Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Sphere.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Sphere.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Sphere.cc (Version 7.0.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                    <<   3 // * DISCLAIMER                                                       *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th <<   5 // * The following disclaimer summarizes all the specific disclaimers *
  6 // * the Geant4 Collaboration.  It is provided <<   6 // * of contributors to this software. The specific disclaimers,which *
  7 // * conditions of the Geant4 Software License <<   7 // * govern, are listed with their locations in:                      *
  8 // * LICENSE and available at  http://cern.ch/ <<   8 // *   http://cern.ch/geant4/license                                  *
  9 // * include a list of copyright holders.      << 
 10 // *                                                9 // *                                                                  *
 11 // * Neither the authors of this software syst     10 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     11 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     12 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     13 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  <<  14 // * use.                                                             *
 16 // * for the full disclaimer and the limitatio << 
 17 // *                                               15 // *                                                                  *
 18 // * This  code  implementation is the result  <<  16 // * This  code  implementation is the  intellectual property  of the *
 19 // * technical work of the GEANT4 collaboratio <<  17 // * GEANT4 collaboration.                                            *
 20 // * By using,  copying,  modifying or  distri <<  18 // * By copying,  distributing  or modifying the Program (or any work *
 21 // * any work based  on the software)  you  ag <<  19 // * based  on  the Program)  you indicate  your  acceptance of  this *
 22 // * use  in  resulting  scientific  publicati <<  20 // * statement, and all its terms.                                    *
 23 // * acceptance of all terms of the Geant4 Sof << 
 24 // *******************************************     21 // ********************************************************************
 25 //                                                 22 //
                                                   >>  23 //
                                                   >>  24 // $Id: G4Sphere.cc,v 1.34 2004/12/10 16:22:37 gcosmo Exp $
                                                   >>  25 // GEANT4 tag $Name: geant4-07-00-patch-01 $
                                                   >>  26 //
                                                   >>  27 // class G4Sphere
                                                   >>  28 //
 26 // Implementation for G4Sphere class               29 // Implementation for G4Sphere class
 27 //                                                 30 //
 28 // 28.03.94 P.Kent: old C++ code converted to  <<  31 // History:
 29 // 17.09.96 V.Grichine: final modifications to <<  32 //
                                                   >>  33 // 16.09.04 V.Grichine: bug fixed in SurfaceNormal(p), theta normals
                                                   >>  34 // 16.07.04 V.Grichine: bug fixed in DistanceToOut(p,v), Rmin go outside
                                                   >>  35 // 02.06.04 V.Grichine: bug fixed in DistanceToIn(p,v), on Rmax,Rmin go inside
 30 // 30.10.03 J.Apostolakis: new algorithm in In     36 // 30.10.03 J.Apostolakis: new algorithm in Inside for SPhi-sections
 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor <<  37 // 29.10.03 J.Apostolakis: fix in Inside for SPhi-0.5*kAngTol < phi < SPhi, SPhi<0
 32 // 22.07.05 O.Link: Added check for intersecti <<  38 // 19.06.02 V.Grichine: bug fixed in Inside(p), && -> && fDTheta - kAngTolerance
 33 // 26.03.09 G.Cosmo: optimisations and uniform <<  39 // 30.01.02 V.Grichine: bug fixed in Inside(p), && -> || at l.451
 34 // 26.10.16 E.Tcherniaev: re-implemented Calcu <<  40 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...)
 35 //                        G4BoundingEnvelope,  <<  41 // 18.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...)
                                                   >>  42 // 25.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), phi intersections
                                                   >>  43 // 12.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), theta intersections
                                                   >>  44 // 09.10.98 V.Grichine: modifications in Distance ToOut(p,v,...)
                                                   >>  45 // 17.09.96 V.Grichine: final modifications to commit
                                                   >>  46 // 28.03.94 P.Kent: old C++ code converted to tolerant geometry
 36 // -------------------------------------------     47 // --------------------------------------------------------------------
 37                                                    48 
 38 #include "G4Sphere.hh"                         <<  49 #include <assert.h>
 39                                                    50 
 40 #if !defined(G4GEOM_USE_USPHERE)               <<  51 #include "G4Sphere.hh"
 41                                                    52 
 42 #include "G4GeomTools.hh"                      << 
 43 #include "G4VoxelLimits.hh"                        53 #include "G4VoxelLimits.hh"
 44 #include "G4AffineTransform.hh"                    54 #include "G4AffineTransform.hh"
 45 #include "G4GeometryTolerance.hh"              << 
 46 #include "G4BoundingEnvelope.hh"               << 
 47                                                    55 
 48 #include "G4VPVParameterisation.hh"                56 #include "G4VPVParameterisation.hh"
 49                                                    57 
 50 #include "G4QuickRand.hh"                      << 
 51                                                << 
 52 #include "meshdefs.hh"                             58 #include "meshdefs.hh"
 53                                                    59 
 54 #include "G4VGraphicsScene.hh"                     60 #include "G4VGraphicsScene.hh"
 55 #include "G4VisExtent.hh"                          61 #include "G4VisExtent.hh"
 56                                                <<  62 #include "G4Polyhedron.hh"
 57 using namespace CLHEP;                         <<  63 #include "G4NURBS.hh"
                                                   >>  64 #include "G4NURBSbox.hh"
 58                                                    65 
 59 // Private enum: Not for external use - used b     66 // Private enum: Not for external use - used by distanceToOut
 60                                                    67 
 61 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTh     68 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTheta,kETheta};
 62                                                    69 
 63 // used by normal                                  70 // used by normal
 64                                                    71 
 65 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSThe     72 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSTheta,kNETheta};
 66                                                    73 
                                                   >>  74 /////////////////////////////////////////////////////////////////////
                                                   >>  75 //
                                                   >>  76 // Destructor
                                                   >>  77 
                                                   >>  78 G4Sphere::~G4Sphere()
                                                   >>  79 {
                                                   >>  80 }
                                                   >>  81 
 67 //////////////////////////////////////////////     82 ////////////////////////////////////////////////////////////////////////
 68 //                                                 83 //
 69 // constructor - check parameters, convert ang     84 // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 70 //             - note if pDPhi>2PI then reset      85 //             - note if pDPhi>2PI then reset to 2PI
 71                                                    86 
 72 G4Sphere::G4Sphere( const G4String& pName,         87 G4Sphere::G4Sphere( const G4String& pName,
 73                           G4double pRmin, G4do     88                           G4double pRmin, G4double pRmax,
 74                           G4double pSPhi, G4do     89                           G4double pSPhi, G4double pDPhi,
 75                           G4double pSTheta, G4     90                           G4double pSTheta, G4double pDTheta )
 76   : G4CSGSolid(pName), fSPhi(0.0), fFullPhiSph <<  91   : G4CSGSolid(pName)
 77 {                                                  92 {
 78   kAngTolerance = G4GeometryTolerance::GetInst <<  93   fEpsilon = 1.0e-14;
 79   kRadTolerance = G4GeometryTolerance::GetInst << 
 80                                                    94 
 81   halfCarTolerance = 0.5*kCarTolerance;        <<  95   // Check radii
 82   halfAngTolerance = 0.5*kAngTolerance;        << 
 83                                                    96 
 84   // Check radii and set radial tolerances     <<  97   if (pRmin<pRmax&&pRmin>=0)
 85                                                <<  98   {
 86   if ( (pRmin >= pRmax) || (pRmax < 1.1*kRadTo <<  99     fRmin=pRmin; fRmax=pRmax;
                                                   >> 100   }
                                                   >> 101   else
 87   {                                               102   {
 88     std::ostringstream message;                << 103     G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl
 89     message << "Invalid radii for Solid: " <<  << 104            << "        Invalide values for radii ! - "
 90             << "        pRmin = " << pRmin <<  << 105            << "        pRmin = " << pRmin << ", pRmax = " << pRmax << G4endl;
 91     G4Exception("G4Sphere::G4Sphere()", "GeomS << 106     G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException,
 92                 FatalException, message);      << 107                 "Invalid radii");
 93   }                                               108   }
 94   fRmin=pRmin; fRmax=pRmax;                    << 
 95   fRminTolerance = (fRmin) != 0.0 ? std::max(  << 
 96   fRmaxTolerance = std::max( kRadTolerance, fE << 
 97                                                   109 
 98   // Check angles                                 110   // Check angles
 99                                                   111 
100   CheckPhiAngles(pSPhi, pDPhi);                << 112   if (pDPhi>=twopi)
101   CheckThetaAngles(pSTheta, pDTheta);          << 113   {
102 }                                              << 114     fDPhi=twopi;
103                                                << 115   }
104 ////////////////////////////////////////////// << 116   else if (pDPhi>0)
105 //                                             << 117   {
106 // Fake default constructor - sets only member << 118     fDPhi=pDPhi;
107 //                            for usage restri << 119   }
108 //                                             << 120   else
109 G4Sphere::G4Sphere( __void__& a )              << 121   {
110   : G4CSGSolid(a)                              << 122     G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl
111 {                                              << 123            << "        Negative Z delta-Phi ! - "
112 }                                              << 124            << pDPhi << G4endl;
113                                                << 125     G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException,
114 ////////////////////////////////////////////// << 126                 "Invalid DPhi.");
115 //                                             << 127   }
116 // Destructor                                  << 
117                                                   128 
118 G4Sphere::~G4Sphere() = default;               << 129   // Convert fSPhi to 0-2PI
119                                                   130 
120 ////////////////////////////////////////////// << 131   if (pSPhi<0)
121 //                                             << 132   {
122 // Copy constructor                            << 133     fSPhi=twopi-std::fmod(std::fabs(pSPhi),twopi);
                                                   >> 134   }
                                                   >> 135   else
                                                   >> 136   {
                                                   >> 137     fSPhi=std::fmod(pSPhi,twopi);
                                                   >> 138   }
123                                                   139 
124 G4Sphere::G4Sphere(const G4Sphere&) = default; << 140   // Sphere is placed such that fSPhi+fDPhi>twopi !
                                                   >> 141   // fSPhi could be < 0 !!?
                                                   >> 142   //
                                                   >> 143   if (fSPhi+fDPhi>twopi) fSPhi-=twopi;
125                                                   144 
126 ////////////////////////////////////////////// << 145   // Check theta angles
127 //                                             << 
128 // Assignment operator                         << 
129                                                   146 
130 G4Sphere& G4Sphere::operator = (const G4Sphere << 147   if (pSTheta<0 || pSTheta>pi)
131 {                                              << 148   {
132    // Check assignment to self                 << 149     G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl;
133    //                                          << 150     G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException,
134    if (this == &rhs)  { return *this; }        << 151                 "stheta outside 0-PI range.");
135                                                << 152   }
136    // Copy base class data                     << 153   else
137    //                                          << 154   {
138    G4CSGSolid::operator=(rhs);                 << 155     fSTheta=pSTheta;
139                                                << 156   }
140    // Copy data                                << 
141    //                                          << 
142    fRminTolerance = rhs.fRminTolerance; fRmaxT << 
143    kAngTolerance = rhs.kAngTolerance; kRadTole << 
144    fEpsilon = rhs.fEpsilon; fRmin = rhs.fRmin; << 
145    fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; fSThe << 
146    fDTheta = rhs.fDTheta; sinCPhi = rhs.sinCPh << 
147    cosHDPhi = rhs.cosHDPhi;                    << 
148    cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r << 
149    sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh << 
150    sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh << 
151    hDPhi = rhs.hDPhi; cPhi = rhs.cPhi; ePhi =  << 
152    sinSTheta = rhs.sinSTheta; cosSTheta = rhs. << 
153    sinETheta = rhs.sinETheta; cosETheta = rhs. << 
154    tanSTheta = rhs.tanSTheta; tanSTheta2 = rhs << 
155    tanETheta = rhs.tanETheta; tanETheta2 = rhs << 
156    eTheta = rhs.eTheta; fFullPhiSphere = rhs.f << 
157    fFullThetaSphere = rhs.fFullThetaSphere; fF << 
158    halfCarTolerance = rhs.halfCarTolerance;    << 
159    halfAngTolerance = rhs.halfAngTolerance;    << 
160                                                   157 
161    return *this;                               << 158   if (pDTheta+pSTheta>=pi)
                                                   >> 159   {
                                                   >> 160     fDTheta=pi-pSTheta;
                                                   >> 161   }
                                                   >> 162   else if (pDTheta>0)
                                                   >> 163   {
                                                   >> 164     fDTheta=pDTheta;
                                                   >> 165   }
                                                   >> 166   else
                                                   >> 167   {
                                                   >> 168     G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl
                                                   >> 169            << "        Negative delta-Theta ! - "
                                                   >> 170            << pDTheta << G4endl;
                                                   >> 171     G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException,
                                                   >> 172                 "Invalid pDTheta.");
                                                   >> 173   }
162 }                                                 174 }
163                                                   175 
164 //////////////////////////////////////////////    176 //////////////////////////////////////////////////////////////////////////
165 //                                                177 //
166 // Dispatch to parameterisation for replicatio    178 // Dispatch to parameterisation for replication mechanism dimension
167 // computation & modification.                    179 // computation & modification.
168                                                   180 
169 void G4Sphere::ComputeDimensions(       G4VPVP    181 void G4Sphere::ComputeDimensions(       G4VPVParameterisation* p,
170                                   const G4int     182                                   const G4int n,
171                                   const G4VPhy    183                                   const G4VPhysicalVolume* pRep)
172 {                                                 184 {
173   p->ComputeDimensions(*this,n,pRep);             185   p->ComputeDimensions(*this,n,pRep);
174 }                                                 186 }
175                                                   187 
176 ////////////////////////////////////////////// << 
177 //                                             << 
178 // Get bounding box                            << 
179                                                << 
180 void G4Sphere::BoundingLimits(G4ThreeVector& p << 
181 {                                              << 
182   G4double rmin = GetInnerRadius();            << 
183   G4double rmax = GetOuterRadius();            << 
184                                                << 
185   // Find bounding box                         << 
186   //                                           << 
187   if (GetDeltaThetaAngle() >= pi && GetDeltaPh << 
188   {                                            << 
189     pMin.set(-rmax,-rmax,-rmax);               << 
190     pMax.set( rmax, rmax, rmax);               << 
191   }                                            << 
192   else                                         << 
193   {                                            << 
194     G4double sinStart = GetSinStartTheta();    << 
195     G4double cosStart = GetCosStartTheta();    << 
196     G4double sinEnd   = GetSinEndTheta();      << 
197     G4double cosEnd   = GetCosEndTheta();      << 
198                                                << 
199     G4double stheta = GetStartThetaAngle();    << 
200     G4double etheta = stheta + GetDeltaThetaAn << 
201     G4double rhomin = rmin*std::min(sinStart,s << 
202     G4double rhomax = rmax;                    << 
203     if (stheta > halfpi) rhomax = rmax*sinStar << 
204     if (etheta < halfpi) rhomax = rmax*sinEnd; << 
205                                                << 
206     G4TwoVector xymin,xymax;                   << 
207     G4GeomTools::DiskExtent(rhomin,rhomax,     << 
208                             GetSinStartPhi(),G << 
209                             GetSinEndPhi(),Get << 
210                             xymin,xymax);      << 
211                                                << 
212     G4double zmin = std::min(rmin*cosEnd,rmax* << 
213     G4double zmax = std::max(rmin*cosStart,rma << 
214     pMin.set(xymin.x(),xymin.y(),zmin);        << 
215     pMax.set(xymax.x(),xymax.y(),zmax);        << 
216   }                                            << 
217                                                << 
218   // Check correctness of the bounding box     << 
219   //                                           << 
220   if (pMin.x() >= pMax.x() || pMin.y() >= pMax << 
221   {                                            << 
222     std::ostringstream message;                << 
223     message << "Bad bounding box (min >= max)  << 
224             << GetName() << " !"               << 
225             << "\npMin = " << pMin             << 
226             << "\npMax = " << pMax;            << 
227     G4Exception("G4Sphere::BoundingLimits()",  << 
228                 JustWarning, message);         << 
229     DumpInfo();                                << 
230   }                                            << 
231 }                                              << 
232                                                << 
233 //////////////////////////////////////////////    188 ////////////////////////////////////////////////////////////////////////////
234 //                                                189 //
235 // Calculate extent under transform and specif    190 // Calculate extent under transform and specified limit
236                                                   191 
237 G4bool G4Sphere::CalculateExtent( const EAxis     192 G4bool G4Sphere::CalculateExtent( const EAxis pAxis,
238                                   const G4Voxe    193                                   const G4VoxelLimits& pVoxelLimit,
239                                   const G4Affi    194                                   const G4AffineTransform& pTransform,
240                                         G4doub    195                                         G4double& pMin, G4double& pMax ) const
241 {                                                 196 {
242   G4ThreeVector bmin, bmax;                    << 197   if ( fDPhi==twopi && fDTheta==pi)  // !pTransform.IsRotated() &&
                                                   >> 198   {
                                                   >> 199     // Special case handling for solid spheres-shells
                                                   >> 200     // (rotation doesn't influence).
                                                   >> 201     // Compute x/y/z mins and maxs for bounding box respecting limits,
                                                   >> 202     // with early returns if outside limits. Then switch() on pAxis,
                                                   >> 203     // and compute exact x and y limit for x/y case
                                                   >> 204       
                                                   >> 205     G4double xoffset,xMin,xMax;
                                                   >> 206     G4double yoffset,yMin,yMax;
                                                   >> 207     G4double zoffset,zMin,zMax;
                                                   >> 208 
                                                   >> 209     G4double diff1,diff2,maxDiff,newMin,newMax;
                                                   >> 210     G4double xoff1,xoff2,yoff1,yoff2;
                                                   >> 211 
                                                   >> 212     xoffset=pTransform.NetTranslation().x();
                                                   >> 213     xMin=xoffset-fRmax;
                                                   >> 214     xMax=xoffset+fRmax;
                                                   >> 215     if (pVoxelLimit.IsXLimited())
                                                   >> 216     {
                                                   >> 217       if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance)
                                                   >> 218         || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) )
                                                   >> 219       {
                                                   >> 220         return false;
                                                   >> 221       }
                                                   >> 222       else
                                                   >> 223       {
                                                   >> 224         if (xMin<pVoxelLimit.GetMinXExtent())
                                                   >> 225         {
                                                   >> 226           xMin=pVoxelLimit.GetMinXExtent();
                                                   >> 227         }
                                                   >> 228         if (xMax>pVoxelLimit.GetMaxXExtent())
                                                   >> 229         {
                                                   >> 230           xMax=pVoxelLimit.GetMaxXExtent();
                                                   >> 231         }
                                                   >> 232       }
                                                   >> 233     }
243                                                   234 
244   // Get bounding box                          << 235     yoffset=pTransform.NetTranslation().y();
245   BoundingLimits(bmin,bmax);                   << 236     yMin=yoffset-fRmax;
                                                   >> 237     yMax=yoffset+fRmax;
                                                   >> 238     if (pVoxelLimit.IsYLimited())
                                                   >> 239     {
                                                   >> 240       if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance)
                                                   >> 241         || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) )
                                                   >> 242       {
                                                   >> 243         return false;
                                                   >> 244       }
                                                   >> 245       else
                                                   >> 246       {
                                                   >> 247         if (yMin<pVoxelLimit.GetMinYExtent())
                                                   >> 248         {
                                                   >> 249           yMin=pVoxelLimit.GetMinYExtent();
                                                   >> 250         }
                                                   >> 251         if (yMax>pVoxelLimit.GetMaxYExtent())
                                                   >> 252         {
                                                   >> 253           yMax=pVoxelLimit.GetMaxYExtent();
                                                   >> 254         }
                                                   >> 255       }
                                                   >> 256     }
246                                                   257 
247   // Find extent                               << 258     zoffset=pTransform.NetTranslation().z();
248   G4BoundingEnvelope bbox(bmin,bmax);          << 259     zMin=zoffset-fRmax;
249   return bbox.CalculateExtent(pAxis,pVoxelLimi << 260     zMax=zoffset+fRmax;
250 }                                              << 261     if (pVoxelLimit.IsZLimited())
                                                   >> 262     {
                                                   >> 263       if ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance)
                                                   >> 264         || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) )
                                                   >> 265       {
                                                   >> 266         return false;
                                                   >> 267       }
                                                   >> 268       else
                                                   >> 269       {
                                                   >> 270         if (zMin<pVoxelLimit.GetMinZExtent())
                                                   >> 271         {
                                                   >> 272           zMin=pVoxelLimit.GetMinZExtent();
                                                   >> 273         }
                                                   >> 274         if (zMax>pVoxelLimit.GetMaxZExtent())
                                                   >> 275         {
                                                   >> 276           zMax=pVoxelLimit.GetMaxZExtent();
                                                   >> 277         }
                                                   >> 278       }
                                                   >> 279     }
251                                                   280 
252 ////////////////////////////////////////////// << 281     // Known to cut sphere
253 //                                             << 
254 // Return whether point inside/outside/on surf << 
255 // Split into radius, phi, theta checks        << 
256 // Each check modifies 'in', or returns as app << 
257                                                   282 
258 EInside G4Sphere::Inside( const G4ThreeVector& << 283     switch (pAxis)
259 {                                              << 284     {
260   G4double rho,rho2,rad2,tolRMin,tolRMax;      << 285       case kXAxis:
261   G4double pPhi,pTheta;                        << 286         yoff1=yoffset-yMin;
262   EInside in = kOutside;                       << 287         yoff2=yMax-yoffset;
                                                   >> 288         if (yoff1>=0&&yoff2>=0)
                                                   >> 289         {
                                                   >> 290           // Y limits cross max/min x => no change
                                                   >> 291           //
                                                   >> 292           pMin=xMin;
                                                   >> 293           pMax=xMax;
                                                   >> 294         }
                                                   >> 295         else
                                                   >> 296         {
                                                   >> 297           // Y limits don't cross max/min x => compute max delta x,
                                                   >> 298           // hence new mins/maxs
                                                   >> 299           //
                                                   >> 300           diff1=std::sqrt(fRmax*fRmax-yoff1*yoff1);
                                                   >> 301           diff2=std::sqrt(fRmax*fRmax-yoff2*yoff2);
                                                   >> 302           maxDiff=(diff1>diff2) ? diff1:diff2;
                                                   >> 303           newMin=xoffset-maxDiff;
                                                   >> 304           newMax=xoffset+maxDiff;
                                                   >> 305           pMin=(newMin<xMin) ? xMin : newMin;
                                                   >> 306           pMax=(newMax>xMax) ? xMax : newMax;
                                                   >> 307         }
                                                   >> 308         break;
                                                   >> 309       case kYAxis:
                                                   >> 310         xoff1=xoffset-xMin;
                                                   >> 311         xoff2=xMax-xoffset;
                                                   >> 312         if (xoff1>=0&&xoff2>=0)
                                                   >> 313         {
                                                   >> 314           // X limits cross max/min y => no change
                                                   >> 315           //
                                                   >> 316           pMin=yMin;
                                                   >> 317           pMax=yMax;
                                                   >> 318         }
                                                   >> 319         else
                                                   >> 320         {
                                                   >> 321           // X limits don't cross max/min y => compute max delta y,
                                                   >> 322           // hence new mins/maxs
                                                   >> 323           //
                                                   >> 324           diff1=std::sqrt(fRmax*fRmax-xoff1*xoff1);
                                                   >> 325           diff2=std::sqrt(fRmax*fRmax-xoff2*xoff2);
                                                   >> 326           maxDiff=(diff1>diff2) ? diff1:diff2;
                                                   >> 327           newMin=yoffset-maxDiff;
                                                   >> 328           newMax=yoffset+maxDiff;
                                                   >> 329           pMin=(newMin<yMin) ? yMin : newMin;
                                                   >> 330           pMax=(newMax>yMax) ? yMax : newMax;
                                                   >> 331         }
                                                   >> 332         break;
                                                   >> 333       case kZAxis:
                                                   >> 334         pMin=zMin;
                                                   >> 335         pMax=zMax;
                                                   >> 336         break;
                                                   >> 337       default:
                                                   >> 338         break;
                                                   >> 339     }
                                                   >> 340     pMin-=kCarTolerance;
                                                   >> 341     pMax+=kCarTolerance;
263                                                   342 
264   const G4double halfRmaxTolerance = fRmaxTole << 343     return true;  
265   const G4double halfRminTolerance = fRminTole << 344   }
266   const G4double Rmax_minus = fRmax - halfRmax << 345   else       // Transformed cutted sphere
267   const G4double Rmin_plus  = (fRmin > 0) ? fR << 346   {
                                                   >> 347     G4int i,j,noEntries,noBetweenSections;
                                                   >> 348     G4bool existsAfterClip=false;
268                                                   349 
269   rho2 = p.x()*p.x() + p.y()*p.y() ;           << 350     // Calculate rotated vertex coordinates
270   rad2 = rho2 + p.z()*p.z() ;                  << 
271                                                   351 
272   // Check radial surfaces. Sets 'in'          << 352     G4ThreeVectorList* vertices;
                                                   >> 353     G4int  noPolygonVertices ;
                                                   >> 354     vertices=CreateRotatedVertices(pTransform,noPolygonVertices);
273                                                   355 
274   tolRMin = Rmin_plus;                         << 356     pMin=+kInfinity;
275   tolRMax = Rmax_minus;                        << 357     pMax=-kInfinity;
276                                                   358 
277   if(rad2 == 0.0)                              << 359     noEntries=vertices->size();  // noPolygonVertices*noPhiCrossSections
278   {                                            << 360     noBetweenSections=noEntries-noPolygonVertices;
279     if (fRmin > 0.0)                           << 361 
                                                   >> 362     G4ThreeVectorList ThetaPolygon ;
                                                   >> 363     for (i=0;i<noEntries;i+=noPolygonVertices)
280     {                                             364     {
281       return in = kOutside;                    << 365       for(j=0;j<(noPolygonVertices/2)-1;j++)
                                                   >> 366       {
                                                   >> 367         ThetaPolygon.push_back((*vertices)[i+j]) ;      
                                                   >> 368         ThetaPolygon.push_back((*vertices)[i+j+1]) ;      
                                                   >> 369         ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-2-j]) ;      
                                                   >> 370         ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1-j]) ;      
                                                   >> 371         CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
                                                   >> 372         ThetaPolygon.clear() ;
                                                   >> 373       }
282     }                                             374     }
283     if ( (!fFullPhiSphere) || (!fFullThetaSphe << 375     for (i=0;i<noBetweenSections;i+=noPolygonVertices)
284     {                                             376     {
285       return in = kSurface;                    << 377       for(j=0;j<noPolygonVertices-1;j++)
                                                   >> 378       {
                                                   >> 379         ThetaPolygon.push_back((*vertices)[i+j]) ;      
                                                   >> 380         ThetaPolygon.push_back((*vertices)[i+j+1]) ;      
                                                   >> 381         ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j+1]) ;      
                                                   >> 382         ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j]) ;      
                                                   >> 383         CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
                                                   >> 384         ThetaPolygon.clear() ;
                                                   >> 385       }
                                                   >> 386       ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1]) ;      
                                                   >> 387       ThetaPolygon.push_back((*vertices)[i]) ;  
                                                   >> 388       ThetaPolygon.push_back((*vertices)[i+noPolygonVertices]) ;      
                                                   >> 389       ThetaPolygon.push_back((*vertices)[i+2*noPolygonVertices-1]) ;      
                                                   >> 390       CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
                                                   >> 391       ThetaPolygon.clear() ;
                                                   >> 392     }
                                                   >> 393       
                                                   >> 394     if (pMin!=kInfinity || pMax!=-kInfinity)
                                                   >> 395     {
                                                   >> 396       existsAfterClip=true;
                                                   >> 397 
                                                   >> 398       // Add 2*tolerance to avoid precision troubles
                                                   >> 399       //
                                                   >> 400       pMin-=kCarTolerance;
                                                   >> 401       pMax+=kCarTolerance;
286     }                                             402     }
287     else                                          403     else
288     {                                             404     {
289       return in = kInside;                     << 405       // Check for case where completely enveloping clipping volume
                                                   >> 406       // If point inside then we are confident that the solid completely
                                                   >> 407       // envelopes the clipping volume. Hence set min/max extents according
                                                   >> 408       // to clipping volume extents along the specified axis.
                                                   >> 409 
                                                   >> 410       G4ThreeVector clipCentre(
                                                   >> 411           (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
                                                   >> 412           (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
                                                   >> 413           (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5);
                                                   >> 414         
                                                   >> 415       if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside)
                                                   >> 416       {
                                                   >> 417         existsAfterClip=true;
                                                   >> 418         pMin=pVoxelLimit.GetMinExtent(pAxis);
                                                   >> 419         pMax=pVoxelLimit.GetMaxExtent(pAxis);
                                                   >> 420       }
290     }                                             421     }
                                                   >> 422     delete vertices;
                                                   >> 423     return existsAfterClip;
291   }                                               424   }
                                                   >> 425 }
292                                                   426 
293   if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad << 427 ///////////////////////////////////////////////////////////////////////////
294   {                                            << 428 //
295     in = kInside;                              << 429 // Return whether point inside/outside/on surface
296   }                                            << 430 // Split into radius, phi, theta checks
                                                   >> 431 // Each check modifies `in', or returns as approprate
                                                   >> 432 
                                                   >> 433 EInside G4Sphere::Inside( const G4ThreeVector& p ) const
                                                   >> 434 {
                                                   >> 435   G4double rho,rho2,rad2,tolRMin,tolRMax;
                                                   >> 436   G4double pPhi,pTheta;
                                                   >> 437   EInside in=kOutside;
                                                   >> 438 
                                                   >> 439   rho2 = p.x()*p.x() + p.y()*p.y() ;
                                                   >> 440   rad2 = rho2 + p.z()*p.z() ;
                                                   >> 441 
                                                   >> 442   //  if(rad2 >= 1.369e+19) DBG();
                                                   >> 443   //  G4double rad = std::sqrt(rad2);
                                                   >> 444   // Check radial surfaces
                                                   >> 445   // sets `in'
                                                   >> 446 
                                                   >> 447   if ( fRmin ) tolRMin = fRmin + kRadTolerance*0.5;
                                                   >> 448   else         tolRMin = 0 ;
                                                   >> 449   
                                                   >> 450   tolRMax = fRmax - kRadTolerance*0.5 ;
                                                   >> 451   //  const G4double  fractionTolerance = 1.0e-12;
                                                   >> 452   const G4double  flexRadMaxTolerance = // kRadTolerance;
                                                   >> 453     std::max(kRadTolerance, fEpsilon * fRmax);
                                                   >> 454 
                                                   >> 455   const G4double  Rmax_minus = fRmax - flexRadMaxTolerance*0.5;
                                                   >> 456   const G4double  flexRadMinTolerance = std::max(kRadTolerance, 
                                                   >> 457                      fEpsilon * fRmin);
                                                   >> 458   const G4double  Rmin_plus = (fRmin > 0) ? fRmin + flexRadMinTolerance*0.5 : 0 ;
                                                   >> 459     
                                                   >> 460 if(rad2 <= Rmax_minus*Rmax_minus && rad2 >= Rmin_plus*Rmin_plus) in = kInside ; 
                                                   >> 461 
                                                   >> 462 // if ( rad2 <= tolRMax*tolRMax && rad2 >= tolRMin*tolRMin )  in = kInside ;
                                                   >> 463   // if ( rad <= tolRMax && rad >= tolRMin )  in = kInside ;
297   else                                            464   else
298   {                                               465   {
299     tolRMax = fRmax + halfRmaxTolerance;       << 466     tolRMax = fRmax + kRadTolerance*0.5 ;
300     tolRMin = std::max(fRmin-halfRminTolerance << 467     tolRMin = fRmin - kRadTolerance*0.5 ;
301     if ( (rad2 <= tolRMax*tolRMax) && (rad2 >= << 468 
302     {                                          << 469     if ( tolRMin < 0.0 ) tolRMin = 0.0 ;
303       in = kSurface;                           << 470     
304     }                                          << 471      if ( rad2 <= tolRMax*tolRMax && rad2 >= tolRMin*tolRMin )  in = kSurface ;
305     else                                       << 472     //  if ( rad <= tolRMax && rad >= tolRMin )  in = kSurface ;
306     {                                          << 473     else                                                return in = kOutside ;
307       return in = kOutside;                    << 
308     }                                          << 
309   }                                               474   }
310                                                   475 
311   // Phi boundaries   : Do not check if it has    476   // Phi boundaries   : Do not check if it has no phi boundary!
                                                   >> 477   // (in != kOutside). It is new J.Apostolakis proposal of 30.10.03
312                                                   478 
313   if ( !fFullPhiSphere && (rho2 != 0.0) )  //  << 479   if ( ( fDPhi < twopi - kAngTolerance ) &&
                                                   >> 480        ( (p.x() != 0.0 ) || (p.y() != 0.0) ) )
314   {                                               481   {
315     pPhi = std::atan2(p.y(),p.x()) ;              482     pPhi = std::atan2(p.y(),p.x()) ;
316                                                   483 
317     if      ( pPhi < fSPhi - halfAngTolerance  << 484     if      ( pPhi < fSPhi - kAngTolerance*0.5  )         pPhi += twopi ; 
318     else if ( pPhi > ePhi + halfAngTolerance ) << 485     else if ( pPhi > fSPhi + fDPhi + kAngTolerance*0.5 )  pPhi -= twopi; 
319                                                << 486     
320     if ( (pPhi < fSPhi - halfAngTolerance)     << 487     if ((pPhi < fSPhi - kAngTolerance*0.5) ||  
321       || (pPhi > ePhi + halfAngTolerance) )    << 488         (pPhi > fSPhi + fDPhi + kAngTolerance*0.5) )  return in = kOutside ;
322                                                << 489     
323     else if (in == kInside)  // else it's kSur    490     else if (in == kInside)  // else it's kSurface anyway already
324     {                                             491     {
325       if ( (pPhi < fSPhi + halfAngTolerance)   << 492       if ( (pPhi < fSPhi + kAngTolerance*0.5) || 
326         || (pPhi > ePhi - halfAngTolerance) )  << 493            (pPhi > fSPhi + fDPhi - kAngTolerance*0.5) )      in = kSurface ;       
327     }                                             494     }
328   }                                               495   }
329                                                   496 
330   // Theta bondaries                              497   // Theta bondaries
331                                                << 498   // (in!=kOutside)
332   if ( ((rho2 != 0.0) || (p.z() != 0.0)) && (! << 499   
                                                   >> 500   if ( (rho2 || p.z()) && fDTheta < pi - kAngTolerance*0.5 )
333   {                                               501   {
334     rho    = std::sqrt(rho2);                     502     rho    = std::sqrt(rho2);
335     pTheta = std::atan2(rho,p.z());               503     pTheta = std::atan2(rho,p.z());
336                                                   504 
337     if ( in == kInside )                          505     if ( in == kInside )
338     {                                             506     {
339       if ( ((fSTheta > 0.0) && (pTheta < fSThe << 507       if ( (pTheta < fSTheta + kAngTolerance*0.5)
340         || ((eTheta < pi) && (pTheta > eTheta  << 508         || (pTheta > fSTheta + fDTheta - kAngTolerance*0.5) )
341       {                                           509       {
342         if ( (( (fSTheta>0.0)&&(pTheta>=fSThet << 510         if ( (pTheta >= fSTheta - kAngTolerance*0.5)
343              || (fSTheta == 0.0) )             << 511           && (pTheta <= fSTheta + fDTheta + kAngTolerance*0.5) )
344           && ((eTheta==pi)||(pTheta <= eTheta  << 
345         {                                         512         {
346           in = kSurface;                       << 513           in = kSurface ;
347         }                                         514         }
348         else                                      515         else
349         {                                         516         {
350           in = kOutside;                       << 517           in = kOutside ;
351         }                                         518         }
352       }                                           519       }
353     }                                             520     }
354     else                                          521     else
355     {                                             522     {
356         if ( ((fSTheta > 0.0)&&(pTheta < fSThe << 523       if ( (pTheta < fSTheta - kAngTolerance*0.5)
357            ||((eTheta < pi  )&&(pTheta > eThet << 524         || (pTheta > fSTheta + fDTheta + kAngTolerance*0.5) )
358       {                                           525       {
359         in = kOutside;                         << 526         in = kOutside ;
360       }                                           527       }
361     }                                             528     }
362   }                                               529   }
363   return in;                                      530   return in;
364 }                                                 531 }
365                                                   532 
366 //////////////////////////////////////////////    533 /////////////////////////////////////////////////////////////////////
367 //                                                534 //
368 // Return unit normal of surface closest to p     535 // Return unit normal of surface closest to p
369 // - note if point on z axis, ignore phi divid    536 // - note if point on z axis, ignore phi divided sides
370 // - unsafe if point close to z axis a rmin=0     537 // - unsafe if point close to z axis a rmin=0 - no explicit checks
371                                                   538 
372 G4ThreeVector G4Sphere::SurfaceNormal( const G    539 G4ThreeVector G4Sphere::SurfaceNormal( const G4ThreeVector& p ) const
373 {                                                 540 {
374   G4int noSurfaces = 0;                        << 
375   G4double rho, rho2, radius, pTheta, pPhi=0.; << 
376   G4double distRMin = kInfinity;               << 
377   G4double distSPhi = kInfinity, distEPhi = kI << 
378   G4double distSTheta = kInfinity, distETheta  << 
379   G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0., << 
380   G4ThreeVector norm, sumnorm(0.,0.,0.);       << 
381                                                << 
382   rho2 = p.x()*p.x()+p.y()*p.y();              << 
383   radius = std::sqrt(rho2+p.z()*p.z());        << 
384   rho  = std::sqrt(rho2);                      << 
385                                                << 
386   G4double    distRMax = std::fabs(radius-fRma << 
387   if (fRmin != 0.0)  distRMin = std::fabs(radi << 
388                                                << 
389   if ( (rho != 0.0) && !fFullSphere )          << 
390   {                                            << 
391     pPhi = std::atan2(p.y(),p.x());            << 
392                                                << 
393     if (pPhi < fSPhi-halfAngTolerance)     { p << 
394     else if (pPhi > ePhi+halfAngTolerance) { p << 
395   }                                            << 
396   if ( !fFullPhiSphere )                       << 
397   {                                            << 
398     if ( rho != 0.0 )                          << 
399     {                                          << 
400       distSPhi = std::fabs( pPhi-fSPhi );      << 
401       distEPhi = std::fabs( pPhi-ePhi );       << 
402     }                                          << 
403     else if( fRmin == 0.0 )                    << 
404     {                                          << 
405       distSPhi = 0.;                           << 
406       distEPhi = 0.;                           << 
407     }                                          << 
408     nPs = G4ThreeVector(sinSPhi,-cosSPhi,0);   << 
409     nPe = G4ThreeVector(-sinEPhi,cosEPhi,0);   << 
410   }                                            << 
411   if ( !fFullThetaSphere )                     << 
412   {                                            << 
413     if ( rho != 0.0 )                          << 
414     {                                          << 
415       pTheta     = std::atan2(rho,p.z());      << 
416       distSTheta = std::fabs(pTheta-fSTheta);  << 
417       distETheta = std::fabs(pTheta-eTheta);   << 
418                                                << 
419       nTs = G4ThreeVector(-cosSTheta*p.x()/rho << 
420                           -cosSTheta*p.y()/rho << 
421                            sinSTheta           << 
422                                                << 
423       nTe = G4ThreeVector( cosETheta*p.x()/rho << 
424                            cosETheta*p.y()/rho << 
425                           -sinETheta           << 
426     }                                          << 
427     else if( fRmin == 0.0 )                    << 
428     {                                          << 
429       if ( fSTheta != 0.0 )                    << 
430       {                                        << 
431         distSTheta = 0.;                       << 
432         nTs = G4ThreeVector(0.,0.,-1.);        << 
433       }                                        << 
434       if ( eTheta < pi )                       << 
435       {                                        << 
436         distETheta = 0.;                       << 
437         nTe = G4ThreeVector(0.,0.,1.);         << 
438       }                                        << 
439     }                                          << 
440   }                                            << 
441   if( radius != 0.0 )  { nR = G4ThreeVector(p. << 
442                                                << 
443   if( distRMax <= halfCarTolerance )           << 
444   {                                            << 
445     ++noSurfaces;                              << 
446     sumnorm += nR;                             << 
447   }                                            << 
448   if( (fRmin != 0.0) && (distRMin <= halfCarTo << 
449   {                                            << 
450     ++noSurfaces;                              << 
451     sumnorm -= nR;                             << 
452   }                                            << 
453   if( !fFullPhiSphere )                        << 
454   {                                            << 
455     if (distSPhi <= halfAngTolerance)          << 
456     {                                          << 
457       ++noSurfaces;                            << 
458       sumnorm += nPs;                          << 
459     }                                          << 
460     if (distEPhi <= halfAngTolerance)          << 
461     {                                          << 
462       ++noSurfaces;                            << 
463       sumnorm += nPe;                          << 
464     }                                          << 
465   }                                            << 
466   if ( !fFullThetaSphere )                     << 
467   {                                            << 
468     if ((distSTheta <= halfAngTolerance) && (f << 
469     {                                          << 
470       ++noSurfaces;                            << 
471       if ((radius <= halfCarTolerance) && fFul << 
472       else                                     << 
473     }                                          << 
474     if ((distETheta <= halfAngTolerance) && (e << 
475     {                                          << 
476       ++noSurfaces;                            << 
477       if ((radius <= halfCarTolerance) && fFul << 
478       else                                     << 
479       if(sumnorm.z() == 0.)  { sumnorm += nZ;  << 
480     }                                          << 
481   }                                            << 
482   if ( noSurfaces == 0 )                       << 
483   {                                            << 
484 #ifdef G4CSGDEBUG                              << 
485     G4Exception("G4Sphere::SurfaceNormal(p)",  << 
486                 JustWarning, "Point p is not o << 
487 #endif                                         << 
488      norm = ApproxSurfaceNormal(p);            << 
489   }                                            << 
490   else if ( noSurfaces == 1 )  { norm = sumnor << 
491   else                         { norm = sumnor << 
492   return norm;                                 << 
493 }                                              << 
494                                                << 
495                                                << 
496 ////////////////////////////////////////////// << 
497 //                                             << 
498 // Algorithm for SurfaceNormal() following the << 
499 // for points not on the surface               << 
500                                                << 
501 G4ThreeVector G4Sphere::ApproxSurfaceNormal( c << 
502 {                                              << 
503   ENorm side;                                     541   ENorm side;
504   G4ThreeVector norm;                             542   G4ThreeVector norm;
505   G4double rho,rho2,radius,pPhi,pTheta;        << 543   G4double rho,rho2,rad,pPhi,pTheta;
506   G4double distRMin,distRMax,distSPhi,distEPhi    544   G4double distRMin,distRMax,distSPhi,distEPhi,
507            distSTheta,distETheta,distMin;         545            distSTheta,distETheta,distMin;
508                                                   546 
509   rho2=p.x()*p.x()+p.y()*p.y();                   547   rho2=p.x()*p.x()+p.y()*p.y();
510   radius=std::sqrt(rho2+p.z()*p.z());          << 548   rad=std::sqrt(rho2+p.z()*p.z());
511   rho=std::sqrt(rho2);                            549   rho=std::sqrt(rho2);
512                                                   550 
513   //                                              551   //
514   // Distance to r shells                         552   // Distance to r shells
515   //                                              553   //
516                                                   554 
517   distRMax=std::fabs(radius-fRmax);            << 555   distRMax=std::fabs(rad-fRmax);
518   if (fRmin != 0.0)                            << 556   if (fRmin)
519   {                                               557   {
520     distRMin=std::fabs(radius-fRmin);          << 558     distRMin=std::fabs(rad-fRmin);
521                                                << 559       
522     if (distRMin<distRMax)                        560     if (distRMin<distRMax)
523     {                                             561     {
524       distMin=distRMin;                           562       distMin=distRMin;
525       side=kNRMin;                                563       side=kNRMin;
526     }                                             564     }
527     else                                          565     else
528     {                                          << 566     {   
529       distMin=distRMax;                           567       distMin=distRMax;
530       side=kNRMax;                                568       side=kNRMax;
531     }                                             569     }
532   }                                               570   }
533   else                                            571   else
534   {                                               572   {
535     distMin=distRMax;                             573     distMin=distRMax;
536     side=kNRMax;                                  574     side=kNRMax;
537   }                                               575   }
538                                                   576 
539   //                                              577   //
540   // Distance to phi planes                       578   // Distance to phi planes
541   //                                              579   //
542   // Protected against (0,0,z)                 << 580   // Protected against (0,0,z) 
543                                                << 581     
544   pPhi = std::atan2(p.y(),p.x());                 582   pPhi = std::atan2(p.y(),p.x());
545   if (pPhi<0) { pPhi += twopi; }               << 583   if (pPhi<0) pPhi += twopi;
546                                                   584 
547   if (!fFullPhiSphere && (rho != 0.0))         << 585   if (fDPhi<twopi&&rho)
548   {                                               586   {
549     if (fSPhi<0)                                  587     if (fSPhi<0)
550     {                                             588     {
551       distSPhi=std::fabs(pPhi-(fSPhi+twopi))*r    589       distSPhi=std::fabs(pPhi-(fSPhi+twopi))*rho;
552     }                                             590     }
553     else                                          591     else
554     {                                             592     {
555       distSPhi=std::fabs(pPhi-fSPhi)*rho;         593       distSPhi=std::fabs(pPhi-fSPhi)*rho;
556     }                                             594     }
557                                                   595 
558     distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho;     596     distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho;
559                                                   597 
560     // Find new minimum                           598     // Find new minimum
561     //                                            599     //
562     if (distSPhi<distEPhi)                        600     if (distSPhi<distEPhi)
563     {                                             601     {
564       if (distSPhi<distMin)                       602       if (distSPhi<distMin)
565       {                                           603       {
566         distMin = distSPhi;                    << 604         distMin=distSPhi;
567         side = kNSPhi;                         << 605         side=kNSPhi;
568       }                                           606       }
569     }                                             607     }
570     else                                          608     else
571     {                                             609     {
572       if (distEPhi<distMin)                       610       if (distEPhi<distMin)
573       {                                           611       {
574         distMin = distEPhi;                    << 612         distMin=distEPhi;
575         side = kNEPhi;                         << 613         side=kNEPhi;
576       }                                           614       }
577     }                                             615     }
578   }                                               616   }
579                                                   617 
580   //                                              618   //
581   // Distance to theta planes                     619   // Distance to theta planes
582   //                                              620   //
583                                                   621 
584   if (!fFullThetaSphere && (radius != 0.0))    << 622   if (fDTheta<pi&&rad)
585   {                                               623   {
586     pTheta=std::atan2(rho,p.z());                 624     pTheta=std::atan2(rho,p.z());
587     distSTheta=std::fabs(pTheta-fSTheta)*radiu << 625     distSTheta=std::fabs(pTheta-fSTheta)*rad;
588     distETheta=std::fabs(pTheta-fSTheta-fDThet << 626     distETheta=std::fabs(pTheta-fSTheta-fDTheta)*rad;
589                                                   627 
590     // Find new minimum                           628     // Find new minimum
591     //                                            629     //
592     if (distSTheta<distETheta)                    630     if (distSTheta<distETheta)
593     {                                             631     {
594       if (distSTheta<distMin)                     632       if (distSTheta<distMin)
595       {                                           633       {
596         distMin = distSTheta ;                    634         distMin = distSTheta ;
597         side = kNSTheta ;                         635         side = kNSTheta ;
598       }                                           636       }
599     }                                             637     }
600     else                                          638     else
601     {                                             639     {
602       if (distETheta<distMin)                     640       if (distETheta<distMin)
603       {                                           641       {
604         distMin = distETheta ;                    642         distMin = distETheta ;
605         side = kNETheta ;                         643         side = kNETheta ;
606       }                                           644       }
607     }                                             645     }
608   }                                               646   }
609                                                   647 
610   switch (side)                                   648   switch (side)
611   {                                               649   {
612     case kNRMin:      // Inner radius             650     case kNRMin:      // Inner radius
613       norm=G4ThreeVector(-p.x()/radius,-p.y()/ << 651       norm=G4ThreeVector(-p.x()/rad,-p.y()/rad,-p.z()/rad);
614       break;                                      652       break;
615     case kNRMax:      // Outer radius             653     case kNRMax:      // Outer radius
616       norm=G4ThreeVector(p.x()/radius,p.y()/ra << 654       norm=G4ThreeVector(p.x()/rad,p.y()/rad,p.z()/rad);
617       break;                                      655       break;
618     case kNSPhi:                                  656     case kNSPhi:
619       norm=G4ThreeVector(sinSPhi,-cosSPhi,0);  << 657       norm=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
620       break;                                      658       break;
621     case kNEPhi:                                  659     case kNEPhi:
622       norm=G4ThreeVector(-sinEPhi,cosEPhi,0);  << 660       norm=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
623       break;                                      661       break;
624     case kNSTheta:                                662     case kNSTheta:
625       norm=G4ThreeVector(-cosSTheta*std::cos(p << 663       norm=G4ThreeVector(-std::cos(fSTheta)*std::cos(pPhi),
626                          -cosSTheta*std::sin(p << 664                          -std::cos(fSTheta)*std::sin(pPhi),
627                           sinSTheta            << 665                           std::sin(fSTheta)            );
                                                   >> 666       //  G4cout<<G4endl<<" case kNSTheta:"<<G4endl;
                                                   >> 667       //  G4cout<<"pPhi = "<<pPhi<<G4endl;
                                                   >> 668       //  G4cout<<"rad  = "<<rad<<G4endl;
                                                   >> 669       //  G4cout<<"pho  = "<<rho<<G4endl;
                                                   >> 670       //  G4cout<<"p:    "<<p.x()<<"; "<<p.y()<<"; "<<p.z()<<G4endl;
                                                   >> 671       //  G4cout<<"norm: "<<norm.x()<<"; "<<norm.y()<<"; "<<norm.z()<<G4endl;
628       break;                                      672       break;
629     case kNETheta:                                673     case kNETheta:
630       norm=G4ThreeVector( cosETheta*std::cos(p << 674       norm=G4ThreeVector( std::cos(fSTheta+fDTheta)*std::cos(pPhi),
631                           cosETheta*std::sin(p << 675                           std::cos(fSTheta+fDTheta)*std::sin(pPhi),
632                          -sinETheta            << 676                          -std::sin(fSTheta+fDTheta)              );
                                                   >> 677 
                                                   >> 678       //  G4cout<<G4endl<<" case kNETheta:"<<G4endl;
                                                   >> 679       //  G4cout<<"pPhi = "<<pPhi<<G4endl;
                                                   >> 680       //  G4cout<<"rad  = "<<rad<<G4endl;
                                                   >> 681       //  G4cout<<"pho  = "<<rho<<G4endl;
                                                   >> 682       //  G4cout<<"p:    "<<p.x()<<"; "<<p.y()<<"; "<<p.z()<<G4endl;
                                                   >> 683       //  G4cout<<"norm: "<<norm.x()<<"; "<<norm.y()<<"; "<<norm.z()<<G4endl;
633       break;                                      684       break;
634     default:          // Should never reach th << 685     default:
635       DumpInfo();                                 686       DumpInfo();
636       G4Exception("G4Sphere::ApproxSurfaceNorm << 687       G4Exception("G4Sphere::SurfaceNormal()", "Notification", JustWarning,
637                   "GeomSolids1002", JustWarnin << 
638                   "Undefined side for valid su    688                   "Undefined side for valid surface normal to solid.");
639       break;                                   << 689       break;    
640   }                                            << 690   } // end case
641                                                   691 
642   return norm;                                    692   return norm;
643 }                                                 693 }
644                                                   694 
645 //////////////////////////////////////////////    695 ///////////////////////////////////////////////////////////////////////////////
646 //                                                696 //
647 // Calculate distance to shape from outside, a    697 // Calculate distance to shape from outside, along normalised vector
648 // - return kInfinity if no intersection, or i    698 // - return kInfinity if no intersection, or intersection distance <= tolerance
649 //                                                699 //
650 // -> If point is outside outer radius, comput    700 // -> If point is outside outer radius, compute intersection with rmax
651 //        - if no intersection return             701 //        - if no intersection return
652 //        - if  valid phi,theta return interse    702 //        - if  valid phi,theta return intersection Dist
653 //                                                703 //
654 // -> If shell, compute intersection with inne    704 // -> If shell, compute intersection with inner radius, taking largest +ve root
655 //        - if valid phi,theta, save intersect    705 //        - if valid phi,theta, save intersection
656 //                                                706 //
657 // -> If phi segmented, compute intersection w    707 // -> If phi segmented, compute intersection with phi half planes
658 //        - if valid intersection(r,theta), re    708 //        - if valid intersection(r,theta), return smallest intersection of
659 //          inner shell & phi intersection        709 //          inner shell & phi intersection
660 //                                                710 //
661 // -> If theta segmented, compute intersection    711 // -> If theta segmented, compute intersection with theta cones
662 //        - if valid intersection(r,phi), retu    712 //        - if valid intersection(r,phi), return smallest intersection of
663 //          inner shell & theta intersection      713 //          inner shell & theta intersection
664 //                                                714 //
665 //                                                715 //
666 // NOTE:                                          716 // NOTE:
667 // - `if valid' (above) implies tolerant check    717 // - `if valid' (above) implies tolerant checking of intersection points
668 //                                                718 //
669 // OPT:                                           719 // OPT:
670 // Move tolIO/ORmin/RMax2 precalcs to where th    720 // Move tolIO/ORmin/RMax2 precalcs to where they are needed -
671 // not required for most cases.                   721 // not required for most cases.
672 // Avoid atan2 for non theta cut G4Sphere.        722 // Avoid atan2 for non theta cut G4Sphere.
673                                                   723 
674 G4double G4Sphere::DistanceToIn( const G4Three    724 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p,
675                                  const G4Three    725                                  const G4ThreeVector& v  ) const
676 {                                                 726 {
677   G4double snxt = kInfinity ;      // snxt = d    727   G4double snxt = kInfinity ;      // snxt = default return value
                                                   >> 728 
678   G4double rho2, rad2, pDotV2d, pDotV3d, pThet    729   G4double rho2, rad2, pDotV2d, pDotV3d, pTheta ;
679   G4double tolSTheta=0., tolETheta=0. ;        << 
680   const G4double dRmax = 100.*fRmax;           << 
681                                                   730 
682   const G4double halfRmaxTolerance = fRmaxTole << 731   G4double tolIRMin2, tolORMin2, tolORMax2, tolIRMax2 ;
683   const G4double halfRminTolerance = fRminTole << 732   G4double tolSTheta=0., tolETheta=0. ;
684   const G4double tolORMin2 = (fRmin>halfRminTo << 
685                ? (fRmin-halfRminTolerance)*(fR << 
686   const G4double tolIRMin2 =                   << 
687                (fRmin+halfRminTolerance)*(fRmi << 
688   const G4double tolORMax2 =                   << 
689                (fRmax+halfRmaxTolerance)*(fRma << 
690   const G4double tolIRMax2 =                   << 
691                (fRmax-halfRmaxTolerance)*(fRma << 
692                                                   733 
693   // Intersection point                           734   // Intersection point
694   //                                           << 735 
695   G4double xi, yi, zi, rhoi, rhoi2, radi2, iTh    736   G4double xi, yi, zi, rhoi, rhoi2, radi2, iTheta ;
696                                                   737 
697   // Phi intersection                             738   // Phi intersection
698   //                                           << 
699   G4double Comp ;                              << 
700                                                   739 
701   // Phi precalcs                              << 740   G4double sinSPhi, cosSPhi, ePhi, sinEPhi, cosEPhi , Comp ; 
702   //                                           << 741 
                                                   >> 742   // Phi flag and precalcs
                                                   >> 743 
                                                   >> 744   G4bool segPhi ;        
                                                   >> 745   G4double hDPhi, hDPhiOT, hDPhiIT, cPhi, sinCPhi=0., cosCPhi=0. ; 
                                                   >> 746   G4double cosHDPhiOT=0., cosHDPhiIT=0. ;
703   G4double Dist, cosPsi ;                         747   G4double Dist, cosPsi ;
704                                                   748 
705   // Theta precalcs                            << 749   G4bool segTheta ;                             // Theta flag and precals
706   //                                           << 750   G4double tanSTheta, tanETheta ;
                                                   >> 751   G4double tanSTheta2, tanETheta2 ;
707   G4double dist2STheta, dist2ETheta ;             752   G4double dist2STheta, dist2ETheta ;
708   G4double t1, t2, b, c, d2, d, sd = kInfinity << 753   G4double t1, t2, b, c, d2, d, s = kInfinity ;
709                                                   754 
710   // General Precalcs                             755   // General Precalcs
711   //                                           << 756 
712   rho2 = p.x()*p.x() + p.y()*p.y() ;              757   rho2 = p.x()*p.x() + p.y()*p.y() ;
713   rad2 = rho2 + p.z()*p.z() ;                     758   rad2 = rho2 + p.z()*p.z() ;
714   pTheta = std::atan2(std::sqrt(rho2),p.z()) ;    759   pTheta = std::atan2(std::sqrt(rho2),p.z()) ;
715                                                   760 
716   pDotV2d = p.x()*v.x() + p.y()*v.y() ;           761   pDotV2d = p.x()*v.x() + p.y()*v.y() ;
717   pDotV3d = pDotV2d + p.z()*v.z() ;               762   pDotV3d = pDotV2d + p.z()*v.z() ;
718                                                   763 
719   // Theta precalcs                            << 764   // Radial Precalcs
720   //                                           << 765 
721   if (!fFullThetaSphere)                       << 766   if (fRmin > kRadTolerance*0.5)
722   {                                               767   {
723     tolSTheta = fSTheta - halfAngTolerance ;   << 768     tolORMin2=(fRmin-kRadTolerance*0.5)*(fRmin-kRadTolerance*0.5);
724     tolETheta = eTheta + halfAngTolerance ;    << 769   }
                                                   >> 770   else
                                                   >> 771   {
                                                   >> 772     tolORMin2 = 0 ;
                                                   >> 773   }
                                                   >> 774   tolIRMin2 = (fRmin+kRadTolerance*0.5)*(fRmin+kRadTolerance*0.5) ;
                                                   >> 775   tolORMax2 = (fRmax+kRadTolerance*0.5)*(fRmax+kRadTolerance*0.5) ;
                                                   >> 776   tolIRMax2 = (fRmax-kRadTolerance*0.5)*(fRmax-kRadTolerance*0.5) ;
725                                                   777 
726     // Special case rad2 = 0 comparing with di << 778   // Set phi divided flag and precalcs
727     //                                         << 779 
728     if ((rad2!=0.0) || (fRmin!=0.0))           << 780   if (fDPhi < twopi)
729     {                                          << 781   {
730       // Keep going for computation of distanc << 782     segPhi = true ;
731     }                                          << 783     hDPhi = 0.5*fDPhi ;    // half delta phi
732     else  // Positioned on the sphere's origin << 784     cPhi = fSPhi + hDPhi ;
733     {                                          << 785 
734       G4double vTheta = std::atan2(std::sqrt(v << 786     hDPhiOT = hDPhi+0.5*kAngTolerance; // Outer Tolerant half delta phi 
735       if ( (vTheta < tolSTheta) || (vTheta > t << 787     hDPhiIT = hDPhi-0.5*kAngTolerance;
736       {                                        << 788 
737         return snxt ; // kInfinity             << 789     sinCPhi    = std::sin(cPhi) ;
738       }                                        << 790     cosCPhi    = std::cos(cPhi) ;
739       return snxt = 0.0 ;                      << 791     cosHDPhiOT = std::cos(hDPhiOT) ;
740     }                                          << 792     cosHDPhiIT = std::cos(hDPhiIT) ;
                                                   >> 793   }
                                                   >> 794   else
                                                   >> 795   {
                                                   >> 796     segPhi = false ;
                                                   >> 797   }
                                                   >> 798 
                                                   >> 799   // Theta precalcs
                                                   >> 800     
                                                   >> 801   if (fDTheta < pi )
                                                   >> 802   {
                                                   >> 803     segTheta  = true ;
                                                   >> 804     tolSTheta = fSTheta - kAngTolerance*0.5 ;
                                                   >> 805     tolETheta = fSTheta + fDTheta + kAngTolerance*0.5 ;
                                                   >> 806   }
                                                   >> 807   else
                                                   >> 808   {
                                                   >> 809     segTheta = false ;
741   }                                               810   }
742                                                   811 
743   // Outer spherical shell intersection           812   // Outer spherical shell intersection
744   // - Only if outside tolerant fRmax             813   // - Only if outside tolerant fRmax
745   // - Check for if inside and outer G4Sphere     814   // - Check for if inside and outer G4Sphere heading through solid (-> 0)
746   // - No intersect -> no intersection with G4    815   // - No intersect -> no intersection with G4Sphere
747   //                                              816   //
748   // Shell eqn: x^2+y^2+z^2=RSPH^2                817   // Shell eqn: x^2+y^2+z^2=RSPH^2
749   //                                              818   //
750   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2      819   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2
751   //                                              820   //
752   // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+ << 821   // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2
753   // =>      rad2        +2sd(pDotV3d)       + << 822   // =>      rad2        +2s(pDotV3d)       +s^2                =R^2
754   //                                              823   //
755   // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2 << 824   // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2))
756                                                   825 
757   c = rad2 - fRmax*fRmax ;                        826   c = rad2 - fRmax*fRmax ;
                                                   >> 827   const G4double  flexRadMaxTolerance = // kRadTolerance;
                                                   >> 828     std::max(kRadTolerance, fEpsilon * fRmax);
758                                                   829 
759   if (c > fRmaxTolerance*fRmax)                << 830   //  if (c > kRadTolerance*fRmax)
                                                   >> 831   if (c > flexRadMaxTolerance*fRmax)
760   {                                               832   {
761     // If outside tolerant boundary of outer G << 833     // If outside toleranct boundary of outer G4Sphere
762     // [should be std::sqrt(rad2)-fRmax > half << 834     // [should be std::sqrt(rad2)-fRmax > kRadTolerance*0.5]
763                                                   835 
764     d2 = pDotV3d*pDotV3d - c ;                    836     d2 = pDotV3d*pDotV3d - c ;
765                                                   837 
766     if ( d2 >= 0 )                                838     if ( d2 >= 0 )
767     {                                             839     {
768       sd = -pDotV3d - std::sqrt(d2) ;          << 840       s = -pDotV3d - std::sqrt(d2) ;
769                                                   841 
770       if (sd >= 0 )                            << 842       if (s >= 0 )
771       {                                           843       {
772         if ( sd>dRmax ) // Avoid rounding erro << 844         xi   = p.x() + s*v.x() ;
773         {               // 64 bits systems. Sp << 845         yi   = p.y() + s*v.y() ;
774           G4double fTerm = sd-std::fmod(sd,dRm << 
775           sd = fTerm + DistanceToIn(p+fTerm*v, << 
776         }                                      << 
777         xi   = p.x() + sd*v.x() ;              << 
778         yi   = p.y() + sd*v.y() ;              << 
779         rhoi = std::sqrt(xi*xi + yi*yi) ;         846         rhoi = std::sqrt(xi*xi + yi*yi) ;
780                                                   847 
781         if (!fFullPhiSphere && (rhoi != 0.0))  << 848         if (segPhi && rhoi)    // Check phi intersection
782         {                                         849         {
783           cosPsi = (xi*cosCPhi + yi*sinCPhi)/r    850           cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ;
784                                                   851 
785           if (cosPsi >= cosHDPhiOT)               852           if (cosPsi >= cosHDPhiOT)
786           {                                       853           {
787             if (!fFullThetaSphere)   // Check  << 854             if (segTheta)   // Check theta intersection
788             {                                     855             {
789               zi = p.z() + sd*v.z() ;          << 856               zi = p.z() + s*v.z() ;
790                                                   857 
791               // rhoi & zi can never both be 0    858               // rhoi & zi can never both be 0
792               // (=>intersect at origin =>fRma    859               // (=>intersect at origin =>fRmax=0)
793               //                                  860               //
794               iTheta = std::atan2(rhoi,zi) ;      861               iTheta = std::atan2(rhoi,zi) ;
795               if ( (iTheta >= tolSTheta) && (i    862               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
796               {                                   863               {
797                 return snxt = sd ;             << 864                 return snxt = s ;
798               }                                   865               }
799             }                                     866             }
800             else                                  867             else
801             {                                     868             {
802               return snxt=sd;                  << 869               return snxt=s;
803             }                                     870             }
804           }                                       871           }
805         }                                         872         }
806         else                                      873         else
807         {                                         874         {
808           if (!fFullThetaSphere)    // Check t << 875           if (segTheta)    // Check theta intersection
809           {                                       876           {
810             zi = p.z() + sd*v.z() ;            << 877             zi = p.z() + s*v.z() ;
811                                                   878 
812             // rhoi & zi can never both be 0      879             // rhoi & zi can never both be 0
813             // (=>intersect at origin => fRmax    880             // (=>intersect at origin => fRmax=0 !)
814             //                                    881             //
815             iTheta = std::atan2(rhoi,zi) ;        882             iTheta = std::atan2(rhoi,zi) ;
816             if ( (iTheta >= tolSTheta) && (iTh    883             if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
817             {                                     884             {
818               return snxt=sd;                  << 885               return snxt=s;
819             }                                     886             }
820           }                                       887           }
821           else                                    888           else
822           {                                       889           {
823             return snxt = sd;                  << 890             return snxt = s ;
824           }                                       891           }
825         }                                      << 892         }          
826       }                                           893       }
827     }                                             894     }
828     else    // No intersection with G4Sphere      895     else    // No intersection with G4Sphere
829     {                                             896     {
830       return snxt=kInfinity;                      897       return snxt=kInfinity;
831     }                                             898     }
832   }                                               899   }
833   else                                            900   else
834   {                                               901   {
835     // Inside outer radius                        902     // Inside outer radius
836     // check not inside, and heading through G    903     // check not inside, and heading through G4Sphere (-> 0 to in)
837                                                   904 
838     d2 = pDotV3d*pDotV3d - c ;                    905     d2 = pDotV3d*pDotV3d - c ;
839                                                   906 
840     if ( (rad2 > tolIRMax2)                    << 907     // if (rad2 > tolIRMin2 && pDotV3d < 0 )
841       && ( (d2 >= fRmaxTolerance*fRmax) && (pD << 908 
                                                   >> 909     if (rad2 > tolIRMax2 && ( d2 >= flexRadMaxTolerance*fRmax && pDotV3d < 0 ) )
842     {                                             910     {
843       if (!fFullPhiSphere)                     << 911       if (segPhi)
844       {                                           912       {
845         // Use inner phi tolerant boundary ->     913         // Use inner phi tolerant boundary -> if on tolerant
846         // phi boundaries, phi intersect code     914         // phi boundaries, phi intersect code handles leaving/entering checks
847                                                   915 
848         cosPsi = (p.x()*cosCPhi + p.y()*sinCPh    916         cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
849                                                   917 
850         if (cosPsi>=cosHDPhiIT)                   918         if (cosPsi>=cosHDPhiIT)
851         {                                      << 919         { 
852           // inside radii, delta r -ve, inside    920           // inside radii, delta r -ve, inside phi
853                                                   921 
854           if ( !fFullThetaSphere )             << 922           if (segTheta)
855           {                                       923           {
856             if ( (pTheta >= tolSTheta + kAngTo    924             if ( (pTheta >= tolSTheta + kAngTolerance)
857               && (pTheta <= tolETheta - kAngTo    925               && (pTheta <= tolETheta - kAngTolerance) )
858             {                                     926             {
859               return snxt=0;                      927               return snxt=0;
860             }                                     928             }
861           }                                       929           }
862           else    // strictly inside Theta in     930           else    // strictly inside Theta in both cases
863           {                                       931           {
864             return snxt=0;                        932             return snxt=0;
865           }                                       933           }
866         }                                         934         }
867       }                                           935       }
868       else                                        936       else
869       {                                           937       {
870         if ( !fFullThetaSphere )               << 938         if ( segTheta )
871         {                                         939         {
872           if ( (pTheta >= tolSTheta + kAngTole    940           if ( (pTheta >= tolSTheta + kAngTolerance)
873             && (pTheta <= tolETheta - kAngTole    941             && (pTheta <= tolETheta - kAngTolerance) )
874           {                                       942           {
875             return snxt=0;                        943             return snxt=0;
876           }                                       944           }
877         }                                         945         }
878         else   // strictly inside Theta in bot    946         else   // strictly inside Theta in both cases
879         {                                         947         {
880           return snxt=0;                          948           return snxt=0;
881         }                                         949         }
882       }                                           950       }
883     }                                             951     }
884   }                                               952   }
885                                                   953 
886   // Inner spherical shell intersection           954   // Inner spherical shell intersection
887   // - Always farthest root, because would hav    955   // - Always farthest root, because would have passed through outer
888   //   surface first.                             956   //   surface first.
889   // - Tolerant check if travelling through so << 957   // - Tolerant check for if travelling through solid
890                                                   958 
891   if (fRmin != 0.0)                            << 959   if (fRmin)
892   {                                               960   {
893     c  = rad2 - fRmin*fRmin ;                     961     c  = rad2 - fRmin*fRmin ;
894     d2 = pDotV3d*pDotV3d - c ;                    962     d2 = pDotV3d*pDotV3d - c ;
895                                                   963 
896     // Within tolerance inner radius of inner     964     // Within tolerance inner radius of inner G4Sphere
897     // Check for immediate entry/already insid    965     // Check for immediate entry/already inside and travelling outwards
898                                                   966 
899     if ( (c > -halfRminTolerance) && (rad2 < t << 967     // if (c >- kRadTolerance*0.5 && pDotV3d >= 0 && rad2 < tolIRMin2 )
900       && ( (d2 < fRmin*kCarTolerance) || (pDot << 968 
                                                   >> 969     if ( c > -kRadTolerance*0.5 && rad2 < tolIRMin2 && 
                                                   >> 970          ( d2 < fRmin*kCarTolerance || pDotV3d >= 0 ) )
901     {                                             971     {
902       if ( !fFullPhiSphere )                   << 972       if (segPhi)
903       {                                           973       {
904         // Use inner phi tolerant boundary ->     974         // Use inner phi tolerant boundary -> if on tolerant
905         // phi boundaries, phi intersect code     975         // phi boundaries, phi intersect code handles leaving/entering checks
906                                                   976 
907         cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)    977         cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)/std::sqrt(rho2) ;
908         if (cosPsi >= cosHDPhiIT)                 978         if (cosPsi >= cosHDPhiIT)
909         {                                      << 979         { 
910           // inside radii, delta r -ve, inside    980           // inside radii, delta r -ve, inside phi
911           //                                      981           //
912           if ( !fFullThetaSphere )             << 982           if (segTheta)
913           {                                       983           {
914             if ( (pTheta >= tolSTheta + kAngTo    984             if ( (pTheta >= tolSTheta + kAngTolerance)
915               && (pTheta <= tolETheta - kAngTo    985               && (pTheta <= tolETheta - kAngTolerance) )
916             {                                     986             {
917               return snxt=0;                      987               return snxt=0;
918             }                                     988             }
919           }                                       989           }
920           else                                    990           else
921           {                                       991           {
922             return snxt = 0 ;                     992             return snxt = 0 ;
923           }                                       993           }
924         }                                         994         }
925       }                                           995       }
926       else                                        996       else
927       {                                           997       {
928         if ( !fFullThetaSphere )               << 998         if (segTheta)
929         {                                         999         {
930           if ( (pTheta >= tolSTheta + kAngTole    1000           if ( (pTheta >= tolSTheta + kAngTolerance)
931             && (pTheta <= tolETheta - kAngTole    1001             && (pTheta <= tolETheta - kAngTolerance) )
932           {                                       1002           {
933             return snxt = 0 ;                     1003             return snxt = 0 ;
934           }                                       1004           }
935         }                                         1005         }
936         else                                      1006         else
937         {                                         1007         {
938           return snxt=0;                          1008           return snxt=0;
939         }                                         1009         }
940       }                                           1010       }
941     }                                             1011     }
942     else   // Not special tolerant case           1012     else   // Not special tolerant case
943     {                                             1013     {
                                                   >> 1014       //  d2 = pDotV3d*pDotV3d - c ;
                                                   >> 1015 
944       if (d2 >= 0)                                1016       if (d2 >= 0)
945       {                                           1017       {
946         sd = -pDotV3d + std::sqrt(d2) ;        << 1018         s = -pDotV3d + std::sqrt(d2) ;
947         if ( sd >= halfRminTolerance )  // It  << 1019         if ( s >= kRadTolerance*0.5 )  // It was >= 0 ??
948         {                                         1020         {
949           xi   = p.x() + sd*v.x() ;            << 1021           xi   = p.x() + s*v.x() ;
950           yi   = p.y() + sd*v.y() ;            << 1022           yi   = p.y() + s*v.y() ;
951           rhoi = std::sqrt(xi*xi+yi*yi) ;         1023           rhoi = std::sqrt(xi*xi+yi*yi) ;
952                                                   1024 
953           if ( !fFullPhiSphere && (rhoi != 0.0 << 1025           if ( segPhi && rhoi )   // Check phi intersection
954           {                                       1026           {
955             cosPsi = (xi*cosCPhi + yi*sinCPhi)    1027             cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ;
956                                                   1028 
957             if (cosPsi >= cosHDPhiOT)             1029             if (cosPsi >= cosHDPhiOT)
958             {                                     1030             {
959               if ( !fFullThetaSphere )  // Che << 1031               if (segTheta)  // Check theta intersection
960               {                                   1032               {
961                 zi = p.z() + sd*v.z() ;        << 1033                 zi = p.z() + s*v.z() ;
962                                                   1034 
963                 // rhoi & zi can never both be    1035                 // rhoi & zi can never both be 0
964                 // (=>intersect at origin =>fR    1036                 // (=>intersect at origin =>fRmax=0)
965                 //                                1037                 //
966                 iTheta = std::atan2(rhoi,zi) ;    1038                 iTheta = std::atan2(rhoi,zi) ;
967                 if ( (iTheta >= tolSTheta) &&     1039                 if ( (iTheta >= tolSTheta) && (iTheta<=tolETheta) )
968                 {                                 1040                 {
969                   snxt = sd;                   << 1041                   snxt = s ;
970                 }                                 1042                 }
971               }                                   1043               }
972               else                                1044               else
973               {                                   1045               {
974                 snxt=sd;                       << 1046                 snxt=s;
975               }                                   1047               }
976             }                                     1048             }
977           }                                       1049           }
978           else                                    1050           else
979           {                                       1051           {
980             if ( !fFullThetaSphere )   // Chec << 1052             if (segTheta)   // Check theta intersection
981             {                                     1053             {
982               zi = p.z() + sd*v.z() ;          << 1054               zi = p.z() + s*v.z() ;
983                                                   1055 
984               // rhoi & zi can never both be 0    1056               // rhoi & zi can never both be 0
985               // (=>intersect at origin => fRm    1057               // (=>intersect at origin => fRmax=0 !)
986               //                                  1058               //
987               iTheta = std::atan2(rhoi,zi) ;      1059               iTheta = std::atan2(rhoi,zi) ;
988               if ( (iTheta >= tolSTheta) && (i    1060               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
989               {                                   1061               {
990                 snxt = sd;                     << 1062                 snxt = s ;
991               }                                   1063               }
992             }                                     1064             }
993             else                                  1065             else
994             {                                     1066             {
995               snxt = sd;                       << 1067               snxt=s;
996             }                                     1068             }
997           }                                       1069           }
998         }                                         1070         }
999       }                                           1071       }
1000     }                                            1072     }
1001   }                                              1073   }
1002                                                  1074 
1003   // Phi segment intersection                    1075   // Phi segment intersection
1004   //                                             1076   //
1005   // o Tolerant of points inside phi planes b    1077   // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1006   //                                             1078   //
1007   // o NOTE: Large duplication of code betwee    1079   // o NOTE: Large duplication of code between sphi & ephi checks
1008   //         -> only diffs: sphi -> ephi, Com    1080   //         -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1009   //            intersection check <=0 -> >=0    1081   //            intersection check <=0 -> >=0
1010   //         -> Should use some form of loop     1082   //         -> Should use some form of loop Construct
1011   //                                             1083   //
1012   if ( !fFullPhiSphere )                      << 1084   if ( segPhi )
1013   {                                              1085   {
1014     // First phi surface ('S'tarting phi)     << 1086     // First phi surface (`S'tarting phi)
                                                   >> 1087 
                                                   >> 1088     sinSPhi = std::sin(fSPhi) ;
                                                   >> 1089     cosSPhi = std::cos(fSPhi) ;
                                                   >> 1090 
1015     // Comp = Component in outwards normal di    1091     // Comp = Component in outwards normal dirn
1016     //                                           1092     //
1017     Comp = v.x()*sinSPhi - v.y()*cosSPhi ;    << 1093     Comp    = v.x()*sinSPhi - v.y()*cosSPhi  ;
1018                                               << 1094                     
1019     if ( Comp < 0 )                              1095     if ( Comp < 0 )
1020     {                                            1096     {
1021       Dist = p.y()*cosSPhi - p.x()*sinSPhi ;     1097       Dist = p.y()*cosSPhi - p.x()*sinSPhi ;
1022                                                  1098 
1023       if (Dist < halfCarTolerance)            << 1099       if (Dist < kCarTolerance*0.5)
1024       {                                          1100       {
1025         sd = Dist/Comp ;                      << 1101         s = Dist/Comp ;
1026                                                  1102 
1027         if (sd < snxt)                        << 1103         if (s < snxt)
1028         {                                        1104         {
1029           if ( sd > 0 )                       << 1105           if ( s > 0 )
1030           {                                      1106           {
1031             xi    = p.x() + sd*v.x() ;        << 1107             xi    = p.x() + s*v.x() ;
1032             yi    = p.y() + sd*v.y() ;        << 1108             yi    = p.y() + s*v.y() ;
1033             zi    = p.z() + sd*v.z() ;        << 1109             zi    = p.z() + s*v.z() ;
1034             rhoi2 = xi*xi + yi*yi   ;            1110             rhoi2 = xi*xi + yi*yi   ;
1035             radi2 = rhoi2 + zi*zi   ;            1111             radi2 = rhoi2 + zi*zi   ;
1036           }                                      1112           }
1037           else                                   1113           else
1038           {                                      1114           {
1039             sd    = 0     ;                   << 1115             s     = 0     ;
1040             xi    = p.x() ;                      1116             xi    = p.x() ;
1041             yi    = p.y() ;                      1117             yi    = p.y() ;
1042             zi    = p.z() ;                      1118             zi    = p.z() ;
1043             rhoi2 = rho2  ;                      1119             rhoi2 = rho2  ;
1044             radi2 = rad2  ;                      1120             radi2 = rad2  ;
1045           }                                      1121           }
1046           if ( (radi2 <= tolORMax2)              1122           if ( (radi2 <= tolORMax2)
1047             && (radi2 >= tolORMin2)              1123             && (radi2 >= tolORMin2)
1048             && ((yi*cosCPhi-xi*sinCPhi) <= 0)    1124             && ((yi*cosCPhi-xi*sinCPhi) <= 0) )
1049           {                                      1125           {
1050             // Check theta intersection          1126             // Check theta intersection
1051             // rhoi & zi can never both be 0     1127             // rhoi & zi can never both be 0
1052             // (=>intersect at origin =>fRmax    1128             // (=>intersect at origin =>fRmax=0)
1053             //                                   1129             //
1054             if ( !fFullThetaSphere )          << 1130             if ( segTheta )
1055             {                                    1131             {
1056               iTheta = std::atan2(std::sqrt(r    1132               iTheta = std::atan2(std::sqrt(rhoi2),zi) ;
1057               if ( (iTheta >= tolSTheta) && (    1133               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
1058               {                                  1134               {
1059                 // r and theta intersections     1135                 // r and theta intersections good
1060                 // - check intersecting with     1136                 // - check intersecting with correct half-plane
1061                                                  1137 
1062                 if ((yi*cosCPhi-xi*sinCPhi) <    1138                 if ((yi*cosCPhi-xi*sinCPhi) <= 0)
1063                 {                                1139                 {
1064                   snxt = sd;                  << 1140                   snxt = s ;
1065                 }                                1141                 }
1066               }                                  1142               }
1067             }                                    1143             }
1068             else                                 1144             else
1069             {                                    1145             {
1070               snxt = sd;                      << 1146               snxt = s ;
1071             }                                    1147             }
1072           }                                      1148           }
1073         }                                        1149         }
1074       }                                          1150       }
1075     }                                            1151     }
1076                                                  1152 
1077     // Second phi surface ('E'nding phi)      << 1153     // Second phi surface (`E'nding phi)
1078     // Component in outwards normal dirn      << 1154 
                                                   >> 1155     ePhi    = fSPhi + fDPhi ;
                                                   >> 1156     sinEPhi = std::sin(ePhi)     ;
                                                   >> 1157     cosEPhi = std::cos(ePhi)     ;
1079                                                  1158 
1080     Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ; << 1159     // Compnent in outwards normal dirn
1081                                                  1160 
                                                   >> 1161     Comp    = -( v.x()*sinEPhi-v.y()*cosEPhi ) ;
                                                   >> 1162         
1082     if (Comp < 0)                                1163     if (Comp < 0)
1083     {                                            1164     {
1084       Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ;    1165       Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ;
1085       if ( Dist < halfCarTolerance )          << 1166       if ( Dist < kCarTolerance*0.5 )
1086       {                                          1167       {
1087         sd = Dist/Comp ;                      << 1168         s = Dist/Comp ;
1088                                                  1169 
1089         if ( sd < snxt )                      << 1170         if ( s < snxt )
1090         {                                        1171         {
1091           if (sd > 0)                         << 1172           if (s > 0)
1092           {                                      1173           {
1093             xi    = p.x() + sd*v.x() ;        << 1174             xi    = p.x() + s*v.x() ;
1094             yi    = p.y() + sd*v.y() ;        << 1175             yi    = p.y() + s*v.y() ;
1095             zi    = p.z() + sd*v.z() ;        << 1176             zi    = p.z() + s*v.z() ;
1096             rhoi2 = xi*xi + yi*yi   ;            1177             rhoi2 = xi*xi + yi*yi   ;
1097             radi2 = rhoi2 + zi*zi   ;            1178             radi2 = rhoi2 + zi*zi   ;
1098           }                                      1179           }
1099           else                                   1180           else
1100           {                                      1181           {
1101             sd    = 0     ;                   << 1182             s     = 0     ;
1102             xi    = p.x() ;                      1183             xi    = p.x() ;
1103             yi    = p.y() ;                      1184             yi    = p.y() ;
1104             zi    = p.z() ;                      1185             zi    = p.z() ;
1105             rhoi2 = rho2  ;                      1186             rhoi2 = rho2  ;
1106             radi2 = rad2  ;                      1187             radi2 = rad2  ;
1107           }                                   << 1188           } if ( (radi2 <= tolORMax2)
1108           if ( (radi2 <= tolORMax2)           << 
1109             && (radi2 >= tolORMin2)              1189             && (radi2 >= tolORMin2)
1110             && ((yi*cosCPhi-xi*sinCPhi) >= 0)    1190             && ((yi*cosCPhi-xi*sinCPhi) >= 0) )
1111           {                                      1191           {
1112             // Check theta intersection          1192             // Check theta intersection
1113             // rhoi & zi can never both be 0     1193             // rhoi & zi can never both be 0
1114             // (=>intersect at origin =>fRmax    1194             // (=>intersect at origin =>fRmax=0)
1115             //                                   1195             //
1116             if ( !fFullThetaSphere )          << 1196             if ( segTheta )
1117             {                                    1197             {
1118               iTheta = std::atan2(std::sqrt(r    1198               iTheta = std::atan2(std::sqrt(rhoi2),zi) ;
1119               if ( (iTheta >= tolSTheta) && (    1199               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
1120               {                                  1200               {
1121                 // r and theta intersections     1201                 // r and theta intersections good
1122                 // - check intersecting with     1202                 // - check intersecting with correct half-plane
1123                                                  1203 
1124                 if ((yi*cosCPhi-xi*sinCPhi) >    1204                 if ((yi*cosCPhi-xi*sinCPhi) >= 0)
1125                 {                                1205                 {
1126                   snxt = sd;                  << 1206                   snxt = s ;
1127                 }                                1207                 }
1128               }                                  1208               }
1129             }                                    1209             }
1130             else                                 1210             else
1131             {                                    1211             {
1132               snxt = sd;                      << 1212               snxt = s ;
1133             }                                    1213             }
1134           }                                      1214           }
1135         }                                        1215         }
1136       }                                          1216       }
1137     }                                            1217     }
1138   }                                              1218   }
1139                                                  1219 
1140   // Theta segment intersection                  1220   // Theta segment intersection
1141                                                  1221 
1142   if ( !fFullThetaSphere )                    << 1222   if ( segTheta )
1143   {                                              1223   {
1144                                                  1224 
1145     // Intersection with theta surfaces          1225     // Intersection with theta surfaces
1146     // Known failure cases:                      1226     // Known failure cases:
1147     // o  Inside tolerance of stheta surface,    1227     // o  Inside tolerance of stheta surface, skim
1148     //    ~parallel to cone and Hit & enter e    1228     //    ~parallel to cone and Hit & enter etheta surface [& visa versa]
1149     //                                           1229     //
1150     //    To solve: Check 2nd root of etheta     1230     //    To solve: Check 2nd root of etheta surface in addition to stheta
1151     //                                           1231     //
1152     // o  start/end theta is exactly pi/2     << 1232     // o  start/end theta is exactly pi/2 
1153     // Intersections with cones                  1233     // Intersections with cones
1154     //                                           1234     //
1155     // Cone equation: x^2+y^2=z^2tan^2(t)        1235     // Cone equation: x^2+y^2=z^2tan^2(t)
1156     //                                           1236     //
1157     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan    1237     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t)
1158     //                                           1238     //
1159     // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p << 1239     // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t))
1160     //       + sd^2(vx^2+vy^2-vz^2tan^2(t)) = << 1240     //       + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0
1161     //                                           1241     //
1162     // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d << 1242     // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0
1163     //       + (rho2-pz^2tan^2(t)) = 0        << 
1164                                                  1243 
1165     if (fSTheta != 0.0)                       << 1244     tanSTheta  = std::tan(fSTheta)         ;
                                                   >> 1245     tanSTheta2 = tanSTheta*tanSTheta  ;
                                                   >> 1246     tanETheta  = std::tan(fSTheta+fDTheta) ;
                                                   >> 1247     tanETheta2 = tanETheta*tanETheta  ;
                                                   >> 1248       
                                                   >> 1249     if (fSTheta)
1166     {                                            1250     {
1167       dist2STheta = rho2 - p.z()*p.z()*tanSTh    1251       dist2STheta = rho2 - p.z()*p.z()*tanSTheta2 ;
1168     }                                            1252     }
1169     else                                         1253     else
1170     {                                            1254     {
1171       dist2STheta = kInfinity ;                  1255       dist2STheta = kInfinity ;
1172     }                                            1256     }
1173     if ( eTheta < pi )                        << 1257     if ( fSTheta + fDTheta < pi )
1174     {                                            1258     {
1175       dist2ETheta=rho2-p.z()*p.z()*tanETheta2    1259       dist2ETheta=rho2-p.z()*p.z()*tanETheta2;
1176     }                                            1260     }
1177     else                                      << 1261       else
1178     {                                            1262     {
1179       dist2ETheta=kInfinity;                     1263       dist2ETheta=kInfinity;
1180     }                                         << 1264     }      
1181     if ( pTheta < tolSTheta )                 << 1265     if ( pTheta < tolSTheta) // dist2STheta<-kRadTolerance*0.5 && dist2ETheta>0)
1182     {                                            1266     {
1183       // Inside (theta<stheta-tol) stheta con << 1267       // Inside (theta<stheta-tol) s theta cone
1184       // First root of stheta cone, second if    1268       // First root of stheta cone, second if first root -ve
1185                                                  1269 
1186       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;    1270       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
1187       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;    1271       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
1188       if (t1 != 0.0)                          << 1272         
                                                   >> 1273       b  = t2/t1 ;
                                                   >> 1274       c  = dist2STheta/t1 ;
                                                   >> 1275       d2 = b*b - c ;
                                                   >> 1276 
                                                   >> 1277       if ( d2 >= 0 )
1189       {                                          1278       {
                                                   >> 1279         d = std::sqrt(d2) ;
                                                   >> 1280         s = -b - d ;    // First root
                                                   >> 1281 
                                                   >> 1282         if ( s < 0 )
                                                   >> 1283         {
                                                   >> 1284           s=-b+d;    // Second root
                                                   >> 1285         }
                                                   >> 1286         if (s >= 0 && s < snxt)
                                                   >> 1287         {
                                                   >> 1288           xi    = p.x() + s*v.x() ;
                                                   >> 1289           yi    = p.y() + s*v.y() ;
                                                   >> 1290           zi    = p.z() + s*v.z() ;
                                                   >> 1291           rhoi2 = xi*xi + yi*yi   ;
                                                   >> 1292           radi2 = rhoi2 + zi*zi   ;
                                                   >> 1293           if ( (radi2 <= tolORMax2)
                                                   >> 1294             && (radi2 >= tolORMin2)
                                                   >> 1295             && (zi*(fSTheta - halfpi) <= 0) )
                                                   >> 1296           {
                                                   >> 1297             if ( segPhi && rhoi2 )  // Check phi intersection
                                                   >> 1298             {
                                                   >> 1299               cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
                                                   >> 1300               if (cosPsi >= cosHDPhiOT)
                                                   >> 1301               {
                                                   >> 1302                 snxt = s ;
                                                   >> 1303               }
                                                   >> 1304             }
                                                   >> 1305             else
                                                   >> 1306             {
                                                   >> 1307               snxt = s ;
                                                   >> 1308             }
                                                   >> 1309           }
                                                   >> 1310         }
                                                   >> 1311       }
                                                   >> 1312 
                                                   >> 1313       // Possible intersection with ETheta cone. 
                                                   >> 1314       // Second >= 0 root should be considered
                                                   >> 1315         
                                                   >> 1316       if ( fSTheta + fDTheta < pi )
                                                   >> 1317       {
                                                   >> 1318         t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
                                                   >> 1319         t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
                                                   >> 1320         
1190         b  = t2/t1 ;                             1321         b  = t2/t1 ;
1191         c  = dist2STheta/t1 ;                 << 1322         c  = dist2ETheta/t1 ;
1192         d2 = b*b - c ;                           1323         d2 = b*b - c ;
1193                                                  1324 
1194         if ( d2 >= 0 )                        << 1325         if (d2 >= 0)
1195         {                                        1326         {
1196           d  = std::sqrt(d2) ;                << 1327           d = std::sqrt(d2) ;
1197           sd = -b - d ;    // First root      << 1328           s = -b + d ;    // Second root
1198           zi = p.z() + sd*v.z();              << 
1199                                                  1329 
1200           if ( (sd < 0) || (zi*(fSTheta - hal << 1330           if (s >= 0 && s < snxt)
1201           {                                      1331           {
1202             sd = -b+d;    // Second root      << 1332             xi    = p.x() + s*v.x() ;
1203           }                                   << 1333             yi    = p.y() + s*v.y() ;
1204           if ((sd >= 0) && (sd < snxt))       << 1334             zi    = p.z() + s*v.z() ;
1205           {                                   << 1335             rhoi2 = xi*xi + yi*yi   ;
1206             xi    = p.x() + sd*v.x();         << 1336             radi2 = rhoi2 + zi*zi   ;
1207             yi    = p.y() + sd*v.y();         << 1337 
1208             zi    = p.z() + sd*v.z();         << 
1209             rhoi2 = xi*xi + yi*yi;            << 
1210             radi2 = rhoi2 + zi*zi;            << 
1211             if ( (radi2 <= tolORMax2)            1338             if ( (radi2 <= tolORMax2)
1212               && (radi2 >= tolORMin2)            1339               && (radi2 >= tolORMin2)
1213               && (zi*(fSTheta - halfpi) <= 0) << 1340               && (zi*(fSTheta + fDTheta - halfpi) <= 0) )
1214             {                                    1341             {
1215               if ( !fFullPhiSphere && (rhoi2  << 1342               if (segPhi && rhoi2)   // Check phi intersection
1216               {                                  1343               {
1217                 cosPsi = (xi*cosCPhi + yi*sin    1344                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1218                 if (cosPsi >= cosHDPhiOT)        1345                 if (cosPsi >= cosHDPhiOT)
1219                 {                                1346                 {
1220                   snxt = sd;                  << 1347                   snxt = s ;
1221                 }                                1348                 }
1222               }                                  1349               }
1223               else                               1350               else
1224               {                                  1351               {
1225                 snxt = sd;                    << 1352                 snxt = s ;
1226               }                                  1353               }
1227             }                                    1354             }
1228           }                                      1355           }
1229         }                                        1356         }
1230       }                                          1357       }
                                                   >> 1358     }  
                                                   >> 1359     else if (pTheta > tolETheta) 
                                                   >> 1360     { // dist2ETheta<-kRadTolerance*0.5 && dist2STheta>0)
                                                   >> 1361       // Inside (theta>etheta+tol) e theta cone
                                                   >> 1362       // First root of etheta cone, second if first root `imaginary'
1231                                                  1363 
1232       // Possible intersection with ETheta co << 1364       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
1233       // Second >= 0 root should be considere << 1365       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
                                                   >> 1366         
                                                   >> 1367       b  = t2/t1 ;
                                                   >> 1368       c  = dist2ETheta/t1 ;
                                                   >> 1369       d2 = b*b - c ;
1234                                                  1370 
1235       if ( eTheta < pi )                      << 1371       if (d2 >= 0)
1236       {                                          1372       {
1237         t1 = 1 - v.z()*v.z()*(1 + tanETheta2) << 1373         d = std::sqrt(d2) ;
1238         t2 = pDotV2d - p.z()*v.z()*tanETheta2 << 1374         s = -b - d ;    // First root
1239         if (t1 != 0.0)                        << 1375         if (s < 0)
1240         {                                     << 1376         {
1241           b  = t2/t1 ;                        << 1377           s = -b + d ;           // second root
1242           c  = dist2ETheta/t1 ;               << 1378         }
1243           d2 = b*b - c ;                      << 1379         if (s >= 0 && s < snxt)
                                                   >> 1380         {
                                                   >> 1381           xi    = p.x() + s*v.x() ;
                                                   >> 1382           yi    = p.y() + s*v.y() ;
                                                   >> 1383           zi    = p.z() + s*v.z() ;
                                                   >> 1384           rhoi2 = xi*xi + yi*yi   ;
                                                   >> 1385           radi2 = rhoi2 + zi*zi   ;
1244                                                  1386 
1245           if (d2 >= 0)                        << 1387           if ( (radi2 <= tolORMax2)
                                                   >> 1388             && (radi2 >= tolORMin2) 
                                                   >> 1389             && (zi*(fSTheta + fDTheta - halfpi) <= 0) )
1246           {                                      1390           {
1247             d  = std::sqrt(d2) ;              << 1391             if (segPhi && rhoi2)  // Check phi intersection
1248             sd = -b + d ;    // Second root   << 
1249                                               << 
1250             if ( (sd >= 0) && (sd < snxt) )   << 
1251             {                                    1392             {
1252               xi    = p.x() + sd*v.x() ;      << 1393               cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1253               yi    = p.y() + sd*v.y() ;      << 1394               if (cosPsi >= cosHDPhiOT)
1254               zi    = p.z() + sd*v.z() ;      << 
1255               rhoi2 = xi*xi + yi*yi   ;       << 
1256               radi2 = rhoi2 + zi*zi   ;       << 
1257                                               << 
1258               if ( (radi2 <= tolORMax2)       << 
1259                 && (radi2 >= tolORMin2)       << 
1260                 && (zi*(eTheta - halfpi) <= 0 << 
1261               {                                  1395               {
1262                 if (!fFullPhiSphere && (rhoi2 << 1396                 snxt = s ;
1263                 {                             << 
1264                   cosPsi = (xi*cosCPhi + yi*s << 
1265                   if (cosPsi >= cosHDPhiOT)   << 
1266                   {                           << 
1267                     snxt = sd;                << 
1268                   }                           << 
1269                 }                             << 
1270                 else                          << 
1271                 {                             << 
1272                   snxt = sd;                  << 
1273                 }                             << 
1274               }                                  1397               }
1275             }                                    1398             }
                                                   >> 1399             else
                                                   >> 1400             {
                                                   >> 1401               snxt = s ;
                                                   >> 1402             }
1276           }                                      1403           }
1277         }                                        1404         }
1278       }                                          1405       }
1279     }                                         << 
1280     else if ( pTheta > tolETheta )            << 
1281     {                                         << 
1282       // dist2ETheta<-kRadTolerance*0.5 && di << 
1283       // Inside (theta > etheta+tol) e-theta  << 
1284       // First root of etheta cone, second if << 
1285                                                  1406 
1286       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ; << 1407       // Possible intersection with STheta cone. 
1287       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ; << 1408       // Second >= 0 root should be considered
1288       if (t1 != 0.0)                          << 1409         
                                                   >> 1410       if ( fSTheta )
1289       {                                          1411       {
                                                   >> 1412         t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
                                                   >> 1413         t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
                                                   >> 1414 
1290         b  = t2/t1 ;                             1415         b  = t2/t1 ;
1291         c  = dist2ETheta/t1 ;                 << 1416         c  = dist2STheta/t1 ;
1292         d2 = b*b - c ;                           1417         d2 = b*b - c ;
1293                                                  1418 
1294         if (d2 >= 0)                             1419         if (d2 >= 0)
1295         {                                        1420         {
1296           d  = std::sqrt(d2) ;                << 1421           d = std::sqrt(d2) ;
1297           sd = -b - d ;    // First root      << 1422           s = -b + d ;    // Second root
1298           zi = p.z() + sd*v.z();              << 
1299                                                  1423 
1300           if ( (sd < 0) || (zi*(eTheta - half << 1424           if ( (s >= 0) && (s < snxt) )
1301           {                                   << 
1302             sd = -b + d ;           // second << 
1303           }                                   << 
1304           if ( (sd >= 0) && (sd < snxt) )     << 
1305           {                                      1425           {
1306             xi    = p.x() + sd*v.x() ;        << 1426             xi    = p.x() + s*v.x() ;
1307             yi    = p.y() + sd*v.y() ;        << 1427             yi    = p.y() + s*v.y() ;
1308             zi    = p.z() + sd*v.z() ;        << 1428             zi    = p.z() + s*v.z() ;
1309             rhoi2 = xi*xi + yi*yi   ;            1429             rhoi2 = xi*xi + yi*yi   ;
1310             radi2 = rhoi2 + zi*zi   ;            1430             radi2 = rhoi2 + zi*zi   ;
1311                                                  1431 
1312             if ( (radi2 <= tolORMax2)            1432             if ( (radi2 <= tolORMax2)
1313               && (radi2 >= tolORMin2)            1433               && (radi2 >= tolORMin2)
1314               && (zi*(eTheta - halfpi) <= 0)  << 1434               && (zi*(fSTheta - halfpi) <= 0) )
1315             {                                    1435             {
1316               if (!fFullPhiSphere && (rhoi2 ! << 1436               if (segPhi && rhoi2)   // Check phi intersection
1317               {                                  1437               {
1318                 cosPsi = (xi*cosCPhi + yi*sin    1438                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1319                 if (cosPsi >= cosHDPhiOT)        1439                 if (cosPsi >= cosHDPhiOT)
1320                 {                                1440                 {
1321                   snxt = sd;                  << 1441                   snxt = s ;
1322                 }                                1442                 }
1323               }                                  1443               }
1324               else                               1444               else
1325               {                                  1445               {
1326                 snxt = sd;                    << 1446                 snxt = s ;
1327               }                                  1447               }
1328             }                                    1448             }
1329           }                                      1449           }
1330         }                                        1450         }
1331       }                                       << 1451       }  
1332                                               << 1452     }     
1333       // Possible intersection with STheta co << 1453     else if ( (pTheta <tolSTheta + kAngTolerance)
1334       // Second >= 0 root should be considere << 1454            && (fSTheta > kAngTolerance) )
1335                                               << 
1336       if ( fSTheta != 0.0 )                   << 
1337       {                                       << 
1338         t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) << 
1339         t2 = pDotV2d - p.z()*v.z()*tanSTheta2 << 
1340         if (t1 != 0.0)                        << 
1341         {                                     << 
1342           b  = t2/t1 ;                        << 
1343           c  = dist2STheta/t1 ;               << 
1344           d2 = b*b - c ;                      << 
1345                                               << 
1346           if (d2 >= 0)                        << 
1347           {                                   << 
1348             d  = std::sqrt(d2) ;              << 
1349             sd = -b + d ;    // Second root   << 
1350                                               << 
1351             if ( (sd >= 0) && (sd < snxt) )   << 
1352             {                                 << 
1353               xi    = p.x() + sd*v.x() ;      << 
1354               yi    = p.y() + sd*v.y() ;      << 
1355               zi    = p.z() + sd*v.z() ;      << 
1356               rhoi2 = xi*xi + yi*yi   ;       << 
1357               radi2 = rhoi2 + zi*zi   ;       << 
1358                                               << 
1359               if ( (radi2 <= tolORMax2)       << 
1360                 && (radi2 >= tolORMin2)       << 
1361                 && (zi*(fSTheta - halfpi) <=  << 
1362               {                               << 
1363                 if (!fFullPhiSphere && (rhoi2 << 
1364                 {                             << 
1365                   cosPsi = (xi*cosCPhi + yi*s << 
1366                   if (cosPsi >= cosHDPhiOT)   << 
1367                   {                           << 
1368                     snxt = sd;                << 
1369                   }                           << 
1370                 }                             << 
1371                 else                          << 
1372                 {                             << 
1373                   snxt = sd;                  << 
1374                 }                             << 
1375               }                               << 
1376             }                                 << 
1377           }                                   << 
1378         }                                     << 
1379       }                                       << 
1380     }                                         << 
1381     else if ( (pTheta < tolSTheta + kAngToler << 
1382            && (fSTheta > halfAngTolerance) )  << 
1383     {                                            1455     {
1384       // In tolerance of stheta                  1456       // In tolerance of stheta
1385       // If entering through solid [r,phi] =>    1457       // If entering through solid [r,phi] => 0 to in
1386       // else try 2nd root                       1458       // else try 2nd root
1387                                                  1459 
1388       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;    1460       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
1389       if ( (t2>=0 && tolIRMin2<rad2 && rad2<t << 1461       if ( (t2>=0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta<pi*.5)
1390         || (t2<0  && tolIRMin2<rad2 && rad2<t << 1462         || (t2<0  && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta>pi*.5)
1391         || (v.z()<0 && tolIRMin2<rad2 && rad2 << 1463         || (v.z()<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta==pi*.5) )
1392       {                                          1464       {
1393         if (!fFullPhiSphere && (rho2 != 0.0)) << 1465         if (segPhi && rho2)  // Check phi intersection
1394         {                                        1466         {
1395           cosPsi = (p.x()*cosCPhi + p.y()*sin    1467           cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
1396           if (cosPsi >= cosHDPhiIT)              1468           if (cosPsi >= cosHDPhiIT)
1397           {                                      1469           {
1398             return 0 ;                           1470             return 0 ;
1399           }                                      1471           }
1400         }                                        1472         }
1401         else                                     1473         else
1402         {                                        1474         {
1403           return 0 ;                             1475           return 0 ;
1404         }                                        1476         }
1405       }                                          1477       }
1406                                                  1478 
1407       // Not entering immediately/travelling     1479       // Not entering immediately/travelling through
1408                                                  1480 
1409       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;    1481       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
1410       if (t1 != 0.0)                          << 1482       b  = t2/t1 ;
1411       {                                       << 1483       c  = dist2STheta/t1 ;
1412         b  = t2/t1 ;                          << 1484       d2 = b*b - c ;
1413         c  = dist2STheta/t1 ;                 << 
1414         d2 = b*b - c ;                        << 
1415                                                  1485 
1416         if (d2 >= 0)                          << 1486       if (d2 >= 0)
1417         {                                     << 1487       {
1418           d  = std::sqrt(d2) ;                << 1488         d = std::sqrt(d2) ;
1419           sd = -b + d ;                       << 1489         s = -b + d ;
1420           if ( (sd >= halfCarTolerance) && (s << 1490         if ( (s >= kCarTolerance*0.5) && (s < snxt) && (fSTheta < pi*0.5) )
1421           {   // ^^^^^^^^^^^^^^^^^^^^^  shoul << 1491         {
1422             xi    = p.x() + sd*v.x() ;        << 1492           xi    = p.x() + s*v.x() ;
1423             yi    = p.y() + sd*v.y() ;        << 1493           yi    = p.y() + s*v.y() ;
1424             zi    = p.z() + sd*v.z() ;        << 1494           zi    = p.z() + s*v.z() ;
1425             rhoi2 = xi*xi + yi*yi   ;         << 1495           rhoi2 = xi*xi + yi*yi   ;
1426             radi2 = rhoi2 + zi*zi   ;         << 1496           radi2 = rhoi2 + zi*zi   ;
1427                                                  1497 
1428             if ( (radi2 <= tolORMax2)         << 1498           if ( (radi2 <= tolORMax2)
1429               && (radi2 >= tolORMin2)         << 1499             && (radi2 >= tolORMin2)
1430               && (zi*(fSTheta - halfpi) <= 0) << 1500             && (zi*(fSTheta - halfpi) <= 0) )
                                                   >> 1501           {
                                                   >> 1502             if ( segPhi && rhoi2 )    // Check phi intersection
1431             {                                    1503             {
1432               if ( !fFullPhiSphere && (rhoi2  << 1504               cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
                                                   >> 1505               if ( cosPsi >= cosHDPhiOT )
1433               {                                  1506               {
1434                 cosPsi = (xi*cosCPhi + yi*sin << 1507                 snxt = s ;
1435                 if ( cosPsi >= cosHDPhiOT )   << 
1436                 {                             << 
1437                   snxt = sd;                  << 
1438                 }                             << 
1439               }                               << 
1440               else                            << 
1441               {                               << 
1442                 snxt = sd;                    << 
1443               }                                  1508               }
1444             }                                    1509             }
                                                   >> 1510             else
                                                   >> 1511             {
                                                   >> 1512               snxt = s ;
                                                   >> 1513             }
1445           }                                      1514           }
1446         }                                        1515         }
1447       }                                          1516       }
1448     }                                         << 1517     }   
1449     else if ((pTheta > tolETheta-kAngToleranc << 1518     else if ( (pTheta > tolETheta - kAngTolerance)
                                                   >> 1519            && ((fSTheta + fDTheta) < pi-kAngTolerance) )   
1450     {                                            1520     {
1451                                                  1521 
1452       // In tolerance of etheta                  1522       // In tolerance of etheta
1453       // If entering through solid [r,phi] =>    1523       // If entering through solid [r,phi] => 0 to in
1454       // else try 2nd root                       1524       // else try 2nd root
1455                                                  1525 
1456       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;    1526       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
1457                                                  1527 
1458       if (   ((t2<0) && (eTheta < halfpi)     << 1528       if (
1459           && (tolIRMin2 < rad2) && (rad2 < to << 1529     (t2<0    && (fSTheta+fDTheta) <pi*0.5 && tolIRMin2<rad2 && rad2<tolIRMax2)
1460         ||   ((t2>=0) && (eTheta > halfpi)    << 1530  || (t2>=0   && (fSTheta+fDTheta) >pi*0.5 && tolIRMin2<rad2 && rad2<tolIRMax2)
1461           && (tolIRMin2 < rad2) && (rad2 < to << 1531  || (v.z()>0 && (fSTheta+fDTheta)==pi*0.5 && tolIRMin2<rad2 && rad2<tolIRMax2)
1462         ||   ((v.z()>0) && (eTheta == halfpi) << 1532          )
1463           && (tolIRMin2 < rad2) && (rad2 < to << 
1464       {                                          1533       {
1465         if (!fFullPhiSphere && (rho2 != 0.0)) << 1534         if (segPhi && rho2)   // Check phi intersection
1466         {                                        1535         {
1467           cosPsi = (p.x()*cosCPhi + p.y()*sin    1536           cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
1468           if (cosPsi >= cosHDPhiIT)              1537           if (cosPsi >= cosHDPhiIT)
1469           {                                      1538           {
1470             return 0 ;                           1539             return 0 ;
1471           }                                      1540           }
1472         }                                        1541         }
1473         else                                     1542         else
1474         {                                        1543         {
1475           return 0 ;                             1544           return 0 ;
1476         }                                        1545         }
1477       }                                          1546       }
1478                                                  1547 
1479       // Not entering immediately/travelling     1548       // Not entering immediately/travelling through
1480                                                  1549 
1481       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;    1550       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
1482       if (t1 != 0.0)                          << 1551       b  = t2/t1 ;
1483       {                                       << 1552       c  = dist2ETheta/t1 ;
1484         b  = t2/t1 ;                          << 1553       d2 = b*b - c ;
1485         c  = dist2ETheta/t1 ;                 << 
1486         d2 = b*b - c ;                        << 
1487                                                  1554 
1488         if (d2 >= 0)                          << 1555       if (d2 >= 0)
1489         {                                     << 1556       {
1490           d  = std::sqrt(d2) ;                << 1557         d = std::sqrt(d2) ;
1491           sd = -b + d ;                       << 1558         s = -b + d ;
                                                   >> 1559         
                                                   >> 1560         if ( (s >= kCarTolerance*0.5)
                                                   >> 1561           && (s < snxt) && ((fSTheta + fDTheta) > pi*0.5) )
                                                   >> 1562         {
                                                   >> 1563           xi    = p.x() + s*v.x() ;
                                                   >> 1564           yi    = p.y() + s*v.y() ;
                                                   >> 1565           zi    = p.z() + s*v.z() ;
                                                   >> 1566           rhoi2 = xi*xi + yi*yi   ;
                                                   >> 1567           radi2 = rhoi2 + zi*zi   ;
1492                                                  1568 
1493           if ( (sd >= halfCarTolerance)       << 1569           if ( (radi2 <= tolORMax2)
1494             && (sd < snxt) && (eTheta > halfp << 1570             && (radi2 >= tolORMin2)
                                                   >> 1571             && (zi*(fSTheta + fDTheta - halfpi) <= 0) )
1495           {                                      1572           {
1496             xi    = p.x() + sd*v.x() ;        << 1573             if (segPhi && rhoi2)   // Check phi intersection
1497             yi    = p.y() + sd*v.y() ;        << 
1498             zi    = p.z() + sd*v.z() ;        << 
1499             rhoi2 = xi*xi + yi*yi   ;         << 
1500             radi2 = rhoi2 + zi*zi   ;         << 
1501                                               << 
1502             if ( (radi2 <= tolORMax2)         << 
1503               && (radi2 >= tolORMin2)         << 
1504               && (zi*(eTheta - halfpi) <= 0)  << 
1505             {                                    1574             {
1506               if (!fFullPhiSphere && (rhoi2 ! << 1575               cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
                                                   >> 1576               if (cosPsi>=cosHDPhiOT)
1507               {                                  1577               {
1508                 cosPsi = (xi*cosCPhi + yi*sin << 1578                 snxt = s ;
1509                 if (cosPsi >= cosHDPhiOT)     << 
1510                 {                             << 
1511                   snxt = sd;                  << 
1512                 }                             << 
1513               }                               << 
1514               else                            << 
1515               {                               << 
1516                 snxt = sd;                    << 
1517               }                                  1579               }
1518             }                                    1580             }
                                                   >> 1581             else
                                                   >> 1582             {
                                                   >> 1583               snxt = s ;
                                                   >> 1584             }
1519           }                                      1585           }
1520         }                                        1586         }
1521       }                                       << 1587       }    
1522     }                                         << 1588     }  
1523     else                                         1589     else
1524     {                                            1590     {
1525       // stheta+tol<theta<etheta-tol             1591       // stheta+tol<theta<etheta-tol
1526       // For BOTH stheta & etheta check 2nd r    1592       // For BOTH stheta & etheta check 2nd root for validity [r,phi]
1527                                                  1593 
1528       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;    1594       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
1529       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;    1595       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
1530       if (t1 != 0.0)                          << 1596 
                                                   >> 1597       b  = t2/t1;
                                                   >> 1598       c  = dist2STheta/t1 ;
                                                   >> 1599       d2 = b*b - c ;
                                                   >> 1600 
                                                   >> 1601       if (d2 >= 0)
1531       {                                          1602       {
1532         b  = t2/t1;                           << 1603         d = std::sqrt(d2) ;
1533         c  = dist2STheta/t1 ;                 << 1604         s = -b + d ;    // second root
1534         d2 = b*b - c ;                        << 
1535                                                  1605 
1536         if (d2 >= 0)                          << 1606         if (s >= 0 && s < snxt)
1537         {                                        1607         {
1538           d  = std::sqrt(d2) ;                << 1608           xi    = p.x() + s*v.x() ;
1539           sd = -b + d ;    // second root     << 1609           yi    = p.y() + s*v.y() ;
                                                   >> 1610           zi    = p.z() + s*v.z() ;
                                                   >> 1611           rhoi2 = xi*xi + yi*yi   ;
                                                   >> 1612           radi2 = rhoi2 + zi*zi   ;
1540                                                  1613 
1541           if ((sd >= 0) && (sd < snxt))       << 1614           if ( (radi2 <= tolORMax2)
                                                   >> 1615             && (radi2 >= tolORMin2)
                                                   >> 1616             && (zi*(fSTheta - halfpi) <= 0) )
1542           {                                      1617           {
1543             xi    = p.x() + sd*v.x() ;        << 1618             if (segPhi && rhoi2)   // Check phi intersection
1544             yi    = p.y() + sd*v.y() ;        << 
1545             zi    = p.z() + sd*v.z() ;        << 
1546             rhoi2 = xi*xi + yi*yi   ;         << 
1547             radi2 = rhoi2 + zi*zi   ;         << 
1548                                               << 
1549             if ( (radi2 <= tolORMax2)         << 
1550               && (radi2 >= tolORMin2)         << 
1551               && (zi*(fSTheta - halfpi) <= 0) << 
1552             {                                    1619             {
1553               if (!fFullPhiSphere && (rhoi2 ! << 1620               cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
                                                   >> 1621               if (cosPsi >= cosHDPhiOT)
1554               {                                  1622               {
1555                 cosPsi = (xi*cosCPhi + yi*sin << 1623                 snxt = s ;
1556                 if (cosPsi >= cosHDPhiOT)     << 
1557                 {                             << 
1558                   snxt = sd;                  << 
1559                 }                             << 
1560               }                               << 
1561               else                            << 
1562               {                               << 
1563                 snxt = sd;                    << 
1564               }                                  1624               }
1565             }                                    1625             }
                                                   >> 1626             else
                                                   >> 1627             {
                                                   >> 1628               snxt = s ;
                                                   >> 1629             }
1566           }                                      1630           }
1567         }                                        1631         }
1568       }                                       << 1632       }        
1569       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;    1633       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
1570       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;    1634       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
1571       if (t1 != 0.0)                          << 1635         
                                                   >> 1636       b  = t2/t1 ;
                                                   >> 1637       c  = dist2ETheta/t1 ;
                                                   >> 1638       d2 = b*b - c ;
                                                   >> 1639 
                                                   >> 1640       if (d2 >= 0)
1572       {                                          1641       {
1573         b  = t2/t1 ;                          << 1642         d = std::sqrt(d2) ;
1574         c  = dist2ETheta/t1 ;                 << 1643         s = -b + d;    // second root
1575         d2 = b*b - c ;                        << 
1576                                                  1644 
1577         if (d2 >= 0)                          << 1645         if (s >= 0 && s < snxt)
1578         {                                        1646         {
1579           d  = std::sqrt(d2) ;                << 1647           xi    = p.x() + s*v.x() ;
1580           sd = -b + d;    // second root      << 1648           yi    = p.y() + s*v.y() ;
                                                   >> 1649           zi    = p.z() + s*v.z() ;
                                                   >> 1650           rhoi2 = xi*xi + yi*yi   ;
                                                   >> 1651           radi2 = rhoi2 + zi*zi   ;
1581                                                  1652 
1582           if ((sd >= 0) && (sd < snxt))       << 1653           if ( (radi2 <= tolORMax2)
                                                   >> 1654             && (radi2 >= tolORMin2)
                                                   >> 1655             && (zi*(fSTheta + fDTheta - halfpi) <= 0) )
1583           {                                      1656           {
1584             xi    = p.x() + sd*v.x() ;        << 1657             if (segPhi && rhoi2)   // Check phi intersection
1585             yi    = p.y() + sd*v.y() ;        << 
1586             zi    = p.z() + sd*v.z() ;        << 
1587             rhoi2 = xi*xi + yi*yi   ;         << 
1588             radi2 = rhoi2 + zi*zi   ;         << 
1589                                               << 
1590             if ( (radi2 <= tolORMax2)         << 
1591               && (radi2 >= tolORMin2)         << 
1592               && (zi*(eTheta - halfpi) <= 0)  << 
1593             {                                    1658             {
1594               if (!fFullPhiSphere && (rhoi2 ! << 1659               cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
                                                   >> 1660               if ( cosPsi >= cosHDPhiOT )
1595               {                                  1661               {
1596                 cosPsi = (xi*cosCPhi + yi*sin << 1662                 snxt=s;
1597                 if ( cosPsi >= cosHDPhiOT )   << 
1598                 {                             << 
1599                   snxt = sd;                  << 
1600                 }                             << 
1601               }                               << 
1602               else                            << 
1603               {                               << 
1604                 snxt = sd;                    << 
1605               }                                  1663               }
1606             }                                    1664             }
                                                   >> 1665             else
                                                   >> 1666             {
                                                   >> 1667               snxt = s ;
                                                   >> 1668             }
1607           }                                      1669           }
1608         }                                        1670         }
1609       }                                          1671       }
1610     }                                         << 1672     }  
1611   }                                              1673   }
1612   return snxt;                                   1674   return snxt;
1613 }                                                1675 }
1614                                                  1676 
1615 /////////////////////////////////////////////    1677 //////////////////////////////////////////////////////////////////////
1616 //                                               1678 //
1617 // Calculate distance (<= actual) to closest     1679 // Calculate distance (<= actual) to closest surface of shape from outside
1618 // - Calculate distance to radial planes         1680 // - Calculate distance to radial planes
1619 // - Only to phi planes if outside phi extent    1681 // - Only to phi planes if outside phi extent
1620 // - Only to theta planes if outside theta ex    1682 // - Only to theta planes if outside theta extent
1621 // - Return 0 if point inside                    1683 // - Return 0 if point inside
1622                                                  1684 
1623 G4double G4Sphere::DistanceToIn( const G4Thre    1685 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p ) const
1624 {                                                1686 {
1625   G4double safe=0.0,safeRMin,safeRMax,safePhi    1687   G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta;
1626   G4double rho2,rds,rho;                      << 1688   G4double rho2,rad,rho;
1627   G4double cosPsi;                            << 1689   G4double phiC,cosPhiC,sinPhiC,cosPsi,ePhi;
1628   G4double pTheta,dTheta1,dTheta2;               1690   G4double pTheta,dTheta1,dTheta2;
1629   rho2=p.x()*p.x()+p.y()*p.y();                  1691   rho2=p.x()*p.x()+p.y()*p.y();
1630   rds=std::sqrt(rho2+p.z()*p.z());            << 1692   rad=std::sqrt(rho2+p.z()*p.z());
1631   rho=std::sqrt(rho2);                           1693   rho=std::sqrt(rho2);
1632                                                  1694 
1633   //                                             1695   //
1634   // Distance to r shells                        1696   // Distance to r shells
1635   //                                          << 1697   //    
1636   if (fRmin != 0.0)                           << 1698   if (fRmin)
1637   {                                              1699   {
1638     safeRMin=fRmin-rds;                       << 1700     safeRMin=fRmin-rad;
1639     safeRMax=rds-fRmax;                       << 1701     safeRMax=rad-fRmax;
1640     if (safeRMin>safeRMax)                       1702     if (safeRMin>safeRMax)
1641     {                                            1703     {
1642       safe=safeRMin;                             1704       safe=safeRMin;
1643     }                                            1705     }
1644     else                                         1706     else
1645     {                                            1707     {
1646       safe=safeRMax;                             1708       safe=safeRMax;
1647     }                                            1709     }
1648   }                                              1710   }
1649   else                                           1711   else
1650   {                                              1712   {
1651     safe=rds-fRmax;                           << 1713     safe=rad-fRmax;
1652   }                                              1714   }
1653                                                  1715 
1654   //                                             1716   //
1655   // Distance to phi extent                      1717   // Distance to phi extent
1656   //                                             1718   //
1657   if (!fFullPhiSphere && (rho != 0.0))        << 1719   if (fDPhi<twopi&&rho)
1658   {                                              1720   {
                                                   >> 1721     phiC=fSPhi+fDPhi*0.5;
                                                   >> 1722     cosPhiC=std::cos(phiC);
                                                   >> 1723     sinPhiC=std::sin(phiC);
                                                   >> 1724 
1659     // Psi=angle from central phi to point       1725     // Psi=angle from central phi to point
1660     //                                           1726     //
1661     cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho; << 1727     cosPsi=(p.x()*cosPhiC+p.y()*sinPhiC)/rho;
1662     if (cosPsi<cosHDPhi)                      << 1728     if (cosPsi<std::cos(fDPhi*0.5))
1663     {                                            1729     {
1664       // Point lies outside phi range            1730       // Point lies outside phi range
1665       //                                         1731       //
1666       if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0)   << 1732       if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)
1667       {                                          1733       {
1668         safePhi=std::fabs(p.x()*sinSPhi-p.y() << 1734         safePhi=std::fabs(p.x()*std::sin(fSPhi)-p.y()*std::cos(fSPhi));
1669       }                                          1735       }
1670       else                                       1736       else
1671       {                                          1737       {
1672         safePhi=std::fabs(p.x()*sinEPhi-p.y() << 1738         ePhi=fSPhi+fDPhi;
                                                   >> 1739         safePhi=std::fabs(p.x()*std::sin(ePhi)-p.y()*std::cos(ePhi));
1673       }                                          1740       }
1674       if (safePhi>safe)  { safe=safePhi; }    << 1741       if (safePhi>safe) safe=safePhi;
1675     }                                            1742     }
1676   }                                              1743   }
1677   //                                             1744   //
1678   // Distance to Theta extent                    1745   // Distance to Theta extent
1679   //                                          << 1746   //    
1680   if ((rds!=0.0) && (!fFullThetaSphere))      << 1747   if ((rad!=0.0) && (fDTheta<pi))
1681   {                                              1748   {
1682     pTheta=std::acos(p.z()/rds);              << 1749     pTheta=std::acos(p.z()/rad);
1683     if (pTheta<0)  { pTheta+=pi; }            << 1750     if (pTheta<0) pTheta+=pi;
1684     dTheta1=fSTheta-pTheta;                      1751     dTheta1=fSTheta-pTheta;
1685     dTheta2=pTheta-eTheta;                    << 1752     dTheta2=pTheta-(fSTheta+fDTheta);
1686     if (dTheta1>dTheta2)                         1753     if (dTheta1>dTheta2)
1687     {                                            1754     {
1688       if (dTheta1>=0)             // WHY ????    1755       if (dTheta1>=0)             // WHY ???????????
1689       {                                          1756       {
1690         safeTheta=rds*std::sin(dTheta1);      << 1757         safeTheta=rad*std::sin(dTheta1);
1691         if (safe<=safeTheta)                     1758         if (safe<=safeTheta)
1692         {                                        1759         {
1693           safe=safeTheta;                        1760           safe=safeTheta;
1694         }                                        1761         }
1695       }                                          1762       }
1696     }                                            1763     }
1697     else                                         1764     else
1698     {                                            1765     {
1699       if (dTheta2>=0)                            1766       if (dTheta2>=0)
1700       {                                          1767       {
1701         safeTheta=rds*std::sin(dTheta2);      << 1768         safeTheta=rad*std::sin(dTheta2);
1702         if (safe<=safeTheta)                     1769         if (safe<=safeTheta)
1703         {                                        1770         {
1704           safe=safeTheta;                        1771           safe=safeTheta;
1705         }                                        1772         }
1706       }                                          1773       }
1707     }                                            1774     }
1708   }                                              1775   }
1709                                                  1776 
1710   if (safe<0)  { safe=0; }                    << 1777   if (safe<0) safe=0;
1711   return safe;                                   1778   return safe;
1712 }                                                1779 }
1713                                                  1780 
1714 /////////////////////////////////////////////    1781 /////////////////////////////////////////////////////////////////////
1715 //                                               1782 //
1716 // Calculate distance to surface of shape fro << 1783 // Calculate distance to surface of shape from `inside', allowing for tolerance
1717 // - Only Calc rmax intersection if no valid     1784 // - Only Calc rmax intersection if no valid rmin intersection
1718                                                  1785 
1719 G4double G4Sphere::DistanceToOut( const G4Thr    1786 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p,
1720                                   const G4Thr    1787                                   const G4ThreeVector& v,
1721                                   const G4boo    1788                                   const G4bool calcNorm,
1722                                         G4boo << 1789                                         G4bool *validNorm,
1723                                         G4Thr << 1790                                         G4ThreeVector *n   ) const
1724 {                                                1791 {
1725   G4double snxt = kInfinity;     // snxt is d    1792   G4double snxt = kInfinity;     // snxt is default return value
1726   G4double sphi= kInfinity,stheta= kInfinity;    1793   G4double sphi= kInfinity,stheta= kInfinity;
1727   ESide side=kNull,sidephi=kNull,sidetheta=kN << 1794   ESide side=kNull,sidephi=kNull,sidetheta=kNull;  
1728                                                  1795 
1729   const G4double halfRmaxTolerance = fRmaxTol << 
1730   const G4double halfRminTolerance = fRminTol << 
1731   const G4double Rmax_plus  = fRmax + halfRma << 
1732   const G4double Rmin_minus = (fRmin) != 0.0  << 
1733   G4double t1,t2;                                1796   G4double t1,t2;
1734   G4double b,c,d;                                1797   G4double b,c,d;
1735                                                  1798 
1736   // Variables for phi intersection:             1799   // Variables for phi intersection:
1737                                                  1800 
                                                   >> 1801   G4double sinSPhi,cosSPhi,ePhi,sinEPhi,cosEPhi;
                                                   >> 1802   G4double cPhi,sinCPhi,cosCPhi;
1738   G4double pDistS,compS,pDistE,compE,sphi2,vp    1803   G4double pDistS,compS,pDistE,compE,sphi2,vphi;
                                                   >> 1804     
                                                   >> 1805   G4double rho2,rad2,pDotV2d,pDotV3d,pTheta;
1739                                                  1806 
1740   G4double rho2,rad2,pDotV2d,pDotV3d;         << 1807   G4double tolSTheta=0.,tolETheta=0.;
1741                                               << 
1742   G4double xi,yi,zi;      // Intersection poi    1808   G4double xi,yi,zi;      // Intersection point
1743                                                  1809 
1744   // Theta precals                            << 1810   // G4double Comp; // Phi intersection
1745   //                                          << 1811 
1746   G4double rhoSecTheta;                       << 1812   G4bool segPhi;        // Phi flag and precalcs
1747   G4double dist2STheta, dist2ETheta, distThet << 1813   G4double hDPhi,hDPhiOT,hDPhiIT; 
1748   G4double d2,sd;                             << 1814   G4double cosHDPhiOT,cosHDPhiIT;
                                                   >> 1815 
                                                   >> 1816   G4bool segTheta;                             // Theta flag and precals
                                                   >> 1817   G4double tanSTheta=0.,tanETheta, rhoSecTheta;
                                                   >> 1818   G4double tanSTheta2=0.,tanETheta2=0.;
                                                   >> 1819   G4double dist2STheta,dist2ETheta;
                                                   >> 1820   G4double d2,s;
1749                                                  1821 
1750   // General Precalcs                            1822   // General Precalcs
1751   //                                          << 
1752   rho2 = p.x()*p.x()+p.y()*p.y();             << 
1753   rad2 = rho2+p.z()*p.z();                    << 
1754                                                  1823 
1755   pDotV2d = p.x()*v.x()+p.y()*v.y();          << 1824   rho2=p.x()*p.x()+p.y()*p.y();
1756   pDotV3d = pDotV2d+p.z()*v.z();              << 1825   rad2=rho2+p.z()*p.z();
                                                   >> 1826   //  G4double rad=std::sqrt(rad2);
                                                   >> 1827 
                                                   >> 1828   pTheta=std::atan2(std::sqrt(rho2),p.z());
1757                                                  1829 
                                                   >> 1830   pDotV2d=p.x()*v.x()+p.y()*v.y();
                                                   >> 1831   pDotV3d=pDotV2d+p.z()*v.z();
                                                   >> 1832 
                                                   >> 1833   // Set phi divided flag and precalcs
                                                   >> 1834 
                                                   >> 1835   if(fDPhi<twopi)
                                                   >> 1836   {
                                                   >> 1837     segPhi=true;
                                                   >> 1838     hDPhi=0.5*fDPhi;    // half delta phi
                                                   >> 1839     cPhi=fSPhi+hDPhi;;
                                                   >> 1840     hDPhiOT=hDPhi+0.5*kAngTolerance; // Outer Tolerant half delta phi 
                                                   >> 1841     hDPhiIT=hDPhi-0.5*kAngTolerance;
                                                   >> 1842     sinCPhi=std::sin(cPhi);
                                                   >> 1843     cosCPhi=std::cos(cPhi);
                                                   >> 1844     cosHDPhiOT=std::cos(hDPhiOT);
                                                   >> 1845     cosHDPhiIT=std::cos(hDPhiIT);
                                                   >> 1846   }
                                                   >> 1847   else
                                                   >> 1848   {
                                                   >> 1849     segPhi=false;
                                                   >> 1850   }
                                                   >> 1851 
                                                   >> 1852   // Theta precalcs
                                                   >> 1853     
                                                   >> 1854   if (fDTheta < pi)
                                                   >> 1855   {
                                                   >> 1856     segTheta=true;
                                                   >> 1857     tolSTheta=fSTheta-kAngTolerance*0.5;
                                                   >> 1858     tolETheta=fSTheta+fDTheta+kAngTolerance*0.5;
                                                   >> 1859   }
                                                   >> 1860   else
                                                   >> 1861   {
                                                   >> 1862     segTheta=false;
                                                   >> 1863   }
                                                   >> 1864     
1758   // Radial Intersections from G4Sphere::Dist    1865   // Radial Intersections from G4Sphere::DistanceToIn
1759   //                                             1866   //
1760   // Outer spherical shell intersection          1867   // Outer spherical shell intersection
1761   // - Only if outside tolerant fRmax            1868   // - Only if outside tolerant fRmax
1762   // - Check for if inside and outer G4Sphere    1869   // - Check for if inside and outer G4Sphere heading through solid (-> 0)
1763   // - No intersect -> no intersection with G    1870   // - No intersect -> no intersection with G4Sphere
1764   //                                             1871   //
1765   // Shell eqn: x^2+y^2+z^2=RSPH^2               1872   // Shell eqn: x^2+y^2+z^2=RSPH^2
1766   //                                             1873   //
1767   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2     1874   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2
1768   //                                             1875   //
1769   // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz) << 1876   // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2
1770   // =>      rad2        +2sd(pDotV3d)        << 1877   // =>      rad2        +2s(pDotV3d)       +s^2                =R^2
                                                   >> 1878   //
                                                   >> 1879   // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2))
1771   //                                             1880   //
1772   // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad << 1881   // const G4double  fractionTolerance = 1.0e-12;
                                                   >> 1882   const G4double  flexRadMaxTolerance = // kRadTolerance;
                                                   >> 1883     std::max(kRadTolerance, fEpsilon * fRmax);
                                                   >> 1884 
                                                   >> 1885   const G4double  Rmax_plus = fRmax + flexRadMaxTolerance*0.5;
                                                   >> 1886   const G4double  flexRadMinTolerance = std::max(kRadTolerance, 
                                                   >> 1887                      fEpsilon * fRmin);
                                                   >> 1888   const G4double  Rmin_minus= (fRmin > 0) ? fRmin-flexRadMinTolerance*0.5 : 0 ;
1773                                                  1889 
1774   if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2  << 1890   if(rad2 <= Rmax_plus*Rmax_plus && rad2 >= Rmin_minus*Rmin_minus)
                                                   >> 1891     //  if(rad <= Rmax_plus && rad >= Rmin_minus)
1775   {                                              1892   {
1776     c = rad2 - fRmax*fRmax;                      1893     c = rad2 - fRmax*fRmax;
1777                                                  1894 
1778     if (c < fRmaxTolerance*fRmax)             << 1895     if (c < flexRadMaxTolerance*fRmax) 
1779     {                                            1896     {
1780       // Within tolerant Outer radius         << 1897       // Within tolerant Outer radius 
1781       //                                      << 1898       // 
1782       // The test is                             1899       // The test is
1783       //     rad  - fRmax < 0.5*kRadTolerance    1900       //     rad  - fRmax < 0.5*kRadTolerance
1784       // =>  rad  < fRmax + 0.5*kRadTol          1901       // =>  rad  < fRmax + 0.5*kRadTol
1785       // =>  rad2 < (fRmax + 0.5*kRadTol)^2      1902       // =>  rad2 < (fRmax + 0.5*kRadTol)^2
1786       // =>  rad2 < fRmax^2 + 2.*0.5*fRmax*kR    1903       // =>  rad2 < fRmax^2 + 2.*0.5*fRmax*kRadTol + 0.25*kRadTol*kRadTol
1787       // =>  rad2 - fRmax^2    <~    fRmax*kR << 1904       // =>  rad2 - fRmax^2    <~    fRmax*kRadTol 
1788                                                  1905 
1789       d2 = pDotV3d*pDotV3d - c;                  1906       d2 = pDotV3d*pDotV3d - c;
1790                                                  1907 
1791       if( (c >- fRmaxTolerance*fRmax)       / << 1908       if( (c >- flexRadMaxTolerance*fRmax)       // on tolerant surface
1792        && ((pDotV3d >=0) || (d2 < 0)) )     / << 1909        && ((pDotV3d >=0) || (d2 < 0)) )          // leaving outside from Rmax 
1793                                             / << 1910                                                  // not re-entering
1794       {                                          1911       {
1795         if(calcNorm)                             1912         if(calcNorm)
1796         {                                        1913         {
1797           *validNorm = true ;                    1914           *validNorm = true ;
1798           *n         = G4ThreeVector(p.x()/fR    1915           *n         = G4ThreeVector(p.x()/fRmax,p.y()/fRmax,p.z()/fRmax) ;
1799         }                                        1916         }
1800         return snxt = 0;                         1917         return snxt = 0;
1801       }                                          1918       }
1802       else                                    << 1919       else 
1803       {                                          1920       {
1804         snxt = -pDotV3d+std::sqrt(d2);    //  << 1921         snxt=-pDotV3d+std::sqrt(d2);    // second root since inside Rmax
1805         side =  kRMax ;                       << 1922         side = kRMax ; 
1806       }                                          1923       }
1807     }                                            1924     }
1808                                                  1925 
1809     // Inner spherical shell intersection:       1926     // Inner spherical shell intersection:
1810     // Always first >=0 root, because would h    1927     // Always first >=0 root, because would have passed
1811     // from outside of Rmin surface .            1928     // from outside of Rmin surface .
1812                                                  1929 
1813     if (fRmin != 0.0)                         << 1930     if (fRmin)
1814     {                                            1931     {
1815       c  = rad2 - fRmin*fRmin;                   1932       c  = rad2 - fRmin*fRmin;
1816       d2 = pDotV3d*pDotV3d - c;                  1933       d2 = pDotV3d*pDotV3d - c;
1817                                                  1934 
1818       if (c >- fRminTolerance*fRmin) // 2.0 * << 1935       if (c >- flexRadMinTolerance*fRmin) // 2.0 * (0.5*kRadTolerance) * fRmin
1819       {                                          1936       {
1820         if ( (c < fRminTolerance*fRmin)       << 1937         if( c < flexRadMinTolerance*fRmin && 
1821           && (d2 >= fRminTolerance*fRmin) &&  << 1938             d2 >= flexRadMinTolerance*fRmin && pDotV3d < 0 ) // leaving from Rmin
1822         {                                        1939         {
1823           if(calcNorm)  { *validNorm = false; << 1940           if(calcNorm)
                                                   >> 1941           {
                                                   >> 1942             *validNorm = false ;   // Rmin surface is concave
                                                   >> 1943           }
1824           return snxt = 0 ;                      1944           return snxt = 0 ;
1825         }                                        1945         }
1826         else                                     1946         else
1827         {                                     << 1947         {  
1828           if ( d2 >= 0. )                     << 1948           if (d2 >= 0)
1829           {                                      1949           {
1830             sd = -pDotV3d-std::sqrt(d2);      << 1950             s = -pDotV3d-std::sqrt(d2) ;
1831                                               << 1951             if (s>=0)     // Always intersect Rmin first
1832             if ( sd >= 0. )     // Always int << 
1833             {                                    1952             {
1834               snxt = sd ;                     << 1953               snxt = s ;
1835               side = kRMin ;                     1954               side = kRMin ;
1836             }                                    1955             }
1837           }                                      1956           }
1838         }                                        1957         }
1839       }                                          1958       }
1840     }                                            1959     }
1841   }                                              1960   }
1842                                                  1961 
1843   // Theta segment intersection                  1962   // Theta segment intersection
1844                                                  1963 
1845   if ( !fFullThetaSphere )                    << 1964   if (segTheta)
1846   {                                              1965   {
1847     // Intersection with theta surfaces          1966     // Intersection with theta surfaces
1848     //                                           1967     //
1849     // Known failure cases:                      1968     // Known failure cases:
1850     // o  Inside tolerance of stheta surface,    1969     // o  Inside tolerance of stheta surface, skim
1851     //    ~parallel to cone and Hit & enter e    1970     //    ~parallel to cone and Hit & enter etheta surface [& visa versa]
1852     //                                           1971     //
1853     //    To solve: Check 2nd root of etheta     1972     //    To solve: Check 2nd root of etheta surface in addition to stheta
1854     //                                           1973     //
1855     // o  start/end theta is exactly pi/2     << 1974     // o  start/end theta is exactly pi/2 
1856     //                                           1975     //
1857     // Intersections with cones                  1976     // Intersections with cones
1858     //                                           1977     //
1859     // Cone equation: x^2+y^2=z^2tan^2(t)        1978     // Cone equation: x^2+y^2=z^2tan^2(t)
1860     //                                           1979     //
1861     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan    1980     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t)
1862     //                                           1981     //
1863     // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p << 1982     // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t))
1864     //       + sd^2(vx^2+vy^2-vz^2tan^2(t)) = << 1983     //       + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0
1865     //                                           1984     //
1866     // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d << 1985     // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0
1867     //       + (rho2-pz^2tan^2(t)) = 0        << 
1868     //                                           1986     //
1869                                               << 1987     tanSTheta=std::tan(fSTheta);
1870     if(fSTheta != 0.0) // intersection with f << 1988     tanSTheta2=tanSTheta*tanSTheta;
                                                   >> 1989     tanETheta=std::tan(fSTheta+fDTheta);
                                                   >> 1990     tanETheta2=tanETheta*tanETheta;
                                                   >> 1991       
                                                   >> 1992     if (fSTheta)
                                                   >> 1993     {
                                                   >> 1994       dist2STheta=rho2-p.z()*p.z()*tanSTheta2;
                                                   >> 1995     }
                                                   >> 1996     else
                                                   >> 1997     {
                                                   >> 1998       dist2STheta = kInfinity;
                                                   >> 1999     }
                                                   >> 2000     if (fSTheta + fDTheta < pi)
                                                   >> 2001     {
                                                   >> 2002       dist2ETheta = rho2-p.z()*p.z()*tanETheta2;
                                                   >> 2003     }
                                                   >> 2004     else
                                                   >> 2005     {
                                                   >> 2006       dist2ETheta = kInfinity ;
                                                   >> 2007     }
                                                   >> 2008     if (pTheta > tolSTheta && pTheta < tolETheta)   // Inside theta  
1871     {                                            2009     {
1872       if( std::fabs(tanSTheta) > 5./kAngToler << 2010       // In tolerance of STheta and possible leaving out to small thetas N-
                                                   >> 2011 
                                                   >> 2012       if(pTheta < tolSTheta + kAngTolerance  && fSTheta > kAngTolerance)  
1873       {                                          2013       {
1874         if( v.z() > 0. )                      << 2014         t2=pDotV2d-p.z()*v.z()*tanSTheta2 ; // =(VdotN+)*rhoSecSTheta
                                                   >> 2015 
                                                   >> 2016         if( fSTheta < pi*0.5 && t2 < 0)
1875         {                                        2017         {
1876           if ( std::fabs( p.z() ) <= halfRmax << 2018           if(calcNorm) *validNorm = false ;
                                                   >> 2019           return snxt = 0 ;
                                                   >> 2020         }
                                                   >> 2021         else if(fSTheta > pi*0.5 && t2 >= 0)
                                                   >> 2022         {
                                                   >> 2023           if(calcNorm)
1877           {                                      2024           {
1878             if(calcNorm)                      << 2025             rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2)) ;
1879             {                                 << 2026             *validNorm = true ;
1880               *validNorm = true;              << 2027             *n = G4ThreeVector(-p.x()/rhoSecTheta,   // N-
1881               *n = G4ThreeVector(0.,0.,1.);   << 2028                                -p.y()/rhoSecTheta,
1882             }                                 << 2029                                tanSTheta/std::sqrt(1+tanSTheta2) ) ;
1883             return snxt = 0 ;                 << 
1884           }                                      2030           }
1885           stheta    = -p.z()/v.z();           << 2031           return snxt = 0 ;
1886           sidetheta = kSTheta;                << 2032         }
                                                   >> 2033         else if( fSTheta == pi*0.5 && v.z() > 0)
                                                   >> 2034         {
                                                   >> 2035           if(calcNorm)
                                                   >> 2036           {
                                                   >> 2037             *validNorm = true ;
                                                   >> 2038             *n = G4ThreeVector(0,0,1) ;
                                                   >> 2039           }
                                                   >> 2040           return snxt = 0 ;
1887         }                                        2041         }
1888       }                                          2042       }
1889       else // kons is not plane               << 
1890       {                                       << 
1891         t1          = 1-v.z()*v.z()*(1+tanSTh << 
1892         t2          = pDotV2d-p.z()*v.z()*tan << 
1893         dist2STheta = rho2-p.z()*p.z()*tanSTh << 
1894                                                  2043 
1895         distTheta = std::sqrt(rho2)-p.z()*tan << 2044       // In tolerance of ETheta and possible leaving out to larger thetas N+
1896                                                  2045 
1897         if( std::fabs(t1) < halfAngTolerance  << 2046       if ( (pTheta  > tolETheta - kAngTolerance)
1898         {                                     << 2047         && (( fSTheta + fDTheta) < pi - kAngTolerance) )  
1899           if( v.z() > 0. )                    << 2048       {
1900           {                                   << 2049         t2=pDotV2d-p.z()*v.z()*tanETheta2 ;
1901             if(std::fabs(distTheta) < halfRma << 2050         if((fSTheta+fDTheta)>pi*0.5 && t2<0)
1902             {                                 << 2051         {
1903               if( (fSTheta < halfpi) && (p.z( << 2052           if(calcNorm) *validNorm = false ;
1904               {                               << 2053           return snxt = 0 ;
1905                 if( calcNorm )  { *validNorm  << 2054         }
1906                 return snxt = 0.;             << 2055         else if( (fSTheta+fDTheta) < pi*0.5 && t2 >= 0 )
1907               }                               << 
1908               else if( (fSTheta > halfpi) &&  << 
1909               {                               << 
1910                 if( calcNorm )                << 
1911                 {                             << 
1912                   *validNorm = true;          << 
1913                   if (rho2 != 0.0)            << 
1914                   {                           << 
1915                     rhoSecTheta = std::sqrt(r << 
1916                                               << 
1917                     *n = G4ThreeVector( p.x() << 
1918                                         p.y() << 
1919                                         std:: << 
1920                   }                           << 
1921                   else *n = G4ThreeVector(0., << 
1922                 }                             << 
1923                 return snxt = 0.;             << 
1924               }                               << 
1925             }                                 << 
1926             stheta    = -0.5*dist2STheta/t2;  << 
1927             sidetheta = kSTheta;              << 
1928           }                                   << 
1929         }      // 2nd order equation, 1st roo << 
1930         else   // 2nd if 1st root -ve         << 
1931         {                                        2056         {
1932           if( std::fabs(distTheta) < halfRmax << 2057           if(calcNorm)
1933           {                                      2058           {
1934             if( (fSTheta > halfpi) && (t2 >=  << 2059             rhoSecTheta = std::sqrt(rho2*(1+tanETheta2)) ;
1935             {                                 << 2060             *validNorm = true ;
1936               if( calcNorm )                  << 2061             *n = G4ThreeVector( p.x()/rhoSecTheta,  // N+
1937               {                               << 2062                                 p.y()/rhoSecTheta,
1938                 *validNorm = true;            << 2063                                 -tanETheta/std::sqrt(1+tanETheta2)  ) ; 
1939                 if (rho2 != 0.0)              << 
1940                 {                             << 
1941                   rhoSecTheta = std::sqrt(rho << 
1942                                               << 
1943                   *n = G4ThreeVector( p.x()/r << 
1944                                       p.y()/r << 
1945                                       std::si << 
1946                 }                             << 
1947                 else  { *n = G4ThreeVector(0. << 
1948               }                               << 
1949               return snxt = 0.;               << 
1950             }                                 << 
1951             else if( (fSTheta < halfpi) && (t << 
1952             {                                 << 
1953               if( calcNorm )  { *validNorm =  << 
1954               return snxt = 0.;               << 
1955             }                                 << 
1956           }                                      2064           }
1957           b  = t2/t1;                         << 2065           return snxt = 0 ;
1958           c  = dist2STheta/t1;                << 2066         }
1959           d2 = b*b - c ;                      << 2067         else if( ( fSTheta+fDTheta) == pi*0.5 && v.z() < 0 )
1960                                               << 2068         {
1961           if ( d2 >= 0. )                     << 2069           if(calcNorm)
1962           {                                      2070           {
1963             d = std::sqrt(d2);                << 2071             *validNorm = true ;
1964                                               << 2072             *n = G4ThreeVector(0,0,-1) ;
1965             if( fSTheta > halfpi )            << 
1966             {                                 << 
1967               sd = -b - d;         // First r << 
1968                                               << 
1969               if ( ((std::fabs(s) < halfRmaxT << 
1970                ||  (sd < 0.)  || ( (sd > 0.)  << 
1971               {                               << 
1972                 sd = -b + d ; // 2nd root     << 
1973               }                               << 
1974               if( (sd > halfRmaxTolerance) && << 
1975               {                               << 
1976                 stheta    = sd;               << 
1977                 sidetheta = kSTheta;          << 
1978               }                               << 
1979             }                                 << 
1980             else // sTheta < pi/2, concave su << 
1981             {                                 << 
1982               sd = -b - d;         // First r << 
1983                                               << 
1984               if ( ( (std::fabs(sd) < halfRma << 
1985                 || (sd < 0.) || ( (sd > 0.) & << 
1986               {                               << 
1987                 sd = -b + d ; // 2nd root     << 
1988               }                               << 
1989               if( (sd > halfRmaxTolerance) && << 
1990               {                               << 
1991                 stheta    = sd;               << 
1992                 sidetheta = kSTheta;          << 
1993               }                               << 
1994             }                                 << 
1995           }                                      2073           }
                                                   >> 2074           return snxt = 0 ;
1996         }                                        2075         }
1997       }                                          2076       }
1998     }                                         << 2077       if( fSTheta > 0 )
1999     if (eTheta < pi) // intersection with sec << 2078       {       
2000     {                                         << 2079         // First root of fSTheta cone, second if first root -ve
2001       if( std::fabs(tanETheta) > 5./kAngToler << 2080 
2002       {                                       << 2081         t1 = 1-v.z()*v.z()*(1+tanSTheta2);
2003         if( v.z() < 0. )                      << 2082         t2 = pDotV2d-p.z()*v.z()*tanSTheta2;
                                                   >> 2083         
                                                   >> 2084         b  = t2/t1;
                                                   >> 2085         c  = dist2STheta/t1;
                                                   >> 2086         d2 = b*b - c ;
                                                   >> 2087 
                                                   >> 2088         if ( d2 >= 0 )
2004         {                                        2089         {
2005           if ( std::fabs( p.z() ) <= halfRmax << 2090           d = std::sqrt(d2) ;
                                                   >> 2091           s = -b - d ;    // First root
                                                   >> 2092 
                                                   >> 2093           if ( s < 0 )
2006           {                                      2094           {
2007             if(calcNorm)                      << 2095             s = -b + d ;    // Second root
2008             {                                 << 
2009               *validNorm = true;              << 
2010               *n = G4ThreeVector(0.,0.,-1.);  << 
2011             }                                 << 
2012             return snxt = 0 ;                 << 
2013           }                                      2096           }
2014           sd = -p.z()/v.z();                  << 2097           if (s > flexRadMaxTolerance*0.5 )   // && s<sr)
2015                                               << 
2016           if( sd < stheta )                   << 
2017           {                                      2098           {
2018             stheta    = sd;                   << 2099             stheta = s ;
2019             sidetheta = kETheta;              << 2100             sidetheta = kSTheta ;
2020           }                                      2101           }
2021         }                                        2102         }
2022       }                                          2103       }
2023       else // kons is not plane               << 
2024       {                                       << 
2025         t1          = 1-v.z()*v.z()*(1+tanETh << 
2026         t2          = pDotV2d-p.z()*v.z()*tan << 
2027         dist2ETheta = rho2-p.z()*p.z()*tanETh << 
2028                                                  2104 
2029         distTheta = std::sqrt(rho2)-p.z()*tan << 2105       // Possible intersection with ETheta cone  
2030                                               << 2106       
2031         if( std::fabs(t1) < halfAngTolerance  << 2107       if (fSTheta + fDTheta < pi)
2032         {                                     << 2108       {
2033           if( v.z() < 0. )                    << 2109         t1 = 1-v.z()*v.z()*(1+tanETheta2);
2034           {                                   << 2110         t2 = pDotV2d-p.z()*v.z()*tanETheta2;        
2035             if(std::fabs(distTheta) < halfRma << 2111         b  = t2/t1;
2036             {                                 << 2112         c  = dist2ETheta/t1;
2037               if( (eTheta > halfpi) && (p.z() << 2113         d2 = b*b-c ;
2038               {                               << 
2039                 if( calcNorm )  { *validNorm  << 
2040                 return snxt = 0.;             << 
2041               }                               << 
2042               else if ( (eTheta < halfpi) &&  << 
2043               {                               << 
2044                 if( calcNorm )                << 
2045                 {                             << 
2046                   *validNorm = true;          << 
2047                   if (rho2 != 0.0)            << 
2048                   {                           << 
2049                     rhoSecTheta = std::sqrt(r << 
2050                     *n = G4ThreeVector( p.x() << 
2051                                         p.y() << 
2052                                         -sinE << 
2053                   }                           << 
2054                   else  { *n = G4ThreeVector( << 
2055                 }                             << 
2056                 return snxt = 0.;             << 
2057               }                               << 
2058             }                                 << 
2059             sd = -0.5*dist2ETheta/t2;         << 
2060                                                  2114 
2061             if( sd < stheta )                 << 2115         if ( d2 >= 0 )
2062             {                                 << 
2063               stheta    = sd;                 << 
2064               sidetheta = kETheta;            << 
2065             }                                 << 
2066           }                                   << 
2067         }      // 2nd order equation, 1st roo << 
2068         else   // 2nd if 1st root -ve         << 
2069         {                                        2116         {
2070           if ( std::fabs(distTheta) < halfRma << 2117           d = std::sqrt(d2);
2071           {                                   << 2118           s = -b - d ;          // First root
2072             if( (eTheta < halfpi) && (t2 >= 0 << 2119 
2073             {                                 << 2120           if ( s < 0 )
2074               if( calcNorm )                  << 
2075               {                               << 
2076                 *validNorm = true;            << 
2077                 if (rho2 != 0.0)              << 
2078                 {                             << 
2079                     rhoSecTheta = std::sqrt(r << 
2080                     *n = G4ThreeVector( p.x() << 
2081                                         p.y() << 
2082                                         -sinE << 
2083                 }                             << 
2084                 else *n = G4ThreeVector(0.,0. << 
2085               }                               << 
2086               return snxt = 0.;               << 
2087             }                                 << 
2088             else if ( (eTheta > halfpi)       << 
2089                    && (t2 < 0.) && (p.z() <=0 << 
2090             {                                 << 
2091               if( calcNorm )  { *validNorm =  << 
2092               return snxt = 0.;               << 
2093             }                                 << 
2094           }                                   << 
2095           b  = t2/t1;                         << 
2096           c  = dist2ETheta/t1;                << 
2097           d2 = b*b - c ;                      << 
2098           if ( (d2 <halfRmaxTolerance) && (d2 << 
2099           {                                      2121           {
2100             d2 = 0.;                          << 2122             s=-b+d;    // Second root
2101           }                                      2123           }
2102           if ( d2 >= 0. )                     << 2124           if (s > flexRadMaxTolerance*0.5 && s < stheta )
2103           {                                      2125           {
2104             d = std::sqrt(d2);                << 2126             stheta = s ;
2105                                               << 2127             sidetheta = kETheta ;
2106             if( eTheta < halfpi )             << 
2107             {                                 << 
2108               sd = -b - d;         // First r << 
2109                                               << 
2110               if( ((std::fabs(sd) < halfRmaxT << 
2111                || (sd < 0.) )                 << 
2112               {                               << 
2113                 sd = -b + d ; // 2nd root     << 
2114               }                               << 
2115               if( sd > halfRmaxTolerance )    << 
2116               {                               << 
2117                 if( sd < stheta )             << 
2118                 {                             << 
2119                   stheta    = sd;             << 
2120                   sidetheta = kETheta;        << 
2121                 }                             << 
2122               }                               << 
2123             }                                 << 
2124             else // sTheta+fDTheta > pi/2, co << 
2125             {                                 << 
2126               sd = -b - d;         // First r << 
2127                                               << 
2128               if ( ((std::fabs(sd) < halfRmax << 
2129                 || (sd < 0.)                  << 
2130                 || ( (sd > 0.) && (p.z() + sd << 
2131               {                               << 
2132                 sd = -b + d ; // 2nd root     << 
2133               }                               << 
2134               if ( ( sd>halfRmaxTolerance )   << 
2135                 && ( p.z()+sd*v.z() <= halfRm << 
2136               {                               << 
2137                 if( sd < stheta )             << 
2138                 {                             << 
2139                   stheta    = sd;             << 
2140                   sidetheta = kETheta;        << 
2141                 }                             << 
2142               }                               << 
2143             }                                 << 
2144           }                                      2128           }
2145         }                                        2129         }
2146       }                                          2130       }
2147     }                                         << 2131     }  
2148                                               << 2132   }
2149   } // end theta intersections                << 
2150                                                  2133 
2151   // Phi Intersection                            2134   // Phi Intersection
2152                                               << 2135     
2153   if ( !fFullPhiSphere )                      << 2136   if ( fDPhi < twopi)
2154   {                                              2137   {
2155     if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 2138     sinSPhi=std::sin(fSPhi);
                                                   >> 2139     cosSPhi=std::cos(fSPhi);
                                                   >> 2140     ePhi=fSPhi+fDPhi;
                                                   >> 2141     sinEPhi=std::sin(ePhi);
                                                   >> 2142     cosEPhi=std::cos(ePhi);
                                                   >> 2143     cPhi=fSPhi+fDPhi*0.5;
                                                   >> 2144     sinCPhi=std::sin(cPhi);
                                                   >> 2145     cosCPhi=std::cos(cPhi);
                                                   >> 2146 
                                                   >> 2147     if ( p.x()||p.y() ) // Check if on z axis (rho not needed later)
2156     {                                            2148     {
2157       // pDist -ve when inside                   2149       // pDist -ve when inside
2158                                                  2150 
2159       pDistS=p.x()*sinSPhi-p.y()*cosSPhi;        2151       pDistS=p.x()*sinSPhi-p.y()*cosSPhi;
2160       pDistE=-p.x()*sinEPhi+p.y()*cosEPhi;       2152       pDistE=-p.x()*sinEPhi+p.y()*cosEPhi;
2161                                                  2153 
2162       // Comp -ve when in direction of outwar    2154       // Comp -ve when in direction of outwards normal
2163                                                  2155 
2164       compS   = -sinSPhi*v.x()+cosSPhi*v.y()     2156       compS   = -sinSPhi*v.x()+cosSPhi*v.y() ;
2165       compE   =  sinEPhi*v.x()-cosEPhi*v.y()     2157       compE   =  sinEPhi*v.x()-cosEPhi*v.y() ;
2166       sidephi = kNull ;                          2158       sidephi = kNull ;
2167                                                  2159 
2168       if ( (pDistS <= 0) && (pDistE <= 0) )   << 2160       if ( pDistS <= 0 && pDistE <= 0 )
2169       {                                          2161       {
2170         // Inside both phi *full* planes         2162         // Inside both phi *full* planes
2171                                                  2163 
2172         if ( compS < 0 )                         2164         if ( compS < 0 )
2173         {                                        2165         {
2174           sphi = pDistS/compS ;                  2166           sphi = pDistS/compS ;
2175           xi   = p.x()+sphi*v.x() ;              2167           xi   = p.x()+sphi*v.x() ;
2176           yi   = p.y()+sphi*v.y() ;              2168           yi   = p.y()+sphi*v.y() ;
2177                                                  2169 
2178           // Check intersection with correct  << 2170           // Check intersecting with correct half-plane
2179           //                                  << 2171           // (if not -> no intersect)
2180           if( (std::fabs(xi)<=kCarTolerance)  << 2172 
2181           {                                   << 2173           if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
2182             vphi = std::atan2(v.y(),v.x());   << 
2183             sidephi = kSPhi;                  << 
2184             if ( ( (fSPhi-halfAngTolerance) < << 
2185               && ( (ePhi+halfAngTolerance)  > << 
2186             {                                 << 
2187               sphi = kInfinity;               << 
2188             }                                 << 
2189           }                                   << 
2190           else if ( ( yi*cosCPhi - xi*sinCPhi << 
2191           {                                      2174           {
2192             sphi=kInfinity;                      2175             sphi=kInfinity;
2193           }                                      2176           }
2194           else                                   2177           else
2195           {                                      2178           {
2196             sidephi = kSPhi ;                    2179             sidephi = kSPhi ;
2197             if ( pDistS > -halfCarTolerance)  << 2180             if ( pDistS > -0.5*kCarTolerance) sphi =0 ; // Leave by sphi 
2198           }                                      2181           }
2199         }                                        2182         }
2200         else  { sphi = kInfinity; }           << 2183         else sphi = kInfinity ;
2201                                                  2184 
2202         if ( compE < 0 )                         2185         if ( compE < 0 )
2203         {                                        2186         {
2204           sphi2=pDistE/compE ;                   2187           sphi2=pDistE/compE ;
2205           if (sphi2 < sphi) // Only check fur    2188           if (sphi2 < sphi) // Only check further if < starting phi intersection
2206           {                                      2189           {
2207             xi = p.x()+sphi2*v.x() ;             2190             xi = p.x()+sphi2*v.x() ;
2208             yi = p.y()+sphi2*v.y() ;             2191             yi = p.y()+sphi2*v.y() ;
2209                                                  2192 
2210             // Check intersection with correc << 2193             // Check intersecting with correct half-plane
2211             //                                << 2194  
2212             if ( (std::fabs(xi)<=kCarToleranc << 2195             if ((yi*cosCPhi-xi*sinCPhi)>=0) // Leaving via ending phi
2213               && (std::fabs(yi)<=kCarToleranc << 
2214             {                                 << 
2215               // Leaving via ending phi       << 
2216               //                              << 
2217               vphi = std::atan2(v.y(),v.x())  << 
2218                                               << 
2219               if( (fSPhi-halfAngTolerance > v << 
2220                   ||(fSPhi+fDPhi+halfAngToler << 
2221               {                               << 
2222                 sidephi = kEPhi;              << 
2223                 if ( pDistE <= -halfCarTolera << 
2224                 else                          << 
2225               }                               << 
2226             }                                 << 
2227             else if ((yi*cosCPhi-xi*sinCPhi)> << 
2228             {                                    2196             {
2229               sidephi = kEPhi ;                  2197               sidephi = kEPhi ;
2230               if ( pDistE <= -halfCarToleranc << 2198               if ( pDistE <= -0.5*kCarTolerance )
2231               {                                  2199               {
2232                 sphi=sphi2;                      2200                 sphi=sphi2;
2233               }                                  2201               }
2234               else                            << 2202               else 
2235               {                                  2203               {
2236                 sphi = 0 ;                       2204                 sphi = 0 ;
2237               }                                  2205               }
2238             }                                    2206             }
2239           }                                      2207           }
2240         }                                     << 2208         }        
2241       }                                          2209       }
2242       else if ((pDistS >= 0) && (pDistE >= 0) << 2210       else if ( pDistS >= 0 && pDistE >= 0 ) // Outside both *full* phi planes
2243       {                                          2211       {
2244         if ( pDistS <= pDistE )                  2212         if ( pDistS <= pDistE )
2245         {                                        2213         {
2246           sidephi = kSPhi ;                      2214           sidephi = kSPhi ;
2247         }                                        2215         }
2248         else                                     2216         else
2249         {                                        2217         {
2250           sidephi = kEPhi ;                      2218           sidephi = kEPhi ;
2251         }                                        2219         }
2252         if ( fDPhi > pi )                        2220         if ( fDPhi > pi )
2253         {                                        2221         {
2254           if ( (compS < 0) && (compE < 0) )   << 2222           if ( compS < 0 && compE < 0 ) sphi = 0 ;
2255           else                                << 2223           else                          sphi = kInfinity ;
2256         }                                        2224         }
2257         else                                     2225         else
2258         {                                        2226         {
2259           // if towards both >=0 then once in    2227           // if towards both >=0 then once inside (after error)
2260           // will remain inside                  2228           // will remain inside
2261                                                  2229 
2262           if ( (compS >= 0) && (compE >= 0) ) << 2230           if ( compS >= 0 && compE >= 0 )
2263           else                                << 2231           {
2264         }                                     << 2232             sphi=kInfinity;
                                                   >> 2233           }
                                                   >> 2234           else
                                                   >> 2235           {
                                                   >> 2236             sphi=0;
                                                   >> 2237           }
                                                   >> 2238         }    
2265       }                                          2239       }
2266       else if ( (pDistS > 0) && (pDistE < 0)  << 2240       else if ( pDistS > 0 && pDistE < 0 )
2267       {                                          2241       {
2268         // Outside full starting plane, insid    2242         // Outside full starting plane, inside full ending plane
2269                                                  2243 
2270         if ( fDPhi > pi )                        2244         if ( fDPhi > pi )
2271         {                                        2245         {
2272           if ( compE < 0 )                       2246           if ( compE < 0 )
2273           {                                      2247           {
2274             sphi = pDistE/compE ;                2248             sphi = pDistE/compE ;
2275             xi   = p.x() + sphi*v.x() ;          2249             xi   = p.x() + sphi*v.x() ;
2276             yi   = p.y() + sphi*v.y() ;          2250             yi   = p.y() + sphi*v.y() ;
2277                                                  2251 
2278             // Check intersection in correct     2252             // Check intersection in correct half-plane
2279             // (if not -> not leaving phi ext    2253             // (if not -> not leaving phi extent)
2280             //                                   2254             //
2281             if( (std::fabs(xi)<=kCarTolerance << 2255             if ( ( yi*cosCPhi - xi*sinCPhi ) <= 0 )
2282             {                                 << 
2283               vphi = std::atan2(v.y(),v.x()); << 
2284               sidephi = kSPhi;                << 
2285               if ( ( (fSPhi-halfAngTolerance) << 
2286                 && ( (ePhi+halfAngTolerance)  << 
2287               {                               << 
2288                 sphi = kInfinity;             << 
2289               }                               << 
2290             }                                 << 
2291             else if ( ( yi*cosCPhi - xi*sinCP << 
2292             {                                    2256             {
2293               sphi = kInfinity ;                 2257               sphi = kInfinity ;
2294             }                                    2258             }
2295             else // Leaving via Ending phi       2259             else // Leaving via Ending phi
2296             {                                    2260             {
2297               sidephi = kEPhi ;                  2261               sidephi = kEPhi ;
2298               if ( pDistE > -halfCarTolerance << 2262               if ( pDistE > -0.5*kCarTolerance ) sphi = 0. ;
2299             }                                    2263             }
2300           }                                      2264           }
2301           else                                   2265           else
2302           {                                      2266           {
2303             sphi = kInfinity ;                   2267             sphi = kInfinity ;
2304           }                                      2268           }
2305         }                                        2269         }
2306         else                                     2270         else
2307         {                                        2271         {
2308           if ( compS >= 0 )                      2272           if ( compS >= 0 )
2309           {                                      2273           {
2310             if ( compE < 0 )                     2274             if ( compE < 0 )
2311             {                                 << 2275             {            
2312               sphi = pDistE/compE ;              2276               sphi = pDistE/compE ;
2313               xi   = p.x() + sphi*v.x() ;        2277               xi   = p.x() + sphi*v.x() ;
2314               yi   = p.y() + sphi*v.y() ;        2278               yi   = p.y() + sphi*v.y() ;
2315                                                  2279 
2316               // Check intersection in correc    2280               // Check intersection in correct half-plane
2317               // (if not -> remain in extent)    2281               // (if not -> remain in extent)
2318               //                                 2282               //
2319               if( (std::fabs(xi)<=kCarToleran << 2283               if ( ( yi*cosCPhi - xi*sinCPhi) <= 0 )
2320                && (std::fabs(yi)<=kCarToleran << 
2321               {                               << 
2322                 vphi = std::atan2(v.y(),v.x() << 
2323                 sidephi = kSPhi;              << 
2324                 if ( ( (fSPhi-halfAngToleranc << 
2325                   && ( (ePhi+halfAngTolerance << 
2326                 {                             << 
2327                   sphi = kInfinity;           << 
2328                 }                             << 
2329               }                               << 
2330               else if ( ( yi*cosCPhi - xi*sin << 
2331               {                                  2284               {
2332                 sphi=kInfinity;                  2285                 sphi=kInfinity;
2333               }                                  2286               }
2334               else // otherwise leaving via E    2287               else // otherwise leaving via Ending phi
2335               {                                  2288               {
2336                 sidephi = kEPhi ;                2289                 sidephi = kEPhi ;
2337               }                                  2290               }
2338             }                                    2291             }
2339             else sphi=kInfinity;                 2292             else sphi=kInfinity;
2340           }                                      2293           }
2341           else // leaving immediately by star    2294           else // leaving immediately by starting phi
2342           {                                      2295           {
2343             sidephi = kSPhi ;                    2296             sidephi = kSPhi ;
2344             sphi    = 0 ;                        2297             sphi    = 0 ;
2345           }                                      2298           }
2346         }                                        2299         }
2347       }                                          2300       }
2348       else                                       2301       else
2349       {                                          2302       {
2350         // Must be pDistS < 0 && pDistE > 0      2303         // Must be pDistS < 0 && pDistE > 0
2351         // Inside full starting plane, outsid    2304         // Inside full starting plane, outside full ending plane
2352                                                  2305 
2353         if ( fDPhi > pi )                        2306         if ( fDPhi > pi )
2354         {                                        2307         {
2355           if ( compS < 0 )                       2308           if ( compS < 0 )
2356           {                                      2309           {
2357             sphi=pDistS/compS;                   2310             sphi=pDistS/compS;
2358             xi=p.x()+sphi*v.x();                 2311             xi=p.x()+sphi*v.x();
2359             yi=p.y()+sphi*v.y();                 2312             yi=p.y()+sphi*v.y();
2360                                                  2313 
2361             // Check intersection in correct     2314             // Check intersection in correct half-plane
2362             // (if not -> not leaving phi ext    2315             // (if not -> not leaving phi extent)
2363             //                                   2316             //
2364             if( (std::fabs(xi)<=kCarTolerance << 2317             if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
2365             {                                 << 
2366               vphi = std::atan2(v.y(),v.x())  << 
2367               sidephi = kSPhi;                << 
2368               if ( ( (fSPhi-halfAngTolerance) << 
2369                 && ( (ePhi+halfAngTolerance)  << 
2370               {                               << 
2371               sphi = kInfinity;               << 
2372               }                               << 
2373             }                                 << 
2374             else if ( ( yi*cosCPhi - xi*sinCP << 
2375             {                                    2318             {
2376               sphi = kInfinity ;                 2319               sphi = kInfinity ;
2377             }                                    2320             }
2378             else  // Leaving via Starting phi << 2321            else  // Leaving via Starting phi
2379             {                                 << 2322            {
2380               sidephi = kSPhi ;                  2323               sidephi = kSPhi ;
2381               if ( pDistS > -halfCarTolerance << 2324              if ( pDistS > -0.5*kCarTolerance ) sphi = 0 ;
2382             }                                    2325             }
2383           }                                      2326           }
2384           else                                   2327           else
2385           {                                      2328           {
2386             sphi = kInfinity ;                   2329             sphi = kInfinity ;
2387           }                                      2330           }
2388         }                                        2331         }
2389         else                                     2332         else
2390         {                                        2333         {
2391           if ( compE >= 0 )                      2334           if ( compE >= 0 )
2392           {                                      2335           {
2393             if ( compS < 0 )                     2336             if ( compS < 0 )
2394             {                                    2337             {
2395               sphi = pDistS/compS ;              2338               sphi = pDistS/compS ;
2396               xi   = p.x()+sphi*v.x() ;          2339               xi   = p.x()+sphi*v.x() ;
2397               yi   = p.y()+sphi*v.y() ;          2340               yi   = p.y()+sphi*v.y() ;
2398                                                  2341 
2399               // Check intersection in correc    2342               // Check intersection in correct half-plane
2400               // (if not -> remain in extent)    2343               // (if not -> remain in extent)
2401               //                                 2344               //
2402               if( (std::fabs(xi)<=kCarToleran << 2345               if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
2403                && (std::fabs(yi)<=kCarToleran << 
2404               {                               << 
2405                 vphi = std::atan2(v.y(),v.x() << 
2406                 sidephi = kSPhi;              << 
2407                 if ( ( (fSPhi-halfAngToleranc << 
2408                   && ( (ePhi+halfAngTolerance << 
2409                 {                             << 
2410                   sphi = kInfinity;           << 
2411                 }                             << 
2412               }                               << 
2413               else if ( ( yi*cosCPhi - xi*sin << 
2414               {                                  2346               {
2415                 sphi = kInfinity ;               2347                 sphi = kInfinity ;
2416               }                                  2348               }
2417               else // otherwise leaving via S    2349               else // otherwise leaving via Starting phi
2418               {                                  2350               {
2419                 sidephi = kSPhi ;                2351                 sidephi = kSPhi ;
2420               }                                  2352               }
2421             }                                    2353             }
2422             else                                 2354             else
2423             {                                    2355             {
2424               sphi = kInfinity ;                 2356               sphi = kInfinity ;
2425             }                                    2357             }
2426           }                                      2358           }
2427           else // leaving immediately by endi    2359           else // leaving immediately by ending
2428           {                                      2360           {
2429             sidephi = kEPhi ;                    2361             sidephi = kEPhi ;
2430             sphi    = 0     ;                    2362             sphi    = 0     ;
2431           }                                      2363           }
2432         }                                        2364         }
2433       }                                       << 2365       }      
2434     }                                            2366     }
2435     else                                         2367     else
2436     {                                            2368     {
2437       // On z axis + travel not || to z axis     2369       // On z axis + travel not || to z axis -> if phi of vector direction
2438       // within phi of shape, Step limited by    2370       // within phi of shape, Step limited by rmax, else Step =0
2439                                                  2371 
2440       if ( (v.x() != 0.0) || (v.y() != 0.0) ) << 2372       if ( v.x() || v.y() )
2441       {                                          2373       {
2442         vphi = std::atan2(v.y(),v.x()) ;         2374         vphi = std::atan2(v.y(),v.x()) ;
2443         if ((fSPhi-halfAngTolerance < vphi) & << 2375         if ( fSPhi < vphi && vphi < fSPhi + fDPhi )
2444         {                                        2376         {
2445           sphi = kInfinity;                   << 2377           sphi=kInfinity;
2446         }                                        2378         }
2447         else                                     2379         else
2448         {                                        2380         {
2449           sidephi = kSPhi ; // arbitrary      << 2381           sidephi = kSPhi ; // arbitrary 
2450           sphi    = 0     ;                      2382           sphi    = 0     ;
2451         }                                        2383         }
2452       }                                          2384       }
2453       else  // travel along z - no phi inters << 2385       else  // travel along z - no phi intersaction
2454       {                                          2386       {
2455         sphi = kInfinity ;                       2387         sphi = kInfinity ;
2456       }                                          2388       }
2457     }                                            2389     }
2458     if ( sphi < snxt )  // Order intersecttio    2390     if ( sphi < snxt )  // Order intersecttions
2459     {                                            2391     {
2460       snxt = sphi ;                              2392       snxt = sphi ;
2461       side = sidephi ;                           2393       side = sidephi ;
2462     }                                            2394     }
2463   }                                              2395   }
2464   if (stheta < snxt ) // Order intersections     2396   if (stheta < snxt ) // Order intersections
2465   {                                              2397   {
2466     snxt = stheta ;                              2398     snxt = stheta ;
2467     side = sidetheta ;                           2399     side = sidetheta ;
2468   }                                              2400   }
2469                                                  2401 
2470   if (calcNorm)    // Output switch operator     2402   if (calcNorm)    // Output switch operator
2471   {                                              2403   {
2472     switch( side )                               2404     switch( side )
2473     {                                            2405     {
2474       case kRMax:                                2406       case kRMax:
2475         xi=p.x()+snxt*v.x();                     2407         xi=p.x()+snxt*v.x();
2476         yi=p.y()+snxt*v.y();                     2408         yi=p.y()+snxt*v.y();
2477         zi=p.z()+snxt*v.z();                     2409         zi=p.z()+snxt*v.z();
2478         *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi    2410         *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi/fRmax);
2479         *validNorm=true;                         2411         *validNorm=true;
2480         break;                                   2412         break;
2481                                               << 
2482       case kRMin:                                2413       case kRMin:
2483         *validNorm=false;  // Rmin is concave    2414         *validNorm=false;  // Rmin is concave
2484         break;                                   2415         break;
2485                                               << 
2486       case kSPhi:                                2416       case kSPhi:
2487         if ( fDPhi <= pi )     // Normal to P << 2417         if (fDPhi<=pi)     // Normal to Phi-
2488         {                                        2418         {
2489           *n=G4ThreeVector(sinSPhi,-cosSPhi,0 << 2419           *n=G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
2490           *validNorm=true;                       2420           *validNorm=true;
2491         }                                        2421         }
2492         else  { *validNorm=false; }           << 2422         else *validNorm=false;
2493         break ;                                  2423         break ;
2494                                               << 
2495       case kEPhi:                                2424       case kEPhi:
2496         if ( fDPhi <= pi )      // Normal to  << 2425         if (fDPhi<=pi)      // Normal to Phi+
2497         {                                        2426         {
2498           *n=G4ThreeVector(-sinEPhi,cosEPhi,0 << 2427           *n=G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
2499           *validNorm=true;                       2428           *validNorm=true;
2500         }                                        2429         }
2501         else  { *validNorm=false; }           << 2430         else *validNorm=false;
2502         break;                                   2431         break;
2503                                               << 
2504       case kSTheta:                              2432       case kSTheta:
2505         if( fSTheta == halfpi )               << 2433         if( fSTheta == pi*0.5 )
2506         {                                        2434         {
2507           *n=G4ThreeVector(0.,0.,1.);         << 2435           *n=G4ThreeVector(0,0,1);
2508           *validNorm=true;                       2436           *validNorm=true;
2509         }                                        2437         }
2510         else if ( fSTheta > halfpi )          << 2438         else if ( fSTheta > pi )
2511         {                                        2439         {
2512           xi = p.x() + snxt*v.x();            << 2440           xi=p.x()+snxt*v.x();
2513           yi = p.y() + snxt*v.y();            << 2441           yi=p.y()+snxt*v.y();
2514           rho2=xi*xi+yi*yi;                   << 2442           rhoSecTheta = std::sqrt((xi*xi+yi*yi)*(1+tanSTheta2)) ;
2515           if (rho2 != 0.0)                    << 2443           *n = G4ThreeVector(-xi/rhoSecTheta,   // N-
2516           {                                   << 2444                              -yi/rhoSecTheta,
2517             rhoSecTheta = std::sqrt(rho2*(1+t << 2445                              tanSTheta/std::sqrt(1+tanSTheta2)) ;
2518             *n = G4ThreeVector( xi/rhoSecThet << 
2519                                -tanSTheta/std << 
2520           }                                   << 
2521           else                                << 
2522           {                                   << 
2523             *n = G4ThreeVector(0.,0.,1.);     << 
2524           }                                   << 
2525           *validNorm=true;                       2446           *validNorm=true;
2526         }                                        2447         }
2527         else  { *validNorm=false; }  // Conca << 2448         else *validNorm=false;  // Concave STheta cone
2528         break;                                   2449         break;
2529                                               << 
2530       case kETheta:                              2450       case kETheta:
2531         if( eTheta == halfpi )                << 2451         if( ( fSTheta + fDTheta ) == pi*0.5 )
2532         {                                        2452         {
2533           *n         = G4ThreeVector(0.,0.,-1 << 2453           *n         = G4ThreeVector(0,0,-1);
2534           *validNorm = true;                  << 2454           *validNorm = true ;
2535         }                                        2455         }
2536         else if ( eTheta < halfpi )           << 2456         else if ( ( fSTheta + fDTheta ) < pi )
2537         {                                        2457         {
2538           xi=p.x()+snxt*v.x();                   2458           xi=p.x()+snxt*v.x();
2539           yi=p.y()+snxt*v.y();                   2459           yi=p.y()+snxt*v.y();
2540           rho2=xi*xi+yi*yi;                   << 2460           rhoSecTheta = std::sqrt((xi*xi+yi*yi)*(1+tanETheta2)) ;
2541           if (rho2 != 0.0)                    << 2461           *n = G4ThreeVector( xi/rhoSecTheta,   // N+
2542           {                                   << 2462                               yi/rhoSecTheta,
2543             rhoSecTheta = std::sqrt(rho2*(1+t << 2463                               -tanSTheta/std::sqrt(1+tanSTheta2) ) ;
2544             *n = G4ThreeVector( xi/rhoSecThet << 
2545                                -tanETheta/std << 
2546           }                                   << 
2547           else                                << 
2548           {                                   << 
2549             *n = G4ThreeVector(0.,0.,-1.);    << 
2550           }                                   << 
2551           *validNorm=true;                       2464           *validNorm=true;
2552         }                                        2465         }
2553         else  { *validNorm=false; }   // Conc << 2466         else *validNorm=false;   // Concave ETheta cone
2554         break;                                   2467         break;
2555                                               << 
2556       default:                                   2468       default:
                                                   >> 2469         G4cout.precision(16);
2557         G4cout << G4endl;                        2470         G4cout << G4endl;
2558         DumpInfo();                              2471         DumpInfo();
2559         std::ostringstream message;           << 2472         G4cout << "Position:"  << G4endl << G4endl;
2560         G4long oldprc = message.precision(16) << 2473         G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl;
2561         message << "Undefined side for valid  << 2474         G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl;
2562                 << G4endl                     << 2475         G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl;
2563                 << "Position:"  << G4endl <<  << 2476         G4cout << "Direction:" << G4endl << G4endl;
2564                 << "p.x() = "   << p.x()/mm < << 2477         G4cout << "v.x() = "   << v.x() << G4endl;
2565                 << "p.y() = "   << p.y()/mm < << 2478         G4cout << "v.y() = "   << v.y() << G4endl;
2566                 << "p.z() = "   << p.z()/mm < << 2479         G4cout << "v.z() = "   << v.z() << G4endl << G4endl;
2567                 << "Direction:" << G4endl <<  << 2480         G4cout << "Proposed distance :" << G4endl << G4endl;
2568                 << "v.x() = "   << v.x() << G << 2481         G4cout << "snxt = "    << snxt/mm << " mm" << G4endl << G4endl;
2569                 << "v.y() = "   << v.y() << G << 
2570                 << "v.z() = "   << v.z() << G << 
2571                 << "Proposed distance :" << G << 
2572                 << "snxt = "    << snxt/mm << << 
2573         message.precision(oldprc);            << 
2574         G4Exception("G4Sphere::DistanceToOut(    2482         G4Exception("G4Sphere::DistanceToOut(p,v,..)",
2575                     "GeomSolids1002", JustWar << 2483                     "Notification", JustWarning,
                                                   >> 2484                     "Undefined side for valid surface normal to solid.");
2576         break;                                   2485         break;
2577     }                                            2486     }
2578   }                                              2487   }
2579   if (snxt == kInfinity)                         2488   if (snxt == kInfinity)
2580   {                                              2489   {
                                                   >> 2490     G4cout.precision(24);
2581     G4cout << G4endl;                            2491     G4cout << G4endl;
2582     DumpInfo();                                  2492     DumpInfo();
2583     std::ostringstream message;               << 2493     G4cout << "Position:"  << G4endl << G4endl;
2584     G4long oldprc = message.precision(16);    << 2494     G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl;
2585     message << "Logic error: snxt = kInfinity << 2495     G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl;
2586             << "Position:"  << G4endl << G4en << 2496     G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl;
2587             << "p.x() = "   << p.x()/mm << "  << 2497     G4cout << "Rp = "<< std::sqrt( p.x()*p.x()+p.y()*p.y()+p.z()*p.z() )/mm << " mm" 
2588             << "p.y() = "   << p.y()/mm << "  << 2498            << G4endl << G4endl;
2589             << "p.z() = "   << p.z()/mm << "  << 2499     G4cout << "Direction:" << G4endl << G4endl;
2590             << "Rp = "<< std::sqrt( p.x()*p.x << 2500     G4cout << "v.x() = "   << v.x() << G4endl;
2591             << " mm" << G4endl << G4endl      << 2501     G4cout << "v.y() = "   << v.y() << G4endl;
2592             << "Direction:" << G4endl << G4en << 2502     G4cout << "v.z() = "   << v.z() << G4endl << G4endl;
2593             << "v.x() = "   << v.x() << G4end << 2503     G4cout << "Proposed distance :" << G4endl << G4endl;
2594             << "v.y() = "   << v.y() << G4end << 2504     G4cout << "snxt = "    << snxt/mm << " mm" << G4endl << G4endl;
2595             << "v.z() = "   << v.z() << G4end << 
2596             << "Proposed distance :" << G4end << 
2597             << "snxt = "    << snxt/mm << " m << 
2598     message.precision(oldprc);                << 
2599     G4Exception("G4Sphere::DistanceToOut(p,v,    2505     G4Exception("G4Sphere::DistanceToOut(p,v,..)",
2600                 "GeomSolids1002", JustWarning << 2506                 "Notification", JustWarning,
                                                   >> 2507                 "Logic error: snxt = kInfinity  ???");
2601   }                                              2508   }
2602                                                  2509 
2603   return snxt;                                   2510   return snxt;
2604 }                                                2511 }
2605                                                  2512 
2606 /////////////////////////////////////////////    2513 /////////////////////////////////////////////////////////////////////////
2607 //                                               2514 //
2608 // Calculate distance (<=actual) to closest s << 2515 // Calcluate distance (<=actual) to closest surface of shape from inside
2609                                                  2516 
2610 G4double G4Sphere::DistanceToOut( const G4Thr    2517 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p ) const
2611 {                                                2518 {
2612   G4double safe=0.0,safeRMin,safeRMax,safePhi    2519   G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta;
2613   G4double rho2,rds,rho;                      << 2520   G4double rho2,rad,rho;
2614   G4double pTheta,dTheta1 = kInfinity,dTheta2 << 2521   G4double phiC,cosPhiC,sinPhiC,ePhi;
                                                   >> 2522   G4double pTheta,dTheta1,dTheta2;
2615   rho2=p.x()*p.x()+p.y()*p.y();                  2523   rho2=p.x()*p.x()+p.y()*p.y();
2616   rds=std::sqrt(rho2+p.z()*p.z());            << 2524   rad=std::sqrt(rho2+p.z()*p.z());
2617   rho=std::sqrt(rho2);                           2525   rho=std::sqrt(rho2);
2618                                                  2526 
2619 #ifdef G4CSGDEBUG                                2527 #ifdef G4CSGDEBUG
2620   if( Inside(p) == kOutside )                    2528   if( Inside(p) == kOutside )
2621   {                                              2529   {
2622      G4long old_prc = G4cout.precision(16);   << 2530      G4cout.precision(16) ;
2623      G4cout << G4endl;                        << 2531      G4cout << G4endl ;
2624      DumpInfo();                                 2532      DumpInfo();
2625      G4cout << "Position:"  << G4endl << G4en    2533      G4cout << "Position:"  << G4endl << G4endl ;
2626      G4cout << "p.x() = "   << p.x()/mm << "     2534      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
2627      G4cout << "p.y() = "   << p.y()/mm << "     2535      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
2628      G4cout << "p.z() = "   << p.z()/mm << "     2536      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
2629      G4cout.precision(old_prc) ;              << 
2630      G4Exception("G4Sphere::DistanceToOut(p)"    2537      G4Exception("G4Sphere::DistanceToOut(p)",
2631                  "GeomSolids1002", JustWarnin << 2538                  "Notification", JustWarning, "Point p is outside !?" );
2632   }                                              2539   }
2633 #endif                                           2540 #endif
2634                                                  2541 
2635   // Distance to r shells                     << 
2636   //                                             2542   //
2637   safeRMax = fRmax-rds;                       << 2543   // Distance to r shells
2638   safe = safeRMax;                            << 2544   //    
2639   if (fRmin != 0.0)                           << 2545   if (fRmin)
                                                   >> 2546   {
                                                   >> 2547     safeRMin=rad-fRmin;
                                                   >> 2548     safeRMax=fRmax-rad;
                                                   >> 2549     if (safeRMin<safeRMax)
                                                   >> 2550     {
                                                   >> 2551       safe=safeRMin;
                                                   >> 2552     }
                                                   >> 2553     else
                                                   >> 2554     {
                                                   >> 2555       safe=safeRMax;
                                                   >> 2556     }
                                                   >> 2557   }
                                                   >> 2558   else
2640   {                                              2559   {
2641      safeRMin = rds-fRmin;                    << 2560     safe=fRmax-rad;
2642      safe = std::min( safeRMin, safeRMax );   << 
2643   }                                              2561   }
2644                                                  2562 
                                                   >> 2563   //
2645   // Distance to phi extent                      2564   // Distance to phi extent
2646   //                                             2565   //
2647   if ( !fFullPhiSphere )                      << 2566   if (fDPhi<twopi && rho)
2648   {                                              2567   {
2649      if (rho>0.0)                             << 2568     phiC=fSPhi+fDPhi*0.5;
2650      {                                        << 2569     cosPhiC=std::cos(phiC);
2651         if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0) << 2570     sinPhiC=std::sin(phiC);
2652         {                                     << 2571     if ((p.y()*cosPhiC-p.x()*sinPhiC)<=0)
2653            safePhi=-(p.x()*sinSPhi-p.y()*cosS << 2572     {
2654         }                                     << 2573       safePhi=-(p.x()*std::sin(fSPhi)-p.y()*std::cos(fSPhi));
2655         else                                  << 2574     }
2656         {                                     << 2575     else
2657            safePhi=(p.x()*sinEPhi-p.y()*cosEP << 2576     {
2658         }                                     << 2577       ePhi=fSPhi+fDPhi;
2659      }                                        << 2578       safePhi=(p.x()*std::sin(ePhi)-p.y()*std::cos(ePhi));
2660      else                                     << 2579     }
2661      {                                        << 2580     if (safePhi<safe) safe=safePhi;
2662         safePhi = 0.0;  // Distance to both P << 
2663      }                                        << 
2664      // Both cases above can be improved - in << 
2665      //  although it may be costlier (good fo << 
2666                                               << 
2667      safe= std::min(safe, safePhi);           << 
2668   }                                              2581   }
2669                                                  2582 
2670   // Distance to Theta extent                 << 
2671   //                                             2583   //
2672   if ( !fFullThetaSphere )                    << 2584   // Distance to Theta extent
                                                   >> 2585   //    
                                                   >> 2586   if (rad)
2673   {                                              2587   {
2674     if( rds > 0.0 )                           << 2588     pTheta=std::acos(p.z()/rad);
                                                   >> 2589     if (pTheta<0) pTheta+=pi;
                                                   >> 2590     dTheta1=pTheta-fSTheta;
                                                   >> 2591     dTheta2=(fSTheta+fDTheta)-pTheta;
                                                   >> 2592     if (dTheta1<dTheta2)
2675     {                                            2593     {
2676        pTheta=std::acos(p.z()/rds);           << 2594       safeTheta=rad*std::sin(dTheta1);
2677        if (pTheta<0) { pTheta+=pi; }          << 2595       if (safe>safeTheta)
2678        if(fSTheta>0.)                         << 2596       {
2679        { dTheta1=pTheta-fSTheta;}             << 2597         safe=safeTheta;
2680        if(eTheta<pi)                          << 2598       }
2681        { dTheta2=eTheta-pTheta;}              << 
2682                                               << 
2683        safeTheta=rds*std::sin(std::min(dTheta << 
2684     }                                            2599     }
2685     else                                         2600     else
2686     {                                            2601     {
2687        safeTheta= 0.0;                        << 2602       safeTheta=rad*std::sin(dTheta2);
2688          // An improvement will be to return  << 2603       if (safe>safeTheta)
                                                   >> 2604       {
                                                   >> 2605         safe=safeTheta;
                                                   >> 2606       }
2689     }                                            2607     }
2690     safe = std::min( safe, safeTheta );       << 
2691   }                                              2608   }
2692                                                  2609 
2693   if (safe<0.0) { safe=0; }                   << 2610   if (safe<0) safe=0;
2694     // An improvement to return negative answ << 2611     return safe;
2695                                               << 
2696   return safe;                                << 
2697 }                                                2612 }
2698                                                  2613 
2699 /////////////////////////////////////////////    2614 //////////////////////////////////////////////////////////////////////////
2700 //                                               2615 //
2701 // G4EntityType                               << 2616 // Create a List containing the transformed vertices
                                                   >> 2617 // Ordering [0-3] -fDz cross section
                                                   >> 2618 //          [4-7] +fDz cross section such that [0] is below [4],
                                                   >> 2619 //                                             [1] below [5] etc.
                                                   >> 2620 // Note:
                                                   >> 2621 //  Caller has deletion resposibility
                                                   >> 2622 //  Potential improvement: For last slice, use actual ending angle
                                                   >> 2623 //                         to avoid rounding error problems.
                                                   >> 2624 
                                                   >> 2625 G4ThreeVectorList*
                                                   >> 2626 G4Sphere::CreateRotatedVertices( const G4AffineTransform& pTransform,
                                                   >> 2627                                        G4int& noPolygonVertices ) const
                                                   >> 2628 {
                                                   >> 2629   G4ThreeVectorList *vertices;
                                                   >> 2630   G4ThreeVector vertex;
                                                   >> 2631   G4double meshAnglePhi,meshRMax,crossAnglePhi,
                                                   >> 2632            coscrossAnglePhi,sincrossAnglePhi,sAnglePhi;
                                                   >> 2633   G4double meshTheta,crossTheta,startTheta;
                                                   >> 2634   G4double rMaxX,rMaxY,rMinX,rMinY,rMinZ,rMaxZ;
                                                   >> 2635   G4int crossSectionPhi,noPhiCrossSections,crossSectionTheta,noThetaSections;
                                                   >> 2636 
                                                   >> 2637   // Phi cross sections
                                                   >> 2638     
                                                   >> 2639   noPhiCrossSections=G4int (fDPhi/kMeshAngleDefault)+1;
                                                   >> 2640     
                                                   >> 2641   if (noPhiCrossSections<kMinMeshSections)
                                                   >> 2642   {
                                                   >> 2643     noPhiCrossSections=kMinMeshSections;
                                                   >> 2644   }
                                                   >> 2645   else if (noPhiCrossSections>kMaxMeshSections)
                                                   >> 2646   {
                                                   >> 2647     noPhiCrossSections=kMaxMeshSections;
                                                   >> 2648   }
                                                   >> 2649   meshAnglePhi=fDPhi/(noPhiCrossSections-1);
                                                   >> 2650     
                                                   >> 2651   // If complete in phi, set start angle such that mesh will be at fRMax
                                                   >> 2652   // on the x axis. Will give better extent calculations when not rotated.
                                                   >> 2653     
                                                   >> 2654   if (fDPhi==pi*2.0 && fSPhi==0)
                                                   >> 2655   {
                                                   >> 2656     sAnglePhi = -meshAnglePhi*0.5;
                                                   >> 2657   }
                                                   >> 2658     else
                                                   >> 2659   {
                                                   >> 2660     sAnglePhi=fSPhi;
                                                   >> 2661   }    
2702                                                  2662 
2703 G4GeometryType G4Sphere::GetEntityType() cons << 2663   // Theta cross sections
2704 {                                             << 2664     
2705   return {"G4Sphere"};                        << 2665   noThetaSections = G4int(fDTheta/kMeshAngleDefault)+1;
                                                   >> 2666     
                                                   >> 2667   if (noThetaSections<kMinMeshSections)
                                                   >> 2668   {
                                                   >> 2669     noThetaSections=kMinMeshSections;
                                                   >> 2670   }
                                                   >> 2671   else if (noThetaSections>kMaxMeshSections)
                                                   >> 2672   {
                                                   >> 2673     noThetaSections=kMaxMeshSections;
                                                   >> 2674   }
                                                   >> 2675   meshTheta=fDTheta/(noThetaSections-1);
                                                   >> 2676     
                                                   >> 2677   // If complete in Theta, set start angle such that mesh will be at fRMax
                                                   >> 2678   // on the z axis. Will give better extent calculations when not rotated.
                                                   >> 2679     
                                                   >> 2680   if (fDTheta==pi && fSTheta==0)
                                                   >> 2681   {
                                                   >> 2682     startTheta = -meshTheta*0.5;
                                                   >> 2683   }
                                                   >> 2684   else
                                                   >> 2685   {
                                                   >> 2686     startTheta=fSTheta;
                                                   >> 2687   }    
                                                   >> 2688 
                                                   >> 2689   meshRMax = (meshAnglePhi >= meshTheta) ?
                                                   >> 2690              fRmax/std::cos(meshAnglePhi*0.5) : fRmax/std::cos(meshTheta*0.5);
                                                   >> 2691   G4double* cosCrossTheta = new G4double[noThetaSections];
                                                   >> 2692   G4double* sinCrossTheta = new G4double[noThetaSections];    
                                                   >> 2693   vertices=new G4ThreeVectorList();
                                                   >> 2694   vertices->reserve(noPhiCrossSections*(noThetaSections*2));
                                                   >> 2695   if (vertices && cosCrossTheta && sinCrossTheta)
                                                   >> 2696   {
                                                   >> 2697     for (crossSectionPhi=0;
                                                   >> 2698          crossSectionPhi<noPhiCrossSections; crossSectionPhi++)
                                                   >> 2699     {
                                                   >> 2700       crossAnglePhi=sAnglePhi+crossSectionPhi*meshAnglePhi;
                                                   >> 2701       coscrossAnglePhi=std::cos(crossAnglePhi);
                                                   >> 2702       sincrossAnglePhi=std::sin(crossAnglePhi);
                                                   >> 2703       for (crossSectionTheta=0;
                                                   >> 2704            crossSectionTheta<noThetaSections;crossSectionTheta++)
                                                   >> 2705       {
                                                   >> 2706         // Compute coordinates of cross section at section crossSectionPhi
                                                   >> 2707         //
                                                   >> 2708         crossTheta=startTheta+crossSectionTheta*meshTheta;
                                                   >> 2709         cosCrossTheta[crossSectionTheta]=std::cos(crossTheta);
                                                   >> 2710         sinCrossTheta[crossSectionTheta]=std::sin(crossTheta);
                                                   >> 2711 
                                                   >> 2712         rMinX=fRmin*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi;
                                                   >> 2713         rMinY=fRmin*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi;
                                                   >> 2714         rMinZ=fRmin*cosCrossTheta[crossSectionTheta];
                                                   >> 2715         
                                                   >> 2716         vertex=G4ThreeVector(rMinX,rMinY,rMinZ);
                                                   >> 2717         vertices->push_back(pTransform.TransformPoint(vertex));
                                                   >> 2718         
                                                   >> 2719       }    // Theta forward 
                                                   >> 2720     
                                                   >> 2721       for (crossSectionTheta=noThetaSections-1;
                                                   >> 2722            crossSectionTheta>=0; crossSectionTheta--)
                                                   >> 2723       {
                                                   >> 2724         rMaxX=meshRMax*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi;
                                                   >> 2725         rMaxY=meshRMax*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi;
                                                   >> 2726         rMaxZ=meshRMax*cosCrossTheta[crossSectionTheta];
                                                   >> 2727         
                                                   >> 2728         vertex=G4ThreeVector(rMaxX,rMaxY,rMaxZ);
                                                   >> 2729         vertices->push_back(pTransform.TransformPoint(vertex));
                                                   >> 2730 
                                                   >> 2731       }   // Theta back 
                                                   >> 2732     }   // Phi
                                                   >> 2733     noPolygonVertices = noThetaSections*2 ;
                                                   >> 2734   }
                                                   >> 2735   else
                                                   >> 2736   {
                                                   >> 2737     DumpInfo();
                                                   >> 2738     G4Exception("G4Sphere::CreateRotatedVertices()",
                                                   >> 2739                 "FatalError", FatalException,
                                                   >> 2740                 "Error in allocation of vertices. Out of memory !");
                                                   >> 2741   }
                                                   >> 2742 
                                                   >> 2743   delete[] cosCrossTheta;
                                                   >> 2744   delete[] sinCrossTheta;
                                                   >> 2745 
                                                   >> 2746   return vertices;
2706 }                                                2747 }
2707                                                  2748 
2708 /////////////////////////////////////////////    2749 //////////////////////////////////////////////////////////////////////////
2709 //                                               2750 //
2710 // Make a clone of the object                 << 2751 // G4EntityType
2711 //                                            << 2752 
2712 G4VSolid* G4Sphere::Clone() const             << 2753 G4GeometryType G4Sphere::GetEntityType() const
2713 {                                                2754 {
2714   return new G4Sphere(*this);                 << 2755   return G4String("G4Sphere");
2715 }                                                2756 }
2716                                                  2757 
2717 /////////////////////////////////////////////    2758 //////////////////////////////////////////////////////////////////////////
2718 //                                               2759 //
2719 // Stream object contents to an output stream    2760 // Stream object contents to an output stream
2720                                                  2761 
2721 std::ostream& G4Sphere::StreamInfo( std::ostr    2762 std::ostream& G4Sphere::StreamInfo( std::ostream& os ) const
2722 {                                                2763 {
2723   G4long oldprc = os.precision(16);           << 
2724   os << "------------------------------------    2764   os << "-----------------------------------------------------------\n"
2725      << "    *** Dump for solid - " << GetNam    2765      << "    *** Dump for solid - " << GetName() << " ***\n"
2726      << "    ================================    2766      << "    ===================================================\n"
2727      << " Solid type: G4Sphere\n"                2767      << " Solid type: G4Sphere\n"
2728      << " Parameters: \n"                        2768      << " Parameters: \n"
2729      << "    inner radius: " << fRmin/mm << "    2769      << "    inner radius: " << fRmin/mm << " mm \n"
2730      << "    outer radius: " << fRmax/mm << "    2770      << "    outer radius: " << fRmax/mm << " mm \n"
2731      << "    starting phi of segment  : " <<     2771      << "    starting phi of segment  : " << fSPhi/degree << " degrees \n"
2732      << "    delta phi of segment     : " <<     2772      << "    delta phi of segment     : " << fDPhi/degree << " degrees \n"
2733      << "    starting theta of segment: " <<     2773      << "    starting theta of segment: " << fSTheta/degree << " degrees \n"
2734      << "    delta theta of segment   : " <<     2774      << "    delta theta of segment   : " << fDTheta/degree << " degrees \n"
2735      << "------------------------------------    2775      << "-----------------------------------------------------------\n";
2736   os.precision(oldprc);                       << 
2737                                                  2776 
2738   return os;                                     2777   return os;
2739 }                                                2778 }
2740                                                  2779 
2741 ///////////////////////////////////////////// << 
2742 //                                            << 
2743 // Get volume                                 << 
2744                                               << 
2745 G4double G4Sphere::GetCubicVolume()           << 
2746 {                                             << 
2747   if (fCubicVolume == 0.)                     << 
2748   {                                           << 
2749     G4double RRR = fRmax*fRmax*fRmax;         << 
2750     G4double rrr = fRmin*fRmin*fRmin;         << 
2751     fCubicVolume = fDPhi*(cosSTheta - cosEThe << 
2752   }                                           << 
2753   return fCubicVolume;                        << 
2754 }                                             << 
2755                                               << 
2756 ///////////////////////////////////////////// << 
2757 //                                            << 
2758 // Get surface area                           << 
2759                                               << 
2760 G4double G4Sphere::GetSurfaceArea()           << 
2761 {                                             << 
2762   if (fSurfaceArea == 0.)                     << 
2763   {                                           << 
2764     G4double RR = fRmax*fRmax;                << 
2765     G4double rr = fRmin*fRmin;                << 
2766     fSurfaceArea = fDPhi*(RR + rr)*(cosSTheta << 
2767     if (!fFullPhiSphere)    fSurfaceArea += f << 
2768     if (fSTheta > 0)        fSurfaceArea += 0 << 
2769     if (eTheta < CLHEP::pi) fSurfaceArea += 0 << 
2770   }                                           << 
2771   return fSurfaceArea;                        << 
2772 }                                             << 
2773                                               << 
2774 ///////////////////////////////////////////// << 
2775 //                                            << 
2776 // Return a point randomly and uniformly sele << 
2777                                               << 
2778 G4ThreeVector G4Sphere::GetPointOnSurface() c << 
2779 {                                             << 
2780   G4double RR = fRmax*fRmax;                  << 
2781   G4double rr = fRmin*fRmin;                  << 
2782                                               << 
2783   // Find surface areas                       << 
2784   //                                          << 
2785   G4double aInner   = fDPhi*rr*(cosSTheta - c << 
2786   G4double aOuter   = fDPhi*RR*(cosSTheta - c << 
2787   G4double aPhi     = (!fFullPhiSphere) ? fDT << 
2788   G4double aSTheta  = (fSTheta > 0) ? 0.5*fDP << 
2789   G4double aETheta  = (eTheta < pi) ? 0.5*fDP << 
2790   G4double aTotal   = aInner + aOuter + aPhi  << 
2791                                               << 
2792   // Select surface and generate a point      << 
2793   //                                          << 
2794   G4double select = aTotal*G4QuickRand();     << 
2795   G4double u = G4QuickRand();                 << 
2796   G4double v = G4QuickRand();                 << 
2797   if (select < aInner + aOuter)            // << 
2798   {                                           << 
2799     G4double r   = (select < aInner) ? fRmin  << 
2800     G4double z   = cosSTheta + (cosETheta - c << 
2801     G4double rho = std::sqrt(1. - z*z);       << 
2802     G4double phi = fDPhi*v + fSPhi;           << 
2803     return { r*rho*std::cos(phi), r*rho*std:: << 
2804   }                                           << 
2805   else if (select < aInner + aOuter + aPhi) / << 
2806   {                                           << 
2807     G4double phi   = (select < aInner + aOute << 
2808     G4double r     = std::sqrt((RR - rr)*u +  << 
2809     G4double theta = fDTheta*v + fSTheta;     << 
2810     G4double z     = std::cos(theta);         << 
2811     G4double rho   = std::sin(theta);         << 
2812     return { r*rho*std::cos(phi), r*rho*std:: << 
2813   }                                           << 
2814   else                                     // << 
2815   {                                           << 
2816     G4double theta = (select < aTotal - aEThe << 
2817     G4double r     = std::sqrt((RR - rr)*u +  << 
2818     G4double phi   = fDPhi*v + fSPhi;         << 
2819     G4double z     = std::cos(theta);         << 
2820     G4double rho   = std::sin(theta);         << 
2821     return { r*rho*std::cos(phi), r*rho*std:: << 
2822   }                                           << 
2823 }                                             << 
2824                                               << 
2825 /////////////////////////////////////////////    2780 /////////////////////////////////////////////////////////////////////////////
2826 //                                               2781 //
2827 // Methods for visualisation                     2782 // Methods for visualisation
2828                                                  2783 
2829 G4VisExtent G4Sphere::GetExtent() const          2784 G4VisExtent G4Sphere::GetExtent() const
2830 {                                                2785 {
2831   return { -fRmax, fRmax,-fRmax, fRmax,-fRmax << 2786   return G4VisExtent(-fRmax, fRmax,-fRmax, fRmax,-fRmax, fRmax );
2832 }                                                2787 }
2833                                                  2788 
2834                                                  2789 
2835 void G4Sphere::DescribeYourselfTo ( G4VGraphi    2790 void G4Sphere::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
2836 {                                                2791 {
2837   scene.AddSolid (*this);                     << 2792   scene.AddThis (*this);
2838 }                                                2793 }
2839                                                  2794 
2840 G4Polyhedron* G4Sphere::CreatePolyhedron () c    2795 G4Polyhedron* G4Sphere::CreatePolyhedron () const
2841 {                                                2796 {
2842   return new G4PolyhedronSphere (fRmin, fRmax    2797   return new G4PolyhedronSphere (fRmin, fRmax, fSPhi, fDPhi, fSTheta, fDTheta);
2843 }                                                2798 }
2844                                                  2799 
2845 #endif                                        << 2800 G4NURBS* G4Sphere::CreateNURBS () const
                                                   >> 2801 {
                                                   >> 2802   return new G4NURBSbox (fRmax, fRmax, fRmax);       // Box for now!!!
                                                   >> 2803 }
                                                   >> 2804 
                                                   >> 2805 
                                                   >> 2806 // ******************************  End of G4Sphere.cc  ****************************************
2846                                                  2807