax) || (pRmax < 1.1*kRadTo << 103 if (pRmin<pRmax&&pRmin>=0) >> 104 { >> 105 fRmin=pRmin; fRmax=pRmax; >> 106 } >> 107 else 87 { 108 { 88 std::ostringstream message; << 109 G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl 89 message << "Invalid radii for Solid: " << << 110 << " Invalide values for radii ! - " 90 << " pRmin = " << pRmin << << 111 << " pRmin = " << pRmin << ", pRmax = " << pRmax << G4endl; 91 G4Exception("G4Sphere::G4Sphere()", "GeomS << 112 G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException, 92 FatalException, message); << 113 "Invalid radii"); 93 } << 114 } 94 fRmin=pRmin; fRmax=pRmax; << 95 fRminTolerance = (fRmin) != 0.0 ? std::max( << 96 fRmaxTolerance = std::max( kRadTolerance, fE << 97 115 98 // Check angles 116 // Check angles 99 117 100 CheckPhiAngles(pSPhi, pDPhi); << 118 if (pDPhi>=twopi) 101 CheckThetaAngles(pSTheta, pDTheta); << 119 { >> 120 fDPhi=twopi; >> 121 } >> 122 else if (pDPhi>0) >> 123 { >> 124 fDPhi=pDPhi; >> 125 } >> 126 else >> 127 { >> 128 G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl >> 129 << " Negative Z delta-Phi ! - " >> 130 << pDPhi << G4endl; >> 131 G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException, >> 132 "Invalid DPhi."); >> 133 } >> 134 >> 135 // Convert fSPhi to 0-2PI >> 136 >> 137 if (pSPhi<0) >> 138 { >> 139 fSPhi=twopi-std::fmod(std::fabs(pSPhi),twopi); >> 140 } >> 141 else >> 142 { >> 143 fSPhi=std::fmod(pSPhi,twopi); >> 144 } >> 145 >> 146 // Sphere is placed such that fSPhi+fDPhi>twopi ! >> 147 // fSPhi could be < 0 !!? >> 148 // >> 149 if (fSPhi+fDPhi>twopi) fSPhi-=twopi; >> 150 >> 151 // Check theta angles >> 152 >> 153 if (pSTheta<0 || pSTheta>pi) >> 154 { >> 155 G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl; >> 156 G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException, >> 157 "stheta outside 0-PI range."); >> 158 } >> 159 else >> 160 { >> 161 fSTheta=pSTheta; >> 162 } >> 163 >> 164 if (pDTheta+pSTheta>=pi) >> 165 { >> 166 fDTheta=pi-pSTheta; >> 167 } >> 168 else if (pDTheta>0) >> 169 { >> 170 fDTheta=pDTheta; >> 171 } >> 172 else >> 173 { >> 174 G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl >> 175 << " Negative delta-Theta ! - " >> 176 << pDTheta << G4endl; >> 177 G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException, >> 178 "Invalid pDTheta."); >> 179 } 102 } 180 } 103 181 104 ////////////////////////////////////////////// 182 /////////////////////////////////////////////////////////////////////// 105 // 183 // 106 // Fake default constructor - sets only member 184 // Fake default constructor - sets only member data and allocates memory 107 // for usage restri 185 // for usage restricted to object persistency. 108 // 186 // 109 G4Sphere::G4Sphere( __void__& a ) 187 G4Sphere::G4Sphere( __void__& a ) 110 : G4CSGSolid(a) 188 : G4CSGSolid(a) 111 { 189 { 112 } 190 } 113 191 114 ////////////////////////////////////////////// 192 ///////////////////////////////////////////////////////////////////// 115 // 193 // 116 // Destructor 194 // Destructor 117 195 118 G4Sphere::~G4Sphere() = default; << 196 G4Sphere::~G4Sphere() 119 << 120 ////////////////////////////////////////////// << 121 // << 122 // Copy constructor << 123 << 124 G4Sphere::G4Sphere(const G4Sphere&) = default; << 125 << 126 ////////////////////////////////////////////// << 127 // << 128 // Assignment operator << 129 << 130 G4Sphere& G4Sphere::operator = (const G4Sphere << 131 { 197 { 132 // Check assignment to self << 133 // << 134 if (this == &rhs) { return *this; } << 135 << 136 // Copy base class data << 137 // << 138 G4CSGSolid::operator=(rhs); << 139 << 140 // Copy data << 141 // << 142 fRminTolerance = rhs.fRminTolerance; fRmaxT << 143 kAngTolerance = rhs.kAngTolerance; kRadTole << 144 fEpsilon = rhs.fEpsilon; fRmin = rhs.fRmin; << 145 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; fSThe << 146 fDTheta = rhs.fDTheta; sinCPhi = rhs.sinCPh << 147 cosHDPhi = rhs.cosHDPhi; << 148 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r << 149 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh << 150 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh << 151 hDPhi = rhs.hDPhi; cPhi = rhs.cPhi; ePhi = << 152 sinSTheta = rhs.sinSTheta; cosSTheta = rhs. << 153 sinETheta = rhs.sinETheta; cosETheta = rhs. << 154 tanSTheta = rhs.tanSTheta; tanSTheta2 = rhs << 155 tanETheta = rhs.tanETheta; tanETheta2 = rhs << 156 eTheta = rhs.eTheta; fFullPhiSphere = rhs.f << 157 fFullThetaSphere = rhs.fFullThetaSphere; fF << 158 halfCarTolerance = rhs.halfCarTolerance; << 159 halfAngTolerance = rhs.halfAngTolerance; << 160 << 161 return *this; << 162 } 198 } 163 199 164 ////////////////////////////////////////////// 200 ////////////////////////////////////////////////////////////////////////// 165 // 201 // 166 // Dispatch to parameterisation for replicatio 202 // Dispatch to parameterisation for replication mechanism dimension 167 // computation & modification. 203 // computation & modification. 168 204 169 void G4Sphere::ComputeDimensions( G4VPVP 205 void G4Sphere::ComputeDimensions( G4VPVParameterisation* p, 170 const G4int 206 const G4int n, 171 const G4VPhy 207 const G4VPhysicalVolume* pRep) 172 { 208 { 173 p->ComputeDimensions(*this,n,pRep); 209 p->ComputeDimensions(*this,n,pRep); 174 } 210 } 175 211 176 ////////////////////////////////////////////// << 177 // << 178 // Get bounding box << 179 << 180 void G4Sphere::BoundingLimits(G4ThreeVector& p << 181 { << 182 G4double rmin = GetInnerRadius(); << 183 G4double rmax = GetOuterRadius(); << 184 << 185 // Find bounding box << 186 // << 187 if (GetDeltaThetaAngle() >= pi && GetDeltaPh << 188 { << 189 pMin.set(-rmax,-rmax,-rmax); << 190 pMax.set( rmax, rmax, rmax); << 191 } << 192 else << 193 { << 194 G4double sinStart = GetSinStartTheta(); << 195 G4double cosStart = GetCosStartTheta(); << 196 G4double sinEnd = GetSinEndTheta(); << 197 G4double cosEnd = GetCosEndTheta(); << 198 << 199 G4double stheta = GetStartThetaAngle(); << 200 G4double etheta = stheta + GetDeltaThetaAn << 201 G4double rhomin = rmin*std::min(sinStart,s << 202 G4double rhomax = rmax; << 203 if (stheta > halfpi) rhomax = rmax*sinStar << 204 if (etheta < halfpi) rhomax = rmax*sinEnd; << 205 << 206 G4TwoVector xymin,xymax; << 207 G4GeomTools::DiskExtent(rhomin,rhomax, << 208 GetSinStartPhi(),G << 209 GetSinEndPhi(),Get << 210 xymin,xymax); << 211 << 212 G4double zmin = std::min(rmin*cosEnd,rmax* << 213 G4double zmax = std::max(rmin*cosStart,rma << 214 pMin.set(xymin.x(),xymin.y(),zmin); << 215 pMax.set(xymax.x(),xymax.y(),zmax); << 216 } << 217 << 218 // Check correctness of the bounding box << 219 // << 220 if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 221 { << 222 std::ostringstream message; << 223 message << "Bad bounding box (min >= max) << 224 << GetName() << " !" << 225 << "\npMin = " << pMin << 226 << "\npMax = " << pMax; << 227 G4Exception("G4Sphere::BoundingLimits()", << 228 JustWarning, message); << 229 DumpInfo(); << 230 } << 231 } << 232 << 233 ////////////////////////////////////////////// 212 //////////////////////////////////////////////////////////////////////////// 234 // 213 // 235 // Calculate extent under transform and specif 214 // Calculate extent under transform and specified limit 236 215 237 G4bool G4Sphere::CalculateExtent( const EAxis 216 G4bool G4Sphere::CalculateExtent( const EAxis pAxis, 238 const G4Voxe 217 const G4VoxelLimits& pVoxelLimit, 239 const G4Affi 218 const G4AffineTransform& pTransform, 240 G4doub 219 G4double& pMin, G4double& pMax ) const 241 { 220 { 242 G4ThreeVector bmin, bmax; << 221 if ( fDPhi==twopi && fDTheta==pi) // !pTransform.IsRotated() && >> 222 { >> 223 // Special case handling for solid spheres-shells >> 224 // (rotation doesn't influence). >> 225 // Compute x/y/z mins and maxs for bounding box respecting limits, >> 226 // with early returns if outside limits. Then switch() on pAxis, >> 227 // and compute exact x and y limit for x/y case >> 228 >> 229 G4double xoffset,xMin,xMax; >> 230 G4double yoffset,yMin,yMax; >> 231 G4double zoffset,zMin,zMax; >> 232 >> 233 G4double diff1,diff2,maxDiff,newMin,newMax; >> 234 G4double xoff1,xoff2,yoff1,yoff2; >> 235 >> 236 xoffset=pTransform.NetTranslation().x(); >> 237 xMin=xoffset-fRmax; >> 238 xMax=xoffset+fRmax; >> 239 if (pVoxelLimit.IsXLimited()) >> 240 { >> 241 if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance) >> 242 || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) ) >> 243 { >> 244 return false; >> 245 } >> 246 else >> 247 { >> 248 if (xMin<pVoxelLimit.GetMinXExtent()) >> 249 { >> 250 xMin=pVoxelLimit.GetMinXExtent(); >> 251 } >> 252 if (xMax>pVoxelLimit.GetMaxXExtent()) >> 253 { >> 254 xMax=pVoxelLimit.GetMaxXExtent(); >> 255 } >> 256 } >> 257 } 243 258 244 // Get bounding box << 259 yoffset=pTransform.NetTranslation().y(); 245 BoundingLimits(bmin,bmax); << 260 yMin=yoffset-fRmax; >> 261 yMax=yoffset+fRmax; >> 262 if (pVoxelLimit.IsYLimited()) >> 263 { >> 264 if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance) >> 265 || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) ) >> 266 { >> 267 return false; >> 268 } >> 269 else >> 270 { >> 271 if (yMin<pVoxelLimit.GetMinYExtent()) >> 272 { >> 273 yMin=pVoxelLimit.GetMinYExtent(); >> 274 } >> 275 if (yMax>pVoxelLimit.GetMaxYExtent()) >> 276 { >> 277 yMax=pVoxelLimit.GetMaxYExtent(); >> 278 } >> 279 } >> 280 } 246 281 247 // Find extent << 282 zoffset=pTransform.NetTranslation().z(); 248 G4BoundingEnvelope bbox(bmin,bmax); << 283 zMin=zoffset-fRmax; 249 return bbox.CalculateExtent(pAxis,pVoxelLimi << 284 zMax=zoffset+fRmax; 250 } << 285 if (pVoxelLimit.IsZLimited()) >> 286 { >> 287 if ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance) >> 288 || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) ) >> 289 { >> 290 return false; >> 291 } >> 292 else >> 293 { >> 294 if (zMin<pVoxelLimit.GetMinZExtent()) >> 295 { >> 296 zMin=pVoxelLimit.GetMinZExtent(); >> 297 } >> 298 if (zMax>pVoxelLimit.GetMaxZExtent()) >> 299 { >> 300 zMax=pVoxelLimit.GetMaxZExtent(); >> 301 } >> 302 } >> 303 } 251 304 252 ////////////////////////////////////////////// << 305 // Known to cut sphere 253 // << 254 // Return whether point inside/outside/on surf << 255 // Split into radius, phi, theta checks << 256 // Each check modifies 'in', or returns as app << 257 306 258 EInside G4Sphere::Inside( const G4ThreeVector& << 307 switch (pAxis) 259 { << 308 { 260 G4double rho,rho2,rad2,tolRMin,tolRMax; << 309 case kXAxis: 261 G4double pPhi,pTheta; << 310 yoff1=yoffset-yMin; 262 EInside in = kOutside; << 311 yoff2=yMax-yoffset; >> 312 if (yoff1>=0&&yoff2>=0) >> 313 { >> 314 // Y limits cross max/min x => no change >> 315 // >> 316 pMin=xMin; >> 317 pMax=xMax; >> 318 } >> 319 else >> 320 { >> 321 // Y limits don't cross max/min x => compute max delta x, >> 322 // hence new mins/maxs >> 323 // >> 324 diff1=std::sqrt(fRmax*fRmax-yoff1*yoff1); >> 325 diff2=std::sqrt(fRmax*fRmax-yoff2*yoff2); >> 326 maxDiff=(diff1>diff2) ? diff1:diff2; >> 327 newMin=xoffset-maxDiff; >> 328 newMax=xoffset+maxDiff; >> 329 pMin=(newMin<xMin) ? xMin : newMin; >> 330 pMax=(newMax>xMax) ? xMax : newMax; >> 331 } >> 332 break; >> 333 case kYAxis: >> 334 xoff1=xoffset-xMin; >> 335 xoff2=xMax-xoffset; >> 336 if (xoff1>=0&&xoff2>=0) >> 337 { >> 338 // X limits cross max/min y => no change >> 339 // >> 340 pMin=yMin; >> 341 pMax=yMax; >> 342 } >> 343 else >> 344 { >> 345 // X limits don't cross max/min y => compute max delta y, >> 346 // hence new mins/maxs >> 347 // >> 348 diff1=std::sqrt(fRmax*fRmax-xoff1*xoff1); >> 349 diff2=std::sqrt(fRmax*fRmax-xoff2*xoff2); >> 350 maxDiff=(diff1>diff2) ? diff1:diff2; >> 351 newMin=yoffset-maxDiff; >> 352 newMax=yoffset+maxDiff; >> 353 pMin=(newMin<yMin) ? yMin : newMin; >> 354 pMax=(newMax>yMax) ? yMax : newMax; >> 355 } >> 356 break; >> 357 case kZAxis: >> 358 pMin=zMin; >> 359 pMax=zMax; >> 360 break; >> 361 default: >> 362 break; >> 363 } >> 364 pMin-=kCarTolerance; >> 365 pMax+=kCarTolerance; >> 366 >> 367 return true; >> 368 } >> 369 else // Transformed cutted sphere >> 370 { >> 371 G4int i,j,noEntries,noBetweenSections; >> 372 G4bool existsAfterClip=false; 263 373 264 const G4double halfRmaxTolerance = fRmaxTole << 374 // Calculate rotated vertex coordinates 265 const G4double halfRminTolerance = fRminTole << 266 const G4double Rmax_minus = fRmax - halfRmax << 267 const G4double Rmin_plus = (fRmin > 0) ? fR << 268 375 269 rho2 = p.x()*p.x() + p.y()*p.y() ; << 376 G4ThreeVectorList* vertices; 270 rad2 = rho2 + p.z()*p.z() ; << 377 G4int noPolygonVertices ; >> 378 vertices=CreateRotatedVertices(pTransform,noPolygonVertices); 271 379 272 // Check radial surfaces. Sets 'in' << 380 pMin=+kInfinity; >> 381 pMax=-kInfinity; 273 382 274 tolRMin = Rmin_plus; << 383 noEntries=vertices->size(); // noPolygonVertices*noPhiCrossSections 275 tolRMax = Rmax_minus; << 384 noBetweenSections=noEntries-noPolygonVertices; 276 385 277 if(rad2 == 0.0) << 386 G4ThreeVectorList ThetaPolygon ; 278 { << 387 for (i=0;i<noEntries;i+=noPolygonVertices) 279 if (fRmin > 0.0) << 280 { 388 { 281 return in = kOutside; << 389 for(j=0;j<(noPolygonVertices/2)-1;j++) >> 390 { >> 391 ThetaPolygon.push_back((*vertices)[i+j]) ; >> 392 ThetaPolygon.push_back((*vertices)[i+j+1]) ; >> 393 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-2-j]) ; >> 394 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1-j]) ; >> 395 CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax); >> 396 ThetaPolygon.clear() ; >> 397 } 282 } 398 } 283 if ( (!fFullPhiSphere) || (!fFullThetaSphe << 399 for (i=0;i<noBetweenSections;i+=noPolygonVertices) 284 { 400 { 285 return in = kSurface; << 401 for(j=0;j<noPolygonVertices-1;j++) >> 402 { >> 403 ThetaPolygon.push_back((*vertices)[i+j]) ; >> 404 ThetaPolygon.push_back((*vertices)[i+j+1]) ; >> 405 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j+1]) ; >> 406 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j]) ; >> 407 CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax); >> 408 ThetaPolygon.clear() ; >> 409 } >> 410 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1]) ; >> 411 ThetaPolygon.push_back((*vertices)[i]) ; >> 412 ThetaPolygon.push_back((*vertices)[i+noPolygonVertices]) ; >> 413 ThetaPolygon.push_back((*vertices)[i+2*noPolygonVertices-1]) ; >> 414 CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax); >> 415 ThetaPolygon.clear() ; >> 416 } >> 417 >> 418 if (pMin!=kInfinity || pMax!=-kInfinity) >> 419 { >> 420 existsAfterClip=true; >> 421 >> 422 // Add 2*tolerance to avoid precision troubles >> 423 // >> 424 pMin-=kCarTolerance; >> 425 pMax+=kCarTolerance; 286 } 426 } 287 else 427 else 288 { 428 { 289 return in = kInside; << 429 // Check for case where completely enveloping clipping volume >> 430 // If point inside then we are confident that the solid completely >> 431 // envelopes the clipping volume. Hence set min/max extents according >> 432 // to clipping volume extents along the specified axis. >> 433 >> 434 G4ThreeVector clipCentre( >> 435 (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5, >> 436 (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5, >> 437 (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5); >> 438 >> 439 if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside) >> 440 { >> 441 existsAfterClip=true; >> 442 pMin=pVoxelLimit.GetMinExtent(pAxis); >> 443 pMax=pVoxelLimit.GetMaxExtent(pAxis); >> 444 } 290 } 445 } >> 446 delete vertices; >> 447 return existsAfterClip; 291 } 448 } >> 449 } 292 450 293 if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad << 451 /////////////////////////////////////////////////////////////////////////// 294 { << 452 // 295 in = kInside; << 453 // Return whether point inside/outside/on surface 296 } << 454 // Split into radius, phi, theta checks >> 455 // Each check modifies `in', or returns as approprate >> 456 >> 457 EInside G4Sphere::Inside( const G4ThreeVector& p ) const >> 458 { >> 459 G4double rho,rho2,rad2,tolRMin,tolRMax; >> 460 G4double pPhi,pTheta; >> 461 EInside in=kOutside; >> 462 >> 463 rho2 = p.x()*p.x() + p.y()*p.y() ; >> 464 rad2 = rho2 + p.z()*p.z() ; >> 465 >> 466 // if(rad2 >= 1.369e+19) DBG(); >> 467 // G4double rad = std::sqrt(rad2); >> 468 // Check radial surfaces >> 469 // sets `in' >> 470 >> 471 if ( fRmin ) tolRMin = fRmin + kRadTolerance*0.5; >> 472 else tolRMin = 0 ; >> 473 >> 474 tolRMax = fRmax - kRadTolerance*0.5 ; >> 475 // const G4double fractionTolerance = 1.0e-12; >> 476 const G4double flexRadMaxTolerance = // kRadTolerance; >> 477 std::max(kRadTolerance, fEpsilon * fRmax); >> 478 >> 479 const G4double Rmax_minus = fRmax - flexRadMaxTolerance*0.5; >> 480 const G4double flexRadMinTolerance = std::max(kRadTolerance, >> 481 fEpsilon * fRmin); >> 482 const G4double Rmin_plus = (fRmin > 0) ? fRmin + flexRadMinTolerance*0.5 : 0 ; >> 483 >> 484 if(rad2 <= Rmax_minus*Rmax_minus && rad2 >= Rmin_plus*Rmin_plus) in = kInside ; >> 485 >> 486 // if ( rad2 <= tolRMax*tolRMax && rad2 >= tolRMin*tolRMin ) in = kInside ; >> 487 // if ( rad <= tolRMax && rad >= tolRMin ) in = kInside ; 297 else 488 else 298 { 489 { 299 tolRMax = fRmax + halfRmaxTolerance; << 490 tolRMax = fRmax + kRadTolerance*0.5 ; 300 tolRMin = std::max(fRmin-halfRminTolerance << 491 tolRMin = fRmin - kRadTolerance*0.5 ; 301 if ( (rad2 <= tolRMax*tolRMax) && (rad2 >= << 492 302 { << 493 if ( tolRMin < 0.0 ) tolRMin = 0.0 ; 303 in = kSurface; << 494 304 } << 495 if ( rad2 <= tolRMax*tolRMax && rad2 >= tolRMin*tolRMin ) in = kSurface ; 305 else << 496 // if ( rad <= tolRMax && rad >= tolRMin ) in = kSurface ; 306 { << 497 else return in = kOutside ; 307 return in = kOutside; << 308 } << 309 } 498 } 310 499 311 // Phi boundaries : Do not check if it has 500 // Phi boundaries : Do not check if it has no phi boundary! >> 501 // (in != kOutside). It is new J.Apostolakis proposal of 30.10.03 312 502 313 if ( !fFullPhiSphere && (rho2 != 0.0) ) // << 503 if ( ( fDPhi < twopi - kAngTolerance ) && >> 504 ( (p.x() != 0.0 ) || (p.y() != 0.0) ) ) 314 { 505 { 315 pPhi = std::atan2(p.y(),p.x()) ; 506 pPhi = std::atan2(p.y(),p.x()) ; 316 507 317 if ( pPhi < fSPhi - halfAngTolerance << 508 if ( pPhi < fSPhi - kAngTolerance*0.5 ) pPhi += twopi ; 318 else if ( pPhi > ePhi + halfAngTolerance ) << 509 else if ( pPhi > fSPhi + fDPhi + kAngTolerance*0.5 ) pPhi -= twopi; 319 << 510 320 if ( (pPhi < fSPhi - halfAngTolerance) << 511 if ((pPhi < fSPhi - kAngTolerance*0.5) || 321 || (pPhi > ePhi + halfAngTolerance) ) << 512 (pPhi > fSPhi + fDPhi + kAngTolerance*0.5) ) return in = kOutside ; 322 << 513 323 else if (in == kInside) // else it's kSur 514 else if (in == kInside) // else it's kSurface anyway already 324 { 515 { 325 if ( (pPhi < fSPhi + halfAngTolerance) << 516 if ( (pPhi < fSPhi + kAngTolerance*0.5) || 326 || (pPhi > ePhi - halfAngTolerance) ) << 517 (pPhi > fSPhi + fDPhi - kAngTolerance*0.5) ) in = kSurface ; 327 } 518 } 328 } 519 } 329 520 330 // Theta bondaries 521 // Theta bondaries 331 << 522 // (in!=kOutside) 332 if ( ((rho2 != 0.0) || (p.z() != 0.0)) && (! << 523 >> 524 if ( (rho2 || p.z()) && fDTheta < pi - kAngTolerance*0.5 ) 333 { 525 { 334 rho = std::sqrt(rho2); 526 rho = std::sqrt(rho2); 335 pTheta = std::atan2(rho,p.z()); 527 pTheta = std::atan2(rho,p.z()); 336 528 337 if ( in == kInside ) 529 if ( in == kInside ) 338 { 530 { 339 if ( ((fSTheta > 0.0) && (pTheta < fSThe << 531 if ( (pTheta < fSTheta + kAngTolerance*0.5) 340 || ((eTheta < pi) && (pTheta > eTheta << 532 || (pTheta > fSTheta + fDTheta - kAngTolerance*0.5) ) 341 { 533 { 342 if ( (( (fSTheta>0.0)&&(pTheta>=fSThet << 534 if ( (pTheta >= fSTheta - kAngTolerance*0.5) 343 || (fSTheta == 0.0) ) << 535 && (pTheta <= fSTheta + fDTheta + kAngTolerance*0.5) ) 344 && ((eTheta==pi)||(pTheta <= eTheta << 345 { 536 { 346 in = kSurface; << 537 in = kSurface ; 347 } 538 } 348 else 539 else 349 { 540 { 350 in = kOutside; << 541 in = kOutside ; 351 } 542 } 352 } 543 } 353 } 544 } 354 else 545 else 355 { 546 { 356 if ( ((fSTheta > 0.0)&&(pTheta < fSThe << 547 if ( (pTheta < fSTheta - kAngTolerance*0.5) 357 ||((eTheta < pi )&&(pTheta > eThet << 548 || (pTheta > fSTheta + fDTheta + kAngTolerance*0.5) ) 358 { 549 { 359 in = kOutside; << 550 in = kOutside ; 360 } 551 } 361 } 552 } 362 } 553 } 363 return in; 554 return in; 364 } 555 } 365 556 366 ////////////////////////////////////////////// 557 ///////////////////////////////////////////////////////////////////// 367 // 558 // 368 // Return unit normal of surface closest to p 559 // Return unit normal of surface closest to p 369 // - note if point on z axis, ignore phi divid 560 // - note if point on z axis, ignore phi divided sides 370 // - unsafe if point close to z axis a rmin=0 561 // - unsafe if point close to z axis a rmin=0 - no explicit checks 371 562 372 G4ThreeVector G4Sphere::SurfaceNormal( const G 563 G4ThreeVector G4Sphere::SurfaceNormal( const G4ThreeVector& p ) const 373 { 564 { 374 G4int noSurfaces = 0; << 565 G4int noSurfaces = 0; 375 G4double rho, rho2, radius, pTheta, pPhi=0.; << 566 G4double rho, rho2, rad, pTheta, pPhi=0.; 376 G4double distRMin = kInfinity; 567 G4double distRMin = kInfinity; 377 G4double distSPhi = kInfinity, distEPhi = kI 568 G4double distSPhi = kInfinity, distEPhi = kInfinity; 378 G4double distSTheta = kInfinity, distETheta 569 G4double distSTheta = kInfinity, distETheta = kInfinity; >> 570 G4double delta = 0.5*kCarTolerance, dAngle = 0.5*kAngTolerance; 379 G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0., 571 G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0.,0.,1.); 380 G4ThreeVector norm, sumnorm(0.,0.,0.); 572 G4ThreeVector norm, sumnorm(0.,0.,0.); 381 573 382 rho2 = p.x()*p.x()+p.y()*p.y(); 574 rho2 = p.x()*p.x()+p.y()*p.y(); 383 radius = std::sqrt(rho2+p.z()*p.z()); << 575 rad = std::sqrt(rho2+p.z()*p.z()); 384 rho = std::sqrt(rho2); 576 rho = std::sqrt(rho2); 385 577 386 G4double distRMax = std::fabs(radius-fRma << 578 G4double distRMax = std::fabs(rad-fRmax); 387 if (fRmin != 0.0) distRMin = std::fabs(radi << 579 if (fRmin) distRMin = std::fabs(rad-fRmin); 388 << 580 389 if ( (rho != 0.0) && !fFullSphere ) << 581 if ( rho && (fDPhi < twopi || fDTheta < pi) ) 390 { 582 { 391 pPhi = std::atan2(p.y(),p.x()); 583 pPhi = std::atan2(p.y(),p.x()); 392 584 393 if (pPhi < fSPhi-halfAngTolerance) { p << 585 if(pPhi < fSPhi-dAngle) pPhi += twopi; 394 else if (pPhi > ePhi+halfAngTolerance) { p << 586 else if(pPhi > fSPhi+fDPhi+dAngle) pPhi -= twopi; 395 } 587 } 396 if ( !fFullPhiSphere ) << 588 if ( fDPhi < twopi ) // && rho ) // old limitation against (0,0,z) 397 { 589 { 398 if ( rho != 0.0 ) << 590 if ( rho ) 399 { 591 { 400 distSPhi = std::fabs( pPhi-fSPhi ); << 592 distSPhi = std::fabs( pPhi - fSPhi ); 401 distEPhi = std::fabs( pPhi-ePhi ); << 593 distEPhi = std::fabs(pPhi-fSPhi-fDPhi); 402 } 594 } 403 else if( fRmin == 0.0 ) << 595 else if( !fRmin ) 404 { 596 { 405 distSPhi = 0.; << 597 distSPhi = 0.; 406 distEPhi = 0.; << 598 distEPhi = 0.; 407 } 599 } 408 nPs = G4ThreeVector(sinSPhi,-cosSPhi,0); << 600 nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 409 nPe = G4ThreeVector(-sinEPhi,cosEPhi,0); << 601 nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 410 } << 602 } 411 if ( !fFullThetaSphere ) << 603 if ( fDTheta < pi ) // && rad ) // old limitation against (0,0,0) 412 { 604 { 413 if ( rho != 0.0 ) << 605 if ( rho ) 414 { 606 { 415 pTheta = std::atan2(rho,p.z()); 607 pTheta = std::atan2(rho,p.z()); 416 distSTheta = std::fabs(pTheta-fSTheta); << 608 distSTheta = std::fabs(pTheta-fSTheta); 417 distETheta = std::fabs(pTheta-eTheta); << 609 distETheta = std::fabs(pTheta-fSTheta-fDTheta); 418 << 610 419 nTs = G4ThreeVector(-cosSTheta*p.x()/rho << 611 nTs = G4ThreeVector(-std::cos(fSTheta)*p.x()/rho, // *std::cos(pPhi), 420 -cosSTheta*p.y()/rho << 612 -std::cos(fSTheta)*p.y()/rho, // *std::sin(pPhi), 421 sinSTheta << 613 std::sin(fSTheta) ); 422 << 614 423 nTe = G4ThreeVector( cosETheta*p.x()/rho << 615 nTe = G4ThreeVector( std::cos(fSTheta+fDTheta)*p.x()/rho, // *std::cos(pPhi), 424 cosETheta*p.y()/rho << 616 std::cos(fSTheta+fDTheta)*p.y()/rho, // *std::sin(pPhi), 425 -sinETheta << 617 -std::sin(fSTheta+fDTheta) ); 426 } 618 } 427 else if( fRmin == 0.0 ) << 619 else if( !fRmin ) 428 { 620 { 429 if ( fSTheta != 0.0 ) << 621 if ( fSTheta ) 430 { << 622 { 431 distSTheta = 0.; 623 distSTheta = 0.; 432 nTs = G4ThreeVector(0.,0.,-1.); << 624 nTs = G4ThreeVector(0.,0.,-1.); 433 } 625 } 434 if ( eTheta < pi ) << 626 if ( fSTheta + fDTheta < pi ) // distETheta = 0.; 435 { << 627 { 436 distETheta = 0.; 628 distETheta = 0.; 437 nTe = G4ThreeVector(0.,0.,1.); << 629 nTe = G4ThreeVector(0.,0.,1.); 438 } 630 } 439 } << 631 } 440 } 632 } 441 if( radius != 0.0 ) { nR = G4ThreeVector(p. << 633 if( rad ) nR = G4ThreeVector(p.x()/rad,p.y()/rad,p.z()/rad); 442 634 443 if( distRMax <= halfCarTolerance ) << 635 if( distRMax <= delta ) 444 { 636 { 445 ++noSurfaces; << 637 noSurfaces ++; 446 sumnorm += nR; 638 sumnorm += nR; 447 } 639 } 448 if( (fRmin != 0.0) && (distRMin <= halfCarTo << 640 if( fRmin && distRMin <= delta ) 449 { 641 { 450 ++noSurfaces; << 642 noSurfaces ++; 451 sumnorm -= nR; 643 sumnorm -= nR; 452 } 644 } 453 if( !fFullPhiSphere ) << 645 if( fDPhi < twopi ) 454 { 646 { 455 if (distSPhi <= halfAngTolerance) << 647 if (distSPhi <= dAngle) 456 { 648 { 457 ++noSurfaces; << 649 noSurfaces ++; 458 sumnorm += nPs; 650 sumnorm += nPs; 459 } 651 } 460 if (distEPhi <= halfAngTolerance) << 652 if (distEPhi <= dAngle) 461 { 653 { 462 ++noSurfaces; << 654 noSurfaces ++; 463 sumnorm += nPe; 655 sumnorm += nPe; 464 } 656 } 465 } 657 } 466 if ( !fFullThetaSphere ) << 658 if ( fDTheta < pi ) 467 { 659 { 468 if ((distSTheta <= halfAngTolerance) && (f << 660 if (distSTheta <= dAngle && fSTheta > 0.) 469 { 661 { 470 ++noSurfaces; << 662 noSurfaces ++; 471 if ((radius <= halfCarTolerance) && fFul << 663 if( rad <= delta && fDPhi >= twopi) sumnorm += nZ; 472 else << 664 else sumnorm += nTs; 473 } 665 } 474 if ((distETheta <= halfAngTolerance) && (e << 666 if (distETheta <= dAngle && fSTheta+fDTheta < pi) 475 { 667 { 476 ++noSurfaces; << 668 noSurfaces ++; 477 if ((radius <= halfCarTolerance) && fFul << 669 if( rad <= delta && fDPhi >= twopi) sumnorm -= nZ; 478 else << 670 else sumnorm += nTe; 479 if(sumnorm.z() == 0.) { sumnorm += nZ; << 671 if(sumnorm.z() == 0.) sumnorm += nZ; 480 } 672 } 481 } 673 } 482 if ( noSurfaces == 0 ) 674 if ( noSurfaces == 0 ) 483 { 675 { 484 #ifdef G4CSGDEBUG 676 #ifdef G4CSGDEBUG 485 G4Exception("G4Sphere::SurfaceNormal(p)", << 677 G4Exception("G4Sphere::SurfaceNormal(p)", "Notification", JustWarning, 486 JustWarning, "Point p is not o << 678 "Point p is not on surface !?" ); 487 #endif 679 #endif 488 norm = ApproxSurfaceNormal(p); 680 norm = ApproxSurfaceNormal(p); 489 } 681 } 490 else if ( noSurfaces == 1 ) { norm = sumnor << 682 else if ( noSurfaces == 1 ) norm = sumnorm; 491 else { norm = sumnor << 683 else norm = sumnorm.unit(); 492 return norm; 684 return norm; 493 } 685 } 494 686 495 687 496 ////////////////////////////////////////////// << 688 ///////////////////////////////////////////////////////////////////////////////////////////// 497 // 689 // 498 // Algorithm for SurfaceNormal() following the 690 // Algorithm for SurfaceNormal() following the original specification 499 // for points not on the surface 691 // for points not on the surface 500 692 501 G4ThreeVector G4Sphere::ApproxSurfaceNormal( c 693 G4ThreeVector G4Sphere::ApproxSurfaceNormal( const G4ThreeVector& p ) const 502 { 694 { 503 ENorm side; 695 ENorm side; 504 G4ThreeVector norm; 696 G4ThreeVector norm; 505 G4double rho,rho2,radius,pPhi,pTheta; << 697 G4double rho,rho2,rad,pPhi,pTheta; 506 G4double distRMin,distRMax,distSPhi,distEPhi 698 G4double distRMin,distRMax,distSPhi,distEPhi, 507 distSTheta,distETheta,distMin; 699 distSTheta,distETheta,distMin; 508 700 509 rho2=p.x()*p.x()+p.y()*p.y(); 701 rho2=p.x()*p.x()+p.y()*p.y(); 510 radius=std::sqrt(rho2+p.z()*p.z()); << 702 rad=std::sqrt(rho2+p.z()*p.z()); 511 rho=std::sqrt(rho2); 703 rho=std::sqrt(rho2); 512 704 513 // 705 // 514 // Distance to r shells 706 // Distance to r shells 515 // 707 // 516 708 517 distRMax=std::fabs(radius-fRmax); << 709 distRMax=std::fabs(rad-fRmax); 518 if (fRmin != 0.0) << 710 if (fRmin) 519 { 711 { 520 distRMin=std::fabs(radius-fRmin); << 712 distRMin=std::fabs(rad-fRmin); 521 << 713 522 if (distRMin<distRMax) 714 if (distRMin<distRMax) 523 { 715 { 524 distMin=distRMin; 716 distMin=distRMin; 525 side=kNRMin; 717 side=kNRMin; 526 } 718 } 527 else 719 else 528 { << 720 { 529 distMin=distRMax; 721 distMin=distRMax; 530 side=kNRMax; 722 side=kNRMax; 531 } 723 } 532 } 724 } 533 else 725 else 534 { 726 { 535 distMin=distRMax; 727 distMin=distRMax; 536 side=kNRMax; 728 side=kNRMax; 537 } 729 } 538 730 539 // 731 // 540 // Distance to phi planes 732 // Distance to phi planes 541 // 733 // 542 // Protected against (0,0,z) << 734 // Protected against (0,0,z) 543 << 735 544 pPhi = std::atan2(p.y(),p.x()); 736 pPhi = std::atan2(p.y(),p.x()); 545 if (pPhi<0) { pPhi += twopi; } << 737 if (pPhi<0) pPhi += twopi; 546 738 547 if (!fFullPhiSphere && (rho != 0.0)) << 739 if (fDPhi<twopi&&rho) 548 { 740 { 549 if (fSPhi<0) 741 if (fSPhi<0) 550 { 742 { 551 distSPhi=std::fabs(pPhi-(fSPhi+twopi))*r 743 distSPhi=std::fabs(pPhi-(fSPhi+twopi))*rho; 552 } 744 } 553 else 745 else 554 { 746 { 555 distSPhi=std::fabs(pPhi-fSPhi)*rho; 747 distSPhi=std::fabs(pPhi-fSPhi)*rho; 556 } 748 } 557 749 558 distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho; 750 distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho; 559 751 560 // Find new minimum 752 // Find new minimum 561 // 753 // 562 if (distSPhi<distEPhi) 754 if (distSPhi<distEPhi) 563 { 755 { 564 if (distSPhi<distMin) 756 if (distSPhi<distMin) 565 { 757 { 566 distMin = distSPhi; << 758 distMin=distSPhi; 567 side = kNSPhi; << 759 side=kNSPhi; 568 } 760 } 569 } 761 } 570 else 762 else 571 { 763 { 572 if (distEPhi<distMin) 764 if (distEPhi<distMin) 573 { 765 { 574 distMin = distEPhi; << 766 distMin=distEPhi; 575 side = kNEPhi; << 767 side=kNEPhi; 576 } 768 } 577 } 769 } 578 } 770 } 579 771 580 // 772 // 581 // Distance to theta planes 773 // Distance to theta planes 582 // 774 // 583 775 584 if (!fFullThetaSphere && (radius != 0.0)) << 776 if (fDTheta<pi&&rad) 585 { 777 { 586 pTheta=std::atan2(rho,p.z()); 778 pTheta=std::atan2(rho,p.z()); 587 distSTheta=std::fabs(pTheta-fSTheta)*radiu << 779 distSTheta=std::fabs(pTheta-fSTheta)*rad; 588 distETheta=std::fabs(pTheta-fSTheta-fDThet << 780 distETheta=std::fabs(pTheta-fSTheta-fDTheta)*rad; 589 781 590 // Find new minimum 782 // Find new minimum 591 // 783 // 592 if (distSTheta<distETheta) 784 if (distSTheta<distETheta) 593 { 785 { 594 if (distSTheta<distMin) 786 if (distSTheta<distMin) 595 { 787 { 596 distMin = distSTheta ; 788 distMin = distSTheta ; 597 side = kNSTheta ; 789 side = kNSTheta ; 598 } 790 } 599 } 791 } 600 else 792 else 601 { 793 { 602 if (distETheta<distMin) 794 if (distETheta<distMin) 603 { 795 { 604 distMin = distETheta ; 796 distMin = distETheta ; 605 side = kNETheta ; 797 side = kNETheta ; 606 } 798 } 607 } 799 } 608 } 800 } 609 801 610 switch (side) 802 switch (side) 611 { 803 { 612 case kNRMin: // Inner radius 804 case kNRMin: // Inner radius 613 norm=G4ThreeVector(-p.x()/radius,-p.y()/ << 805 norm=G4ThreeVector(-p.x()/rad,-p.y()/rad,-p.z()/rad); 614 break; 806 break; 615 case kNRMax: // Outer radius 807 case kNRMax: // Outer radius 616 norm=G4ThreeVector(p.x()/radius,p.y()/ra << 808 norm=G4ThreeVector(p.x()/rad,p.y()/rad,p.z()/rad); 617 break; 809 break; 618 case kNSPhi: 810 case kNSPhi: 619 norm=G4ThreeVector(sinSPhi,-cosSPhi,0); << 811 norm=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 620 break; 812 break; 621 case kNEPhi: 813 case kNEPhi: 622 norm=G4ThreeVector(-sinEPhi,cosEPhi,0); << 814 norm=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 623 break; 815 break; 624 case kNSTheta: 816 case kNSTheta: 625 norm=G4ThreeVector(-cosSTheta*std::cos(p << 817 norm=G4ThreeVector(-std::cos(fSTheta)*std::cos(pPhi), 626 -cosSTheta*std::sin(p << 818 -std::cos(fSTheta)*std::sin(pPhi), 627 sinSTheta << 819 std::sin(fSTheta) ); >> 820 // G4cout<<G4endl<<" case kNSTheta:"<<G4endl; >> 821 // G4cout<<"pPhi = "<<pPhi<<G4endl; >> 822 // G4cout<<"rad = "<<rad<<G4endl; >> 823 // G4cout<<"pho = "<<rho<<G4endl; >> 824 // G4cout<<"p: "<<p.x()<<"; "<<p.y()<<"; "<<p.z()<<G4endl; >> 825 // G4cout<<"norm: "<<norm.x()<<"; "<<norm.y()<<"; "<<norm.z()<<G4endl; 628 break; 826 break; 629 case kNETheta: 827 case kNETheta: 630 norm=G4ThreeVector( cosETheta*std::cos(p << 828 norm=G4ThreeVector( std::cos(fSTheta+fDTheta)*std::cos(pPhi), 631 cosETheta*std::sin(p << 829 std::cos(fSTheta+fDTheta)*std::sin(pPhi), 632 -sinETheta << 830 -std::sin(fSTheta+fDTheta) ); >> 831 >> 832 // G4cout<<G4endl<<" case kNETheta:"<<G4endl; >> 833 // G4cout<<"pPhi = "<<pPhi<<G4endl; >> 834 // G4cout<<"rad = "<<rad<<G4endl; >> 835 // G4cout<<"pho = "<<rho<<G4endl; >> 836 // G4cout<<"p: "<<p.x()<<"; "<<p.y()<<"; "<<p.z()<<G4endl; >> 837 // G4cout<<"norm: "<<norm.x()<<"; "<<norm.y()<<"; "<<norm.z()<<G4endl; 633 break; 838 break; 634 default: // Should never reach th << 839 default: 635 DumpInfo(); 840 DumpInfo(); 636 G4Exception("G4Sphere::ApproxSurfaceNorm << 841 G4Exception("G4Sphere::ApproxSurfaceNormal()", "Notification", JustWarning, 637 "GeomSolids1002", JustWarnin << 638 "Undefined side for valid su 842 "Undefined side for valid surface normal to solid."); 639 break; << 843 break; 640 } << 844 } // end case 641 845 642 return norm; 846 return norm; 643 } 847 } 644 848 645 ////////////////////////////////////////////// 849 /////////////////////////////////////////////////////////////////////////////// 646 // 850 // 647 // Calculate distance to shape from outside, a 851 // Calculate distance to shape from outside, along normalised vector 648 // - return kInfinity if no intersection, or i 852 // - return kInfinity if no intersection, or intersection distance <= tolerance 649 // 853 // 650 // -> If point is outside outer radius, comput 854 // -> If point is outside outer radius, compute intersection with rmax 651 // - if no intersection return 855 // - if no intersection return 652 // - if valid phi,theta return interse 856 // - if valid phi,theta return intersection Dist 653 // 857 // 654 // -> If shell, compute intersection with inne 858 // -> If shell, compute intersection with inner radius, taking largest +ve root 655 // - if valid phi,theta, save intersect 859 // - if valid phi,theta, save intersection 656 // 860 // 657 // -> If phi segmented, compute intersection w 861 // -> If phi segmented, compute intersection with phi half planes 658 // - if valid intersection(r,theta), re 862 // - if valid intersection(r,theta), return smallest intersection of 659 // inner shell & phi intersection 863 // inner shell & phi intersection 660 // 864 // 661 // -> If theta segmented, compute intersection 865 // -> If theta segmented, compute intersection with theta cones 662 // - if valid intersection(r,phi), retu 866 // - if valid intersection(r,phi), return smallest intersection of 663 // inner shell & theta intersection 867 // inner shell & theta intersection 664 // 868 // 665 // 869 // 666 // NOTE: 870 // NOTE: 667 // - `if valid' (above) implies tolerant check 871 // - `if valid' (above) implies tolerant checking of intersection points 668 // 872 // 669 // OPT: 873 // OPT: 670 // Move tolIO/ORmin/RMax2 precalcs to where th 874 // Move tolIO/ORmin/RMax2 precalcs to where they are needed - 671 // not required for most cases. 875 // not required for most cases. 672 // Avoid atan2 for non theta cut G4Sphere. 876 // Avoid atan2 for non theta cut G4Sphere. 673 877 674 G4double G4Sphere::DistanceToIn( const G4Three 878 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p, 675 const G4Three 879 const G4ThreeVector& v ) const 676 { 880 { 677 G4double snxt = kInfinity ; // snxt = d 881 G4double snxt = kInfinity ; // snxt = default return value >> 882 678 G4double rho2, rad2, pDotV2d, pDotV3d, pThet 883 G4double rho2, rad2, pDotV2d, pDotV3d, pTheta ; 679 G4double tolSTheta=0., tolETheta=0. ; << 680 const G4double dRmax = 100.*fRmax; << 681 884 682 const G4double halfRmaxTolerance = fRmaxTole << 885 G4double tolIRMin2, tolORMin2, tolORMax2, tolIRMax2 ; 683 const G4double halfRminTolerance = fRminTole << 886 G4double tolSTheta=0., tolETheta=0. ; 684 const G4double tolORMin2 = (fRmin>halfRminTo << 685 ? (fRmin-halfRminTolerance)*(fR << 686 const G4double tolIRMin2 = << 687 (fRmin+halfRminTolerance)*(fRmi << 688 const G4double tolORMax2 = << 689 (fRmax+halfRmaxTolerance)*(fRma << 690 const G4double tolIRMax2 = << 691 (fRmax-halfRmaxTolerance)*(fRma << 692 887 693 // Intersection point 888 // Intersection point 694 // << 889 695 G4double xi, yi, zi, rhoi, rhoi2, radi2, iTh 890 G4double xi, yi, zi, rhoi, rhoi2, radi2, iTheta ; 696 891 697 // Phi intersection 892 // Phi intersection 698 // << 699 G4double Comp ; << 700 893 701 // Phi precalcs << 894 G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi , Comp ; 702 // << 895 >> 896 // Phi flag and precalcs >> 897 >> 898 G4bool segPhi ; >> 899 G4double hDPhi, hDPhiOT, hDPhiIT, cPhi, sinCPhi=0., cosCPhi=0. ; >> 900 G4double cosHDPhiOT=0., cosHDPhiIT=0. ; 703 G4double Dist, cosPsi ; 901 G4double Dist, cosPsi ; 704 902 705 // Theta precalcs << 903 G4bool segTheta ; // Theta flag and precals 706 // << 904 G4double tanSTheta, tanETheta ; >> 905 G4double tanSTheta2, tanETheta2 ; 707 G4double dist2STheta, dist2ETheta ; 906 G4double dist2STheta, dist2ETheta ; 708 G4double t1, t2, b, c, d2, d, sd = kInfinity << 907 G4double t1, t2, b, c, d2, d, s = kInfinity ; 709 908 710 // General Precalcs 909 // General Precalcs 711 // << 910 712 rho2 = p.x()*p.x() + p.y()*p.y() ; 911 rho2 = p.x()*p.x() + p.y()*p.y() ; 713 rad2 = rho2 + p.z()*p.z() ; 912 rad2 = rho2 + p.z()*p.z() ; 714 pTheta = std::atan2(std::sqrt(rho2),p.z()) ; 913 pTheta = std::atan2(std::sqrt(rho2),p.z()) ; 715 914 716 pDotV2d = p.x()*v.x() + p.y()*v.y() ; 915 pDotV2d = p.x()*v.x() + p.y()*v.y() ; 717 pDotV3d = pDotV2d + p.z()*v.z() ; 916 pDotV3d = pDotV2d + p.z()*v.z() ; 718 917 719 // Theta precalcs << 918 // Radial Precalcs 720 // << 919 721 if (!fFullThetaSphere) << 920 if (fRmin > kRadTolerance*0.5) 722 { 921 { 723 tolSTheta = fSTheta - halfAngTolerance ; << 922 tolORMin2=(fRmin-kRadTolerance*0.5)*(fRmin-kRadTolerance*0.5); 724 tolETheta = eTheta + halfAngTolerance ; << 923 } >> 924 else >> 925 { >> 926 tolORMin2 = 0 ; >> 927 } >> 928 tolIRMin2 = (fRmin+kRadTolerance*0.5)*(fRmin+kRadTolerance*0.5) ; >> 929 tolORMax2 = (fRmax+kRadTolerance*0.5)*(fRmax+kRadTolerance*0.5) ; >> 930 tolIRMax2 = (fRmax-kRadTolerance*0.5)*(fRmax-kRadTolerance*0.5) ; 725 931 726 // Special case rad2 = 0 comparing with di << 932 // Set phi divided flag and precalcs 727 // << 933 728 if ((rad2!=0.0) || (fRmin!=0.0)) << 934 if (fDPhi < twopi) 729 { << 935 { 730 // Keep going for computation of distanc << 936 segPhi = true ; 731 } << 937 hDPhi = 0.5*fDPhi ; // half delta phi 732 else // Positioned on the sphere's origin << 938 cPhi = fSPhi + hDPhi ; 733 { << 939 734 G4double vTheta = std::atan2(std::sqrt(v << 940 hDPhiOT = hDPhi+0.5*kAngTolerance; // Outer Tolerant half delta phi 735 if ( (vTheta < tolSTheta) || (vTheta > t << 941 hDPhiIT = hDPhi-0.5*kAngTolerance; 736 { << 942 737 return snxt ; // kInfinity << 943 sinCPhi = std::sin(cPhi) ; 738 } << 944 cosCPhi = std::cos(cPhi) ; 739 return snxt = 0.0 ; << 945 cosHDPhiOT = std::cos(hDPhiOT) ; 740 } << 946 cosHDPhiIT = std::cos(hDPhiIT) ; >> 947 } >> 948 else >> 949 { >> 950 segPhi = false ; >> 951 } >> 952 >> 953 // Theta precalcs >> 954 >> 955 if (fDTheta < pi ) >> 956 { >> 957 segTheta = true ; >> 958 tolSTheta = fSTheta - kAngTolerance*0.5 ; >> 959 tolETheta = fSTheta + fDTheta + kAngTolerance*0.5 ; >> 960 } >> 961 else >> 962 { >> 963 segTheta = false ; 741 } 964 } 742 965 743 // Outer spherical shell intersection 966 // Outer spherical shell intersection 744 // - Only if outside tolerant fRmax 967 // - Only if outside tolerant fRmax 745 // - Check for if inside and outer G4Sphere 968 // - Check for if inside and outer G4Sphere heading through solid (-> 0) 746 // - No intersect -> no intersection with G4 969 // - No intersect -> no intersection with G4Sphere 747 // 970 // 748 // Shell eqn: x^2+y^2+z^2=RSPH^2 971 // Shell eqn: x^2+y^2+z^2=RSPH^2 749 // 972 // 750 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 973 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 751 // 974 // 752 // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+ << 975 // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2 753 // => rad2 +2sd(pDotV3d) + << 976 // => rad2 +2s(pDotV3d) +s^2 =R^2 754 // 977 // 755 // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2 << 978 // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2)) 756 979 757 c = rad2 - fRmax*fRmax ; 980 c = rad2 - fRmax*fRmax ; >> 981 const G4double flexRadMaxTolerance = // kRadTolerance; >> 982 std::max(kRadTolerance, fEpsilon * fRmax); 758 983 759 if (c > fRmaxTolerance*fRmax) << 984 // if (c > kRadTolerance*fRmax) >> 985 if (c > flexRadMaxTolerance*fRmax) 760 { 986 { 761 // If outside tolerant boundary of outer G << 987 // If outside toleranct boundary of outer G4Sphere 762 // [should be std::sqrt(rad2)-fRmax > half << 988 // [should be std::sqrt(rad2)-fRmax > kRadTolerance*0.5] 763 989 764 d2 = pDotV3d*pDotV3d - c ; 990 d2 = pDotV3d*pDotV3d - c ; 765 991 766 if ( d2 >= 0 ) 992 if ( d2 >= 0 ) 767 { 993 { 768 sd = -pDotV3d - std::sqrt(d2) ; << 994 s = -pDotV3d - std::sqrt(d2) ; 769 995 770 if (sd >= 0 ) << 996 if (s >= 0 ) 771 { 997 { 772 if ( sd>dRmax ) // Avoid rounding erro << 998 xi = p.x() + s*v.x() ; 773 { // 64 bits systems. Sp << 999 yi = p.y() + s*v.y() ; 774 G4double fTerm = sd-std::fmod(sd,dRm << 775 sd = fTerm + DistanceToIn(p+fTerm*v, << 776 } << 777 xi = p.x() + sd*v.x() ; << 778 yi = p.y() + sd*v.y() ; << 779 rhoi = std::sqrt(xi*xi + yi*yi) ; 1000 rhoi = std::sqrt(xi*xi + yi*yi) ; 780 1001 781 if (!fFullPhiSphere && (rhoi != 0.0)) << 1002 if (segPhi && rhoi) // Check phi intersection 782 { 1003 { 783 cosPsi = (xi*cosCPhi + yi*sinCPhi)/r 1004 cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ; 784 1005 785 if (cosPsi >= cosHDPhiOT) 1006 if (cosPsi >= cosHDPhiOT) 786 { 1007 { 787 if (!fFullThetaSphere) // Check << 1008 if (segTheta) // Check theta intersection 788 { 1009 { 789 zi = p.z() + sd*v.z() ; << 1010 zi = p.z() + s*v.z() ; 790 1011 791 // rhoi & zi can never both be 0 1012 // rhoi & zi can never both be 0 792 // (=>intersect at origin =>fRma 1013 // (=>intersect at origin =>fRmax=0) 793 // 1014 // 794 iTheta = std::atan2(rhoi,zi) ; 1015 iTheta = std::atan2(rhoi,zi) ; 795 if ( (iTheta >= tolSTheta) && (i 1016 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 796 { 1017 { 797 return snxt = sd ; << 1018 return snxt = s ; 798 } 1019 } 799 } 1020 } 800 else 1021 else 801 { 1022 { 802 return snxt=sd; << 1023 return snxt=s; 803 } 1024 } 804 } 1025 } 805 } 1026 } 806 else 1027 else 807 { 1028 { 808 if (!fFullThetaSphere) // Check t << 1029 if (segTheta) // Check theta intersection 809 { 1030 { 810 zi = p.z() + sd*v.z() ; << 1031 zi = p.z() + s*v.z() ; 811 1032 812 // rhoi & zi can never both be 0 1033 // rhoi & zi can never both be 0 813 // (=>intersect at origin => fRmax 1034 // (=>intersect at origin => fRmax=0 !) 814 // 1035 // 815 iTheta = std::atan2(rhoi,zi) ; 1036 iTheta = std::atan2(rhoi,zi) ; 816 if ( (iTheta >= tolSTheta) && (iTh 1037 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 817 { 1038 { 818 return snxt=sd; << 1039 return snxt=s; 819 } 1040 } 820 } 1041 } 821 else 1042 else 822 { 1043 { 823 return snxt = sd; << 1044 return snxt = s ; 824 } 1045 } 825 } << 1046 } 826 } 1047 } 827 } 1048 } 828 else // No intersection with G4Sphere 1049 else // No intersection with G4Sphere 829 { 1050 { 830 return snxt=kInfinity; 1051 return snxt=kInfinity; 831 } 1052 } 832 } 1053 } 833 else 1054 else 834 { 1055 { 835 // Inside outer radius 1056 // Inside outer radius 836 // check not inside, and heading through G 1057 // check not inside, and heading through G4Sphere (-> 0 to in) 837 1058 838 d2 = pDotV3d*pDotV3d - c ; 1059 d2 = pDotV3d*pDotV3d - c ; 839 1060 840 if ( (rad2 > tolIRMax2) << 1061 // if (rad2 > tolIRMin2 && pDotV3d < 0 ) 841 && ( (d2 >= fRmaxTolerance*fRmax) && (pD << 1062 >> 1063 if (rad2 > tolIRMax2 && ( d2 >= flexRadMaxTolerance*fRmax && pDotV3d < 0 ) ) 842 { 1064 { 843 if (!fFullPhiSphere) << 1065 if (segPhi) 844 { 1066 { 845 // Use inner phi tolerant boundary -> 1067 // Use inner phi tolerant boundary -> if on tolerant 846 // phi boundaries, phi intersect code 1068 // phi boundaries, phi intersect code handles leaving/entering checks 847 1069 848 cosPsi = (p.x()*cosCPhi + p.y()*sinCPh 1070 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 849 1071 850 if (cosPsi>=cosHDPhiIT) 1072 if (cosPsi>=cosHDPhiIT) 851 { << 1073 { 852 // inside radii, delta r -ve, inside 1074 // inside radii, delta r -ve, inside phi 853 1075 854 if ( !fFullThetaSphere ) << 1076 if (segTheta) 855 { 1077 { 856 if ( (pTheta >= tolSTheta + kAngTo 1078 if ( (pTheta >= tolSTheta + kAngTolerance) 857 && (pTheta <= tolETheta - kAngTo 1079 && (pTheta <= tolETheta - kAngTolerance) ) 858 { 1080 { 859 return snxt=0; 1081 return snxt=0; 860 } 1082 } 861 } 1083 } 862 else // strictly inside Theta in 1084 else // strictly inside Theta in both cases 863 { 1085 { 864 return snxt=0; 1086 return snxt=0; 865 } 1087 } 866 } 1088 } 867 } 1089 } 868 else 1090 else 869 { 1091 { 870 if ( !fFullThetaSphere ) << 1092 if ( segTheta ) 871 { 1093 { 872 if ( (pTheta >= tolSTheta + kAngTole 1094 if ( (pTheta >= tolSTheta + kAngTolerance) 873 && (pTheta <= tolETheta - kAngTole 1095 && (pTheta <= tolETheta - kAngTolerance) ) 874 { 1096 { 875 return snxt=0; 1097 return snxt=0; 876 } 1098 } 877 } 1099 } 878 else // strictly inside Theta in bot 1100 else // strictly inside Theta in both cases 879 { 1101 { 880 return snxt=0; 1102 return snxt=0; 881 } 1103 } 882 } 1104 } 883 } 1105 } 884 } 1106 } 885 1107 886 // Inner spherical shell intersection 1108 // Inner spherical shell intersection 887 // - Always farthest root, because would hav 1109 // - Always farthest root, because would have passed through outer 888 // surface first. 1110 // surface first. 889 // - Tolerant check if travelling through so << 1111 // - Tolerant check for if travelling through solid 890 1112 891 if (fRmin != 0.0) << 1113 if (fRmin) 892 { 1114 { 893 c = rad2 - fRmin*fRmin ; 1115 c = rad2 - fRmin*fRmin ; 894 d2 = pDotV3d*pDotV3d - c ; 1116 d2 = pDotV3d*pDotV3d - c ; 895 1117 896 // Within tolerance inner radius of inner 1118 // Within tolerance inner radius of inner G4Sphere 897 // Check for immediate entry/already insid 1119 // Check for immediate entry/already inside and travelling outwards 898 1120 899 if ( (c > -halfRminTolerance) && (rad2 < t << 1121 // if (c >- kRadTolerance*0.5 && pDotV3d >= 0 && rad2 < tolIRMin2 ) 900 && ( (d2 < fRmin*kCarTolerance) || (pDot << 1122 >> 1123 if ( c > -kRadTolerance*0.5 && rad2 < tolIRMin2 && >> 1124 ( d2 < fRmin*kCarTolerance || pDotV3d >= 0 ) ) 901 { 1125 { 902 if ( !fFullPhiSphere ) << 1126 if (segPhi) 903 { 1127 { 904 // Use inner phi tolerant boundary -> 1128 // Use inner phi tolerant boundary -> if on tolerant 905 // phi boundaries, phi intersect code 1129 // phi boundaries, phi intersect code handles leaving/entering checks 906 1130 907 cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi) 1131 cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)/std::sqrt(rho2) ; 908 if (cosPsi >= cosHDPhiIT) 1132 if (cosPsi >= cosHDPhiIT) 909 { << 1133 { 910 // inside radii, delta r -ve, inside 1134 // inside radii, delta r -ve, inside phi 911 // 1135 // 912 if ( !fFullThetaSphere ) << 1136 if (segTheta) 913 { 1137 { 914 if ( (pTheta >= tolSTheta + kAngTo 1138 if ( (pTheta >= tolSTheta + kAngTolerance) 915 && (pTheta <= tolETheta - kAngTo 1139 && (pTheta <= tolETheta - kAngTolerance) ) 916 { 1140 { 917 return snxt=0; 1141 return snxt=0; 918 } 1142 } 919 } 1143 } 920 else 1144 else 921 { 1145 { 922 return snxt = 0 ; 1146 return snxt = 0 ; 923 } 1147 } 924 } 1148 } 925 } 1149 } 926 else 1150 else 927 { 1151 { 928 if ( !fFullThetaSphere ) << 1152 if (segTheta) 929 { 1153 { 930 if ( (pTheta >= tolSTheta + kAngTole 1154 if ( (pTheta >= tolSTheta + kAngTolerance) 931 && (pTheta <= tolETheta - kAngTole 1155 && (pTheta <= tolETheta - kAngTolerance) ) 932 { 1156 { 933 return snxt = 0 ; 1157 return snxt = 0 ; 934 } 1158 } 935 } 1159 } 936 else 1160 else 937 { 1161 { 938 return snxt=0; 1162 return snxt=0; 939 } 1163 } 940 } 1164 } 941 } 1165 } 942 else // Not special tolerant case 1166 else // Not special tolerant case 943 { 1167 { >> 1168 // d2 = pDotV3d*pDotV3d - c ; >> 1169 944 if (d2 >= 0) 1170 if (d2 >= 0) 945 { 1171 { 946 sd = -pDotV3d + std::sqrt(d2) ; << 1172 s = -pDotV3d + std::sqrt(d2) ; 947 if ( sd >= halfRminTolerance ) // It << 1173 if ( s >= kRadTolerance*0.5 ) // It was >= 0 ?? 948 { 1174 { 949 xi = p.x() + sd*v.x() ; << 1175 xi = p.x() + s*v.x() ; 950 yi = p.y() + sd*v.y() ; << 1176 yi = p.y() + s*v.y() ; 951 rhoi = std::sqrt(xi*xi+yi*yi) ; 1177 rhoi = std::sqrt(xi*xi+yi*yi) ; 952 1178 953 if ( !fFullPhiSphere && (rhoi != 0.0 << 1179 if ( segPhi && rhoi ) // Check phi intersection 954 { 1180 { 955 cosPsi = (xi*cosCPhi + yi*sinCPhi) 1181 cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ; 956 1182 957 if (cosPsi >= cosHDPhiOT) 1183 if (cosPsi >= cosHDPhiOT) 958 { 1184 { 959 if ( !fFullThetaSphere ) // Che << 1185 if (segTheta) // Check theta intersection 960 { 1186 { 961 zi = p.z() + sd*v.z() ; << 1187 zi = p.z() + s*v.z() ; 962 1188 963 // rhoi & zi can never both be 1189 // rhoi & zi can never both be 0 964 // (=>intersect at origin =>fR 1190 // (=>intersect at origin =>fRmax=0) 965 // 1191 // 966 iTheta = std::atan2(rhoi,zi) ; 1192 iTheta = std::atan2(rhoi,zi) ; 967 if ( (iTheta >= tolSTheta) && 1193 if ( (iTheta >= tolSTheta) && (iTheta<=tolETheta) ) 968 { 1194 { 969 snxt = sd; << 1195 snxt = s ; 970 } 1196 } 971 } 1197 } 972 else 1198 else 973 { 1199 { 974 snxt=sd; << 1200 snxt=s; 975 } 1201 } 976 } 1202 } 977 } 1203 } 978 else 1204 else 979 { 1205 { 980 if ( !fFullThetaSphere ) // Chec << 1206 if (segTheta) // Check theta intersection 981 { 1207 { 982 zi = p.z() + sd*v.z() ; << 1208 zi = p.z() + s*v.z() ; 983 1209 984 // rhoi & zi can never both be 0 1210 // rhoi & zi can never both be 0 985 // (=>intersect at origin => fRm 1211 // (=>intersect at origin => fRmax=0 !) 986 // 1212 // 987 iTheta = std::atan2(rhoi,zi) ; 1213 iTheta = std::atan2(rhoi,zi) ; 988 if ( (iTheta >= tolSTheta) && (i 1214 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 989 { 1215 { 990 snxt = sd; << 1216 snxt = s ; 991 } 1217 } 992 } 1218 } 993 else 1219 else 994 { 1220 { 995 snxt = sd; << 1221 snxt=s; 996 } 1222 } 997 } 1223 } 998 } 1224 } 999 } 1225 } 1000 } 1226 } 1001 } 1227 } 1002 1228 1003 // Phi segment intersection 1229 // Phi segment intersection 1004 // 1230 // 1005 // o Tolerant of points inside phi planes b 1231 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1006 // 1232 // 1007 // o NOTE: Large duplication of code betwee 1233 // o NOTE: Large duplication of code between sphi & ephi checks 1008 // -> only diffs: sphi -> ephi, Com 1234 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1009 // intersection check <=0 -> >=0 1235 // intersection check <=0 -> >=0 1010 // -> Should use some form of loop 1236 // -> Should use some form of loop Construct 1011 // 1237 // 1012 if ( !fFullPhiSphere ) << 1238 if ( segPhi ) 1013 { 1239 { 1014 // First phi surface ('S'tarting phi) << 1240 // First phi surface (`S'tarting phi) >> 1241 >> 1242 sinSPhi = std::sin(fSPhi) ; >> 1243 cosSPhi = std::cos(fSPhi) ; >> 1244 1015 // Comp = Component in outwards normal di 1245 // Comp = Component in outwards normal dirn 1016 // 1246 // 1017 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; << 1247 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1018 << 1248 1019 if ( Comp < 0 ) 1249 if ( Comp < 0 ) 1020 { 1250 { 1021 Dist = p.y()*cosSPhi - p.x()*sinSPhi ; 1251 Dist = p.y()*cosSPhi - p.x()*sinSPhi ; 1022 1252 1023 if (Dist < halfCarTolerance) << 1253 if (Dist < kCarTolerance*0.5) 1024 { 1254 { 1025 sd = Dist/Comp ; << 1255 s = Dist/Comp ; 1026 1256 1027 if (sd < snxt) << 1257 if (s < snxt) 1028 { 1258 { 1029 if ( sd > 0 ) << 1259 if ( s > 0 ) 1030 { 1260 { 1031 xi = p.x() + sd*v.x() ; << 1261 xi = p.x() + s*v.x() ; 1032 yi = p.y() + sd*v.y() ; << 1262 yi = p.y() + s*v.y() ; 1033 zi = p.z() + sd*v.z() ; << 1263 zi = p.z() + s*v.z() ; 1034 rhoi2 = xi*xi + yi*yi ; 1264 rhoi2 = xi*xi + yi*yi ; 1035 radi2 = rhoi2 + zi*zi ; 1265 radi2 = rhoi2 + zi*zi ; 1036 } 1266 } 1037 else 1267 else 1038 { 1268 { 1039 sd = 0 ; << 1269 s = 0 ; 1040 xi = p.x() ; 1270 xi = p.x() ; 1041 yi = p.y() ; 1271 yi = p.y() ; 1042 zi = p.z() ; 1272 zi = p.z() ; 1043 rhoi2 = rho2 ; 1273 rhoi2 = rho2 ; 1044 radi2 = rad2 ; 1274 radi2 = rad2 ; 1045 } 1275 } 1046 if ( (radi2 <= tolORMax2) 1276 if ( (radi2 <= tolORMax2) 1047 && (radi2 >= tolORMin2) 1277 && (radi2 >= tolORMin2) 1048 && ((yi*cosCPhi-xi*sinCPhi) <= 0) 1278 && ((yi*cosCPhi-xi*sinCPhi) <= 0) ) 1049 { 1279 { 1050 // Check theta intersection 1280 // Check theta intersection 1051 // rhoi & zi can never both be 0 1281 // rhoi & zi can never both be 0 1052 // (=>intersect at origin =>fRmax 1282 // (=>intersect at origin =>fRmax=0) 1053 // 1283 // 1054 if ( !fFullThetaSphere ) << 1284 if ( segTheta ) 1055 { 1285 { 1056 iTheta = std::atan2(std::sqrt(r 1286 iTheta = std::atan2(std::sqrt(rhoi2),zi) ; 1057 if ( (iTheta >= tolSTheta) && ( 1287 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 1058 { 1288 { 1059 // r and theta intersections 1289 // r and theta intersections good 1060 // - check intersecting with 1290 // - check intersecting with correct half-plane 1061 1291 1062 if ((yi*cosCPhi-xi*sinCPhi) < 1292 if ((yi*cosCPhi-xi*sinCPhi) <= 0) 1063 { 1293 { 1064 snxt = sd; << 1294 snxt = s ; 1065 } 1295 } 1066 } 1296 } 1067 } 1297 } 1068 else 1298 else 1069 { 1299 { 1070 snxt = sd; << 1300 snxt = s ; 1071 } 1301 } 1072 } 1302 } 1073 } 1303 } 1074 } 1304 } 1075 } 1305 } 1076 1306 1077 // Second phi surface ('E'nding phi) << 1307 // Second phi surface (`E'nding phi) 1078 // Component in outwards normal dirn << 1308 >> 1309 ePhi = fSPhi + fDPhi ; >> 1310 sinEPhi = std::sin(ePhi) ; >> 1311 cosEPhi = std::cos(ePhi) ; 1079 1312 1080 Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ; << 1313 // Compnent in outwards normal dirn 1081 1314 >> 1315 Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ; >> 1316 1082 if (Comp < 0) 1317 if (Comp < 0) 1083 { 1318 { 1084 Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ; 1319 Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ; 1085 if ( Dist < halfCarTolerance ) << 1320 if ( Dist < kCarTolerance*0.5 ) 1086 { 1321 { 1087 sd = Dist/Comp ; << 1322 s = Dist/Comp ; 1088 1323 1089 if ( sd < snxt ) << 1324 if ( s < snxt ) 1090 { 1325 { 1091 if (sd > 0) << 1326 if (s > 0) 1092 { 1327 { 1093 xi = p.x() + sd*v.x() ; << 1328 xi = p.x() + s*v.x() ; 1094 yi = p.y() + sd*v.y() ; << 1329 yi = p.y() + s*v.y() ; 1095 zi = p.z() + sd*v.z() ; << 1330 zi = p.z() + s*v.z() ; 1096 rhoi2 = xi*xi + yi*yi ; 1331 rhoi2 = xi*xi + yi*yi ; 1097 radi2 = rhoi2 + zi*zi ; 1332 radi2 = rhoi2 + zi*zi ; 1098 } 1333 } 1099 else 1334 else 1100 { 1335 { 1101 sd = 0 ; << 1336 s = 0 ; 1102 xi = p.x() ; 1337 xi = p.x() ; 1103 yi = p.y() ; 1338 yi = p.y() ; 1104 zi = p.z() ; 1339 zi = p.z() ; 1105 rhoi2 = rho2 ; 1340 rhoi2 = rho2 ; 1106 radi2 = rad2 ; 1341 radi2 = rad2 ; 1107 } << 1342 } if ( (radi2 <= tolORMax2) 1108 if ( (radi2 <= tolORMax2) << 1109 && (radi2 >= tolORMin2) 1343 && (radi2 >= tolORMin2) 1110 && ((yi*cosCPhi-xi*sinCPhi) >= 0) 1344 && ((yi*cosCPhi-xi*sinCPhi) >= 0) ) 1111 { 1345 { 1112 // Check theta intersection 1346 // Check theta intersection 1113 // rhoi & zi can never both be 0 1347 // rhoi & zi can never both be 0 1114 // (=>intersect at origin =>fRmax 1348 // (=>intersect at origin =>fRmax=0) 1115 // 1349 // 1116 if ( !fFullThetaSphere ) << 1350 if ( segTheta ) 1117 { 1351 { 1118 iTheta = std::atan2(std::sqrt(r 1352 iTheta = std::atan2(std::sqrt(rhoi2),zi) ; 1119 if ( (iTheta >= tolSTheta) && ( 1353 if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) ) 1120 { 1354 { 1121 // r and theta intersections 1355 // r and theta intersections good 1122 // - check intersecting with 1356 // - check intersecting with correct half-plane 1123 1357 1124 if ((yi*cosCPhi-xi*sinCPhi) > 1358 if ((yi*cosCPhi-xi*sinCPhi) >= 0) 1125 { 1359 { 1126 snxt = sd; << 1360 snxt = s ; 1127 } 1361 } 1128 } 1362 } 1129 } 1363 } 1130 else 1364 else 1131 { 1365 { 1132 snxt = sd; << 1366 snxt = s ; 1133 } 1367 } 1134 } 1368 } 1135 } 1369 } 1136 } 1370 } 1137 } 1371 } 1138 } 1372 } 1139 1373 1140 // Theta segment intersection 1374 // Theta segment intersection 1141 1375 1142 if ( !fFullThetaSphere ) << 1376 if ( segTheta ) 1143 { 1377 { 1144 1378 1145 // Intersection with theta surfaces 1379 // Intersection with theta surfaces 1146 // Known failure cases: 1380 // Known failure cases: 1147 // o Inside tolerance of stheta surface, 1381 // o Inside tolerance of stheta surface, skim 1148 // ~parallel to cone and Hit & enter e 1382 // ~parallel to cone and Hit & enter etheta surface [& visa versa] 1149 // 1383 // 1150 // To solve: Check 2nd root of etheta 1384 // To solve: Check 2nd root of etheta surface in addition to stheta 1151 // 1385 // 1152 // o start/end theta is exactly pi/2 << 1386 // o start/end theta is exactly pi/2 1153 // Intersections with cones 1387 // Intersections with cones 1154 // 1388 // 1155 // Cone equation: x^2+y^2=z^2tan^2(t) 1389 // Cone equation: x^2+y^2=z^2tan^2(t) 1156 // 1390 // 1157 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan 1391 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t) 1158 // 1392 // 1159 // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p << 1393 // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t)) 1160 // + sd^2(vx^2+vy^2-vz^2tan^2(t)) = << 1394 // + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0 1161 // 1395 // 1162 // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d << 1396 // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0 1163 // + (rho2-pz^2tan^2(t)) = 0 << 1164 1397 1165 if (fSTheta != 0.0) << 1398 tanSTheta = std::tan(fSTheta) ; >> 1399 tanSTheta2 = tanSTheta*tanSTheta ; >> 1400 tanETheta = std::tan(fSTheta+fDTheta) ; >> 1401 tanETheta2 = tanETheta*tanETheta ; >> 1402 >> 1403 if (fSTheta) 1166 { 1404 { 1167 dist2STheta = rho2 - p.z()*p.z()*tanSTh 1405 dist2STheta = rho2 - p.z()*p.z()*tanSTheta2 ; 1168 } 1406 } 1169 else 1407 else 1170 { 1408 { 1171 dist2STheta = kInfinity ; 1409 dist2STheta = kInfinity ; 1172 } 1410 } 1173 if ( eTheta < pi ) << 1411 if ( fSTheta + fDTheta < pi ) 1174 { 1412 { 1175 dist2ETheta=rho2-p.z()*p.z()*tanETheta2 1413 dist2ETheta=rho2-p.z()*p.z()*tanETheta2; 1176 } 1414 } 1177 else << 1415 else 1178 { 1416 { 1179 dist2ETheta=kInfinity; 1417 dist2ETheta=kInfinity; 1180 } << 1418 } 1181 if ( pTheta < tolSTheta ) << 1419 if ( pTheta < tolSTheta) // dist2STheta<-kRadTolerance*0.5 && dist2ETheta>0) 1182 { 1420 { 1183 // Inside (theta<stheta-tol) stheta con << 1421 // Inside (theta<stheta-tol) s theta cone 1184 // First root of stheta cone, second if 1422 // First root of stheta cone, second if first root -ve 1185 1423 1186 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1424 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1187 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1425 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1188 if (t1 != 0.0) << 1426 >> 1427 b = t2/t1 ; >> 1428 c = dist2STheta/t1 ; >> 1429 d2 = b*b - c ; >> 1430 >> 1431 if ( d2 >= 0 ) 1189 { 1432 { 1190 b = t2/t1 ; << 1433 d = std::sqrt(d2) ; 1191 c = dist2STheta/t1 ; << 1434 s = -b - d ; // First root 1192 d2 = b*b - c ; << 1435 zi = p.z() + s*v.z(); 1193 1436 1194 if ( d2 >= 0 ) << 1437 if ( s < 0 || zi*(fSTheta - halfpi) > 0 ) 1195 { 1438 { 1196 d = std::sqrt(d2) ; << 1439 s = -b+d; // Second root 1197 sd = -b - d ; // First root << 1440 } 1198 zi = p.z() + sd*v.z(); << 1441 if (s >= 0 && s < snxt) 1199 << 1442 { 1200 if ( (sd < 0) || (zi*(fSTheta - hal << 1443 xi = p.x() + s*v.x(); 1201 { << 1444 yi = p.y() + s*v.y(); 1202 sd = -b+d; // Second root << 1445 zi = p.z() + s*v.z(); 1203 } << 1446 rhoi2 = xi*xi + yi*yi; 1204 if ((sd >= 0) && (sd < snxt)) << 1447 radi2 = rhoi2 + zi*zi; >> 1448 if ( (radi2 <= tolORMax2) >> 1449 && (radi2 >= tolORMin2) >> 1450 && (zi*(fSTheta - halfpi) <= 0) ) 1205 { 1451 { 1206 xi = p.x() + sd*v.x(); << 1452 if ( segPhi && rhoi2 ) // Check phi intersection 1207 yi = p.y() + sd*v.y(); << 1208 zi = p.z() + sd*v.z(); << 1209 rhoi2 = xi*xi + yi*yi; << 1210 radi2 = rhoi2 + zi*zi; << 1211 if ( (radi2 <= tolORMax2) << 1212 && (radi2 >= tolORMin2) << 1213 && (zi*(fSTheta - halfpi) <= 0) << 1214 { 1453 { 1215 if ( !fFullPhiSphere && (rhoi2 << 1454 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; >> 1455 if (cosPsi >= cosHDPhiOT) 1216 { 1456 { 1217 cosPsi = (xi*cosCPhi + yi*sin << 1457 snxt = s ; 1218 if (cosPsi >= cosHDPhiOT) << 1219 { << 1220 snxt = sd; << 1221 } << 1222 } << 1223 else << 1224 { << 1225 snxt = sd; << 1226 } 1458 } 1227 } 1459 } >> 1460 else >> 1461 { >> 1462 snxt = s ; >> 1463 } 1228 } 1464 } 1229 } 1465 } 1230 } 1466 } 1231 1467 1232 // Possible intersection with ETheta co << 1468 // Possible intersection with ETheta cone. 1233 // Second >= 0 root should be considere 1469 // Second >= 0 root should be considered 1234 << 1470 1235 if ( eTheta < pi ) << 1471 if ( fSTheta + fDTheta < pi ) 1236 { 1472 { 1237 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) 1473 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1238 t2 = pDotV2d - p.z()*v.z()*tanETheta2 1474 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1239 if (t1 != 0.0) << 1475 >> 1476 b = t2/t1 ; >> 1477 c = dist2ETheta/t1 ; >> 1478 d2 = b*b - c ; >> 1479 >> 1480 if (d2 >= 0) 1240 { 1481 { 1241 b = t2/t1 ; << 1482 d = std::sqrt(d2) ; 1242 c = dist2ETheta/t1 ; << 1483 s = -b + d ; // Second root 1243 d2 = b*b - c ; << 1244 1484 1245 if (d2 >= 0) << 1485 if (s >= 0 && s < snxt) 1246 { 1486 { 1247 d = std::sqrt(d2) ; << 1487 xi = p.x() + s*v.x() ; 1248 sd = -b + d ; // Second root << 1488 yi = p.y() + s*v.y() ; >> 1489 zi = p.z() + s*v.z() ; >> 1490 rhoi2 = xi*xi + yi*yi ; >> 1491 radi2 = rhoi2 + zi*zi ; 1249 1492 1250 if ( (sd >= 0) && (sd < snxt) ) << 1493 if ( (radi2 <= tolORMax2) >> 1494 && (radi2 >= tolORMin2) >> 1495 && (zi*(fSTheta + fDTheta - halfpi) <= 0) ) 1251 { 1496 { 1252 xi = p.x() + sd*v.x() ; << 1497 if (segPhi && rhoi2) // Check phi intersection 1253 yi = p.y() + sd*v.y() ; << 1254 zi = p.z() + sd*v.z() ; << 1255 rhoi2 = xi*xi + yi*yi ; << 1256 radi2 = rhoi2 + zi*zi ; << 1257 << 1258 if ( (radi2 <= tolORMax2) << 1259 && (radi2 >= tolORMin2) << 1260 && (zi*(eTheta - halfpi) <= 0 << 1261 { 1498 { 1262 if (!fFullPhiSphere && (rhoi2 << 1499 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1263 { << 1500 if (cosPsi >= cosHDPhiOT) 1264 cosPsi = (xi*cosCPhi + yi*s << 1265 if (cosPsi >= cosHDPhiOT) << 1266 { << 1267 snxt = sd; << 1268 } << 1269 } << 1270 else << 1271 { 1501 { 1272 snxt = sd; << 1502 snxt = s ; 1273 } 1503 } 1274 } 1504 } >> 1505 else >> 1506 { >> 1507 snxt = s ; >> 1508 } 1275 } 1509 } 1276 } 1510 } 1277 } 1511 } 1278 } 1512 } 1279 } << 1513 } 1280 else if ( pTheta > tolETheta ) << 1514 else if ( pTheta > tolETheta ) 1281 { << 1515 { 1282 // dist2ETheta<-kRadTolerance*0.5 && di 1516 // dist2ETheta<-kRadTolerance*0.5 && dist2STheta>0) 1283 // Inside (theta > etheta+tol) e-theta 1517 // Inside (theta > etheta+tol) e-theta cone 1284 // First root of etheta cone, second if << 1518 // First root of etheta cone, second if first root `imaginary' 1285 1519 1286 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1520 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1287 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1521 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1288 if (t1 != 0.0) << 1522 >> 1523 b = t2/t1 ; >> 1524 c = dist2ETheta/t1 ; >> 1525 d2 = b*b - c ; >> 1526 >> 1527 if (d2 >= 0) 1289 { 1528 { 1290 b = t2/t1 ; << 1529 d = std::sqrt(d2) ; 1291 c = dist2ETheta/t1 ; << 1530 s = -b - d ; // First root 1292 d2 = b*b - c ; << 1531 zi = p.z() + s*v.z(); 1293 1532 1294 if (d2 >= 0) << 1533 if (s < 0 || zi*(fSTheta + fDTheta - halfpi) > 0) >> 1534 { >> 1535 s = -b + d ; // second root >> 1536 } >> 1537 if (s >= 0 && s < snxt) 1295 { 1538 { 1296 d = std::sqrt(d2) ; << 1539 xi = p.x() + s*v.x() ; 1297 sd = -b - d ; // First root << 1540 yi = p.y() + s*v.y() ; 1298 zi = p.z() + sd*v.z(); << 1541 zi = p.z() + s*v.z() ; >> 1542 rhoi2 = xi*xi + yi*yi ; >> 1543 radi2 = rhoi2 + zi*zi ; 1299 1544 1300 if ( (sd < 0) || (zi*(eTheta - half << 1545 if ( (radi2 <= tolORMax2) 1301 { << 1546 && (radi2 >= tolORMin2) 1302 sd = -b + d ; // second << 1547 && (zi*(fSTheta + fDTheta - halfpi) <= 0) ) 1303 } << 1304 if ( (sd >= 0) && (sd < snxt) ) << 1305 { 1548 { 1306 xi = p.x() + sd*v.x() ; << 1549 if (segPhi && rhoi2) // Check phi intersection 1307 yi = p.y() + sd*v.y() ; << 1308 zi = p.z() + sd*v.z() ; << 1309 rhoi2 = xi*xi + yi*yi ; << 1310 radi2 = rhoi2 + zi*zi ; << 1311 << 1312 if ( (radi2 <= tolORMax2) << 1313 && (radi2 >= tolORMin2) << 1314 && (zi*(eTheta - halfpi) <= 0) << 1315 { 1550 { 1316 if (!fFullPhiSphere && (rhoi2 ! << 1551 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; >> 1552 if (cosPsi >= cosHDPhiOT) 1317 { 1553 { 1318 cosPsi = (xi*cosCPhi + yi*sin << 1554 snxt = s ; 1319 if (cosPsi >= cosHDPhiOT) << 1320 { << 1321 snxt = sd; << 1322 } << 1323 } << 1324 else << 1325 { << 1326 snxt = sd; << 1327 } 1555 } 1328 } 1556 } >> 1557 else >> 1558 { >> 1559 snxt = s ; >> 1560 } 1329 } 1561 } 1330 } 1562 } 1331 } 1563 } 1332 1564 1333 // Possible intersection with STheta co << 1565 // Possible intersection with STheta cone. 1334 // Second >= 0 root should be considere 1566 // Second >= 0 root should be considered 1335 << 1567 1336 if ( fSTheta != 0.0 ) << 1568 if ( fSTheta ) 1337 { 1569 { 1338 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) 1570 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1339 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 1571 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1340 if (t1 != 0.0) << 1572 >> 1573 b = t2/t1 ; >> 1574 c = dist2STheta/t1 ; >> 1575 d2 = b*b - c ; >> 1576 >> 1577 if (d2 >= 0) 1341 { 1578 { 1342 b = t2/t1 ; << 1579 d = std::sqrt(d2) ; 1343 c = dist2STheta/t1 ; << 1580 s = -b + d ; // Second root 1344 d2 = b*b - c ; << 1345 1581 1346 if (d2 >= 0) << 1582 if ( (s >= 0) && (s < snxt) ) 1347 { 1583 { 1348 d = std::sqrt(d2) ; << 1584 xi = p.x() + s*v.x() ; 1349 sd = -b + d ; // Second root << 1585 yi = p.y() + s*v.y() ; >> 1586 zi = p.z() + s*v.z() ; >> 1587 rhoi2 = xi*xi + yi*yi ; >> 1588 radi2 = rhoi2 + zi*zi ; 1350 1589 1351 if ( (sd >= 0) && (sd < snxt) ) << 1590 if ( (radi2 <= tolORMax2) >> 1591 && (radi2 >= tolORMin2) >> 1592 && (zi*(fSTheta - halfpi) <= 0) ) 1352 { 1593 { 1353 xi = p.x() + sd*v.x() ; << 1594 if (segPhi && rhoi2) // Check phi intersection 1354 yi = p.y() + sd*v.y() ; << 1355 zi = p.z() + sd*v.z() ; << 1356 rhoi2 = xi*xi + yi*yi ; << 1357 radi2 = rhoi2 + zi*zi ; << 1358 << 1359 if ( (radi2 <= tolORMax2) << 1360 && (radi2 >= tolORMin2) << 1361 && (zi*(fSTheta - halfpi) <= << 1362 { 1595 { 1363 if (!fFullPhiSphere && (rhoi2 << 1596 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1364 { << 1597 if (cosPsi >= cosHDPhiOT) 1365 cosPsi = (xi*cosCPhi + yi*s << 1366 if (cosPsi >= cosHDPhiOT) << 1367 { << 1368 snxt = sd; << 1369 } << 1370 } << 1371 else << 1372 { 1598 { 1373 snxt = sd; << 1599 snxt = s ; 1374 } 1600 } 1375 } 1601 } >> 1602 else >> 1603 { >> 1604 snxt = s ; >> 1605 } 1376 } 1606 } 1377 } 1607 } 1378 } 1608 } 1379 } << 1609 } 1380 } << 1610 } 1381 else if ( (pTheta < tolSTheta + kAngToler << 1611 else if ( (pTheta <tolSTheta + kAngTolerance) 1382 && (fSTheta > halfAngTolerance) ) << 1612 && (fSTheta > kAngTolerance) ) 1383 { 1613 { 1384 // In tolerance of stheta 1614 // In tolerance of stheta 1385 // If entering through solid [r,phi] => 1615 // If entering through solid [r,phi] => 0 to in 1386 // else try 2nd root 1616 // else try 2nd root 1387 1617 1388 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1618 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1389 if ( (t2>=0 && tolIRMin2<rad2 && rad2<t << 1619 if ( (t2>=0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta<pi*.5) 1390 || (t2<0 && tolIRMin2<rad2 && rad2<t << 1620 || (t2<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta>pi*.5) 1391 || (v.z()<0 && tolIRMin2<rad2 && rad2 << 1621 || (v.z()<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta==pi*.5) ) 1392 { 1622 { 1393 if (!fFullPhiSphere && (rho2 != 0.0)) << 1623 if (segPhi && rho2) // Check phi intersection 1394 { 1624 { 1395 cosPsi = (p.x()*cosCPhi + p.y()*sin 1625 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 1396 if (cosPsi >= cosHDPhiIT) 1626 if (cosPsi >= cosHDPhiIT) 1397 { 1627 { 1398 return 0 ; 1628 return 0 ; 1399 } 1629 } 1400 } 1630 } 1401 else 1631 else 1402 { 1632 { 1403 return 0 ; 1633 return 0 ; 1404 } 1634 } 1405 } 1635 } 1406 1636 1407 // Not entering immediately/travelling 1637 // Not entering immediately/travelling through 1408 1638 1409 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1639 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1410 if (t1 != 0.0) << 1640 b = t2/t1 ; 1411 { << 1641 c = dist2STheta/t1 ; 1412 b = t2/t1 ; << 1642 d2 = b*b - c ; 1413 c = dist2STheta/t1 ; << 1414 d2 = b*b - c ; << 1415 1643 1416 if (d2 >= 0) << 1644 if (d2 >= 0) 1417 { << 1645 { 1418 d = std::sqrt(d2) ; << 1646 d = std::sqrt(d2) ; 1419 sd = -b + d ; << 1647 s = -b + d ; 1420 if ( (sd >= halfCarTolerance) && (s << 1648 if ( (s >= kCarTolerance*0.5) && (s < snxt) && (fSTheta < pi*0.5) ) 1421 { // ^^^^^^^^^^^^^^^^^^^^^ shoul << 1649 { 1422 xi = p.x() + sd*v.x() ; << 1650 xi = p.x() + s*v.x() ; 1423 yi = p.y() + sd*v.y() ; << 1651 yi = p.y() + s*v.y() ; 1424 zi = p.z() + sd*v.z() ; << 1652 zi = p.z() + s*v.z() ; 1425 rhoi2 = xi*xi + yi*yi ; << 1653 rhoi2 = xi*xi + yi*yi ; 1426 radi2 = rhoi2 + zi*zi ; << 1654 radi2 = rhoi2 + zi*zi ; 1427 1655 1428 if ( (radi2 <= tolORMax2) << 1656 if ( (radi2 <= tolORMax2) 1429 && (radi2 >= tolORMin2) << 1657 && (radi2 >= tolORMin2) 1430 && (zi*(fSTheta - halfpi) <= 0) << 1658 && (zi*(fSTheta - halfpi) <= 0) ) >> 1659 { >> 1660 if ( segPhi && rhoi2 ) // Check phi intersection 1431 { 1661 { 1432 if ( !fFullPhiSphere && (rhoi2 << 1662 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; 1433 { << 1663 if ( cosPsi >= cosHDPhiOT ) 1434 cosPsi = (xi*cosCPhi + yi*sin << 1435 if ( cosPsi >= cosHDPhiOT ) << 1436 { << 1437 snxt = sd; << 1438 } << 1439 } << 1440 else << 1441 { 1664 { 1442 snxt = sd; << 1665 snxt = s ; 1443 } 1666 } 1444 } 1667 } >> 1668 else >> 1669 { >> 1670 snxt = s ; >> 1671 } 1445 } 1672 } 1446 } 1673 } 1447 } 1674 } 1448 } << 1675 } 1449 else if ((pTheta > tolETheta-kAngToleranc << 1676 else if ( (pTheta > tolETheta - kAngTolerance) >> 1677 && ((fSTheta + fDTheta) < pi-kAngTolerance) ) 1450 { 1678 { 1451 1679 1452 // In tolerance of etheta 1680 // In tolerance of etheta 1453 // If entering through solid [r,phi] => 1681 // If entering through solid [r,phi] => 0 to in 1454 // else try 2nd root 1682 // else try 2nd root 1455 1683 1456 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1684 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1457 1685 1458 if ( ((t2<0) && (eTheta < halfpi) << 1686 if ( 1459 && (tolIRMin2 < rad2) && (rad2 < to << 1687 (t2<0 && (fSTheta+fDTheta) <pi*0.5 && tolIRMin2<rad2 && rad2<tolIRMax2) 1460 || ((t2>=0) && (eTheta > halfpi) << 1688 || (t2>=0 && (fSTheta+fDTheta) >pi*0.5 && tolIRMin2<rad2 && rad2<tolIRMax2) 1461 && (tolIRMin2 < rad2) && (rad2 < to << 1689 || (v.z()>0 && (fSTheta+fDTheta)==pi*0.5 && tolIRMin2<rad2 && rad2<tolIRMax2) 1462 || ((v.z()>0) && (eTheta == halfpi) << 1690 ) 1463 && (tolIRMin2 < rad2) && (rad2 < to << 1464 { 1691 { 1465 if (!fFullPhiSphere && (rho2 != 0.0)) << 1692 if (segPhi && rho2) // Check phi intersection 1466 { 1693 { 1467 cosPsi = (p.x()*cosCPhi + p.y()*sin 1694 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ; 1468 if (cosPsi >= cosHDPhiIT) 1695 if (cosPsi >= cosHDPhiIT) 1469 { 1696 { 1470 return 0 ; 1697 return 0 ; 1471 } 1698 } 1472 } 1699 } 1473 else 1700 else 1474 { 1701 { 1475 return 0 ; 1702 return 0 ; 1476 } 1703 } 1477 } 1704 } 1478 1705 1479 // Not entering immediately/travelling 1706 // Not entering immediately/travelling through 1480 1707 1481 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1708 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1482 if (t1 != 0.0) << 1709 b = t2/t1 ; 1483 { << 1710 c = dist2ETheta/t1 ; 1484 b = t2/t1 ; << 1711 d2 = b*b - c ; 1485 c = dist2ETheta/t1 ; << 1486 d2 = b*b - c ; << 1487 1712 1488 if (d2 >= 0) << 1713 if (d2 >= 0) 1489 { << 1714 { 1490 d = std::sqrt(d2) ; << 1715 d = std::sqrt(d2) ; 1491 sd = -b + d ; << 1716 s = -b + d ; >> 1717 >> 1718 if ( (s >= kCarTolerance*0.5) >> 1719 && (s < snxt) && ((fSTheta + fDTheta) > pi*0.5) ) >> 1720 { >> 1721 xi = p.x() + s*v.x() ; >> 1722 yi = p.y() + s*v.y() ; >> 1723 zi = p.z() + s*v.z() ; >> 1724 rhoi2 = xi*xi + yi*yi ; >> 1725 radi2 = rhoi2 + zi*zi ; 1492 1726 1493 if ( (sd >= halfCarTolerance) << 1727 if ( (radi2 <= tolORMax2) 1494 && (sd < snxt) && (eTheta > halfp << 1728 && (radi2 >= tolORMin2) >> 1729 && (zi*(fSTheta + fDTheta - halfpi) <= 0) ) 1495 { 1730 { 1496 xi = p.x() + sd*v.x() ; << 1731 if (segPhi && rhoi2) // Check phi intersection 1497 yi = p.y() + sd*v.y() ; << 1498 zi = p.z() + sd*v.z() ; << 1499 rhoi2 = xi*xi + yi*yi ; << 1500 radi2 = rhoi2 + zi*zi ; << 1501 << 1502 if ( (radi2 <= tolORMax2) << 1503 && (radi2 >= tolORMin2) << 1504 && (zi*(eTheta - halfpi) <= 0) << 1505 { 1732 { 1506 if (!fFullPhiSphere && (rhoi2 ! << 1733 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; >> 1734 if (cosPsi>=cosHDPhiOT) 1507 { 1735 { 1508 cosPsi = (xi*cosCPhi + yi*sin << 1736 snxt = s ; 1509 if (cosPsi >= cosHDPhiOT) << 1510 { << 1511 snxt = sd; << 1512 } << 1513 } << 1514 else << 1515 { << 1516 snxt = sd; << 1517 } 1737 } 1518 } 1738 } >> 1739 else >> 1740 { >> 1741 snxt = s ; >> 1742 } 1519 } 1743 } 1520 } 1744 } 1521 } << 1745 } 1522 } << 1746 } 1523 else 1747 else 1524 { 1748 { 1525 // stheta+tol<theta<etheta-tol 1749 // stheta+tol<theta<etheta-tol 1526 // For BOTH stheta & etheta check 2nd r 1750 // For BOTH stheta & etheta check 2nd root for validity [r,phi] 1527 1751 1528 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1752 t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ; 1529 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1753 t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ; 1530 if (t1 != 0.0) << 1754 >> 1755 b = t2/t1; >> 1756 c = dist2STheta/t1 ; >> 1757 d2 = b*b - c ; >> 1758 >> 1759 if (d2 >= 0) 1531 { 1760 { 1532 b = t2/t1; << 1761 d = std::sqrt(d2) ; 1533 c = dist2STheta/t1 ; << 1762 s = -b + d ; // second root 1534 d2 = b*b - c ; << 1535 1763 1536 if (d2 >= 0) << 1764 if (s >= 0 && s < snxt) 1537 { 1765 { 1538 d = std::sqrt(d2) ; << 1766 xi = p.x() + s*v.x() ; 1539 sd = -b + d ; // second root << 1767 yi = p.y() + s*v.y() ; >> 1768 zi = p.z() + s*v.z() ; >> 1769 rhoi2 = xi*xi + yi*yi ; >> 1770 radi2 = rhoi2 + zi*zi ; 1540 1771 1541 if ((sd >= 0) && (sd < snxt)) << 1772 if ( (radi2 <= tolORMax2) >> 1773 && (radi2 >= tolORMin2) >> 1774 && (zi*(fSTheta - halfpi) <= 0) ) 1542 { 1775 { 1543 xi = p.x() + sd*v.x() ; << 1776 if (segPhi && rhoi2) // Check phi intersection 1544 yi = p.y() + sd*v.y() ; << 1545 zi = p.z() + sd*v.z() ; << 1546 rhoi2 = xi*xi + yi*yi ; << 1547 radi2 = rhoi2 + zi*zi ; << 1548 << 1549 if ( (radi2 <= tolORMax2) << 1550 && (radi2 >= tolORMin2) << 1551 && (zi*(fSTheta - halfpi) <= 0) << 1552 { 1777 { 1553 if (!fFullPhiSphere && (rhoi2 ! << 1778 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; >> 1779 if (cosPsi >= cosHDPhiOT) 1554 { 1780 { 1555 cosPsi = (xi*cosCPhi + yi*sin << 1781 snxt = s ; 1556 if (cosPsi >= cosHDPhiOT) << 1557 { << 1558 snxt = sd; << 1559 } << 1560 } << 1561 else << 1562 { << 1563 snxt = sd; << 1564 } 1782 } 1565 } 1783 } >> 1784 else >> 1785 { >> 1786 snxt = s ; >> 1787 } 1566 } 1788 } 1567 } 1789 } 1568 } << 1790 } 1569 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1791 t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; 1570 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1792 t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; 1571 if (t1 != 0.0) << 1793 >> 1794 b = t2/t1 ; >> 1795 c = dist2ETheta/t1 ; >> 1796 d2 = b*b - c ; >> 1797 >> 1798 if (d2 >= 0) 1572 { 1799 { 1573 b = t2/t1 ; << 1800 d = std::sqrt(d2) ; 1574 c = dist2ETheta/t1 ; << 1801 s = -b + d; // second root 1575 d2 = b*b - c ; << 1576 1802 1577 if (d2 >= 0) << 1803 if (s >= 0 && s < snxt) 1578 { 1804 { 1579 d = std::sqrt(d2) ; << 1805 xi = p.x() + s*v.x() ; 1580 sd = -b + d; // second root << 1806 yi = p.y() + s*v.y() ; >> 1807 zi = p.z() + s*v.z() ; >> 1808 rhoi2 = xi*xi + yi*yi ; >> 1809 radi2 = rhoi2 + zi*zi ; 1581 1810 1582 if ((sd >= 0) && (sd < snxt)) << 1811 if ( (radi2 <= tolORMax2) >> 1812 && (radi2 >= tolORMin2) >> 1813 && (zi*(fSTheta + fDTheta - halfpi) <= 0) ) 1583 { 1814 { 1584 xi = p.x() + sd*v.x() ; << 1815 if (segPhi && rhoi2) // Check phi intersection 1585 yi = p.y() + sd*v.y() ; << 1586 zi = p.z() + sd*v.z() ; << 1587 rhoi2 = xi*xi + yi*yi ; << 1588 radi2 = rhoi2 + zi*zi ; << 1589 << 1590 if ( (radi2 <= tolORMax2) << 1591 && (radi2 >= tolORMin2) << 1592 && (zi*(eTheta - halfpi) <= 0) << 1593 { 1816 { 1594 if (!fFullPhiSphere && (rhoi2 ! << 1817 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ; >> 1818 if ( cosPsi >= cosHDPhiOT ) 1595 { 1819 { 1596 cosPsi = (xi*cosCPhi + yi*sin << 1820 snxt=s; 1597 if ( cosPsi >= cosHDPhiOT ) << 1598 { << 1599 snxt = sd; << 1600 } << 1601 } << 1602 else << 1603 { << 1604 snxt = sd; << 1605 } 1821 } 1606 } 1822 } >> 1823 else >> 1824 { >> 1825 snxt = s ; >> 1826 } 1607 } 1827 } 1608 } 1828 } 1609 } 1829 } 1610 } << 1830 } 1611 } 1831 } 1612 return snxt; 1832 return snxt; 1613 } 1833 } 1614 1834 1615 ///////////////////////////////////////////// 1835 ////////////////////////////////////////////////////////////////////// 1616 // 1836 // 1617 // Calculate distance (<= actual) to closest 1837 // Calculate distance (<= actual) to closest surface of shape from outside 1618 // - Calculate distance to radial planes 1838 // - Calculate distance to radial planes 1619 // - Only to phi planes if outside phi extent 1839 // - Only to phi planes if outside phi extent 1620 // - Only to theta planes if outside theta ex 1840 // - Only to theta planes if outside theta extent 1621 // - Return 0 if point inside 1841 // - Return 0 if point inside 1622 1842 1623 G4double G4Sphere::DistanceToIn( const G4Thre 1843 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p ) const 1624 { 1844 { 1625 G4double safe=0.0,safeRMin,safeRMax,safePhi 1845 G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta; 1626 G4double rho2,rds,rho; << 1846 G4double rho2,rad,rho; 1627 G4double cosPsi; << 1847 G4double phiC,cosPhiC,sinPhiC,cosPsi,ePhi; 1628 G4double pTheta,dTheta1,dTheta2; 1848 G4double pTheta,dTheta1,dTheta2; 1629 rho2=p.x()*p.x()+p.y()*p.y(); 1849 rho2=p.x()*p.x()+p.y()*p.y(); 1630 rds=std::sqrt(rho2+p.z()*p.z()); << 1850 rad=std::sqrt(rho2+p.z()*p.z()); 1631 rho=std::sqrt(rho2); 1851 rho=std::sqrt(rho2); 1632 1852 1633 // 1853 // 1634 // Distance to r shells 1854 // Distance to r shells 1635 // << 1855 // 1636 if (fRmin != 0.0) << 1856 if (fRmin) 1637 { 1857 { 1638 safeRMin=fRmin-rds; << 1858 safeRMin=fRmin-rad; 1639 safeRMax=rds-fRmax; << 1859 safeRMax=rad-fRmax; 1640 if (safeRMin>safeRMax) 1860 if (safeRMin>safeRMax) 1641 { 1861 { 1642 safe=safeRMin; 1862 safe=safeRMin; 1643 } 1863 } 1644 else 1864 else 1645 { 1865 { 1646 safe=safeRMax; 1866 safe=safeRMax; 1647 } 1867 } 1648 } 1868 } 1649 else 1869 else 1650 { 1870 { 1651 safe=rds-fRmax; << 1871 safe=rad-fRmax; 1652 } 1872 } 1653 1873 1654 // 1874 // 1655 // Distance to phi extent 1875 // Distance to phi extent 1656 // 1876 // 1657 if (!fFullPhiSphere && (rho != 0.0)) << 1877 if (fDPhi<twopi&&rho) 1658 { 1878 { >> 1879 phiC=fSPhi+fDPhi*0.5; >> 1880 cosPhiC=std::cos(phiC); >> 1881 sinPhiC=std::sin(phiC); >> 1882 1659 // Psi=angle from central phi to point 1883 // Psi=angle from central phi to point 1660 // 1884 // 1661 cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho; << 1885 cosPsi=(p.x()*cosPhiC+p.y()*sinPhiC)/rho; 1662 if (cosPsi<cosHDPhi) << 1886 if (cosPsi<std::cos(fDPhi*0.5)) 1663 { 1887 { 1664 // Point lies outside phi range 1888 // Point lies outside phi range 1665 // 1889 // 1666 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) << 1890 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0) 1667 { 1891 { 1668 safePhi=std::fabs(p.x()*sinSPhi-p.y() << 1892 safePhi=std::fabs(p.x()*std::sin(fSPhi)-p.y()*std::cos(fSPhi)); 1669 } 1893 } 1670 else 1894 else 1671 { 1895 { 1672 safePhi=std::fabs(p.x()*sinEPhi-p.y() << 1896 ePhi=fSPhi+fDPhi; >> 1897 safePhi=std::fabs(p.x()*std::sin(ePhi)-p.y()*std::cos(ePhi)); 1673 } 1898 } 1674 if (safePhi>safe) { safe=safePhi; } << 1899 if (safePhi>safe) safe=safePhi; 1675 } 1900 } 1676 } 1901 } 1677 // 1902 // 1678 // Distance to Theta extent 1903 // Distance to Theta extent 1679 // << 1904 // 1680 if ((rds!=0.0) && (!fFullThetaSphere)) << 1905 if ((rad!=0.0) && (fDTheta<pi)) 1681 { 1906 { 1682 pTheta=std::acos(p.z()/rds); << 1907 pTheta=std::acos(p.z()/rad); 1683 if (pTheta<0) { pTheta+=pi; } << 1908 if (pTheta<0) pTheta+=pi; 1684 dTheta1=fSTheta-pTheta; 1909 dTheta1=fSTheta-pTheta; 1685 dTheta2=pTheta-eTheta; << 1910 dTheta2=pTheta-(fSTheta+fDTheta); 1686 if (dTheta1>dTheta2) 1911 if (dTheta1>dTheta2) 1687 { 1912 { 1688 if (dTheta1>=0) // WHY ???? 1913 if (dTheta1>=0) // WHY ??????????? 1689 { 1914 { 1690 safeTheta=rds*std::sin(dTheta1); << 1915 safeTheta=rad*std::sin(dTheta1); 1691 if (safe<=safeTheta) 1916 if (safe<=safeTheta) 1692 { 1917 { 1693 safe=safeTheta; 1918 safe=safeTheta; 1694 } 1919 } 1695 } 1920 } 1696 } 1921 } 1697 else 1922 else 1698 { 1923 { 1699 if (dTheta2>=0) 1924 if (dTheta2>=0) 1700 { 1925 { 1701 safeTheta=rds*std::sin(dTheta2); << 1926 safeTheta=rad*std::sin(dTheta2); 1702 if (safe<=safeTheta) 1927 if (safe<=safeTheta) 1703 { 1928 { 1704 safe=safeTheta; 1929 safe=safeTheta; 1705 } 1930 } 1706 } 1931 } 1707 } 1932 } 1708 } 1933 } 1709 1934 1710 if (safe<0) { safe=0; } << 1935 if (safe<0) safe=0; 1711 return safe; 1936 return safe; 1712 } 1937 } 1713 1938 1714 ///////////////////////////////////////////// 1939 ///////////////////////////////////////////////////////////////////// 1715 // 1940 // 1716 // Calculate distance to surface of shape fro << 1941 // Calculate distance to surface of shape from `inside', allowing for tolerance 1717 // - Only Calc rmax intersection if no valid 1942 // - Only Calc rmax intersection if no valid rmin intersection 1718 1943 1719 G4double G4Sphere::DistanceToOut( const G4Thr 1944 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p, 1720 const G4Thr 1945 const G4ThreeVector& v, 1721 const G4boo 1946 const G4bool calcNorm, 1722 G4boo << 1947 G4bool *validNorm, 1723 G4Thr << 1948 G4ThreeVector *n ) const 1724 { 1949 { 1725 G4double snxt = kInfinity; // snxt is d 1950 G4double snxt = kInfinity; // snxt is default return value 1726 G4double sphi= kInfinity,stheta= kInfinity; 1951 G4double sphi= kInfinity,stheta= kInfinity; 1727 ESide side=kNull,sidephi=kNull,sidetheta=kN << 1952 ESide side=kNull,sidephi=kNull,sidetheta=kNull; 1728 1953 1729 const G4double halfRmaxTolerance = fRmaxTol << 1730 const G4double halfRminTolerance = fRminTol << 1731 const G4double Rmax_plus = fRmax + halfRma << 1732 const G4double Rmin_minus = (fRmin) != 0.0 << 1733 G4double t1,t2; 1954 G4double t1,t2; 1734 G4double b,c,d; 1955 G4double b,c,d; 1735 1956 1736 // Variables for phi intersection: 1957 // Variables for phi intersection: 1737 1958 >> 1959 G4double sinSPhi,cosSPhi,ePhi,sinEPhi,cosEPhi; >> 1960 G4double cPhi,sinCPhi,cosCPhi; 1738 G4double pDistS,compS,pDistE,compE,sphi2,vp 1961 G4double pDistS,compS,pDistE,compE,sphi2,vphi; >> 1962 >> 1963 G4double rho2,rad2,pDotV2d,pDotV3d,pTheta; 1739 1964 1740 G4double rho2,rad2,pDotV2d,pDotV3d; << 1965 G4double tolSTheta=0.,tolETheta=0.; 1741 << 1742 G4double xi,yi,zi; // Intersection poi 1966 G4double xi,yi,zi; // Intersection point 1743 1967 1744 // Theta precals << 1968 // G4double Comp; // Phi intersection 1745 // << 1969 1746 G4double rhoSecTheta; << 1970 G4bool segPhi; // Phi flag and precalcs >> 1971 G4double hDPhi,hDPhiOT,hDPhiIT; >> 1972 G4double cosHDPhiOT,cosHDPhiIT; >> 1973 >> 1974 G4bool segTheta; // Theta flag and precals >> 1975 G4double tanSTheta=0.,tanETheta=0., rhoSecTheta; >> 1976 G4double tanSTheta2=0.,tanETheta2=0.; 1747 G4double dist2STheta, dist2ETheta, distThet 1977 G4double dist2STheta, dist2ETheta, distTheta; 1748 G4double d2,sd; << 1978 G4double d2,s; 1749 1979 1750 // General Precalcs 1980 // General Precalcs 1751 // << 1981 1752 rho2 = p.x()*p.x()+p.y()*p.y(); 1982 rho2 = p.x()*p.x()+p.y()*p.y(); 1753 rad2 = rho2+p.z()*p.z(); 1983 rad2 = rho2+p.z()*p.z(); >> 1984 // G4double rad=std::sqrt(rad2); >> 1985 >> 1986 pTheta = std::atan2(std::sqrt(rho2),p.z()); 1754 1987 1755 pDotV2d = p.x()*v.x()+p.y()*v.y(); 1988 pDotV2d = p.x()*v.x()+p.y()*v.y(); 1756 pDotV3d = pDotV2d+p.z()*v.z(); 1989 pDotV3d = pDotV2d+p.z()*v.z(); 1757 1990 >> 1991 // Set phi divided flag and precalcs >> 1992 >> 1993 if( fDPhi < twopi ) >> 1994 { >> 1995 segPhi=true; >> 1996 hDPhi=0.5*fDPhi; // half delta phi >> 1997 cPhi=fSPhi+hDPhi;; >> 1998 hDPhiOT=hDPhi+0.5*kAngTolerance; // Outer Tolerant half delta phi >> 1999 hDPhiIT=hDPhi-0.5*kAngTolerance; >> 2000 sinCPhi=std::sin(cPhi); >> 2001 cosCPhi=std::cos(cPhi); >> 2002 cosHDPhiOT=std::cos(hDPhiOT); >> 2003 cosHDPhiIT=std::cos(hDPhiIT); >> 2004 } >> 2005 else >> 2006 { >> 2007 segPhi=false; >> 2008 } >> 2009 >> 2010 // Theta precalcs >> 2011 >> 2012 if ( fDTheta < pi ) >> 2013 { >> 2014 segTheta = true; >> 2015 tolSTheta = fSTheta - kAngTolerance*0.5; >> 2016 tolETheta = fSTheta + fDTheta + kAngTolerance*0.5; >> 2017 } >> 2018 else segTheta = false; >> 2019 >> 2020 1758 // Radial Intersections from G4Sphere::Dist 2021 // Radial Intersections from G4Sphere::DistanceToIn 1759 // 2022 // 1760 // Outer spherical shell intersection 2023 // Outer spherical shell intersection 1761 // - Only if outside tolerant fRmax 2024 // - Only if outside tolerant fRmax 1762 // - Check for if inside and outer G4Sphere 2025 // - Check for if inside and outer G4Sphere heading through solid (-> 0) 1763 // - No intersect -> no intersection with G 2026 // - No intersect -> no intersection with G4Sphere 1764 // 2027 // 1765 // Shell eqn: x^2+y^2+z^2=RSPH^2 2028 // Shell eqn: x^2+y^2+z^2=RSPH^2 1766 // 2029 // 1767 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 2030 // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2 1768 // 2031 // 1769 // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz) << 2032 // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2 1770 // => rad2 +2sd(pDotV3d) << 2033 // => rad2 +2s(pDotV3d) +s^2 =R^2 >> 2034 // >> 2035 // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2)) 1771 // 2036 // 1772 // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad << 2037 // const G4double fractionTolerance = 1.0e-12; >> 2038 >> 2039 const G4double flexRadMaxTolerance = // kRadTolerance; >> 2040 std::max(kRadTolerance, fEpsilon * fRmax); >> 2041 >> 2042 const G4double Rmax_plus = fRmax + flexRadMaxTolerance*0.5; >> 2043 >> 2044 const G4double flexRadMinTolerance = std::max(kRadTolerance, >> 2045 fEpsilon * fRmin); >> 2046 >> 2047 const G4double Rmin_minus= (fRmin > 0) ? fRmin-flexRadMinTolerance*0.5 : 0 ; 1773 2048 1774 if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2 << 2049 if(rad2 <= Rmax_plus*Rmax_plus && rad2 >= Rmin_minus*Rmin_minus) >> 2050 // if(rad <= Rmax_plus && rad >= Rmin_minus) 1775 { 2051 { 1776 c = rad2 - fRmax*fRmax; 2052 c = rad2 - fRmax*fRmax; 1777 2053 1778 if (c < fRmaxTolerance*fRmax) << 2054 if (c < flexRadMaxTolerance*fRmax) 1779 { 2055 { 1780 // Within tolerant Outer radius << 2056 // Within tolerant Outer radius 1781 // << 2057 // 1782 // The test is 2058 // The test is 1783 // rad - fRmax < 0.5*kRadTolerance 2059 // rad - fRmax < 0.5*kRadTolerance 1784 // => rad < fRmax + 0.5*kRadTol 2060 // => rad < fRmax + 0.5*kRadTol 1785 // => rad2 < (fRmax + 0.5*kRadTol)^2 2061 // => rad2 < (fRmax + 0.5*kRadTol)^2 1786 // => rad2 < fRmax^2 + 2.*0.5*fRmax*kR 2062 // => rad2 < fRmax^2 + 2.*0.5*fRmax*kRadTol + 0.25*kRadTol*kRadTol 1787 // => rad2 - fRmax^2 <~ fRmax*kR << 2063 // => rad2 - fRmax^2 <~ fRmax*kRadTol 1788 2064 1789 d2 = pDotV3d*pDotV3d - c; 2065 d2 = pDotV3d*pDotV3d - c; 1790 2066 1791 if( (c >- fRmaxTolerance*fRmax) / << 2067 if( (c >- flexRadMaxTolerance*fRmax) // on tolerant surface 1792 && ((pDotV3d >=0) || (d2 < 0)) ) / << 2068 && ((pDotV3d >=0) || (d2 < 0)) ) // leaving outside from Rmax 1793 / << 2069 // not re-entering 1794 { 2070 { 1795 if(calcNorm) 2071 if(calcNorm) 1796 { 2072 { 1797 *validNorm = true ; 2073 *validNorm = true ; 1798 *n = G4ThreeVector(p.x()/fR 2074 *n = G4ThreeVector(p.x()/fRmax,p.y()/fRmax,p.z()/fRmax) ; 1799 } 2075 } 1800 return snxt = 0; 2076 return snxt = 0; 1801 } 2077 } 1802 else << 2078 else 1803 { 2079 { 1804 snxt = -pDotV3d+std::sqrt(d2); // 2080 snxt = -pDotV3d+std::sqrt(d2); // second root since inside Rmax 1805 side = kRMax ; << 2081 side = kRMax ; 1806 } 2082 } 1807 } 2083 } 1808 2084 1809 // Inner spherical shell intersection: 2085 // Inner spherical shell intersection: 1810 // Always first >=0 root, because would h 2086 // Always first >=0 root, because would have passed 1811 // from outside of Rmin surface . 2087 // from outside of Rmin surface . 1812 2088 1813 if (fRmin != 0.0) << 2089 if (fRmin) 1814 { 2090 { 1815 c = rad2 - fRmin*fRmin; 2091 c = rad2 - fRmin*fRmin; 1816 d2 = pDotV3d*pDotV3d - c; 2092 d2 = pDotV3d*pDotV3d - c; 1817 2093 1818 if (c >- fRminTolerance*fRmin) // 2.0 * << 2094 if ( c >- flexRadMinTolerance*fRmin ) // 2.0 * (0.5*kRadTolerance) * fRmin 1819 { 2095 { 1820 if ( (c < fRminTolerance*fRmin) << 2096 if( c < flexRadMinTolerance*fRmin && 1821 && (d2 >= fRminTolerance*fRmin) && << 2097 d2 >= flexRadMinTolerance*fRmin && pDotV3d < 0 ) // leaving from Rmin 1822 { 2098 { 1823 if(calcNorm) { *validNorm = false; << 2099 if(calcNorm) *validNorm = false ; // Rmin surface is concave 1824 return snxt = 0 ; << 2100 return snxt = 0 ; 1825 } 2101 } 1826 else 2102 else 1827 { << 2103 { 1828 if ( d2 >= 0. ) 2104 if ( d2 >= 0. ) 1829 { 2105 { 1830 sd = -pDotV3d-std::sqrt(d2); << 2106 s = -pDotV3d-std::sqrt(d2); 1831 2107 1832 if ( sd >= 0. ) // Always int << 2108 if ( s >= 0. ) // Always intersect Rmin first 1833 { 2109 { 1834 snxt = sd ; << 2110 snxt = s ; 1835 side = kRMin ; 2111 side = kRMin ; 1836 } 2112 } 1837 } 2113 } 1838 } 2114 } 1839 } 2115 } 1840 } 2116 } 1841 } 2117 } 1842 2118 1843 // Theta segment intersection 2119 // Theta segment intersection 1844 2120 1845 if ( !fFullThetaSphere ) << 2121 if (segTheta) 1846 { 2122 { 1847 // Intersection with theta surfaces 2123 // Intersection with theta surfaces 1848 // 2124 // 1849 // Known failure cases: 2125 // Known failure cases: 1850 // o Inside tolerance of stheta surface, 2126 // o Inside tolerance of stheta surface, skim 1851 // ~parallel to cone and Hit & enter e 2127 // ~parallel to cone and Hit & enter etheta surface [& visa versa] 1852 // 2128 // 1853 // To solve: Check 2nd root of etheta 2129 // To solve: Check 2nd root of etheta surface in addition to stheta 1854 // 2130 // 1855 // o start/end theta is exactly pi/2 << 2131 // o start/end theta is exactly pi/2 1856 // 2132 // 1857 // Intersections with cones 2133 // Intersections with cones 1858 // 2134 // 1859 // Cone equation: x^2+y^2=z^2tan^2(t) 2135 // Cone equation: x^2+y^2=z^2tan^2(t) 1860 // 2136 // 1861 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan 2137 // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t) 1862 // 2138 // 1863 // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p << 2139 // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t)) 1864 // + sd^2(vx^2+vy^2-vz^2tan^2(t)) = << 2140 // + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0 1865 // 2141 // 1866 // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d << 2142 // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0 1867 // + (rho2-pz^2tan^2(t)) = 0 << 1868 // 2143 // >> 2144 >> 2145 /* //////////////////////////////////////////////////////// >> 2146 >> 2147 tanSTheta=std::tan(fSTheta); >> 2148 tanSTheta2=tanSTheta*tanSTheta; >> 2149 tanETheta=std::tan(fSTheta+fDTheta); >> 2150 tanETheta2=tanETheta*tanETheta; >> 2151 >> 2152 if (fSTheta) >> 2153 { >> 2154 dist2STheta=rho2-p.z()*p.z()*tanSTheta2; >> 2155 } >> 2156 else >> 2157 { >> 2158 dist2STheta = kInfinity; >> 2159 } >> 2160 if (fSTheta + fDTheta < pi) >> 2161 { >> 2162 dist2ETheta = rho2-p.z()*p.z()*tanETheta2; >> 2163 } >> 2164 else >> 2165 { >> 2166 dist2ETheta = kInfinity ; >> 2167 } >> 2168 if (pTheta > tolSTheta && pTheta < tolETheta) // Inside theta >> 2169 { >> 2170 // In tolerance of STheta and possible leaving out to small thetas N- >> 2171 >> 2172 if(pTheta < tolSTheta + kAngTolerance && fSTheta > kAngTolerance) >> 2173 { >> 2174 t2=pDotV2d-p.z()*v.z()*tanSTheta2 ; // =(VdotN+)*rhoSecSTheta >> 2175 >> 2176 if( fSTheta < pi*0.5 && t2 < 0) >> 2177 { >> 2178 if(calcNorm) *validNorm = false ; >> 2179 return snxt = 0 ; >> 2180 } >> 2181 else if(fSTheta > pi*0.5 && t2 >= 0) >> 2182 { >> 2183 if(calcNorm) >> 2184 { >> 2185 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)) ; >> 2186 *validNorm = true ; >> 2187 *n = G4ThreeVector(-p.x()/rhoSecTheta, // N- >> 2188 -p.y()/rhoSecTheta, >> 2189 tanSTheta/std::sqrt(1+tanSTheta2) ) ; >> 2190 } >> 2191 return snxt = 0 ; >> 2192 } >> 2193 else if( fSTheta == pi*0.5 && v.z() > 0) >> 2194 { >> 2195 if(calcNorm) >> 2196 { >> 2197 *validNorm = true ; >> 2198 *n = G4ThreeVector(0,0,1) ; >> 2199 } >> 2200 return snxt = 0 ; >> 2201 } >> 2202 } >> 2203 >> 2204 // In tolerance of ETheta and possible leaving out to larger thetas N+ >> 2205 >> 2206 if ( (pTheta > tolETheta - kAngTolerance) >> 2207 && (( fSTheta + fDTheta) < pi - kAngTolerance) ) >> 2208 { >> 2209 t2=pDotV2d-p.z()*v.z()*tanETheta2 ; >> 2210 if((fSTheta+fDTheta)>pi*0.5 && t2<0) >> 2211 { >> 2212 if(calcNorm) *validNorm = false ; >> 2213 return snxt = 0 ; >> 2214 } >> 2215 else if( (fSTheta+fDTheta) < pi*0.5 && t2 >= 0 ) >> 2216 { >> 2217 if(calcNorm) >> 2218 { >> 2219 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)) ; >> 2220 *validNorm = true ; >> 2221 *n = G4ThreeVector( p.x()/rhoSecTheta, // N+ >> 2222 p.y()/rhoSecTheta, >> 2223 -tanETheta/std::sqrt(1+tanETheta2) ) ; >> 2224 } >> 2225 return snxt = 0 ; >> 2226 } >> 2227 else if( ( fSTheta+fDTheta) == pi*0.5 && v.z() < 0 ) >> 2228 { >> 2229 if(calcNorm) >> 2230 { >> 2231 *validNorm = true ; >> 2232 *n = G4ThreeVector(0,0,-1) ; >> 2233 } >> 2234 return snxt = 0 ; >> 2235 } >> 2236 } >> 2237 if( fSTheta > 0 ) >> 2238 { >> 2239 // First root of fSTheta cone, second if first root -ve >> 2240 >> 2241 t1 = 1-v.z()*v.z()*(1+tanSTheta2); >> 2242 t2 = pDotV2d-p.z()*v.z()*tanSTheta2; >> 2243 >> 2244 b = t2/t1; >> 2245 c = dist2STheta/t1; >> 2246 d2 = b*b - c ; >> 2247 >> 2248 if ( d2 >= 0 ) >> 2249 { >> 2250 d = std::sqrt(d2) ; >> 2251 s = -b - d ; // First root >> 2252 >> 2253 if ( s < 0 ) >> 2254 { >> 2255 s = -b + d ; // Second root >> 2256 } >> 2257 if (s > flexRadMaxTolerance*0.5 ) // && s<sr) >> 2258 { >> 2259 // check against double cone solution >> 2260 zi=p.z()+s*v.z(); >> 2261 if (fSTheta<pi*0.5 && zi<0) >> 2262 { >> 2263 s = kInfinity ; // wrong cone >> 2264 } >> 2265 if (fSTheta>pi*0.5 && zi>0) >> 2266 { >> 2267 s = kInfinity ; // wrong cone >> 2268 } >> 2269 stheta = s ; >> 2270 sidetheta = kSTheta ; >> 2271 } >> 2272 } >> 2273 } >> 2274 >> 2275 // Possible intersection with ETheta cone >> 2276 >> 2277 if (fSTheta + fDTheta < pi) >> 2278 { >> 2279 t1 = 1-v.z()*v.z()*(1+tanETheta2); >> 2280 t2 = pDotV2d-p.z()*v.z()*tanETheta2; >> 2281 b = t2/t1; >> 2282 c = dist2ETheta/t1; >> 2283 d2 = b*b-c ; >> 2284 >> 2285 if ( d2 >= 0 ) >> 2286 { >> 2287 d = std::sqrt(d2); >> 2288 s = -b - d ; // First root >> 2289 >> 2290 if ( s < 0 ) >> 2291 { >> 2292 s=-b+d; // Second root >> 2293 } >> 2294 if (s > flexRadMaxTolerance*0.5 && s < stheta ) >> 2295 { >> 2296 // check against double cone solution >> 2297 zi=p.z()+s*v.z(); >> 2298 if (fSTheta+fDTheta<pi*0.5 && zi<0) >> 2299 { >> 2300 s = kInfinity ; // wrong cone >> 2301 } >> 2302 if (fSTheta+fDTheta>pi*0.5 && zi>0) >> 2303 { >> 2304 s = kInfinity ; // wrong cone >> 2305 } >> 2306 } >> 2307 if (s < stheta) >> 2308 { >> 2309 stheta = s ; >> 2310 sidetheta = kETheta ; >> 2311 } >> 2312 } >> 2313 } >> 2314 } >> 2315 */ //////////////////////////////////////////////////////////// 1869 2316 1870 if(fSTheta != 0.0) // intersection with f << 2317 if(fSTheta) // intersection with first cons 1871 { 2318 { >> 2319 >> 2320 tanSTheta = std::tan(fSTheta); >> 2321 1872 if( std::fabs(tanSTheta) > 5./kAngToler 2322 if( std::fabs(tanSTheta) > 5./kAngTolerance ) // kons is plane z=0 1873 { 2323 { 1874 if( v.z() > 0. ) << 2324 if( v.z() > 0. ) 1875 { 2325 { 1876 if ( std::fabs( p.z() ) <= halfRmax << 2326 if ( std::fabs( p.z() ) <= flexRadMaxTolerance*0.5 ) 1877 { 2327 { 1878 if(calcNorm) 2328 if(calcNorm) 1879 { 2329 { 1880 *validNorm = true; 2330 *validNorm = true; 1881 *n = G4ThreeVector(0.,0.,1.); 2331 *n = G4ThreeVector(0.,0.,1.); 1882 } 2332 } 1883 return snxt = 0 ; 2333 return snxt = 0 ; 1884 } << 2334 } >> 2335 // s = -p.z()/v.z(); 1885 stheta = -p.z()/v.z(); 2336 stheta = -p.z()/v.z(); 1886 sidetheta = kSTheta; 2337 sidetheta = kSTheta; 1887 } 2338 } 1888 } 2339 } 1889 else // kons is not plane << 2340 else // kons is not plane 1890 { 2341 { >> 2342 tanSTheta2 = tanSTheta*tanSTheta; 1891 t1 = 1-v.z()*v.z()*(1+tanSTh 2343 t1 = 1-v.z()*v.z()*(1+tanSTheta2); 1892 t2 = pDotV2d-p.z()*v.z()*tan 2344 t2 = pDotV2d-p.z()*v.z()*tanSTheta2; // ~vDotN if p on cons 1893 dist2STheta = rho2-p.z()*p.z()*tanSTh << 2345 dist2STheta = rho2-p.z()*p.z()*tanSTheta2; // t3 1894 2346 >> 2347 // distTheta = std::sqrt(std::fabs(dist2STheta/(1+tanSTheta2))); 1895 distTheta = std::sqrt(rho2)-p.z()*tan 2348 distTheta = std::sqrt(rho2)-p.z()*tanSTheta; 1896 2349 1897 if( std::fabs(t1) < halfAngTolerance << 2350 if( std::fabs(t1) < 0.5*kAngTolerance ) // 1st order equation, v parallel to kons 1898 { << 2351 { 1899 if( v.z() > 0. ) 2352 if( v.z() > 0. ) 1900 { 2353 { 1901 if(std::fabs(distTheta) < halfRma << 2354 if(std::fabs(distTheta) < flexRadMaxTolerance*0.5) // p on surface 1902 { 2355 { 1903 if( (fSTheta < halfpi) && (p.z( << 2356 if( fSTheta < halfpi && p.z() > 0. ) 1904 { 2357 { 1905 if( calcNorm ) { *validNorm << 2358 if( calcNorm ) *validNorm = false; 1906 return snxt = 0.; << 2359 return snxt = 0.; 1907 } 2360 } 1908 else if( (fSTheta > halfpi) && << 2361 else if( fSTheta > halfpi && p.z() <= 0) 1909 { 2362 { 1910 if( calcNorm ) << 2363 if( calcNorm ) 1911 { 2364 { 1912 *validNorm = true; 2365 *validNorm = true; 1913 if (rho2 != 0.0) << 2366 if (rho2) 1914 { 2367 { 1915 rhoSecTheta = std::sqrt(r 2368 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 1916 << 2369 1917 *n = G4ThreeVector( p.x() << 2370 *n = G4ThreeVector( p.x()/rhoSecTheta, 1918 p.y() 2371 p.y()/rhoSecTheta, 1919 std:: 2372 std::sin(fSTheta) ); 1920 } 2373 } 1921 else *n = G4ThreeVector(0., 2374 else *n = G4ThreeVector(0.,0.,1.); 1922 } 2375 } 1923 return snxt = 0.; << 2376 return snxt = 0.; 1924 } 2377 } 1925 } 2378 } >> 2379 // s = -0.5*dist2STheta/t2; >> 2380 1926 stheta = -0.5*dist2STheta/t2; 2381 stheta = -0.5*dist2STheta/t2; 1927 sidetheta = kSTheta; 2382 sidetheta = kSTheta; 1928 } << 2383 } 1929 } // 2nd order equation, 1st roo << 2384 } 1930 else // 2nd if 1st root -ve << 2385 else // 2nd order equation, 1st root of fSTheta cone, 2nd if 1st root -ve 1931 { 2386 { 1932 if( std::fabs(distTheta) < halfRmax << 2387 if( std::fabs(distTheta) < flexRadMaxTolerance*0.5) // && t2 >= 0.) surface 1933 { 2388 { 1934 if( (fSTheta > halfpi) && (t2 >= << 2389 if( fSTheta > halfpi && t2 >= 0. ) // leave 1935 { 2390 { 1936 if( calcNorm ) << 2391 if( calcNorm ) 1937 { 2392 { 1938 *validNorm = true; 2393 *validNorm = true; 1939 if (rho2 != 0.0) << 2394 if (rho2) 1940 { 2395 { 1941 rhoSecTheta = std::sqrt(rho << 2396 rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)); 1942 << 2397 1943 *n = G4ThreeVector( p.x()/r << 2398 *n = G4ThreeVector( p.x()/rhoSecTheta, 1944 p.y()/r << 2399 p.y()/rhoSecTheta, 1945 std::si << 2400 std::sin(fSTheta) ); 1946 } 2401 } 1947 else { *n = G4ThreeVector(0. << 2402 else *n = G4ThreeVector(0.,0.,1.); 1948 } << 2403 } 1949 return snxt = 0.; 2404 return snxt = 0.; 1950 } 2405 } 1951 else if( (fSTheta < halfpi) && (t << 2406 else if( fSTheta < halfpi && t2 < 0. && p.z() >=0. ) // leave 1952 { 2407 { 1953 if( calcNorm ) { *validNorm = << 2408 if( calcNorm ) *validNorm = false; 1954 return snxt = 0.; << 2409 return snxt = 0.; 1955 } << 2410 } 1956 } 2411 } 1957 b = t2/t1; 2412 b = t2/t1; 1958 c = dist2STheta/t1; 2413 c = dist2STheta/t1; 1959 d2 = b*b - c ; 2414 d2 = b*b - c ; 1960 2415 1961 if ( d2 >= 0. ) 2416 if ( d2 >= 0. ) 1962 { 2417 { 1963 d = std::sqrt(d2); 2418 d = std::sqrt(d2); 1964 2419 1965 if( fSTheta > halfpi ) 2420 if( fSTheta > halfpi ) 1966 { 2421 { 1967 sd = -b - d; // First r << 2422 s = -b - d; // First root 1968 2423 1969 if ( ((std::fabs(s) < halfRmaxT << 2424 if( (std::fabs(s) < flexRadMaxTolerance*0.5 && t2 < 0.) || 1970 || (sd < 0.) || ( (sd > 0.) << 2425 s < 0. || >> 2426 ( s > 0. && p.z() + s*v.z() > 0.) ) 1971 { 2427 { 1972 sd = -b + d ; // 2nd root << 2428 s = -b + d ; // 2nd root 1973 } 2429 } 1974 if( (sd > halfRmaxTolerance) && << 2430 if( s > flexRadMaxTolerance*0.5 && p.z() + s*v.z() <= 0.) 1975 { 2431 { 1976 stheta = sd; << 2432 stheta = s; 1977 sidetheta = kSTheta; 2433 sidetheta = kSTheta; 1978 } 2434 } 1979 } 2435 } 1980 else // sTheta < pi/2, concave su 2436 else // sTheta < pi/2, concave surface, no normal 1981 { 2437 { 1982 sd = -b - d; // First r << 2438 s = -b - d; // First root 1983 2439 1984 if ( ( (std::fabs(sd) < halfRma << 2440 if( (std::fabs(s) < flexRadMaxTolerance*0.5 && t2 >= 0.) || 1985 || (sd < 0.) || ( (sd > 0.) & << 2441 s < 0. || >> 2442 ( s > 0. && p.z() + s*v.z() < 0.) ) 1986 { 2443 { 1987 sd = -b + d ; // 2nd root << 2444 s = -b + d ; // 2nd root 1988 } 2445 } 1989 if( (sd > halfRmaxTolerance) && << 2446 if( s > flexRadMaxTolerance*0.5 && p.z() + s*v.z() >= 0.) 1990 { 2447 { 1991 stheta = sd; << 2448 stheta = s; 1992 sidetheta = kSTheta; 2449 sidetheta = kSTheta; 1993 } << 2450 } 1994 } 2451 } 1995 } 2452 } 1996 } 2453 } 1997 } 2454 } 1998 } 2455 } 1999 if (eTheta < pi) // intersection with sec << 2456 if (fSTheta + fDTheta < pi) // intersection with second cons 2000 { 2457 { >> 2458 >> 2459 tanETheta = std::tan(fSTheta+fDTheta); >> 2460 2001 if( std::fabs(tanETheta) > 5./kAngToler 2461 if( std::fabs(tanETheta) > 5./kAngTolerance ) // kons is plane z=0 2002 { 2462 { 2003 if( v.z() < 0. ) << 2463 if( v.z() < 0. ) 2004 { 2464 { 2005 if ( std::fabs( p.z() ) <= halfRmax << 2465 if ( std::fabs( p.z() ) <= flexRadMaxTolerance*0.5 ) 2006 { 2466 { 2007 if(calcNorm) 2467 if(calcNorm) 2008 { 2468 { 2009 *validNorm = true; 2469 *validNorm = true; 2010 *n = G4ThreeVector(0.,0.,-1.); 2470 *n = G4ThreeVector(0.,0.,-1.); 2011 } 2471 } 2012 return snxt = 0 ; 2472 return snxt = 0 ; 2013 } << 2473 } 2014 sd = -p.z()/v.z(); << 2474 s = -p.z()/v.z(); 2015 2475 2016 if( sd < stheta ) << 2476 if( s < stheta) 2017 { 2477 { 2018 stheta = sd; << 2478 stheta = s; 2019 sidetheta = kETheta; 2479 sidetheta = kETheta; 2020 } 2480 } 2021 } 2481 } 2022 } 2482 } 2023 else // kons is not plane << 2483 else // kons is not plane 2024 { 2484 { >> 2485 tanETheta2 = tanETheta*tanETheta; 2025 t1 = 1-v.z()*v.z()*(1+tanETh 2486 t1 = 1-v.z()*v.z()*(1+tanETheta2); 2026 t2 = pDotV2d-p.z()*v.z()*tan 2487 t2 = pDotV2d-p.z()*v.z()*tanETheta2; // ~vDotN if p on cons 2027 dist2ETheta = rho2-p.z()*p.z()*tanETh << 2488 dist2ETheta = rho2-p.z()*p.z()*tanETheta2; // t3 2028 2489 >> 2490 // distTheta = std::sqrt(std::fabs(dist2ETheta/(1+tanETheta2))); 2029 distTheta = std::sqrt(rho2)-p.z()*tan 2491 distTheta = std::sqrt(rho2)-p.z()*tanETheta; 2030 2492 2031 if( std::fabs(t1) < halfAngTolerance << 2493 if( std::fabs(t1) < 0.5*kAngTolerance ) // 1st order equation, v parallel to kons 2032 { << 2494 { 2033 if( v.z() < 0. ) 2495 if( v.z() < 0. ) 2034 { 2496 { 2035 if(std::fabs(distTheta) < halfRma << 2497 if(std::fabs(distTheta) < flexRadMaxTolerance*0.5) // p on surface 2036 { 2498 { 2037 if( (eTheta > halfpi) && (p.z() << 2499 if( fSTheta+fDTheta > halfpi && p.z() < 0. ) 2038 { 2500 { 2039 if( calcNorm ) { *validNorm << 2501 if( calcNorm ) *validNorm = false; 2040 return snxt = 0.; << 2502 return snxt = 0.; 2041 } 2503 } 2042 else if ( (eTheta < halfpi) && << 2504 else if( fSTheta+fDTheta < halfpi && p.z() >= 0) 2043 { 2505 { 2044 if( calcNorm ) << 2506 if( calcNorm ) 2045 { 2507 { 2046 *validNorm = true; 2508 *validNorm = true; 2047 if (rho2 != 0.0) << 2509 if (rho2) 2048 { 2510 { 2049 rhoSecTheta = std::sqrt(r 2511 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2050 *n = G4ThreeVector( p.x() << 2512 >> 2513 *n = G4ThreeVector( p.x()/rhoSecTheta, 2051 p.y() 2514 p.y()/rhoSecTheta, 2052 -sinE << 2515 -std::sin(fSTheta+fDTheta) ); 2053 } 2516 } 2054 else { *n = G4ThreeVector( << 2517 else *n = G4ThreeVector(0.,0.,-1.); 2055 } 2518 } 2056 return snxt = 0.; << 2519 return snxt = 0.; 2057 } 2520 } 2058 } 2521 } 2059 sd = -0.5*dist2ETheta/t2; << 2522 s = -0.5*dist2ETheta/t2; 2060 2523 2061 if( sd < stheta ) << 2524 if( s < stheta) 2062 { 2525 { 2063 stheta = sd; << 2526 stheta = s; 2064 sidetheta = kETheta; 2527 sidetheta = kETheta; 2065 } 2528 } 2066 } << 2529 } 2067 } // 2nd order equation, 1st roo << 2530 } 2068 else // 2nd if 1st root -ve << 2531 else // 2nd order equation, 1st root of fSTheta cone, 2nd if 1st root -ve 2069 { 2532 { 2070 if ( std::fabs(distTheta) < halfRma << 2533 if( std::fabs(distTheta) < flexRadMaxTolerance*0.5) // && t2 >= 0.) surface 2071 { 2534 { 2072 if( (eTheta < halfpi) && (t2 >= 0 << 2535 if( fSTheta+fDTheta < halfpi && t2 >= 0. ) // leave 2073 { 2536 { 2074 if( calcNorm ) << 2537 if( calcNorm ) 2075 { 2538 { 2076 *validNorm = true; 2539 *validNorm = true; 2077 if (rho2 != 0.0) << 2540 if (rho2) 2078 { 2541 { 2079 rhoSecTheta = std::sqrt(r 2542 rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)); 2080 *n = G4ThreeVector( p.x() << 2543 >> 2544 *n = G4ThreeVector( p.x()/rhoSecTheta, 2081 p.y() 2545 p.y()/rhoSecTheta, 2082 -sinE << 2546 -std::sin(fSTheta+fDTheta) ); 2083 } 2547 } 2084 else *n = G4ThreeVector(0.,0. 2548 else *n = G4ThreeVector(0.,0.,-1.); 2085 } << 2549 } 2086 return snxt = 0.; 2550 return snxt = 0.; 2087 } 2551 } 2088 else if ( (eTheta > halfpi) << 2552 else if( fSTheta+fDTheta > halfpi && t2 < 0. && p.z() <=0. ) // leave 2089 && (t2 < 0.) && (p.z() <=0 << 2090 { 2553 { 2091 if( calcNorm ) { *validNorm = << 2554 if( calcNorm ) *validNorm = false; 2092 return snxt = 0.; << 2555 return snxt = 0.; 2093 } << 2556 } 2094 } 2557 } 2095 b = t2/t1; 2558 b = t2/t1; 2096 c = dist2ETheta/t1; 2559 c = dist2ETheta/t1; 2097 d2 = b*b - c ; 2560 d2 = b*b - c ; 2098 if ( (d2 <halfRmaxTolerance) && (d2 << 2561 2099 { << 2100 d2 = 0.; << 2101 } << 2102 if ( d2 >= 0. ) 2562 if ( d2 >= 0. ) 2103 { 2563 { 2104 d = std::sqrt(d2); 2564 d = std::sqrt(d2); 2105 2565 2106 if( eTheta < halfpi ) << 2566 if( fSTheta+fDTheta < halfpi ) 2107 { 2567 { 2108 sd = -b - d; // First r << 2568 s = -b - d; // First root 2109 2569 2110 if( ((std::fabs(sd) < halfRmaxT << 2570 if( (std::fabs(s) < flexRadMaxTolerance*0.5 && t2 < 0.) || 2111 || (sd < 0.) ) << 2571 s < 0. ) 2112 { 2572 { 2113 sd = -b + d ; // 2nd root << 2573 s = -b + d ; // 2nd root 2114 } 2574 } 2115 if( sd > halfRmaxTolerance ) << 2575 if( s > flexRadMaxTolerance*0.5 ) 2116 { 2576 { 2117 if( sd < stheta ) << 2577 if( s < stheta ) 2118 { 2578 { 2119 stheta = sd; << 2579 stheta = s; 2120 sidetheta = kETheta; 2580 sidetheta = kETheta; 2121 } 2581 } 2122 } 2582 } 2123 } 2583 } 2124 else // sTheta+fDTheta > pi/2, co 2584 else // sTheta+fDTheta > pi/2, concave surface, no normal 2125 { 2585 { 2126 sd = -b - d; // First r << 2586 s = -b - d; // First root 2127 2587 2128 if ( ((std::fabs(sd) < halfRmax << 2588 if( (std::fabs(s) < flexRadMaxTolerance*0.5 && t2 >= 0.) || 2129 || (sd < 0.) << 2589 s < 0. || 2130 || ( (sd > 0.) && (p.z() + sd << 2590 ( s > 0. && p.z() + s*v.z() > 0.) ) 2131 { 2591 { 2132 sd = -b + d ; // 2nd root << 2592 s = -b + d ; // 2nd root 2133 } 2593 } 2134 if ( ( sd>halfRmaxTolerance ) << 2594 if( s > flexRadMaxTolerance*0.5 && p.z() + s*v.z() <= 0.) 2135 && ( p.z()+sd*v.z() <= halfRm << 2136 { 2595 { 2137 if( sd < stheta ) << 2596 if( s < stheta ) 2138 { 2597 { 2139 stheta = sd; << 2598 stheta = s; 2140 sidetheta = kETheta; 2599 sidetheta = kETheta; 2141 } 2600 } 2142 } << 2601 } 2143 } 2602 } 2144 } 2603 } 2145 } 2604 } 2146 } 2605 } 2147 } 2606 } 2148 2607 2149 } // end theta intersections 2608 } // end theta intersections 2150 2609 2151 // Phi Intersection 2610 // Phi Intersection 2152 << 2611 2153 if ( !fFullPhiSphere ) << 2612 if ( fDPhi < twopi) 2154 { 2613 { 2155 if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 2614 sinSPhi=std::sin(fSPhi); >> 2615 cosSPhi=std::cos(fSPhi); >> 2616 ePhi=fSPhi+fDPhi; >> 2617 sinEPhi=std::sin(ePhi); >> 2618 cosEPhi=std::cos(ePhi); >> 2619 cPhi=fSPhi+fDPhi*0.5; >> 2620 sinCPhi=std::sin(cPhi); >> 2621 cosCPhi=std::cos(cPhi); >> 2622 >> 2623 if ( p.x()||p.y() ) // Check if on z axis (rho not needed later) 2156 { 2624 { 2157 // pDist -ve when inside 2625 // pDist -ve when inside 2158 2626 2159 pDistS=p.x()*sinSPhi-p.y()*cosSPhi; 2627 pDistS=p.x()*sinSPhi-p.y()*cosSPhi; 2160 pDistE=-p.x()*sinEPhi+p.y()*cosEPhi; 2628 pDistE=-p.x()*sinEPhi+p.y()*cosEPhi; 2161 2629 2162 // Comp -ve when in direction of outwar 2630 // Comp -ve when in direction of outwards normal 2163 2631 2164 compS = -sinSPhi*v.x()+cosSPhi*v.y() 2632 compS = -sinSPhi*v.x()+cosSPhi*v.y() ; 2165 compE = sinEPhi*v.x()-cosEPhi*v.y() 2633 compE = sinEPhi*v.x()-cosEPhi*v.y() ; 2166 sidephi = kNull ; 2634 sidephi = kNull ; 2167 2635 2168 if ( (pDistS <= 0) && (pDistE <= 0) ) << 2636 if ( pDistS <= 0 && pDistE <= 0 ) 2169 { 2637 { 2170 // Inside both phi *full* planes 2638 // Inside both phi *full* planes 2171 2639 2172 if ( compS < 0 ) 2640 if ( compS < 0 ) 2173 { 2641 { 2174 sphi = pDistS/compS ; 2642 sphi = pDistS/compS ; 2175 xi = p.x()+sphi*v.x() ; 2643 xi = p.x()+sphi*v.x() ; 2176 yi = p.y()+sphi*v.y() ; 2644 yi = p.y()+sphi*v.y() ; 2177 2645 2178 // Check intersection with correct << 2646 // Check intersecting with correct half-plane 2179 // << 2647 // (if not -> no intersect) 2180 if( (std::fabs(xi)<=kCarTolerance) << 2648 2181 { << 2649 if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2182 vphi = std::atan2(v.y(),v.x()); << 2183 sidephi = kSPhi; << 2184 if ( ( (fSPhi-halfAngTolerance) < << 2185 && ( (ePhi+halfAngTolerance) > << 2186 { << 2187 sphi = kInfinity; << 2188 } << 2189 } << 2190 else if ( ( yi*cosCPhi - xi*sinCPhi << 2191 { 2650 { 2192 sphi=kInfinity; 2651 sphi=kInfinity; 2193 } 2652 } 2194 else 2653 else 2195 { 2654 { 2196 sidephi = kSPhi ; 2655 sidephi = kSPhi ; 2197 if ( pDistS > -halfCarTolerance) << 2656 if ( pDistS > -0.5*kCarTolerance) sphi =0 ; // Leave by sphi 2198 } 2657 } 2199 } 2658 } 2200 else { sphi = kInfinity; } << 2659 else sphi = kInfinity ; 2201 2660 2202 if ( compE < 0 ) 2661 if ( compE < 0 ) 2203 { 2662 { 2204 sphi2=pDistE/compE ; 2663 sphi2=pDistE/compE ; 2205 if (sphi2 < sphi) // Only check fur 2664 if (sphi2 < sphi) // Only check further if < starting phi intersection 2206 { 2665 { 2207 xi = p.x()+sphi2*v.x() ; 2666 xi = p.x()+sphi2*v.x() ; 2208 yi = p.y()+sphi2*v.y() ; 2667 yi = p.y()+sphi2*v.y() ; 2209 2668 2210 // Check intersection with correc << 2669 // Check intersecting with correct half-plane 2211 // << 2670 2212 if ( (std::fabs(xi)<=kCarToleranc << 2671 if ((yi*cosCPhi-xi*sinCPhi)>=0) // Leaving via ending phi 2213 && (std::fabs(yi)<=kCarToleranc << 2214 { << 2215 // Leaving via ending phi << 2216 // << 2217 vphi = std::atan2(v.y(),v.x()) << 2218 << 2219 if( (fSPhi-halfAngTolerance > v << 2220 ||(fSPhi+fDPhi+halfAngToler << 2221 { << 2222 sidephi = kEPhi; << 2223 if ( pDistE <= -halfCarTolera << 2224 else << 2225 } << 2226 } << 2227 else if ((yi*cosCPhi-xi*sinCPhi)> << 2228 { 2672 { 2229 sidephi = kEPhi ; 2673 sidephi = kEPhi ; 2230 if ( pDistE <= -halfCarToleranc << 2674 if ( pDistE <= -0.5*kCarTolerance ) 2231 { 2675 { 2232 sphi=sphi2; 2676 sphi=sphi2; 2233 } 2677 } 2234 else << 2678 else 2235 { 2679 { 2236 sphi = 0 ; 2680 sphi = 0 ; 2237 } 2681 } 2238 } 2682 } 2239 } 2683 } 2240 } << 2684 } 2241 } 2685 } 2242 else if ((pDistS >= 0) && (pDistE >= 0) << 2686 else if ( pDistS >= 0 && pDistE >= 0 ) // Outside both *full* phi planes 2243 { 2687 { 2244 if ( pDistS <= pDistE ) 2688 if ( pDistS <= pDistE ) 2245 { 2689 { 2246 sidephi = kSPhi ; 2690 sidephi = kSPhi ; 2247 } 2691 } 2248 else 2692 else 2249 { 2693 { 2250 sidephi = kEPhi ; 2694 sidephi = kEPhi ; 2251 } 2695 } 2252 if ( fDPhi > pi ) 2696 if ( fDPhi > pi ) 2253 { 2697 { 2254 if ( (compS < 0) && (compE < 0) ) << 2698 if ( compS < 0 && compE < 0 ) sphi = 0 ; 2255 else << 2699 else sphi = kInfinity ; 2256 } 2700 } 2257 else 2701 else 2258 { 2702 { 2259 // if towards both >=0 then once in 2703 // if towards both >=0 then once inside (after error) 2260 // will remain inside 2704 // will remain inside 2261 2705 2262 if ( (compS >= 0) && (compE >= 0) ) << 2706 if ( compS >= 0 && compE >= 0 ) 2263 else << 2707 { 2264 } << 2708 sphi=kInfinity; >> 2709 } >> 2710 else >> 2711 { >> 2712 sphi=0; >> 2713 } >> 2714 } 2265 } 2715 } 2266 else if ( (pDistS > 0) && (pDistE < 0) << 2716 else if ( pDistS > 0 && pDistE < 0 ) 2267 { 2717 { 2268 // Outside full starting plane, insid 2718 // Outside full starting plane, inside full ending plane 2269 2719 2270 if ( fDPhi > pi ) 2720 if ( fDPhi > pi ) 2271 { 2721 { 2272 if ( compE < 0 ) 2722 if ( compE < 0 ) 2273 { 2723 { 2274 sphi = pDistE/compE ; 2724 sphi = pDistE/compE ; 2275 xi = p.x() + sphi*v.x() ; 2725 xi = p.x() + sphi*v.x() ; 2276 yi = p.y() + sphi*v.y() ; 2726 yi = p.y() + sphi*v.y() ; 2277 2727 2278 // Check intersection in correct 2728 // Check intersection in correct half-plane 2279 // (if not -> not leaving phi ext 2729 // (if not -> not leaving phi extent) 2280 // 2730 // 2281 if( (std::fabs(xi)<=kCarTolerance << 2731 if ( ( yi*cosCPhi - xi*sinCPhi ) <= 0 ) 2282 { << 2283 vphi = std::atan2(v.y(),v.x()); << 2284 sidephi = kSPhi; << 2285 if ( ( (fSPhi-halfAngTolerance) << 2286 && ( (ePhi+halfAngTolerance) << 2287 { << 2288 sphi = kInfinity; << 2289 } << 2290 } << 2291 else if ( ( yi*cosCPhi - xi*sinCP << 2292 { 2732 { 2293 sphi = kInfinity ; 2733 sphi = kInfinity ; 2294 } 2734 } 2295 else // Leaving via Ending phi 2735 else // Leaving via Ending phi 2296 { 2736 { 2297 sidephi = kEPhi ; 2737 sidephi = kEPhi ; 2298 if ( pDistE > -halfCarTolerance << 2738 if ( pDistE > -0.5*kCarTolerance ) sphi = 0. ; 2299 } 2739 } 2300 } 2740 } 2301 else 2741 else 2302 { 2742 { 2303 sphi = kInfinity ; 2743 sphi = kInfinity ; 2304 } 2744 } 2305 } 2745 } 2306 else 2746 else 2307 { 2747 { 2308 if ( compS >= 0 ) 2748 if ( compS >= 0 ) 2309 { 2749 { 2310 if ( compE < 0 ) 2750 if ( compE < 0 ) 2311 { << 2751 { 2312 sphi = pDistE/compE ; 2752 sphi = pDistE/compE ; 2313 xi = p.x() + sphi*v.x() ; 2753 xi = p.x() + sphi*v.x() ; 2314 yi = p.y() + sphi*v.y() ; 2754 yi = p.y() + sphi*v.y() ; 2315 2755 2316 // Check intersection in correc 2756 // Check intersection in correct half-plane 2317 // (if not -> remain in extent) 2757 // (if not -> remain in extent) 2318 // 2758 // 2319 if( (std::fabs(xi)<=kCarToleran << 2759 if ( ( yi*cosCPhi - xi*sinCPhi) <= 0 ) 2320 && (std::fabs(yi)<=kCarToleran << 2321 { << 2322 vphi = std::atan2(v.y(),v.x() << 2323 sidephi = kSPhi; << 2324 if ( ( (fSPhi-halfAngToleranc << 2325 && ( (ePhi+halfAngTolerance << 2326 { << 2327 sphi = kInfinity; << 2328 } << 2329 } << 2330 else if ( ( yi*cosCPhi - xi*sin << 2331 { 2760 { 2332 sphi=kInfinity; 2761 sphi=kInfinity; 2333 } 2762 } 2334 else // otherwise leaving via E 2763 else // otherwise leaving via Ending phi 2335 { 2764 { 2336 sidephi = kEPhi ; 2765 sidephi = kEPhi ; 2337 } 2766 } 2338 } 2767 } 2339 else sphi=kInfinity; 2768 else sphi=kInfinity; 2340 } 2769 } 2341 else // leaving immediately by star 2770 else // leaving immediately by starting phi 2342 { 2771 { 2343 sidephi = kSPhi ; 2772 sidephi = kSPhi ; 2344 sphi = 0 ; 2773 sphi = 0 ; 2345 } 2774 } 2346 } 2775 } 2347 } 2776 } 2348 else 2777 else 2349 { 2778 { 2350 // Must be pDistS < 0 && pDistE > 0 2779 // Must be pDistS < 0 && pDistE > 0 2351 // Inside full starting plane, outsid 2780 // Inside full starting plane, outside full ending plane 2352 2781 2353 if ( fDPhi > pi ) 2782 if ( fDPhi > pi ) 2354 { 2783 { 2355 if ( compS < 0 ) 2784 if ( compS < 0 ) 2356 { 2785 { 2357 sphi=pDistS/compS; 2786 sphi=pDistS/compS; 2358 xi=p.x()+sphi*v.x(); 2787 xi=p.x()+sphi*v.x(); 2359 yi=p.y()+sphi*v.y(); 2788 yi=p.y()+sphi*v.y(); 2360 2789 2361 // Check intersection in correct 2790 // Check intersection in correct half-plane 2362 // (if not -> not leaving phi ext 2791 // (if not -> not leaving phi extent) 2363 // 2792 // 2364 if( (std::fabs(xi)<=kCarTolerance << 2793 if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2365 { << 2366 vphi = std::atan2(v.y(),v.x()) << 2367 sidephi = kSPhi; << 2368 if ( ( (fSPhi-halfAngTolerance) << 2369 && ( (ePhi+halfAngTolerance) << 2370 { << 2371 sphi = kInfinity; << 2372 } << 2373 } << 2374 else if ( ( yi*cosCPhi - xi*sinCP << 2375 { 2794 { 2376 sphi = kInfinity ; 2795 sphi = kInfinity ; 2377 } 2796 } 2378 else // Leaving via Starting phi << 2797 else // Leaving via Starting phi 2379 { << 2798 { 2380 sidephi = kSPhi ; 2799 sidephi = kSPhi ; 2381 if ( pDistS > -halfCarTolerance << 2800 if ( pDistS > -0.5*kCarTolerance ) sphi = 0 ; 2382 } 2801 } 2383 } 2802 } 2384 else 2803 else 2385 { 2804 { 2386 sphi = kInfinity ; 2805 sphi = kInfinity ; 2387 } 2806 } 2388 } 2807 } 2389 else 2808 else 2390 { 2809 { 2391 if ( compE >= 0 ) 2810 if ( compE >= 0 ) 2392 { 2811 { 2393 if ( compS < 0 ) 2812 if ( compS < 0 ) 2394 { 2813 { 2395 sphi = pDistS/compS ; 2814 sphi = pDistS/compS ; 2396 xi = p.x()+sphi*v.x() ; 2815 xi = p.x()+sphi*v.x() ; 2397 yi = p.y()+sphi*v.y() ; 2816 yi = p.y()+sphi*v.y() ; 2398 2817 2399 // Check intersection in correc 2818 // Check intersection in correct half-plane 2400 // (if not -> remain in extent) 2819 // (if not -> remain in extent) 2401 // 2820 // 2402 if( (std::fabs(xi)<=kCarToleran << 2821 if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 ) 2403 && (std::fabs(yi)<=kCarToleran << 2404 { << 2405 vphi = std::atan2(v.y(),v.x() << 2406 sidephi = kSPhi; << 2407 if ( ( (fSPhi-halfAngToleranc << 2408 && ( (ePhi+halfAngTolerance << 2409 { << 2410 sphi = kInfinity; << 2411 } << 2412 } << 2413 else if ( ( yi*cosCPhi - xi*sin << 2414 { 2822 { 2415 sphi = kInfinity ; 2823 sphi = kInfinity ; 2416 } 2824 } 2417 else // otherwise leaving via S 2825 else // otherwise leaving via Starting phi 2418 { 2826 { 2419 sidephi = kSPhi ; 2827 sidephi = kSPhi ; 2420 } 2828 } 2421 } 2829 } 2422 else 2830 else 2423 { 2831 { 2424 sphi = kInfinity ; 2832 sphi = kInfinity ; 2425 } 2833 } 2426 } 2834 } 2427 else // leaving immediately by endi 2835 else // leaving immediately by ending 2428 { 2836 { 2429 sidephi = kEPhi ; 2837 sidephi = kEPhi ; 2430 sphi = 0 ; 2838 sphi = 0 ; 2431 } 2839 } 2432 } 2840 } 2433 } << 2841 } 2434 } 2842 } 2435 else 2843 else 2436 { 2844 { 2437 // On z axis + travel not || to z axis 2845 // On z axis + travel not || to z axis -> if phi of vector direction 2438 // within phi of shape, Step limited by 2846 // within phi of shape, Step limited by rmax, else Step =0 2439 2847 2440 if ( (v.x() != 0.0) || (v.y() != 0.0) ) << 2848 if ( v.x() || v.y() ) 2441 { 2849 { 2442 vphi = std::atan2(v.y(),v.x()) ; 2850 vphi = std::atan2(v.y(),v.x()) ; 2443 if ((fSPhi-halfAngTolerance < vphi) & << 2851 if ( fSPhi < vphi && vphi < fSPhi + fDPhi ) 2444 { 2852 { 2445 sphi = kInfinity; << 2853 sphi=kInfinity; 2446 } 2854 } 2447 else 2855 else 2448 { 2856 { 2449 sidephi = kSPhi ; // arbitrary << 2857 sidephi = kSPhi ; // arbitrary 2450 sphi = 0 ; 2858 sphi = 0 ; 2451 } 2859 } 2452 } 2860 } 2453 else // travel along z - no phi inters << 2861 else // travel along z - no phi intersaction 2454 { 2862 { 2455 sphi = kInfinity ; 2863 sphi = kInfinity ; 2456 } 2864 } 2457 } 2865 } 2458 if ( sphi < snxt ) // Order intersecttio 2866 if ( sphi < snxt ) // Order intersecttions 2459 { 2867 { 2460 snxt = sphi ; 2868 snxt = sphi ; 2461 side = sidephi ; 2869 side = sidephi ; 2462 } 2870 } 2463 } 2871 } 2464 if (stheta < snxt ) // Order intersections 2872 if (stheta < snxt ) // Order intersections 2465 { 2873 { 2466 snxt = stheta ; 2874 snxt = stheta ; 2467 side = sidetheta ; 2875 side = sidetheta ; 2468 } 2876 } 2469 2877 2470 if (calcNorm) // Output switch operator 2878 if (calcNorm) // Output switch operator 2471 { 2879 { 2472 switch( side ) 2880 switch( side ) 2473 { 2881 { 2474 case kRMax: 2882 case kRMax: 2475 xi=p.x()+snxt*v.x(); 2883 xi=p.x()+snxt*v.x(); 2476 yi=p.y()+snxt*v.y(); 2884 yi=p.y()+snxt*v.y(); 2477 zi=p.z()+snxt*v.z(); 2885 zi=p.z()+snxt*v.z(); 2478 *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi 2886 *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi/fRmax); 2479 *validNorm=true; 2887 *validNorm=true; 2480 break; 2888 break; 2481 2889 2482 case kRMin: 2890 case kRMin: 2483 *validNorm=false; // Rmin is concave 2891 *validNorm=false; // Rmin is concave 2484 break; 2892 break; 2485 2893 2486 case kSPhi: 2894 case kSPhi: 2487 if ( fDPhi <= pi ) // Normal to P 2895 if ( fDPhi <= pi ) // Normal to Phi- 2488 { 2896 { 2489 *n=G4ThreeVector(sinSPhi,-cosSPhi,0 << 2897 *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0); 2490 *validNorm=true; 2898 *validNorm=true; 2491 } 2899 } 2492 else { *validNorm=false; } << 2900 else *validNorm=false; 2493 break ; 2901 break ; 2494 2902 2495 case kEPhi: 2903 case kEPhi: 2496 if ( fDPhi <= pi ) // Normal to 2904 if ( fDPhi <= pi ) // Normal to Phi+ 2497 { 2905 { 2498 *n=G4ThreeVector(-sinEPhi,cosEPhi,0 << 2906 *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0); 2499 *validNorm=true; 2907 *validNorm=true; 2500 } 2908 } 2501 else { *validNorm=false; } << 2909 else *validNorm=false; 2502 break; 2910 break; 2503 2911 2504 case kSTheta: 2912 case kSTheta: 2505 if( fSTheta == halfpi ) 2913 if( fSTheta == halfpi ) 2506 { 2914 { 2507 *n=G4ThreeVector(0.,0.,1.); 2915 *n=G4ThreeVector(0.,0.,1.); 2508 *validNorm=true; 2916 *validNorm=true; 2509 } 2917 } 2510 else if ( fSTheta > halfpi ) 2918 else if ( fSTheta > halfpi ) 2511 { 2919 { 2512 xi = p.x() + snxt*v.x(); 2920 xi = p.x() + snxt*v.x(); 2513 yi = p.y() + snxt*v.y(); 2921 yi = p.y() + snxt*v.y(); 2514 rho2=xi*xi+yi*yi; << 2922 rhoSecTheta = std::sqrt((xi*xi+yi*yi)*(1+tanSTheta2)); 2515 if (rho2 != 0.0) << 2923 *n = G4ThreeVector( xi/rhoSecTheta, // N- 2516 { << 2924 yi/rhoSecTheta, 2517 rhoSecTheta = std::sqrt(rho2*(1+t << 2925 -tanSTheta/std::sqrt(1+tanSTheta2)); 2518 *n = G4ThreeVector( xi/rhoSecThet << 2519 -tanSTheta/std << 2520 } << 2521 else << 2522 { << 2523 *n = G4ThreeVector(0.,0.,1.); << 2524 } << 2525 *validNorm=true; 2926 *validNorm=true; 2526 } 2927 } 2527 else { *validNorm=false; } // Conca << 2928 else *validNorm=false; // Concave STheta cone 2528 break; 2929 break; 2529 2930 2530 case kETheta: 2931 case kETheta: 2531 if( eTheta == halfpi ) << 2932 if( ( fSTheta + fDTheta ) == halfpi ) 2532 { 2933 { 2533 *n = G4ThreeVector(0.,0.,-1 2934 *n = G4ThreeVector(0.,0.,-1.); 2534 *validNorm = true; 2935 *validNorm = true; 2535 } 2936 } 2536 else if ( eTheta < halfpi ) << 2937 else if ( ( fSTheta + fDTheta ) < halfpi) 2537 { 2938 { 2538 xi=p.x()+snxt*v.x(); 2939 xi=p.x()+snxt*v.x(); 2539 yi=p.y()+snxt*v.y(); 2940 yi=p.y()+snxt*v.y(); 2540 rho2=xi*xi+yi*yi; << 2941 rhoSecTheta = std::sqrt((xi*xi+yi*yi)*(1+tanETheta2)); 2541 if (rho2 != 0.0) << 2942 *n = G4ThreeVector( xi/rhoSecTheta, // N+ 2542 { << 2943 yi/rhoSecTheta, 2543 rhoSecTheta = std::sqrt(rho2*(1+t << 2944 -tanETheta/std::sqrt(1+tanETheta2) ); 2544 *n = G4ThreeVector( xi/rhoSecThet << 2545 -tanETheta/std << 2546 } << 2547 else << 2548 { << 2549 *n = G4ThreeVector(0.,0.,-1.); << 2550 } << 2551 *validNorm=true; 2945 *validNorm=true; 2552 } 2946 } 2553 else { *validNorm=false; } // Conc << 2947 else *validNorm=false; // Concave ETheta cone 2554 break; 2948 break; 2555 2949 2556 default: 2950 default: >> 2951 G4cout.precision(16); 2557 G4cout << G4endl; 2952 G4cout << G4endl; 2558 DumpInfo(); 2953 DumpInfo(); 2559 std::ostringstream message; << 2954 G4cout << "Position:" << G4endl << G4endl; 2560 G4long oldprc = message.precision(16) << 2955 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 2561 message << "Undefined side for valid << 2956 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 2562 << G4endl << 2957 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 2563 << "Position:" << G4endl << << 2958 G4cout << "Direction:" << G4endl << G4endl; 2564 << "p.x() = " << p.x()/mm < << 2959 G4cout << "v.x() = " << v.x() << G4endl; 2565 << "p.y() = " << p.y()/mm < << 2960 G4cout << "v.y() = " << v.y() << G4endl; 2566 << "p.z() = " << p.z()/mm < << 2961 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 2567 << "Direction:" << G4endl << << 2962 G4cout << "Proposed distance :" << G4endl << G4endl; 2568 << "v.x() = " << v.x() << G << 2963 G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl; 2569 << "v.y() = " << v.y() << G << 2570 << "v.z() = " << v.z() << G << 2571 << "Proposed distance :" << G << 2572 << "snxt = " << snxt/mm << << 2573 message.precision(oldprc); << 2574 G4Exception("G4Sphere::DistanceToOut( 2964 G4Exception("G4Sphere::DistanceToOut(p,v,..)", 2575 "GeomSolids1002", JustWar << 2965 "Notification", JustWarning, >> 2966 "Undefined side for valid surface normal to solid."); 2576 break; 2967 break; 2577 } 2968 } 2578 } 2969 } 2579 if (snxt == kInfinity) 2970 if (snxt == kInfinity) 2580 { 2971 { >> 2972 G4cout.precision(24); 2581 G4cout << G4endl; 2973 G4cout << G4endl; 2582 DumpInfo(); 2974 DumpInfo(); 2583 std::ostringstream message; << 2975 G4cout << "Position:" << G4endl << G4endl; 2584 G4long oldprc = message.precision(16); << 2976 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl; 2585 message << "Logic error: snxt = kInfinity << 2977 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl; 2586 << "Position:" << G4endl << G4en << 2978 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl; 2587 << "p.x() = " << p.x()/mm << " << 2979 G4cout << "Rp = "<< std::sqrt( p.x()*p.x()+p.y()*p.y()+p.z()*p.z() )/mm << " mm" 2588 << "p.y() = " << p.y()/mm << " << 2980 << G4endl << G4endl; 2589 << "p.z() = " << p.z()/mm << " << 2981 G4cout << "Direction:" << G4endl << G4endl; 2590 << "Rp = "<< std::sqrt( p.x()*p.x << 2982 G4cout << "v.x() = " << v.x() << G4endl; 2591 << " mm" << G4endl << G4endl << 2983 G4cout << "v.y() = " << v.y() << G4endl; 2592 << "Direction:" << G4endl << G4en << 2984 G4cout << "v.z() = " << v.z() << G4endl << G4endl; 2593 << "v.x() = " << v.x() << G4end << 2985 G4cout << "Proposed distance :" << G4endl << G4endl; 2594 << "v.y() = " << v.y() << G4end << 2986 G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl; 2595 << "v.z() = " << v.z() << G4end << 2596 << "Proposed distance :" << G4end << 2597 << "snxt = " << snxt/mm << " m << 2598 message.precision(oldprc); << 2599 G4Exception("G4Sphere::DistanceToOut(p,v, 2987 G4Exception("G4Sphere::DistanceToOut(p,v,..)", 2600 "GeomSolids1002", JustWarning << 2988 "Notification", JustWarning, >> 2989 "Logic error: snxt = kInfinity ???"); 2601 } 2990 } 2602 2991 2603 return snxt; 2992 return snxt; 2604 } 2993 } 2605 2994 2606 ///////////////////////////////////////////// 2995 ///////////////////////////////////////////////////////////////////////// 2607 // 2996 // 2608 // Calculate distance (<=actual) to closest s << 2997 // Calcluate distance (<=actual) to closest surface of shape from inside 2609 2998 2610 G4double G4Sphere::DistanceToOut( const G4Thr 2999 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p ) const 2611 { 3000 { 2612 G4double safe=0.0,safeRMin,safeRMax,safePhi 3001 G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta; 2613 G4double rho2,rds,rho; << 3002 G4double rho2,rad,rho; 2614 G4double pTheta,dTheta1 = kInfinity,dTheta2 << 3003 G4double phiC,cosPhiC,sinPhiC,ePhi; >> 3004 G4double pTheta,dTheta1,dTheta2; 2615 rho2=p.x()*p.x()+p.y()*p.y(); 3005 rho2=p.x()*p.x()+p.y()*p.y(); 2616 rds=std::sqrt(rho2+p.z()*p.z()); << 3006 rad=std::sqrt(rho2+p.z()*p.z()); 2617 rho=std::sqrt(rho2); 3007 rho=std::sqrt(rho2); 2618 3008 2619 #ifdef G4CSGDEBUG 3009 #ifdef G4CSGDEBUG 2620 if( Inside(p) == kOutside ) 3010 if( Inside(p) == kOutside ) 2621 { 3011 { 2622 G4long old_prc = G4cout.precision(16); << 3012 G4cout.precision(16) ; 2623 G4cout << G4endl; << 3013 G4cout << G4endl ; 2624 DumpInfo(); 3014 DumpInfo(); 2625 G4cout << "Position:" << G4endl << G4en 3015 G4cout << "Position:" << G4endl << G4endl ; 2626 G4cout << "p.x() = " << p.x()/mm << " 3016 G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ; 2627 G4cout << "p.y() = " << p.y()/mm << " 3017 G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ; 2628 G4cout << "p.z() = " << p.z()/mm << " 3018 G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ; 2629 G4cout.precision(old_prc) ; << 2630 G4Exception("G4Sphere::DistanceToOut(p)" 3019 G4Exception("G4Sphere::DistanceToOut(p)", 2631 "GeomSolids1002", JustWarnin << 3020 "Notification", JustWarning, "Point p is outside !?" ); 2632 } 3021 } 2633 #endif 3022 #endif 2634 3023 2635 // Distance to r shells << 2636 // 3024 // 2637 safeRMax = fRmax-rds; << 3025 // Distance to r shells 2638 safe = safeRMax; << 3026 // 2639 if (fRmin != 0.0) << 3027 if (fRmin) 2640 { 3028 { 2641 safeRMin = rds-fRmin; << 3029 safeRMin=rad-fRmin; 2642 safe = std::min( safeRMin, safeRMax ); << 3030 safeRMax=fRmax-rad; >> 3031 if (safeRMin<safeRMax) >> 3032 { >> 3033 safe=safeRMin; >> 3034 } >> 3035 else >> 3036 { >> 3037 safe=safeRMax; >> 3038 } >> 3039 } >> 3040 else >> 3041 { >> 3042 safe=fRmax-rad; 2643 } 3043 } 2644 3044 >> 3045 // 2645 // Distance to phi extent 3046 // Distance to phi extent 2646 // 3047 // 2647 if ( !fFullPhiSphere ) << 3048 if (fDPhi<twopi && rho) 2648 { 3049 { 2649 if (rho>0.0) << 3050 phiC=fSPhi+fDPhi*0.5; 2650 { << 3051 cosPhiC=std::cos(phiC); 2651 if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) << 3052 sinPhiC=std::sin(phiC); 2652 { << 3053 if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0) 2653 safePhi=-(p.x()*sinSPhi-p.y()*cosS << 3054 { 2654 } << 3055 safePhi=-(p.x()*std::sin(fSPhi)-p.y()*std::cos(fSPhi)); 2655 else << 3056 } 2656 { << 3057 else 2657 safePhi=(p.x()*sinEPhi-p.y()*cosEP << 3058 { 2658 } << 3059 ePhi=fSPhi+fDPhi; 2659 } << 3060 safePhi=(p.x()*std::sin(ePhi)-p.y()*std::cos(ePhi)); 2660 else << 3061 } 2661 { << 3062 if (safePhi<safe) safe=safePhi; 2662 safePhi = 0.0; // Distance to both P << 2663 } << 2664 // Both cases above can be improved - in << 2665 // although it may be costlier (good fo << 2666 << 2667 safe= std::min(safe, safePhi); << 2668 } 3063 } 2669 3064 2670 // Distance to Theta extent << 2671 // 3065 // 2672 if ( !fFullThetaSphere ) << 3066 // Distance to Theta extent >> 3067 // >> 3068 if (rad) 2673 { 3069 { 2674 if( rds > 0.0 ) << 3070 pTheta=std::acos(p.z()/rad); >> 3071 if (pTheta<0) pTheta+=pi; >> 3072 dTheta1=pTheta-fSTheta; >> 3073 dTheta2=(fSTheta+fDTheta)-pTheta; >> 3074 if (dTheta1<dTheta2) 2675 { 3075 { 2676 pTheta=std::acos(p.z()/rds); << 3076 safeTheta=rad*std::sin(dTheta1); 2677 if (pTheta<0) { pTheta+=pi; } << 3077 if (safe>safeTheta) 2678 if(fSTheta>0.) << 3078 { 2679 { dTheta1=pTheta-fSTheta;} << 3079 safe=safeTheta; 2680 if(eTheta<pi) << 3080 } 2681 { dTheta2=eTheta-pTheta;} << 2682 << 2683 safeTheta=rds*std::sin(std::min(dTheta << 2684 } 3081 } 2685 else 3082 else 2686 { 3083 { 2687 safeTheta= 0.0; << 3084 safeTheta=rad*std::sin(dTheta2); 2688 // An improvement will be to return << 3085 if (safe>safeTheta) >> 3086 { >> 3087 safe=safeTheta; >> 3088 } 2689 } 3089 } 2690 safe = std::min( safe, safeTheta ); << 2691 } 3090 } 2692 3091 2693 if (safe<0.0) { safe=0; } << 3092 if (safe<0) safe=0; 2694 // An improvement to return negative answ << 3093 return safe; 2695 << 2696 return safe; << 2697 } 3094 } 2698 3095 2699 ///////////////////////////////////////////// 3096 ////////////////////////////////////////////////////////////////////////// 2700 // 3097 // 2701 // G4EntityType << 3098 // Create a List containing the transformed vertices >> 3099 // Ordering [0-3] -fDz cross section >> 3100 // [4-7] +fDz cross section such that [0] is below [4], >> 3101 // [1] below [5] etc. >> 3102 // Note: >> 3103 // Caller has deletion resposibility >> 3104 // Potential improvement: For last slice, use actual ending angle >> 3105 // to avoid rounding error problems. >> 3106 >> 3107 G4ThreeVectorList* >> 3108 G4Sphere::CreateRotatedVertices( const G4AffineTransform& pTransform, >> 3109 G4int& noPolygonVertices ) const >> 3110 { >> 3111 G4ThreeVectorList *vertices; >> 3112 G4ThreeVector vertex; >> 3113 G4double meshAnglePhi,meshRMax,crossAnglePhi, >> 3114 coscrossAnglePhi,sincrossAnglePhi,sAnglePhi; >> 3115 G4double meshTheta,crossTheta,startTheta; >> 3116 G4double rMaxX,rMaxY,rMinX,rMinY,rMinZ,rMaxZ; >> 3117 G4int crossSectionPhi,noPhiCrossSections,crossSectionTheta,noThetaSections; >> 3118 >> 3119 // Phi cross sections >> 3120 >> 3121 noPhiCrossSections=G4int (fDPhi/kMeshAngleDefault)+1; >> 3122 >> 3123 if (noPhiCrossSections<kMinMeshSections) >> 3124 { >> 3125 noPhiCrossSections=kMinMeshSections; >> 3126 } >> 3127 else if (noPhiCrossSections>kMaxMeshSections) >> 3128 { >> 3129 noPhiCrossSections=kMaxMeshSections; >> 3130 } >> 3131 meshAnglePhi=fDPhi/(noPhiCrossSections-1); >> 3132 >> 3133 // If complete in phi, set start angle such that mesh will be at fRMax >> 3134 // on the x axis. Will give better extent calculations when not rotated. >> 3135 >> 3136 if (fDPhi==pi*2.0 && fSPhi==0) >> 3137 { >> 3138 sAnglePhi = -meshAnglePhi*0.5; >> 3139 } >> 3140 else >> 3141 { >> 3142 sAnglePhi=fSPhi; >> 3143 } 2702 3144 2703 G4GeometryType G4Sphere::GetEntityType() cons << 3145 // Theta cross sections 2704 { << 3146 2705 return {"G4Sphere"}; << 3147 noThetaSections = G4int(fDTheta/kMeshAngleDefault)+1; >> 3148 >> 3149 if (noThetaSections<kMinMeshSections) >> 3150 { >> 3151 noThetaSections=kMinMeshSections; >> 3152 } >> 3153 else if (noThetaSections>kMaxMeshSections) >> 3154 { >> 3155 noThetaSections=kMaxMeshSections; >> 3156 } >> 3157 meshTheta=fDTheta/(noThetaSections-1); >> 3158 >> 3159 // If complete in Theta, set start angle such that mesh will be at fRMax >> 3160 // on the z axis. Will give better extent calculations when not rotated. >> 3161 >> 3162 if (fDTheta==pi && fSTheta==0) >> 3163 { >> 3164 startTheta = -meshTheta*0.5; >> 3165 } >> 3166 else >> 3167 { >> 3168 startTheta=fSTheta; >> 3169 } >> 3170 >> 3171 meshRMax = (meshAnglePhi >= meshTheta) ? >> 3172 fRmax/std::cos(meshAnglePhi*0.5) : fRmax/std::cos(meshTheta*0.5); >> 3173 G4double* cosCrossTheta = new G4double[noThetaSections]; >> 3174 G4double* sinCrossTheta = new G4double[noThetaSections]; >> 3175 vertices=new G4ThreeVectorList(); >> 3176 vertices->reserve(noPhiCrossSections*(noThetaSections*2)); >> 3177 if (vertices && cosCrossTheta && sinCrossTheta) >> 3178 { >> 3179 for (crossSectionPhi=0; >> 3180 crossSectionPhi<noPhiCrossSections; crossSectionPhi++) >> 3181 { >> 3182 crossAnglePhi=sAnglePhi+crossSectionPhi*meshAnglePhi; >> 3183 coscrossAnglePhi=std::cos(crossAnglePhi); >> 3184 sincrossAnglePhi=std::sin(crossAnglePhi); >> 3185 for (crossSectionTheta=0; >> 3186 crossSectionTheta<noThetaSections;crossSectionTheta++) >> 3187 { >> 3188 // Compute coordinates of cross section at section crossSectionPhi >> 3189 // >> 3190 crossTheta=startTheta+crossSectionTheta*meshTheta; >> 3191 cosCrossTheta[crossSectionTheta]=std::cos(crossTheta); >> 3192 sinCrossTheta[crossSectionTheta]=std::sin(crossTheta); >> 3193 >> 3194 rMinX=fRmin*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi; >> 3195 rMinY=fRmin*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi; >> 3196 rMinZ=fRmin*cosCrossTheta[crossSectionTheta]; >> 3197 >> 3198 vertex=G4ThreeVector(rMinX,rMinY,rMinZ); >> 3199 vertices->push_back(pTransform.TransformPoint(vertex)); >> 3200 >> 3201 } // Theta forward >> 3202 >> 3203 for (crossSectionTheta=noThetaSections-1; >> 3204 crossSectionTheta>=0; crossSectionTheta--) >> 3205 { >> 3206 rMaxX=meshRMax*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi; >> 3207 rMaxY=meshRMax*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi; >> 3208 rMaxZ=meshRMax*cosCrossTheta[crossSectionTheta]; >> 3209 >> 3210 vertex=G4ThreeVector(rMaxX,rMaxY,rMaxZ); >> 3211 vertices->push_back(pTransform.TransformPoint(vertex)); >> 3212 >> 3213 } // Theta back >> 3214 } // Phi >> 3215 noPolygonVertices = noThetaSections*2 ; >> 3216 } >> 3217 else >> 3218 { >> 3219 DumpInfo(); >> 3220 G4Exception("G4Sphere::CreateRotatedVertices()", >> 3221 "FatalError", FatalException, >> 3222 "Error in allocation of vertices. Out of memory !"); >> 3223 } >> 3224 >> 3225 delete[] cosCrossTheta; >> 3226 delete[] sinCrossTheta; >> 3227 >> 3228 return vertices; 2706 } 3229 } 2707 3230 2708 ///////////////////////////////////////////// 3231 ////////////////////////////////////////////////////////////////////////// 2709 // 3232 // 2710 // Make a clone of the object << 3233 // G4EntityType 2711 // << 3234 2712 G4VSolid* G4Sphere::Clone() const << 3235 G4GeometryType G4Sphere::GetEntityType() const 2713 { 3236 { 2714 return new G4Sphere(*this); << 3237 return G4String("G4Sphere"); 2715 } 3238 } 2716 3239 2717 ///////////////////////////////////////////// 3240 ////////////////////////////////////////////////////////////////////////// 2718 // 3241 // 2719 // Stream object contents to an output stream 3242 // Stream object contents to an output stream 2720 3243 2721 std::ostream& G4Sphere::StreamInfo( std::ostr 3244 std::ostream& G4Sphere::StreamInfo( std::ostream& os ) const 2722 { 3245 { 2723 G4long oldprc = os.precision(16); << 2724 os << "------------------------------------ 3246 os << "-----------------------------------------------------------\n" 2725 << " *** Dump for solid - " << GetNam 3247 << " *** Dump for solid - " << GetName() << " ***\n" 2726 << " ================================ 3248 << " ===================================================\n" 2727 << " Solid type: G4Sphere\n" 3249 << " Solid type: G4Sphere\n" 2728 << " Parameters: \n" 3250 << " Parameters: \n" 2729 << " inner radius: " << fRmin/mm << " 3251 << " inner radius: " << fRmin/mm << " mm \n" 2730 << " outer radius: " << fRmax/mm << " 3252 << " outer radius: " << fRmax/mm << " mm \n" 2731 << " starting phi of segment : " << 3253 << " starting phi of segment : " << fSPhi/degree << " degrees \n" 2732 << " delta phi of segment : " << 3254 << " delta phi of segment : " << fDPhi/degree << " degrees \n" 2733 << " starting theta of segment: " << 3255 << " starting theta of segment: " << fSTheta/degree << " degrees \n" 2734 << " delta theta of segment : " << 3256 << " delta theta of segment : " << fDTheta/degree << " degrees \n" 2735 << "------------------------------------ 3257 << "-----------------------------------------------------------\n"; 2736 os.precision(oldprc); << 2737 3258 2738 return os; 3259 return os; 2739 } 3260 } 2740 3261 2741 ///////////////////////////////////////////// 3262 //////////////////////////////////////////////////////////////////////////////// 2742 // 3263 // 2743 // Get volume << 3264 // GetPointOnSurface 2744 3265 2745 G4double G4Sphere::GetCubicVolume() << 3266 G4ThreeVector G4Sphere::GetPointOnSurface() const 2746 { 3267 { 2747 if (fCubicVolume == 0.) << 3268 G4double zRand, aOne, aTwo, aThr, aFou, aFiv, chose, phi, sinphi, cosphi; >> 3269 G4double height1, height2, slant1, slant2, costheta, sintheta,theta,rRand; >> 3270 >> 3271 height1 = (fRmax-fRmin)*std::cos(fSTheta); >> 3272 height2 = (fRmax-fRmin)*std::cos(fSTheta+fDTheta); >> 3273 slant1 = std::sqrt(sqr((fRmax - fRmin)*std::sin(fSTheta)) >> 3274 + height1*height1); >> 3275 slant2 = std::sqrt(sqr((fRmax - fRmin)*std::sin(fSTheta+fDTheta)) >> 3276 + height2*height2); >> 3277 rRand = RandFlat::shoot(fRmin,fRmax); >> 3278 >> 3279 aOne = fRmax*fRmax*fDPhi*(std::cos(fSTheta)-std::cos(fSTheta+fDTheta)); >> 3280 aTwo = fRmin*fRmin*fDPhi*(std::cos(fSTheta)-std::cos(fSTheta+fDTheta)); >> 3281 aThr = fDPhi*((fRmax + fRmin)*std::sin(fSTheta))*slant1; >> 3282 aFou = fDPhi*((fRmax + fRmin)*std::sin(fSTheta+fDTheta))*slant2; >> 3283 aFiv = 0.5*fDTheta*(fRmax*fRmax-fRmin*fRmin); >> 3284 >> 3285 phi = RandFlat::shoot(fSPhi, fSPhi + fDPhi); >> 3286 cosphi = std::cos(phi); >> 3287 sinphi = std::sin(phi); >> 3288 theta = RandFlat::shoot(fSTheta,fSTheta+fDTheta); >> 3289 costheta = std::cos(theta); >> 3290 sintheta = std::sqrt(1.-sqr(costheta)); >> 3291 >> 3292 if( ((fSPhi==0) && (fDPhi==2.*pi)) || (fDPhi==2.*pi) ) {aFiv = 0;} >> 3293 if(fSTheta == 0) {aThr=0;} >> 3294 if(fDTheta + fSTheta == pi) {aFou = 0;} >> 3295 if(fSTheta == 0.5*pi) {aThr = pi*(fRmax*fRmax-fRmin*fRmin);} >> 3296 if(fSTheta + fDTheta == 0.5*pi) { aFou = pi*(fRmax*fRmax-fRmin*fRmin);} >> 3297 >> 3298 chose = RandFlat::shoot(0.,aOne+aTwo+aThr+aFou+2.*aFiv); >> 3299 if( (chose>=0.) && (chose<aOne) ) >> 3300 { >> 3301 return G4ThreeVector(fRmax*sintheta*cosphi, >> 3302 fRmax*sintheta*sinphi, fRmax*costheta); >> 3303 } >> 3304 else if( (chose>=aOne) && (chose<aOne+aTwo) ) >> 3305 { >> 3306 return G4ThreeVector(fRmin*sintheta*cosphi, >> 3307 fRmin*sintheta*sinphi, fRmin*costheta); >> 3308 } >> 3309 else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThr) ) >> 3310 { >> 3311 if (fSTheta != 0.5*pi) >> 3312 { >> 3313 zRand = RandFlat::shoot(fRmin*std::cos(fSTheta),fRmax*std::cos(fSTheta)); >> 3314 return G4ThreeVector(std::tan(fSTheta)*zRand*cosphi, >> 3315 std::tan(fSTheta)*zRand*sinphi,zRand); >> 3316 } >> 3317 else >> 3318 { >> 3319 return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.); >> 3320 } >> 3321 } >> 3322 else if( (chose>=aOne+aTwo+aThr) && (chose<aOne+aTwo+aThr+aFou) ) 2748 { 3323 { 2749 G4double RRR = fRmax*fRmax*fRmax; << 3324 if(fSTheta + fDTheta != 0.5*pi) 2750 G4double rrr = fRmin*fRmin*fRmin; << 3325 { 2751 fCubicVolume = fDPhi*(cosSTheta - cosEThe << 3326 zRand = RandFlat::shoot(fRmin*std::cos(fSTheta+fDTheta), >> 3327 fRmax*std::cos(fSTheta+fDTheta)); >> 3328 return G4ThreeVector (std::tan(fSTheta+fDTheta)*zRand*cosphi, >> 3329 std::tan(fSTheta+fDTheta)*zRand*sinphi,zRand); >> 3330 } >> 3331 else >> 3332 { >> 3333 return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.); >> 3334 } 2752 } 3335 } 2753 return fCubicVolume; << 3336 else if( (chose>=aOne+aTwo+aThr+aFou) && (chose<aOne+aTwo+aThr+aFou+aFiv) ) 2754 } << 2755 << 2756 ///////////////////////////////////////////// << 2757 // << 2758 // Get surface area << 2759 << 2760 G4double G4Sphere::GetSurfaceArea() << 2761 { << 2762 if (fSurfaceArea == 0.) << 2763 { 3337 { 2764 G4double RR = fRmax*fRmax; << 3338 return G4ThreeVector(rRand*sintheta*std::cos(fSPhi), 2765 G4double rr = fRmin*fRmin; << 3339 rRand*sintheta*std::sin(fSPhi),rRand*costheta); 2766 fSurfaceArea = fDPhi*(RR + rr)*(cosSTheta << 2767 if (!fFullPhiSphere) fSurfaceArea += f << 2768 if (fSTheta > 0) fSurfaceArea += 0 << 2769 if (eTheta < CLHEP::pi) fSurfaceArea += 0 << 2770 } 3340 } 2771 return fSurfaceArea; << 3341 else 2772 } << 3342 { 2773 << 3343 return G4ThreeVector(rRand*sintheta*std::cos(fSPhi+fDPhi), 2774 ///////////////////////////////////////////// << 3344 rRand*sintheta*std::sin(fSPhi+fDPhi),rRand*costheta); 2775 // << 2776 // Return a point randomly and uniformly sele << 2777 << 2778 G4ThreeVector G4Sphere::GetPointOnSurface() c << 2779 { << 2780 G4double RR = fRmax*fRmax; << 2781 G4double rr = fRmin*fRmin; << 2782 << 2783 // Find surface areas << 2784 // << 2785 G4double aInner = fDPhi*rr*(cosSTheta - c << 2786 G4double aOuter = fDPhi*RR*(cosSTheta - c << 2787 G4double aPhi = (!fFullPhiSphere) ? fDT << 2788 G4double aSTheta = (fSTheta > 0) ? 0.5*fDP << 2789 G4double aETheta = (eTheta < pi) ? 0.5*fDP << 2790 G4double aTotal = aInner + aOuter + aPhi << 2791 << 2792 // Select surface and generate a point << 2793 // << 2794 G4double select = aTotal*G4QuickRand(); << 2795 G4double u = G4QuickRand(); << 2796 G4double v = G4QuickRand(); << 2797 if (select < aInner + aOuter) // << 2798 { << 2799 G4double r = (select < aInner) ? fRmin << 2800 G4double z = cosSTheta + (cosETheta - c << 2801 G4double rho = std::sqrt(1. - z*z); << 2802 G4double phi = fDPhi*v + fSPhi; << 2803 return { r*rho*std::cos(phi), r*rho*std:: << 2804 } << 2805 else if (select < aInner + aOuter + aPhi) / << 2806 { << 2807 G4double phi = (select < aInner + aOute << 2808 G4double r = std::sqrt((RR - rr)*u + << 2809 G4double theta = fDTheta*v + fSTheta; << 2810 G4double z = std::cos(theta); << 2811 G4double rho = std::sin(theta); << 2812 return { r*rho*std::cos(phi), r*rho*std:: << 2813 } << 2814 else // << 2815 { << 2816 G4double theta = (select < aTotal - aEThe << 2817 G4double r = std::sqrt((RR - rr)*u + << 2818 G4double phi = fDPhi*v + fSPhi; << 2819 G4double z = std::cos(theta); << 2820 G4double rho = std::sin(theta); << 2821 return { r*rho*std::cos(phi), r*rho*std:: << 2822 } 3345 } 2823 } 3346 } 2824 3347 2825 ///////////////////////////////////////////// 3348 ///////////////////////////////////////////////////////////////////////////// 2826 // 3349 // 2827 // Methods for visualisation 3350 // Methods for visualisation 2828 3351 2829 G4VisExtent G4Sphere::GetExtent() const 3352 G4VisExtent G4Sphere::GetExtent() const 2830 { 3353 { 2831 return { -fRmax, fRmax,-fRmax, fRmax,-fRmax << 3354 return G4VisExtent(-fRmax, fRmax,-fRmax, fRmax,-fRmax, fRmax ); 2832 } 3355 } 2833 3356 2834 3357 2835 void G4Sphere::DescribeYourselfTo ( G4VGraphi 3358 void G4Sphere::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 2836 { 3359 { 2837 scene.AddSolid (*this); 3360 scene.AddSolid (*this); 2838 } 3361 } 2839 3362 2840 G4Polyhedron* G4Sphere::CreatePolyhedron () c 3363 G4Polyhedron* G4Sphere::CreatePolyhedron () const 2841 { 3364 { 2842 return new G4PolyhedronSphere (fRmin, fRmax 3365 return new G4PolyhedronSphere (fRmin, fRmax, fSPhi, fDPhi, fSTheta, fDTheta); 2843 } 3366 } 2844 3367 2845 #endif << 3368 G4NURBS* G4Sphere::CreateNURBS () const >> 3369 { >> 3370 return new G4NURBSbox (fRmax, fRmax, fRmax); // Box for now!!! >> 3371 } 2846 3372