Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Sphere.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/solids/CSG/src/G4Sphere.cc (Version 11.3.0) and /geometry/solids/CSG/src/G4Sphere.cc (Version 10.3.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
                                                   >>  26 //
                                                   >>  27 // $Id: G4Sphere.cc 100820 2016-11-02 15:18:48Z gcosmo $
                                                   >>  28 //
                                                   >>  29 // class G4Sphere
                                                   >>  30 //
 26 // Implementation for G4Sphere class               31 // Implementation for G4Sphere class
 27 //                                                 32 //
 28 // 28.03.94 P.Kent: old C++ code converted to  <<  33 // History:
 29 // 17.09.96 V.Grichine: final modifications to <<  34 //
 30 // 30.10.03 J.Apostolakis: new algorithm in In <<  35 // 26.10.16 E.Tcherniaev: added Extent(pmin,pmax), re-implemented
                                                   >>  36 //                      CalculateExtent() using G4BoundingEnvelope,
                                                   >>  37 //                      removed CreateRotatedVertices()
                                                   >>  38 // 05.04.12 M.Kelsey:   GetPointOnSurface() throw flat in cos(theta), sqrt(r)
                                                   >>  39 // 14.09.09 T.Nikitina: fix for phi section in DistanceToOut(p,v,..),as for
                                                   >>  40 //                      G4Tubs,G4Cons 
                                                   >>  41 // 26.03.09 G.Cosmo   : optimisations and uniform use of local radial tolerance
                                                   >>  42 // 12.06.08 V.Grichine: fix for theta intersections in DistanceToOut(p,v,...)
                                                   >>  43 // 22.07.05 O.Link    : Added check for intersection with double cone
 31 // 03.05.05 V.Grichine: SurfaceNormal(p) accor     44 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal
 32 // 22.07.05 O.Link: Added check for intersecti <<  45 // 16.09.04 V.Grichine: bug fixed in SurfaceNormal(p), theta normals
 33 // 26.03.09 G.Cosmo: optimisations and uniform <<  46 // 16.07.04 V.Grichine: bug fixed in DistanceToOut(p,v), Rmin go outside
 34 // 26.10.16 E.Tcherniaev: re-implemented Calcu <<  47 // 02.06.04 V.Grichine: bug fixed in DistanceToIn(p,v), on Rmax,Rmin go inside
 35 //                        G4BoundingEnvelope,  <<  48 // 30.10.03 J.Apostolakis: new algorithm in Inside for SPhi-sections
                                                   >>  49 // 29.10.03 J.Apostolakis: fix in Inside for SPhi-0.5*kAngTol < phi<SPhi, SPhi<0
                                                   >>  50 // 19.06.02 V.Grichine: bug fixed in Inside(p), && -> && fDTheta - kAngTolerance
                                                   >>  51 // 30.01.02 V.Grichine: bug fixed in Inside(p), && -> || at l.451
                                                   >>  52 // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...)
                                                   >>  53 // 18.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...)
                                                   >>  54 // 25.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), phi intersections
                                                   >>  55 // 12.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), theta intersections
                                                   >>  56 // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...)
                                                   >>  57 // 17.09.96 V.Grichine: final modifications to commit
                                                   >>  58 // 28.03.94 P.Kent: old C++ code converted to tolerant geometry
 36 // -------------------------------------------     59 // --------------------------------------------------------------------
 37                                                    60 
 38 #include "G4Sphere.hh"                             61 #include "G4Sphere.hh"
 39                                                    62 
 40 #if !defined(G4GEOM_USE_USPHERE)                   63 #if !defined(G4GEOM_USE_USPHERE)
 41                                                    64 
 42 #include "G4GeomTools.hh"                          65 #include "G4GeomTools.hh"
 43 #include "G4VoxelLimits.hh"                        66 #include "G4VoxelLimits.hh"
 44 #include "G4AffineTransform.hh"                    67 #include "G4AffineTransform.hh"
 45 #include "G4GeometryTolerance.hh"                  68 #include "G4GeometryTolerance.hh"
 46 #include "G4BoundingEnvelope.hh"                   69 #include "G4BoundingEnvelope.hh"
 47                                                    70 
 48 #include "G4VPVParameterisation.hh"                71 #include "G4VPVParameterisation.hh"
 49                                                    72 
 50 #include "G4QuickRand.hh"                      <<  73 #include "Randomize.hh"
 51                                                    74 
 52 #include "meshdefs.hh"                             75 #include "meshdefs.hh"
 53                                                    76 
 54 #include "G4VGraphicsScene.hh"                     77 #include "G4VGraphicsScene.hh"
 55 #include "G4VisExtent.hh"                          78 #include "G4VisExtent.hh"
 56                                                    79 
 57 using namespace CLHEP;                             80 using namespace CLHEP;
 58                                                    81 
 59 // Private enum: Not for external use - used b     82 // Private enum: Not for external use - used by distanceToOut
 60                                                    83 
 61 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTh     84 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTheta,kETheta};
 62                                                    85 
 63 // used by normal                                  86 // used by normal
 64                                                    87 
 65 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSThe     88 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSTheta,kNETheta};
 66                                                    89 
 67 //////////////////////////////////////////////     90 ////////////////////////////////////////////////////////////////////////
 68 //                                                 91 //
 69 // constructor - check parameters, convert ang     92 // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 70 //             - note if pDPhi>2PI then reset      93 //             - note if pDPhi>2PI then reset to 2PI
 71                                                    94 
 72 G4Sphere::G4Sphere( const G4String& pName,         95 G4Sphere::G4Sphere( const G4String& pName,
 73                           G4double pRmin, G4do     96                           G4double pRmin, G4double pRmax,
 74                           G4double pSPhi, G4do     97                           G4double pSPhi, G4double pDPhi,
 75                           G4double pSTheta, G4     98                           G4double pSTheta, G4double pDTheta )
 76   : G4CSGSolid(pName), fSPhi(0.0), fFullPhiSph <<  99   : G4CSGSolid(pName), fEpsilon(2.e-11), fSPhi(0.0),
                                                   >> 100     fFullPhiSphere(true), fFullThetaSphere(true)
 77 {                                                 101 {
 78   kAngTolerance = G4GeometryTolerance::GetInst    102   kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance();
 79   kRadTolerance = G4GeometryTolerance::GetInst    103   kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance();
 80                                                   104 
 81   halfCarTolerance = 0.5*kCarTolerance;           105   halfCarTolerance = 0.5*kCarTolerance;
 82   halfAngTolerance = 0.5*kAngTolerance;           106   halfAngTolerance = 0.5*kAngTolerance;
 83                                                   107 
 84   // Check radii and set radial tolerances        108   // Check radii and set radial tolerances
 85                                                   109 
 86   if ( (pRmin >= pRmax) || (pRmax < 1.1*kRadTo    110   if ( (pRmin >= pRmax) || (pRmax < 1.1*kRadTolerance) || (pRmin < 0) )
 87   {                                               111   {
 88     std::ostringstream message;                   112     std::ostringstream message;
 89     message << "Invalid radii for Solid: " <<     113     message << "Invalid radii for Solid: " << GetName() << G4endl
 90             << "        pRmin = " << pRmin <<     114             << "        pRmin = " << pRmin << ", pRmax = " << pRmax;
 91     G4Exception("G4Sphere::G4Sphere()", "GeomS    115     G4Exception("G4Sphere::G4Sphere()", "GeomSolids0002",
 92                 FatalException, message);         116                 FatalException, message);
 93   }                                               117   }
 94   fRmin=pRmin; fRmax=pRmax;                       118   fRmin=pRmin; fRmax=pRmax;
 95   fRminTolerance = (fRmin) != 0.0 ? std::max(  << 119   fRminTolerance = (fRmin) ? std::max( kRadTolerance, fEpsilon*fRmin ) : 0;
 96   fRmaxTolerance = std::max( kRadTolerance, fE    120   fRmaxTolerance = std::max( kRadTolerance, fEpsilon*fRmax );
 97                                                   121 
 98   // Check angles                                 122   // Check angles
 99                                                   123 
100   CheckPhiAngles(pSPhi, pDPhi);                   124   CheckPhiAngles(pSPhi, pDPhi);
101   CheckThetaAngles(pSTheta, pDTheta);             125   CheckThetaAngles(pSTheta, pDTheta);
102 }                                                 126 }
103                                                   127 
104 //////////////////////////////////////////////    128 ///////////////////////////////////////////////////////////////////////
105 //                                                129 //
106 // Fake default constructor - sets only member    130 // Fake default constructor - sets only member data and allocates memory
107 //                            for usage restri    131 //                            for usage restricted to object persistency.
108 //                                                132 //
109 G4Sphere::G4Sphere( __void__& a )                 133 G4Sphere::G4Sphere( __void__& a )
110   : G4CSGSolid(a)                              << 134   : G4CSGSolid(a), fRminTolerance(0.), fRmaxTolerance(0.),
                                                   >> 135     kAngTolerance(0.), kRadTolerance(0.), fEpsilon(0.),
                                                   >> 136     fRmin(0.), fRmax(0.), fSPhi(0.), fDPhi(0.), fSTheta(0.),
                                                   >> 137     fDTheta(0.), sinCPhi(0.), cosCPhi(0.), cosHDPhiOT(0.), cosHDPhiIT(0.),
                                                   >> 138     sinSPhi(0.), cosSPhi(0.), sinEPhi(0.), cosEPhi(0.), hDPhi(0.), cPhi(0.),
                                                   >> 139     ePhi(0.), sinSTheta(0.), cosSTheta(0.), sinETheta(0.), cosETheta(0.),
                                                   >> 140     tanSTheta(0.), tanSTheta2(0.), tanETheta(0.), tanETheta2(0.), eTheta(0.),
                                                   >> 141     fFullPhiSphere(false), fFullThetaSphere(false), fFullSphere(true),
                                                   >> 142     halfCarTolerance(0.), halfAngTolerance(0.)
111 {                                                 143 {
112 }                                                 144 }
113                                                   145 
114 //////////////////////////////////////////////    146 /////////////////////////////////////////////////////////////////////
115 //                                                147 //
116 // Destructor                                     148 // Destructor
117                                                   149 
118 G4Sphere::~G4Sphere() = default;               << 150 G4Sphere::~G4Sphere()
                                                   >> 151 {
                                                   >> 152 }
119                                                   153 
120 //////////////////////////////////////////////    154 //////////////////////////////////////////////////////////////////////////
121 //                                                155 //
122 // Copy constructor                               156 // Copy constructor
123                                                   157 
124 G4Sphere::G4Sphere(const G4Sphere&) = default; << 158 G4Sphere::G4Sphere(const G4Sphere& rhs)
                                                   >> 159   : G4CSGSolid(rhs), fRminTolerance(rhs.fRminTolerance),
                                                   >> 160     fRmaxTolerance(rhs.fRmaxTolerance), kAngTolerance(rhs.kAngTolerance),
                                                   >> 161     kRadTolerance(rhs.kRadTolerance), fEpsilon(rhs.fEpsilon),
                                                   >> 162     fRmin(rhs.fRmin), fRmax(rhs.fRmax), fSPhi(rhs.fSPhi), fDPhi(rhs.fDPhi),
                                                   >> 163     fSTheta(rhs.fSTheta), fDTheta(rhs.fDTheta),
                                                   >> 164     sinCPhi(rhs.sinCPhi), cosCPhi(rhs.cosCPhi),
                                                   >> 165     cosHDPhiOT(rhs.cosHDPhiOT), cosHDPhiIT(rhs.cosHDPhiIT),
                                                   >> 166     sinSPhi(rhs.sinSPhi), cosSPhi(rhs.cosSPhi),
                                                   >> 167     sinEPhi(rhs.sinEPhi), cosEPhi(rhs.cosEPhi),
                                                   >> 168     hDPhi(rhs.hDPhi), cPhi(rhs.cPhi), ePhi(rhs.ePhi),
                                                   >> 169     sinSTheta(rhs.sinSTheta), cosSTheta(rhs.cosSTheta),
                                                   >> 170     sinETheta(rhs.sinETheta), cosETheta(rhs.cosETheta),
                                                   >> 171     tanSTheta(rhs.tanSTheta), tanSTheta2(rhs.tanSTheta2),
                                                   >> 172     tanETheta(rhs.tanETheta), tanETheta2(rhs.tanETheta2), eTheta(rhs.eTheta),
                                                   >> 173     fFullPhiSphere(rhs.fFullPhiSphere), fFullThetaSphere(rhs.fFullThetaSphere),
                                                   >> 174     fFullSphere(rhs.fFullSphere),
                                                   >> 175     halfCarTolerance(rhs.halfCarTolerance),
                                                   >> 176     halfAngTolerance(rhs.halfAngTolerance)
                                                   >> 177 {
                                                   >> 178 }
125                                                   179 
126 //////////////////////////////////////////////    180 //////////////////////////////////////////////////////////////////////////
127 //                                                181 //
128 // Assignment operator                            182 // Assignment operator
129                                                   183 
130 G4Sphere& G4Sphere::operator = (const G4Sphere << 184 G4Sphere& G4Sphere::operator = (const G4Sphere& rhs) 
131 {                                                 185 {
132    // Check assignment to self                    186    // Check assignment to self
133    //                                             187    //
134    if (this == &rhs)  { return *this; }           188    if (this == &rhs)  { return *this; }
135                                                   189 
136    // Copy base class data                        190    // Copy base class data
137    //                                             191    //
138    G4CSGSolid::operator=(rhs);                    192    G4CSGSolid::operator=(rhs);
139                                                   193 
140    // Copy data                                   194    // Copy data
141    //                                             195    //
142    fRminTolerance = rhs.fRminTolerance; fRmaxT    196    fRminTolerance = rhs.fRminTolerance; fRmaxTolerance = rhs.fRmaxTolerance;
143    kAngTolerance = rhs.kAngTolerance; kRadTole    197    kAngTolerance = rhs.kAngTolerance; kRadTolerance = rhs.kRadTolerance;
144    fEpsilon = rhs.fEpsilon; fRmin = rhs.fRmin;    198    fEpsilon = rhs.fEpsilon; fRmin = rhs.fRmin; fRmax = rhs.fRmax;
145    fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; fSThe    199    fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; fSTheta = rhs.fSTheta;
146    fDTheta = rhs.fDTheta; sinCPhi = rhs.sinCPh    200    fDTheta = rhs.fDTheta; sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi;
147    cosHDPhi = rhs.cosHDPhi;                    << 
148    cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = r    201    cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT;
149    sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPh    202    sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi;
150    sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPh    203    sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi;
151    hDPhi = rhs.hDPhi; cPhi = rhs.cPhi; ePhi =     204    hDPhi = rhs.hDPhi; cPhi = rhs.cPhi; ePhi = rhs.ePhi;
152    sinSTheta = rhs.sinSTheta; cosSTheta = rhs.    205    sinSTheta = rhs.sinSTheta; cosSTheta = rhs.cosSTheta;
153    sinETheta = rhs.sinETheta; cosETheta = rhs.    206    sinETheta = rhs.sinETheta; cosETheta = rhs.cosETheta;
154    tanSTheta = rhs.tanSTheta; tanSTheta2 = rhs    207    tanSTheta = rhs.tanSTheta; tanSTheta2 = rhs.tanSTheta2;
155    tanETheta = rhs.tanETheta; tanETheta2 = rhs    208    tanETheta = rhs.tanETheta; tanETheta2 = rhs.tanETheta2;
156    eTheta = rhs.eTheta; fFullPhiSphere = rhs.f    209    eTheta = rhs.eTheta; fFullPhiSphere = rhs.fFullPhiSphere;
157    fFullThetaSphere = rhs.fFullThetaSphere; fF    210    fFullThetaSphere = rhs.fFullThetaSphere; fFullSphere = rhs.fFullSphere;
158    halfCarTolerance = rhs.halfCarTolerance;       211    halfCarTolerance = rhs.halfCarTolerance;
159    halfAngTolerance = rhs.halfAngTolerance;       212    halfAngTolerance = rhs.halfAngTolerance;
160                                                   213 
161    return *this;                                  214    return *this;
162 }                                                 215 }
163                                                   216 
164 //////////////////////////////////////////////    217 //////////////////////////////////////////////////////////////////////////
165 //                                                218 //
166 // Dispatch to parameterisation for replicatio    219 // Dispatch to parameterisation for replication mechanism dimension
167 // computation & modification.                    220 // computation & modification.
168                                                   221 
169 void G4Sphere::ComputeDimensions(       G4VPVP    222 void G4Sphere::ComputeDimensions(       G4VPVParameterisation* p,
170                                   const G4int     223                                   const G4int n,
171                                   const G4VPhy    224                                   const G4VPhysicalVolume* pRep)
172 {                                                 225 {
173   p->ComputeDimensions(*this,n,pRep);             226   p->ComputeDimensions(*this,n,pRep);
174 }                                                 227 }
175                                                   228 
176 //////////////////////////////////////////////    229 //////////////////////////////////////////////////////////////////////////
177 //                                                230 //
178 // Get bounding box                               231 // Get bounding box
179                                                   232 
180 void G4Sphere::BoundingLimits(G4ThreeVector& p << 233 void G4Sphere::Extent(G4ThreeVector& pMin, G4ThreeVector& pMax) const
181 {                                                 234 {
182   G4double rmin = GetInnerRadius();               235   G4double rmin = GetInnerRadius();
183   G4double rmax = GetOuterRadius();               236   G4double rmax = GetOuterRadius();
184                                                   237 
185   // Find bounding box                            238   // Find bounding box
186   //                                              239   //
187   if (GetDeltaThetaAngle() >= pi && GetDeltaPh    240   if (GetDeltaThetaAngle() >= pi && GetDeltaPhiAngle() >= twopi)
188   {                                               241   {
189     pMin.set(-rmax,-rmax,-rmax);                  242     pMin.set(-rmax,-rmax,-rmax);
190     pMax.set( rmax, rmax, rmax);                  243     pMax.set( rmax, rmax, rmax);
191   }                                               244   }
192   else                                            245   else
193   {                                               246   {
194     G4double sinStart = GetSinStartTheta();       247     G4double sinStart = GetSinStartTheta();
195     G4double cosStart = GetCosStartTheta();       248     G4double cosStart = GetCosStartTheta();
196     G4double sinEnd   = GetSinEndTheta();         249     G4double sinEnd   = GetSinEndTheta();
197     G4double cosEnd   = GetCosEndTheta();         250     G4double cosEnd   = GetCosEndTheta();
198                                                   251 
199     G4double stheta = GetStartThetaAngle();       252     G4double stheta = GetStartThetaAngle();
200     G4double etheta = stheta + GetDeltaThetaAn    253     G4double etheta = stheta + GetDeltaThetaAngle();
201     G4double rhomin = rmin*std::min(sinStart,s    254     G4double rhomin = rmin*std::min(sinStart,sinEnd);
202     G4double rhomax = rmax;                       255     G4double rhomax = rmax;
203     if (stheta > halfpi) rhomax = rmax*sinStar    256     if (stheta > halfpi) rhomax = rmax*sinStart;
204     if (etheta < halfpi) rhomax = rmax*sinEnd;    257     if (etheta < halfpi) rhomax = rmax*sinEnd;
205                                                   258 
206     G4TwoVector xymin,xymax;                      259     G4TwoVector xymin,xymax;
207     G4GeomTools::DiskExtent(rhomin,rhomax,        260     G4GeomTools::DiskExtent(rhomin,rhomax,
208                             GetSinStartPhi(),G    261                             GetSinStartPhi(),GetCosStartPhi(),
209                             GetSinEndPhi(),Get    262                             GetSinEndPhi(),GetCosEndPhi(),
210                             xymin,xymax);         263                             xymin,xymax);
211                                                   264 
212     G4double zmin = std::min(rmin*cosEnd,rmax*    265     G4double zmin = std::min(rmin*cosEnd,rmax*cosEnd);
213     G4double zmax = std::max(rmin*cosStart,rma    266     G4double zmax = std::max(rmin*cosStart,rmax*cosStart);
214     pMin.set(xymin.x(),xymin.y(),zmin);           267     pMin.set(xymin.x(),xymin.y(),zmin);
215     pMax.set(xymax.x(),xymax.y(),zmax);           268     pMax.set(xymax.x(),xymax.y(),zmax);
216   }                                               269   }
217                                                   270 
218   // Check correctness of the bounding box        271   // Check correctness of the bounding box
219   //                                              272   //
220   if (pMin.x() >= pMax.x() || pMin.y() >= pMax    273   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
221   {                                               274   {
222     std::ostringstream message;                   275     std::ostringstream message;
223     message << "Bad bounding box (min >= max)     276     message << "Bad bounding box (min >= max) for solid: "
224             << GetName() << " !"                  277             << GetName() << " !"
225             << "\npMin = " << pMin                278             << "\npMin = " << pMin
226             << "\npMax = " << pMax;               279             << "\npMax = " << pMax;
227     G4Exception("G4Sphere::BoundingLimits()",  << 280     G4Exception("G4Sphere::Extent()", "GeomMgt0001", JustWarning, message);
228                 JustWarning, message);         << 
229     DumpInfo();                                   281     DumpInfo();
230   }                                               282   }
231 }                                                 283 }
232                                                   284 
233 //////////////////////////////////////////////    285 ////////////////////////////////////////////////////////////////////////////
234 //                                                286 //
235 // Calculate extent under transform and specif    287 // Calculate extent under transform and specified limit
236                                                   288 
237 G4bool G4Sphere::CalculateExtent( const EAxis     289 G4bool G4Sphere::CalculateExtent( const EAxis pAxis,
238                                   const G4Voxe    290                                   const G4VoxelLimits& pVoxelLimit,
239                                   const G4Affi    291                                   const G4AffineTransform& pTransform,
240                                         G4doub    292                                         G4double& pMin, G4double& pMax ) const
241 {                                                 293 {
242   G4ThreeVector bmin, bmax;                       294   G4ThreeVector bmin, bmax;
243                                                   295 
244   // Get bounding box                             296   // Get bounding box
245   BoundingLimits(bmin,bmax);                   << 297   Extent(bmin,bmax);
246                                                   298 
247   // Find extent                                  299   // Find extent
248   G4BoundingEnvelope bbox(bmin,bmax);             300   G4BoundingEnvelope bbox(bmin,bmax);
249   return bbox.CalculateExtent(pAxis,pVoxelLimi    301   return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
250 }                                                 302 }
251                                                   303 
252 //////////////////////////////////////////////    304 ///////////////////////////////////////////////////////////////////////////
253 //                                                305 //
254 // Return whether point inside/outside/on surf    306 // Return whether point inside/outside/on surface
255 // Split into radius, phi, theta checks           307 // Split into radius, phi, theta checks
256 // Each check modifies 'in', or returns as app    308 // Each check modifies 'in', or returns as approprate
257                                                   309 
258 EInside G4Sphere::Inside( const G4ThreeVector&    310 EInside G4Sphere::Inside( const G4ThreeVector& p ) const
259 {                                                 311 {
260   G4double rho,rho2,rad2,tolRMin,tolRMax;         312   G4double rho,rho2,rad2,tolRMin,tolRMax;
261   G4double pPhi,pTheta;                           313   G4double pPhi,pTheta;
262   EInside in = kOutside;                          314   EInside in = kOutside;
263                                                   315 
264   const G4double halfRmaxTolerance = fRmaxTole    316   const G4double halfRmaxTolerance = fRmaxTolerance*0.5;
265   const G4double halfRminTolerance = fRminTole    317   const G4double halfRminTolerance = fRminTolerance*0.5;
266   const G4double Rmax_minus = fRmax - halfRmax    318   const G4double Rmax_minus = fRmax - halfRmaxTolerance;
267   const G4double Rmin_plus  = (fRmin > 0) ? fR    319   const G4double Rmin_plus  = (fRmin > 0) ? fRmin+halfRminTolerance : 0;
268                                                   320 
269   rho2 = p.x()*p.x() + p.y()*p.y() ;              321   rho2 = p.x()*p.x() + p.y()*p.y() ;
270   rad2 = rho2 + p.z()*p.z() ;                     322   rad2 = rho2 + p.z()*p.z() ;
271                                                   323 
272   // Check radial surfaces. Sets 'in'             324   // Check radial surfaces. Sets 'in'
273                                                   325 
274   tolRMin = Rmin_plus;                            326   tolRMin = Rmin_plus;
275   tolRMax = Rmax_minus;                           327   tolRMax = Rmax_minus;
276                                                   328 
277   if(rad2 == 0.0)                                 329   if(rad2 == 0.0)
278   {                                            << 330   { 
279     if (fRmin > 0.0)                              331     if (fRmin > 0.0)
280     {                                             332     {
281       return in = kOutside;                       333       return in = kOutside;
282     }                                             334     }
283     if ( (!fFullPhiSphere) || (!fFullThetaSphe    335     if ( (!fFullPhiSphere) || (!fFullThetaSphere) )
284     {                                             336     {
285       return in = kSurface;                       337       return in = kSurface;
286     }                                             338     }
287     else                                          339     else
288     {                                             340     {
289       return in = kInside;                     << 341       return in = kInside; 
290     }                                             342     }
291   }                                               343   }
292                                                   344 
293   if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad    345   if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad2 >= Rmin_plus*Rmin_plus) )
294   {                                               346   {
295     in = kInside;                                 347     in = kInside;
296   }                                               348   }
297   else                                            349   else
298   {                                               350   {
299     tolRMax = fRmax + halfRmaxTolerance;          351     tolRMax = fRmax + halfRmaxTolerance;                  // outside case
300     tolRMin = std::max(fRmin-halfRminTolerance    352     tolRMin = std::max(fRmin-halfRminTolerance, 0.);      // outside case
301     if ( (rad2 <= tolRMax*tolRMax) && (rad2 >=    353     if ( (rad2 <= tolRMax*tolRMax) && (rad2 >= tolRMin*tolRMin) )
302     {                                             354     {
303       in = kSurface;                              355       in = kSurface;
304     }                                             356     }
305     else                                          357     else
306     {                                             358     {
307       return in = kOutside;                       359       return in = kOutside;
308     }                                             360     }
309   }                                               361   }
310                                                   362 
311   // Phi boundaries   : Do not check if it has    363   // Phi boundaries   : Do not check if it has no phi boundary!
312                                                   364 
313   if ( !fFullPhiSphere && (rho2 != 0.0) )  //  << 365   if ( !fFullPhiSphere && rho2 )  // [fDPhi < twopi] and [p.x or p.y]
314   {                                               366   {
315     pPhi = std::atan2(p.y(),p.x()) ;              367     pPhi = std::atan2(p.y(),p.x()) ;
316                                                   368 
317     if      ( pPhi < fSPhi - halfAngTolerance     369     if      ( pPhi < fSPhi - halfAngTolerance  ) { pPhi += twopi; }
318     else if ( pPhi > ePhi + halfAngTolerance )    370     else if ( pPhi > ePhi + halfAngTolerance )   { pPhi -= twopi; }
319                                                << 371     
320     if ( (pPhi < fSPhi - halfAngTolerance)        372     if ( (pPhi < fSPhi - halfAngTolerance)
321       || (pPhi > ePhi + halfAngTolerance) )       373       || (pPhi > ePhi + halfAngTolerance) )      { return in = kOutside; }
322                                                << 374     
323     else if (in == kInside)  // else it's kSur    375     else if (in == kInside)  // else it's kSurface anyway already
324     {                                             376     {
325       if ( (pPhi < fSPhi + halfAngTolerance)      377       if ( (pPhi < fSPhi + halfAngTolerance)
326         || (pPhi > ePhi - halfAngTolerance) )  << 378         || (pPhi > ePhi - halfAngTolerance) )    { in = kSurface; }     
327     }                                             379     }
328   }                                               380   }
329                                                   381 
330   // Theta bondaries                              382   // Theta bondaries
331                                                << 383   
332   if ( ((rho2 != 0.0) || (p.z() != 0.0)) && (! << 384   if ( (rho2 || p.z()) && (!fFullThetaSphere) )
333   {                                               385   {
334     rho    = std::sqrt(rho2);                     386     rho    = std::sqrt(rho2);
335     pTheta = std::atan2(rho,p.z());               387     pTheta = std::atan2(rho,p.z());
336                                                   388 
337     if ( in == kInside )                          389     if ( in == kInside )
338     {                                             390     {
339       if ( ((fSTheta > 0.0) && (pTheta < fSThe    391       if ( ((fSTheta > 0.0) && (pTheta < fSTheta + halfAngTolerance))
340         || ((eTheta < pi) && (pTheta > eTheta     392         || ((eTheta < pi) && (pTheta > eTheta - halfAngTolerance)) )
341       {                                           393       {
342         if ( (( (fSTheta>0.0)&&(pTheta>=fSThet    394         if ( (( (fSTheta>0.0)&&(pTheta>=fSTheta-halfAngTolerance) )
343              || (fSTheta == 0.0) )                395              || (fSTheta == 0.0) )
344           && ((eTheta==pi)||(pTheta <= eTheta     396           && ((eTheta==pi)||(pTheta <= eTheta + halfAngTolerance) ) )
345         {                                         397         {
346           in = kSurface;                          398           in = kSurface;
347         }                                         399         }
348         else                                      400         else
349         {                                         401         {
350           in = kOutside;                          402           in = kOutside;
351         }                                         403         }
352       }                                           404       }
353     }                                             405     }
354     else                                          406     else
355     {                                             407     {
356         if ( ((fSTheta > 0.0)&&(pTheta < fSThe    408         if ( ((fSTheta > 0.0)&&(pTheta < fSTheta - halfAngTolerance))
357            ||((eTheta < pi  )&&(pTheta > eThet    409            ||((eTheta < pi  )&&(pTheta > eTheta + halfAngTolerance)) )
358       {                                           410       {
359         in = kOutside;                            411         in = kOutside;
360       }                                           412       }
361     }                                             413     }
362   }                                               414   }
363   return in;                                      415   return in;
364 }                                                 416 }
365                                                   417 
366 //////////////////////////////////////////////    418 /////////////////////////////////////////////////////////////////////
367 //                                                419 //
368 // Return unit normal of surface closest to p     420 // Return unit normal of surface closest to p
369 // - note if point on z axis, ignore phi divid    421 // - note if point on z axis, ignore phi divided sides
370 // - unsafe if point close to z axis a rmin=0     422 // - unsafe if point close to z axis a rmin=0 - no explicit checks
371                                                   423 
372 G4ThreeVector G4Sphere::SurfaceNormal( const G    424 G4ThreeVector G4Sphere::SurfaceNormal( const G4ThreeVector& p ) const
373 {                                                 425 {
374   G4int noSurfaces = 0;                        << 426   G4int noSurfaces = 0;  
375   G4double rho, rho2, radius, pTheta, pPhi=0.;    427   G4double rho, rho2, radius, pTheta, pPhi=0.;
376   G4double distRMin = kInfinity;                  428   G4double distRMin = kInfinity;
377   G4double distSPhi = kInfinity, distEPhi = kI    429   G4double distSPhi = kInfinity, distEPhi = kInfinity;
378   G4double distSTheta = kInfinity, distETheta     430   G4double distSTheta = kInfinity, distETheta = kInfinity;
379   G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0.,    431   G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0.,0.,1.);
380   G4ThreeVector norm, sumnorm(0.,0.,0.);          432   G4ThreeVector norm, sumnorm(0.,0.,0.);
381                                                   433 
382   rho2 = p.x()*p.x()+p.y()*p.y();                 434   rho2 = p.x()*p.x()+p.y()*p.y();
383   radius = std::sqrt(rho2+p.z()*p.z());           435   radius = std::sqrt(rho2+p.z()*p.z());
384   rho  = std::sqrt(rho2);                         436   rho  = std::sqrt(rho2);
385                                                   437 
386   G4double    distRMax = std::fabs(radius-fRma    438   G4double    distRMax = std::fabs(radius-fRmax);
387   if (fRmin != 0.0)  distRMin = std::fabs(radi << 439   if (fRmin)  distRMin = std::fabs(radius-fRmin);
388                                                << 440     
389   if ( (rho != 0.0) && !fFullSphere )          << 441   if ( rho && !fFullSphere )
390   {                                               442   {
391     pPhi = std::atan2(p.y(),p.x());               443     pPhi = std::atan2(p.y(),p.x());
392                                                   444 
393     if (pPhi < fSPhi-halfAngTolerance)     { p    445     if (pPhi < fSPhi-halfAngTolerance)     { pPhi += twopi; }
394     else if (pPhi > ePhi+halfAngTolerance) { p    446     else if (pPhi > ePhi+halfAngTolerance) { pPhi -= twopi; }
395   }                                               447   }
396   if ( !fFullPhiSphere )                          448   if ( !fFullPhiSphere )
397   {                                               449   {
398     if ( rho != 0.0 )                          << 450     if ( rho )
399     {                                             451     {
400       distSPhi = std::fabs( pPhi-fSPhi );      << 452       distSPhi = std::fabs( pPhi-fSPhi ); 
401       distEPhi = std::fabs( pPhi-ePhi );       << 453       distEPhi = std::fabs( pPhi-ePhi ); 
402     }                                             454     }
403     else if( fRmin == 0.0 )                    << 455     else if( !fRmin )
404     {                                             456     {
405       distSPhi = 0.;                           << 457       distSPhi = 0.; 
406       distEPhi = 0.;                           << 458       distEPhi = 0.; 
407     }                                             459     }
408     nPs = G4ThreeVector(sinSPhi,-cosSPhi,0);      460     nPs = G4ThreeVector(sinSPhi,-cosSPhi,0);
409     nPe = G4ThreeVector(-sinEPhi,cosEPhi,0);      461     nPe = G4ThreeVector(-sinEPhi,cosEPhi,0);
410   }                                            << 462   }        
411   if ( !fFullThetaSphere )                        463   if ( !fFullThetaSphere )
412   {                                               464   {
413     if ( rho != 0.0 )                          << 465     if ( rho )
414     {                                             466     {
415       pTheta     = std::atan2(rho,p.z());         467       pTheta     = std::atan2(rho,p.z());
416       distSTheta = std::fabs(pTheta-fSTheta);  << 468       distSTheta = std::fabs(pTheta-fSTheta); 
417       distETheta = std::fabs(pTheta-eTheta);      469       distETheta = std::fabs(pTheta-eTheta);
418                                                << 470  
419       nTs = G4ThreeVector(-cosSTheta*p.x()/rho    471       nTs = G4ThreeVector(-cosSTheta*p.x()/rho,
420                           -cosSTheta*p.y()/rho    472                           -cosSTheta*p.y()/rho,
421                            sinSTheta              473                            sinSTheta          );
422                                                   474 
423       nTe = G4ThreeVector( cosETheta*p.x()/rho    475       nTe = G4ThreeVector( cosETheta*p.x()/rho,
424                            cosETheta*p.y()/rho    476                            cosETheta*p.y()/rho,
425                           -sinETheta           << 477                           -sinETheta          );    
426     }                                             478     }
427     else if( fRmin == 0.0 )                    << 479     else if( !fRmin )
428     {                                             480     {
429       if ( fSTheta != 0.0 )                    << 481       if ( fSTheta )  
430       {                                        << 482       {              
431         distSTheta = 0.;                          483         distSTheta = 0.;
432         nTs = G4ThreeVector(0.,0.,-1.);           484         nTs = G4ThreeVector(0.,0.,-1.);
433       }                                           485       }
434       if ( eTheta < pi )                          486       if ( eTheta < pi )
435       {                                        << 487       {              
436         distETheta = 0.;                          488         distETheta = 0.;
437         nTe = G4ThreeVector(0.,0.,1.);            489         nTe = G4ThreeVector(0.,0.,1.);
438       }                                           490       }
439     }                                          << 491     }    
440   }                                               492   }
441   if( radius != 0.0 )  { nR = G4ThreeVector(p. << 493   if( radius )  { nR = G4ThreeVector(p.x()/radius,p.y()/radius,p.z()/radius); }
442                                                   494 
443   if( distRMax <= halfCarTolerance )              495   if( distRMax <= halfCarTolerance )
444   {                                               496   {
445     ++noSurfaces;                              << 497     noSurfaces ++;
446     sumnorm += nR;                                498     sumnorm += nR;
447   }                                               499   }
448   if( (fRmin != 0.0) && (distRMin <= halfCarTo << 500   if( fRmin && (distRMin <= halfCarTolerance) )
449   {                                               501   {
450     ++noSurfaces;                              << 502     noSurfaces ++;
451     sumnorm -= nR;                                503     sumnorm -= nR;
452   }                                               504   }
453   if( !fFullPhiSphere )                        << 505   if( !fFullPhiSphere )   
454   {                                               506   {
455     if (distSPhi <= halfAngTolerance)             507     if (distSPhi <= halfAngTolerance)
456     {                                             508     {
457       ++noSurfaces;                            << 509       noSurfaces ++;
458       sumnorm += nPs;                             510       sumnorm += nPs;
459     }                                             511     }
460     if (distEPhi <= halfAngTolerance)          << 512     if (distEPhi <= halfAngTolerance) 
461     {                                             513     {
462       ++noSurfaces;                            << 514       noSurfaces ++;
463       sumnorm += nPe;                             515       sumnorm += nPe;
464     }                                             516     }
465   }                                               517   }
466   if ( !fFullThetaSphere )                        518   if ( !fFullThetaSphere )
467   {                                               519   {
468     if ((distSTheta <= halfAngTolerance) && (f    520     if ((distSTheta <= halfAngTolerance) && (fSTheta > 0.))
469     {                                             521     {
470       ++noSurfaces;                            << 522       noSurfaces ++;
471       if ((radius <= halfCarTolerance) && fFul    523       if ((radius <= halfCarTolerance) && fFullPhiSphere)  { sumnorm += nZ;  }
472       else                                        524       else                                                 { sumnorm += nTs; }
473     }                                             525     }
474     if ((distETheta <= halfAngTolerance) && (e << 526     if ((distETheta <= halfAngTolerance) && (eTheta < pi)) 
475     {                                             527     {
476       ++noSurfaces;                            << 528       noSurfaces ++;
477       if ((radius <= halfCarTolerance) && fFul    529       if ((radius <= halfCarTolerance) && fFullPhiSphere)  { sumnorm -= nZ;  }
478       else                                        530       else                                                 { sumnorm += nTe; }
479       if(sumnorm.z() == 0.)  { sumnorm += nZ;     531       if(sumnorm.z() == 0.)  { sumnorm += nZ; }
480     }                                             532     }
481   }                                               533   }
482   if ( noSurfaces == 0 )                          534   if ( noSurfaces == 0 )
483   {                                               535   {
484 #ifdef G4CSGDEBUG                                 536 #ifdef G4CSGDEBUG
485     G4Exception("G4Sphere::SurfaceNormal(p)",     537     G4Exception("G4Sphere::SurfaceNormal(p)", "GeomSolids1002",
486                 JustWarning, "Point p is not o << 538                 JustWarning, "Point p is not on surface !?" ); 
487 #endif                                            539 #endif
488      norm = ApproxSurfaceNormal(p);               540      norm = ApproxSurfaceNormal(p);
489   }                                               541   }
490   else if ( noSurfaces == 1 )  { norm = sumnor    542   else if ( noSurfaces == 1 )  { norm = sumnorm; }
491   else                         { norm = sumnor    543   else                         { norm = sumnorm.unit(); }
492   return norm;                                    544   return norm;
493 }                                                 545 }
494                                                   546 
495                                                   547 
496 //////////////////////////////////////////////    548 /////////////////////////////////////////////////////////////////////
497 //                                                549 //
498 // Algorithm for SurfaceNormal() following the    550 // Algorithm for SurfaceNormal() following the original specification
499 // for points not on the surface                  551 // for points not on the surface
500                                                   552 
501 G4ThreeVector G4Sphere::ApproxSurfaceNormal( c    553 G4ThreeVector G4Sphere::ApproxSurfaceNormal( const G4ThreeVector& p ) const
502 {                                                 554 {
503   ENorm side;                                     555   ENorm side;
504   G4ThreeVector norm;                             556   G4ThreeVector norm;
505   G4double rho,rho2,radius,pPhi,pTheta;           557   G4double rho,rho2,radius,pPhi,pTheta;
506   G4double distRMin,distRMax,distSPhi,distEPhi    558   G4double distRMin,distRMax,distSPhi,distEPhi,
507            distSTheta,distETheta,distMin;         559            distSTheta,distETheta,distMin;
508                                                   560 
509   rho2=p.x()*p.x()+p.y()*p.y();                   561   rho2=p.x()*p.x()+p.y()*p.y();
510   radius=std::sqrt(rho2+p.z()*p.z());             562   radius=std::sqrt(rho2+p.z()*p.z());
511   rho=std::sqrt(rho2);                            563   rho=std::sqrt(rho2);
512                                                   564 
513   //                                              565   //
514   // Distance to r shells                         566   // Distance to r shells
515   //                                              567   //
516                                                   568 
517   distRMax=std::fabs(radius-fRmax);               569   distRMax=std::fabs(radius-fRmax);
518   if (fRmin != 0.0)                            << 570   if (fRmin)
519   {                                               571   {
520     distRMin=std::fabs(radius-fRmin);             572     distRMin=std::fabs(radius-fRmin);
521                                                << 573       
522     if (distRMin<distRMax)                        574     if (distRMin<distRMax)
523     {                                             575     {
524       distMin=distRMin;                           576       distMin=distRMin;
525       side=kNRMin;                                577       side=kNRMin;
526     }                                             578     }
527     else                                          579     else
528     {                                          << 580     {   
529       distMin=distRMax;                           581       distMin=distRMax;
530       side=kNRMax;                                582       side=kNRMax;
531     }                                             583     }
532   }                                               584   }
533   else                                            585   else
534   {                                               586   {
535     distMin=distRMax;                             587     distMin=distRMax;
536     side=kNRMax;                                  588     side=kNRMax;
537   }                                               589   }
538                                                   590 
539   //                                              591   //
540   // Distance to phi planes                       592   // Distance to phi planes
541   //                                              593   //
542   // Protected against (0,0,z)                 << 594   // Protected against (0,0,z) 
543                                                << 595     
544   pPhi = std::atan2(p.y(),p.x());                 596   pPhi = std::atan2(p.y(),p.x());
545   if (pPhi<0) { pPhi += twopi; }                  597   if (pPhi<0) { pPhi += twopi; }
546                                                   598 
547   if (!fFullPhiSphere && (rho != 0.0))         << 599   if (!fFullPhiSphere && rho)
548   {                                               600   {
549     if (fSPhi<0)                                  601     if (fSPhi<0)
550     {                                             602     {
551       distSPhi=std::fabs(pPhi-(fSPhi+twopi))*r    603       distSPhi=std::fabs(pPhi-(fSPhi+twopi))*rho;
552     }                                             604     }
553     else                                          605     else
554     {                                             606     {
555       distSPhi=std::fabs(pPhi-fSPhi)*rho;         607       distSPhi=std::fabs(pPhi-fSPhi)*rho;
556     }                                             608     }
557                                                   609 
558     distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho;     610     distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho;
559                                                   611 
560     // Find new minimum                           612     // Find new minimum
561     //                                            613     //
562     if (distSPhi<distEPhi)                        614     if (distSPhi<distEPhi)
563     {                                             615     {
564       if (distSPhi<distMin)                       616       if (distSPhi<distMin)
565       {                                           617       {
566         distMin = distSPhi;                    << 618         distMin=distSPhi;
567         side = kNSPhi;                         << 619         side=kNSPhi;
568       }                                           620       }
569     }                                             621     }
570     else                                          622     else
571     {                                             623     {
572       if (distEPhi<distMin)                       624       if (distEPhi<distMin)
573       {                                           625       {
574         distMin = distEPhi;                    << 626         distMin=distEPhi;
575         side = kNEPhi;                         << 627         side=kNEPhi;
576       }                                           628       }
577     }                                             629     }
578   }                                               630   }
579                                                   631 
580   //                                              632   //
581   // Distance to theta planes                     633   // Distance to theta planes
582   //                                              634   //
583                                                   635 
584   if (!fFullThetaSphere && (radius != 0.0))    << 636   if (!fFullThetaSphere && radius)
585   {                                               637   {
586     pTheta=std::atan2(rho,p.z());                 638     pTheta=std::atan2(rho,p.z());
587     distSTheta=std::fabs(pTheta-fSTheta)*radiu    639     distSTheta=std::fabs(pTheta-fSTheta)*radius;
588     distETheta=std::fabs(pTheta-fSTheta-fDThet    640     distETheta=std::fabs(pTheta-fSTheta-fDTheta)*radius;
589                                                   641 
590     // Find new minimum                           642     // Find new minimum
591     //                                            643     //
592     if (distSTheta<distETheta)                    644     if (distSTheta<distETheta)
593     {                                             645     {
594       if (distSTheta<distMin)                     646       if (distSTheta<distMin)
595       {                                           647       {
596         distMin = distSTheta ;                    648         distMin = distSTheta ;
597         side = kNSTheta ;                         649         side = kNSTheta ;
598       }                                           650       }
599     }                                             651     }
600     else                                          652     else
601     {                                             653     {
602       if (distETheta<distMin)                     654       if (distETheta<distMin)
603       {                                           655       {
604         distMin = distETheta ;                    656         distMin = distETheta ;
605         side = kNETheta ;                         657         side = kNETheta ;
606       }                                           658       }
607     }                                             659     }
608   }                                               660   }
609                                                   661 
610   switch (side)                                   662   switch (side)
611   {                                               663   {
612     case kNRMin:      // Inner radius             664     case kNRMin:      // Inner radius
613       norm=G4ThreeVector(-p.x()/radius,-p.y()/    665       norm=G4ThreeVector(-p.x()/radius,-p.y()/radius,-p.z()/radius);
614       break;                                      666       break;
615     case kNRMax:      // Outer radius             667     case kNRMax:      // Outer radius
616       norm=G4ThreeVector(p.x()/radius,p.y()/ra    668       norm=G4ThreeVector(p.x()/radius,p.y()/radius,p.z()/radius);
617       break;                                      669       break;
618     case kNSPhi:                                  670     case kNSPhi:
619       norm=G4ThreeVector(sinSPhi,-cosSPhi,0);     671       norm=G4ThreeVector(sinSPhi,-cosSPhi,0);
620       break;                                      672       break;
621     case kNEPhi:                                  673     case kNEPhi:
622       norm=G4ThreeVector(-sinEPhi,cosEPhi,0);     674       norm=G4ThreeVector(-sinEPhi,cosEPhi,0);
623       break;                                      675       break;
624     case kNSTheta:                                676     case kNSTheta:
625       norm=G4ThreeVector(-cosSTheta*std::cos(p    677       norm=G4ThreeVector(-cosSTheta*std::cos(pPhi),
626                          -cosSTheta*std::sin(p    678                          -cosSTheta*std::sin(pPhi),
627                           sinSTheta               679                           sinSTheta            );
628       break;                                      680       break;
629     case kNETheta:                                681     case kNETheta:
630       norm=G4ThreeVector( cosETheta*std::cos(p    682       norm=G4ThreeVector( cosETheta*std::cos(pPhi),
631                           cosETheta*std::sin(p    683                           cosETheta*std::sin(pPhi),
632                          -sinETheta               684                          -sinETheta              );
633       break;                                      685       break;
634     default:          // Should never reach th    686     default:          // Should never reach this case ...
635       DumpInfo();                                 687       DumpInfo();
636       G4Exception("G4Sphere::ApproxSurfaceNorm    688       G4Exception("G4Sphere::ApproxSurfaceNormal()",
637                   "GeomSolids1002", JustWarnin    689                   "GeomSolids1002", JustWarning,
638                   "Undefined side for valid su    690                   "Undefined side for valid surface normal to solid.");
639       break;                                   << 691       break;    
640   }                                               692   }
641                                                   693 
642   return norm;                                    694   return norm;
643 }                                                 695 }
644                                                   696 
645 //////////////////////////////////////////////    697 ///////////////////////////////////////////////////////////////////////////////
646 //                                                698 //
647 // Calculate distance to shape from outside, a    699 // Calculate distance to shape from outside, along normalised vector
648 // - return kInfinity if no intersection, or i    700 // - return kInfinity if no intersection, or intersection distance <= tolerance
649 //                                                701 //
650 // -> If point is outside outer radius, comput    702 // -> If point is outside outer radius, compute intersection with rmax
651 //        - if no intersection return             703 //        - if no intersection return
652 //        - if  valid phi,theta return interse    704 //        - if  valid phi,theta return intersection Dist
653 //                                                705 //
654 // -> If shell, compute intersection with inne    706 // -> If shell, compute intersection with inner radius, taking largest +ve root
655 //        - if valid phi,theta, save intersect    707 //        - if valid phi,theta, save intersection
656 //                                                708 //
657 // -> If phi segmented, compute intersection w    709 // -> If phi segmented, compute intersection with phi half planes
658 //        - if valid intersection(r,theta), re    710 //        - if valid intersection(r,theta), return smallest intersection of
659 //          inner shell & phi intersection        711 //          inner shell & phi intersection
660 //                                                712 //
661 // -> If theta segmented, compute intersection    713 // -> If theta segmented, compute intersection with theta cones
662 //        - if valid intersection(r,phi), retu    714 //        - if valid intersection(r,phi), return smallest intersection of
663 //          inner shell & theta intersection      715 //          inner shell & theta intersection
664 //                                                716 //
665 //                                                717 //
666 // NOTE:                                          718 // NOTE:
667 // - `if valid' (above) implies tolerant check    719 // - `if valid' (above) implies tolerant checking of intersection points
668 //                                                720 //
669 // OPT:                                           721 // OPT:
670 // Move tolIO/ORmin/RMax2 precalcs to where th    722 // Move tolIO/ORmin/RMax2 precalcs to where they are needed -
671 // not required for most cases.                   723 // not required for most cases.
672 // Avoid atan2 for non theta cut G4Sphere.        724 // Avoid atan2 for non theta cut G4Sphere.
673                                                   725 
674 G4double G4Sphere::DistanceToIn( const G4Three    726 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p,
675                                  const G4Three    727                                  const G4ThreeVector& v  ) const
676 {                                                 728 {
677   G4double snxt = kInfinity ;      // snxt = d    729   G4double snxt = kInfinity ;      // snxt = default return value
678   G4double rho2, rad2, pDotV2d, pDotV3d, pThet    730   G4double rho2, rad2, pDotV2d, pDotV3d, pTheta ;
679   G4double tolSTheta=0., tolETheta=0. ;           731   G4double tolSTheta=0., tolETheta=0. ;
680   const G4double dRmax = 100.*fRmax;              732   const G4double dRmax = 100.*fRmax;
681                                                   733 
682   const G4double halfRmaxTolerance = fRmaxTole    734   const G4double halfRmaxTolerance = fRmaxTolerance*0.5;
683   const G4double halfRminTolerance = fRminTole    735   const G4double halfRminTolerance = fRminTolerance*0.5;
684   const G4double tolORMin2 = (fRmin>halfRminTo    736   const G4double tolORMin2 = (fRmin>halfRminTolerance)
685                ? (fRmin-halfRminTolerance)*(fR    737                ? (fRmin-halfRminTolerance)*(fRmin-halfRminTolerance) : 0;
686   const G4double tolIRMin2 =                      738   const G4double tolIRMin2 =
687                (fRmin+halfRminTolerance)*(fRmi    739                (fRmin+halfRminTolerance)*(fRmin+halfRminTolerance);
688   const G4double tolORMax2 =                      740   const G4double tolORMax2 =
689                (fRmax+halfRmaxTolerance)*(fRma    741                (fRmax+halfRmaxTolerance)*(fRmax+halfRmaxTolerance);
690   const G4double tolIRMax2 =                      742   const G4double tolIRMax2 =
691                (fRmax-halfRmaxTolerance)*(fRma    743                (fRmax-halfRmaxTolerance)*(fRmax-halfRmaxTolerance);
692                                                   744 
693   // Intersection point                           745   // Intersection point
694   //                                              746   //
695   G4double xi, yi, zi, rhoi, rhoi2, radi2, iTh    747   G4double xi, yi, zi, rhoi, rhoi2, radi2, iTheta ;
696                                                   748 
697   // Phi intersection                             749   // Phi intersection
698   //                                              750   //
699   G4double Comp ;                              << 751   G4double Comp ; 
700                                                   752 
701   // Phi precalcs                                 753   // Phi precalcs
702   //                                              754   //
703   G4double Dist, cosPsi ;                         755   G4double Dist, cosPsi ;
704                                                   756 
705   // Theta precalcs                               757   // Theta precalcs
706   //                                              758   //
707   G4double dist2STheta, dist2ETheta ;             759   G4double dist2STheta, dist2ETheta ;
708   G4double t1, t2, b, c, d2, d, sd = kInfinity    760   G4double t1, t2, b, c, d2, d, sd = kInfinity ;
709                                                   761 
710   // General Precalcs                             762   // General Precalcs
711   //                                              763   //
712   rho2 = p.x()*p.x() + p.y()*p.y() ;              764   rho2 = p.x()*p.x() + p.y()*p.y() ;
713   rad2 = rho2 + p.z()*p.z() ;                     765   rad2 = rho2 + p.z()*p.z() ;
714   pTheta = std::atan2(std::sqrt(rho2),p.z()) ;    766   pTheta = std::atan2(std::sqrt(rho2),p.z()) ;
715                                                   767 
716   pDotV2d = p.x()*v.x() + p.y()*v.y() ;           768   pDotV2d = p.x()*v.x() + p.y()*v.y() ;
717   pDotV3d = pDotV2d + p.z()*v.z() ;               769   pDotV3d = pDotV2d + p.z()*v.z() ;
718                                                   770 
719   // Theta precalcs                               771   // Theta precalcs
720   //                                              772   //
721   if (!fFullThetaSphere)                          773   if (!fFullThetaSphere)
722   {                                               774   {
723     tolSTheta = fSTheta - halfAngTolerance ;      775     tolSTheta = fSTheta - halfAngTolerance ;
724     tolETheta = eTheta + halfAngTolerance ;       776     tolETheta = eTheta + halfAngTolerance ;
725                                                   777 
726     // Special case rad2 = 0 comparing with di    778     // Special case rad2 = 0 comparing with direction
727     //                                            779     //
728     if ((rad2!=0.0) || (fRmin!=0.0))              780     if ((rad2!=0.0) || (fRmin!=0.0))
729     {                                             781     {
730       // Keep going for computation of distanc    782       // Keep going for computation of distance...
731     }                                             783     }
732     else  // Positioned on the sphere's origin    784     else  // Positioned on the sphere's origin
733     {                                             785     {
734       G4double vTheta = std::atan2(std::sqrt(v    786       G4double vTheta = std::atan2(std::sqrt(v.x()*v.x()+v.y()*v.y()),v.z()) ;
735       if ( (vTheta < tolSTheta) || (vTheta > t    787       if ( (vTheta < tolSTheta) || (vTheta > tolETheta) )
736       {                                           788       {
737         return snxt ; // kInfinity                789         return snxt ; // kInfinity
738       }                                           790       }
739       return snxt = 0.0 ;                         791       return snxt = 0.0 ;
740     }                                             792     }
741   }                                               793   }
742                                                   794 
743   // Outer spherical shell intersection           795   // Outer spherical shell intersection
744   // - Only if outside tolerant fRmax             796   // - Only if outside tolerant fRmax
745   // - Check for if inside and outer G4Sphere     797   // - Check for if inside and outer G4Sphere heading through solid (-> 0)
746   // - No intersect -> no intersection with G4    798   // - No intersect -> no intersection with G4Sphere
747   //                                              799   //
748   // Shell eqn: x^2+y^2+z^2=RSPH^2                800   // Shell eqn: x^2+y^2+z^2=RSPH^2
749   //                                              801   //
750   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2      802   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2
751   //                                              803   //
752   // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+    804   // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+sd^2(vx^2+vy^2+vz^2)=R^2
753   // =>      rad2        +2sd(pDotV3d)       +    805   // =>      rad2        +2sd(pDotV3d)       +sd^2                =R^2
754   //                                              806   //
755   // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2    807   // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2))
756                                                   808 
757   c = rad2 - fRmax*fRmax ;                        809   c = rad2 - fRmax*fRmax ;
758                                                   810 
759   if (c > fRmaxTolerance*fRmax)                   811   if (c > fRmaxTolerance*fRmax)
760   {                                               812   {
761     // If outside tolerant boundary of outer G    813     // If outside tolerant boundary of outer G4Sphere
762     // [should be std::sqrt(rad2)-fRmax > half    814     // [should be std::sqrt(rad2)-fRmax > halfRmaxTolerance]
763                                                   815 
764     d2 = pDotV3d*pDotV3d - c ;                    816     d2 = pDotV3d*pDotV3d - c ;
765                                                   817 
766     if ( d2 >= 0 )                                818     if ( d2 >= 0 )
767     {                                             819     {
768       sd = -pDotV3d - std::sqrt(d2) ;             820       sd = -pDotV3d - std::sqrt(d2) ;
769                                                   821 
770       if (sd >= 0 )                               822       if (sd >= 0 )
771       {                                           823       {
772         if ( sd>dRmax ) // Avoid rounding erro    824         if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen on
773         {               // 64 bits systems. Sp    825         {               // 64 bits systems. Split long distances and recompute
774           G4double fTerm = sd-std::fmod(sd,dRm    826           G4double fTerm = sd-std::fmod(sd,dRmax);
775           sd = fTerm + DistanceToIn(p+fTerm*v,    827           sd = fTerm + DistanceToIn(p+fTerm*v,v);
776         }                                      << 828         } 
777         xi   = p.x() + sd*v.x() ;                 829         xi   = p.x() + sd*v.x() ;
778         yi   = p.y() + sd*v.y() ;                 830         yi   = p.y() + sd*v.y() ;
779         rhoi = std::sqrt(xi*xi + yi*yi) ;         831         rhoi = std::sqrt(xi*xi + yi*yi) ;
780                                                   832 
781         if (!fFullPhiSphere && (rhoi != 0.0))  << 833         if (!fFullPhiSphere && rhoi)    // Check phi intersection
782         {                                         834         {
783           cosPsi = (xi*cosCPhi + yi*sinCPhi)/r    835           cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ;
784                                                   836 
785           if (cosPsi >= cosHDPhiOT)               837           if (cosPsi >= cosHDPhiOT)
786           {                                       838           {
787             if (!fFullThetaSphere)   // Check     839             if (!fFullThetaSphere)   // Check theta intersection
788             {                                     840             {
789               zi = p.z() + sd*v.z() ;             841               zi = p.z() + sd*v.z() ;
790                                                   842 
791               // rhoi & zi can never both be 0    843               // rhoi & zi can never both be 0
792               // (=>intersect at origin =>fRma    844               // (=>intersect at origin =>fRmax=0)
793               //                                  845               //
794               iTheta = std::atan2(rhoi,zi) ;      846               iTheta = std::atan2(rhoi,zi) ;
795               if ( (iTheta >= tolSTheta) && (i    847               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
796               {                                   848               {
797                 return snxt = sd ;                849                 return snxt = sd ;
798               }                                   850               }
799             }                                     851             }
800             else                                  852             else
801             {                                     853             {
802               return snxt=sd;                     854               return snxt=sd;
803             }                                     855             }
804           }                                       856           }
805         }                                         857         }
806         else                                      858         else
807         {                                         859         {
808           if (!fFullThetaSphere)    // Check t    860           if (!fFullThetaSphere)    // Check theta intersection
809           {                                       861           {
810             zi = p.z() + sd*v.z() ;               862             zi = p.z() + sd*v.z() ;
811                                                   863 
812             // rhoi & zi can never both be 0      864             // rhoi & zi can never both be 0
813             // (=>intersect at origin => fRmax    865             // (=>intersect at origin => fRmax=0 !)
814             //                                    866             //
815             iTheta = std::atan2(rhoi,zi) ;        867             iTheta = std::atan2(rhoi,zi) ;
816             if ( (iTheta >= tolSTheta) && (iTh    868             if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
817             {                                     869             {
818               return snxt=sd;                     870               return snxt=sd;
819             }                                     871             }
820           }                                       872           }
821           else                                    873           else
822           {                                       874           {
823             return snxt = sd;                     875             return snxt = sd;
824           }                                       876           }
825         }                                      << 877         }          
826       }                                           878       }
827     }                                             879     }
828     else    // No intersection with G4Sphere      880     else    // No intersection with G4Sphere
829     {                                             881     {
830       return snxt=kInfinity;                      882       return snxt=kInfinity;
831     }                                             883     }
832   }                                               884   }
833   else                                            885   else
834   {                                               886   {
835     // Inside outer radius                        887     // Inside outer radius
836     // check not inside, and heading through G    888     // check not inside, and heading through G4Sphere (-> 0 to in)
837                                                   889 
838     d2 = pDotV3d*pDotV3d - c ;                    890     d2 = pDotV3d*pDotV3d - c ;
839                                                   891 
840     if ( (rad2 > tolIRMax2)                       892     if ( (rad2 > tolIRMax2)
841       && ( (d2 >= fRmaxTolerance*fRmax) && (pD    893       && ( (d2 >= fRmaxTolerance*fRmax) && (pDotV3d < 0) ) )
842     {                                             894     {
843       if (!fFullPhiSphere)                        895       if (!fFullPhiSphere)
844       {                                           896       {
845         // Use inner phi tolerant boundary ->     897         // Use inner phi tolerant boundary -> if on tolerant
846         // phi boundaries, phi intersect code     898         // phi boundaries, phi intersect code handles leaving/entering checks
847                                                   899 
848         cosPsi = (p.x()*cosCPhi + p.y()*sinCPh    900         cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
849                                                   901 
850         if (cosPsi>=cosHDPhiIT)                   902         if (cosPsi>=cosHDPhiIT)
851         {                                      << 903         { 
852           // inside radii, delta r -ve, inside    904           // inside radii, delta r -ve, inside phi
853                                                   905 
854           if ( !fFullThetaSphere )                906           if ( !fFullThetaSphere )
855           {                                       907           {
856             if ( (pTheta >= tolSTheta + kAngTo    908             if ( (pTheta >= tolSTheta + kAngTolerance)
857               && (pTheta <= tolETheta - kAngTo    909               && (pTheta <= tolETheta - kAngTolerance) )
858             {                                     910             {
859               return snxt=0;                      911               return snxt=0;
860             }                                     912             }
861           }                                       913           }
862           else    // strictly inside Theta in     914           else    // strictly inside Theta in both cases
863           {                                       915           {
864             return snxt=0;                        916             return snxt=0;
865           }                                       917           }
866         }                                         918         }
867       }                                           919       }
868       else                                        920       else
869       {                                           921       {
870         if ( !fFullThetaSphere )                  922         if ( !fFullThetaSphere )
871         {                                         923         {
872           if ( (pTheta >= tolSTheta + kAngTole    924           if ( (pTheta >= tolSTheta + kAngTolerance)
873             && (pTheta <= tolETheta - kAngTole    925             && (pTheta <= tolETheta - kAngTolerance) )
874           {                                       926           {
875             return snxt=0;                        927             return snxt=0;
876           }                                       928           }
877         }                                         929         }
878         else   // strictly inside Theta in bot    930         else   // strictly inside Theta in both cases
879         {                                         931         {
880           return snxt=0;                          932           return snxt=0;
881         }                                         933         }
882       }                                           934       }
883     }                                             935     }
884   }                                               936   }
885                                                   937 
886   // Inner spherical shell intersection           938   // Inner spherical shell intersection
887   // - Always farthest root, because would hav    939   // - Always farthest root, because would have passed through outer
888   //   surface first.                             940   //   surface first.
889   // - Tolerant check if travelling through so    941   // - Tolerant check if travelling through solid
890                                                   942 
891   if (fRmin != 0.0)                            << 943   if (fRmin)
892   {                                               944   {
893     c  = rad2 - fRmin*fRmin ;                     945     c  = rad2 - fRmin*fRmin ;
894     d2 = pDotV3d*pDotV3d - c ;                    946     d2 = pDotV3d*pDotV3d - c ;
895                                                   947 
896     // Within tolerance inner radius of inner     948     // Within tolerance inner radius of inner G4Sphere
897     // Check for immediate entry/already insid    949     // Check for immediate entry/already inside and travelling outwards
898                                                   950 
899     if ( (c > -halfRminTolerance) && (rad2 < t    951     if ( (c > -halfRminTolerance) && (rad2 < tolIRMin2)
900       && ( (d2 < fRmin*kCarTolerance) || (pDot    952       && ( (d2 < fRmin*kCarTolerance) || (pDotV3d >= 0) ) )
901     {                                             953     {
902       if ( !fFullPhiSphere )                      954       if ( !fFullPhiSphere )
903       {                                           955       {
904         // Use inner phi tolerant boundary ->     956         // Use inner phi tolerant boundary -> if on tolerant
905         // phi boundaries, phi intersect code     957         // phi boundaries, phi intersect code handles leaving/entering checks
906                                                   958 
907         cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)    959         cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)/std::sqrt(rho2) ;
908         if (cosPsi >= cosHDPhiIT)                 960         if (cosPsi >= cosHDPhiIT)
909         {                                      << 961         { 
910           // inside radii, delta r -ve, inside    962           // inside radii, delta r -ve, inside phi
911           //                                      963           //
912           if ( !fFullThetaSphere )                964           if ( !fFullThetaSphere )
913           {                                       965           {
914             if ( (pTheta >= tolSTheta + kAngTo    966             if ( (pTheta >= tolSTheta + kAngTolerance)
915               && (pTheta <= tolETheta - kAngTo    967               && (pTheta <= tolETheta - kAngTolerance) )
916             {                                     968             {
917               return snxt=0;                      969               return snxt=0;
918             }                                     970             }
919           }                                       971           }
920           else                                    972           else
921           {                                       973           {
922             return snxt = 0 ;                     974             return snxt = 0 ;
923           }                                       975           }
924         }                                         976         }
925       }                                           977       }
926       else                                        978       else
927       {                                           979       {
928         if ( !fFullThetaSphere )                  980         if ( !fFullThetaSphere )
929         {                                         981         {
930           if ( (pTheta >= tolSTheta + kAngTole    982           if ( (pTheta >= tolSTheta + kAngTolerance)
931             && (pTheta <= tolETheta - kAngTole    983             && (pTheta <= tolETheta - kAngTolerance) )
932           {                                       984           {
933             return snxt = 0 ;                     985             return snxt = 0 ;
934           }                                       986           }
935         }                                         987         }
936         else                                      988         else
937         {                                         989         {
938           return snxt=0;                          990           return snxt=0;
939         }                                         991         }
940       }                                           992       }
941     }                                             993     }
942     else   // Not special tolerant case           994     else   // Not special tolerant case
943     {                                             995     {
944       if (d2 >= 0)                                996       if (d2 >= 0)
945       {                                           997       {
946         sd = -pDotV3d + std::sqrt(d2) ;           998         sd = -pDotV3d + std::sqrt(d2) ;
947         if ( sd >= halfRminTolerance )  // It     999         if ( sd >= halfRminTolerance )  // It was >= 0 ??
948         {                                         1000         {
949           xi   = p.x() + sd*v.x() ;               1001           xi   = p.x() + sd*v.x() ;
950           yi   = p.y() + sd*v.y() ;               1002           yi   = p.y() + sd*v.y() ;
951           rhoi = std::sqrt(xi*xi+yi*yi) ;         1003           rhoi = std::sqrt(xi*xi+yi*yi) ;
952                                                   1004 
953           if ( !fFullPhiSphere && (rhoi != 0.0 << 1005           if ( !fFullPhiSphere && rhoi )   // Check phi intersection
954           {                                       1006           {
955             cosPsi = (xi*cosCPhi + yi*sinCPhi)    1007             cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ;
956                                                   1008 
957             if (cosPsi >= cosHDPhiOT)             1009             if (cosPsi >= cosHDPhiOT)
958             {                                     1010             {
959               if ( !fFullThetaSphere )  // Che    1011               if ( !fFullThetaSphere )  // Check theta intersection
960               {                                   1012               {
961                 zi = p.z() + sd*v.z() ;           1013                 zi = p.z() + sd*v.z() ;
962                                                   1014 
963                 // rhoi & zi can never both be    1015                 // rhoi & zi can never both be 0
964                 // (=>intersect at origin =>fR    1016                 // (=>intersect at origin =>fRmax=0)
965                 //                                1017                 //
966                 iTheta = std::atan2(rhoi,zi) ;    1018                 iTheta = std::atan2(rhoi,zi) ;
967                 if ( (iTheta >= tolSTheta) &&     1019                 if ( (iTheta >= tolSTheta) && (iTheta<=tolETheta) )
968                 {                                 1020                 {
969                   snxt = sd;                      1021                   snxt = sd;
970                 }                                 1022                 }
971               }                                   1023               }
972               else                                1024               else
973               {                                   1025               {
974                 snxt=sd;                          1026                 snxt=sd;
975               }                                   1027               }
976             }                                     1028             }
977           }                                       1029           }
978           else                                    1030           else
979           {                                       1031           {
980             if ( !fFullThetaSphere )   // Chec    1032             if ( !fFullThetaSphere )   // Check theta intersection
981             {                                     1033             {
982               zi = p.z() + sd*v.z() ;             1034               zi = p.z() + sd*v.z() ;
983                                                   1035 
984               // rhoi & zi can never both be 0    1036               // rhoi & zi can never both be 0
985               // (=>intersect at origin => fRm    1037               // (=>intersect at origin => fRmax=0 !)
986               //                                  1038               //
987               iTheta = std::atan2(rhoi,zi) ;      1039               iTheta = std::atan2(rhoi,zi) ;
988               if ( (iTheta >= tolSTheta) && (i    1040               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
989               {                                   1041               {
990                 snxt = sd;                        1042                 snxt = sd;
991               }                                   1043               }
992             }                                     1044             }
993             else                                  1045             else
994             {                                     1046             {
995               snxt = sd;                          1047               snxt = sd;
996             }                                     1048             }
997           }                                       1049           }
998         }                                         1050         }
999       }                                           1051       }
1000     }                                            1052     }
1001   }                                              1053   }
1002                                                  1054 
1003   // Phi segment intersection                    1055   // Phi segment intersection
1004   //                                             1056   //
1005   // o Tolerant of points inside phi planes b    1057   // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1006   //                                             1058   //
1007   // o NOTE: Large duplication of code betwee    1059   // o NOTE: Large duplication of code between sphi & ephi checks
1008   //         -> only diffs: sphi -> ephi, Com    1060   //         -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1009   //            intersection check <=0 -> >=0    1061   //            intersection check <=0 -> >=0
1010   //         -> Should use some form of loop     1062   //         -> Should use some form of loop Construct
1011   //                                             1063   //
1012   if ( !fFullPhiSphere )                         1064   if ( !fFullPhiSphere )
1013   {                                              1065   {
1014     // First phi surface ('S'tarting phi)        1066     // First phi surface ('S'tarting phi)
1015     // Comp = Component in outwards normal di    1067     // Comp = Component in outwards normal dirn
1016     //                                           1068     //
1017     Comp = v.x()*sinSPhi - v.y()*cosSPhi ;       1069     Comp = v.x()*sinSPhi - v.y()*cosSPhi ;
1018                                               << 1070                     
1019     if ( Comp < 0 )                              1071     if ( Comp < 0 )
1020     {                                            1072     {
1021       Dist = p.y()*cosSPhi - p.x()*sinSPhi ;     1073       Dist = p.y()*cosSPhi - p.x()*sinSPhi ;
1022                                                  1074 
1023       if (Dist < halfCarTolerance)               1075       if (Dist < halfCarTolerance)
1024       {                                          1076       {
1025         sd = Dist/Comp ;                         1077         sd = Dist/Comp ;
1026                                                  1078 
1027         if (sd < snxt)                           1079         if (sd < snxt)
1028         {                                        1080         {
1029           if ( sd > 0 )                          1081           if ( sd > 0 )
1030           {                                      1082           {
1031             xi    = p.x() + sd*v.x() ;           1083             xi    = p.x() + sd*v.x() ;
1032             yi    = p.y() + sd*v.y() ;           1084             yi    = p.y() + sd*v.y() ;
1033             zi    = p.z() + sd*v.z() ;           1085             zi    = p.z() + sd*v.z() ;
1034             rhoi2 = xi*xi + yi*yi   ;            1086             rhoi2 = xi*xi + yi*yi   ;
1035             radi2 = rhoi2 + zi*zi   ;            1087             radi2 = rhoi2 + zi*zi   ;
1036           }                                      1088           }
1037           else                                   1089           else
1038           {                                      1090           {
1039             sd    = 0     ;                      1091             sd    = 0     ;
1040             xi    = p.x() ;                      1092             xi    = p.x() ;
1041             yi    = p.y() ;                      1093             yi    = p.y() ;
1042             zi    = p.z() ;                      1094             zi    = p.z() ;
1043             rhoi2 = rho2  ;                      1095             rhoi2 = rho2  ;
1044             radi2 = rad2  ;                      1096             radi2 = rad2  ;
1045           }                                      1097           }
1046           if ( (radi2 <= tolORMax2)              1098           if ( (radi2 <= tolORMax2)
1047             && (radi2 >= tolORMin2)              1099             && (radi2 >= tolORMin2)
1048             && ((yi*cosCPhi-xi*sinCPhi) <= 0)    1100             && ((yi*cosCPhi-xi*sinCPhi) <= 0) )
1049           {                                      1101           {
1050             // Check theta intersection          1102             // Check theta intersection
1051             // rhoi & zi can never both be 0     1103             // rhoi & zi can never both be 0
1052             // (=>intersect at origin =>fRmax    1104             // (=>intersect at origin =>fRmax=0)
1053             //                                   1105             //
1054             if ( !fFullThetaSphere )             1106             if ( !fFullThetaSphere )
1055             {                                    1107             {
1056               iTheta = std::atan2(std::sqrt(r    1108               iTheta = std::atan2(std::sqrt(rhoi2),zi) ;
1057               if ( (iTheta >= tolSTheta) && (    1109               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
1058               {                                  1110               {
1059                 // r and theta intersections     1111                 // r and theta intersections good
1060                 // - check intersecting with     1112                 // - check intersecting with correct half-plane
1061                                                  1113 
1062                 if ((yi*cosCPhi-xi*sinCPhi) <    1114                 if ((yi*cosCPhi-xi*sinCPhi) <= 0)
1063                 {                                1115                 {
1064                   snxt = sd;                     1116                   snxt = sd;
1065                 }                                1117                 }
1066               }                                  1118               }
1067             }                                    1119             }
1068             else                                 1120             else
1069             {                                    1121             {
1070               snxt = sd;                         1122               snxt = sd;
1071             }                                    1123             }
1072           }                                      1124           }
1073         }                                        1125         }
1074       }                                          1126       }
1075     }                                            1127     }
1076                                                  1128 
1077     // Second phi surface ('E'nding phi)         1129     // Second phi surface ('E'nding phi)
1078     // Component in outwards normal dirn         1130     // Component in outwards normal dirn
1079                                                  1131 
1080     Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ;    1132     Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ;
1081                                               << 1133         
1082     if (Comp < 0)                                1134     if (Comp < 0)
1083     {                                            1135     {
1084       Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ;    1136       Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ;
1085       if ( Dist < halfCarTolerance )             1137       if ( Dist < halfCarTolerance )
1086       {                                          1138       {
1087         sd = Dist/Comp ;                         1139         sd = Dist/Comp ;
1088                                                  1140 
1089         if ( sd < snxt )                         1141         if ( sd < snxt )
1090         {                                        1142         {
1091           if (sd > 0)                            1143           if (sd > 0)
1092           {                                      1144           {
1093             xi    = p.x() + sd*v.x() ;           1145             xi    = p.x() + sd*v.x() ;
1094             yi    = p.y() + sd*v.y() ;           1146             yi    = p.y() + sd*v.y() ;
1095             zi    = p.z() + sd*v.z() ;           1147             zi    = p.z() + sd*v.z() ;
1096             rhoi2 = xi*xi + yi*yi   ;            1148             rhoi2 = xi*xi + yi*yi   ;
1097             radi2 = rhoi2 + zi*zi   ;            1149             radi2 = rhoi2 + zi*zi   ;
1098           }                                      1150           }
1099           else                                   1151           else
1100           {                                      1152           {
1101             sd    = 0     ;                      1153             sd    = 0     ;
1102             xi    = p.x() ;                      1154             xi    = p.x() ;
1103             yi    = p.y() ;                      1155             yi    = p.y() ;
1104             zi    = p.z() ;                      1156             zi    = p.z() ;
1105             rhoi2 = rho2  ;                      1157             rhoi2 = rho2  ;
1106             radi2 = rad2  ;                      1158             radi2 = rad2  ;
1107           }                                      1159           }
1108           if ( (radi2 <= tolORMax2)              1160           if ( (radi2 <= tolORMax2)
1109             && (radi2 >= tolORMin2)              1161             && (radi2 >= tolORMin2)
1110             && ((yi*cosCPhi-xi*sinCPhi) >= 0)    1162             && ((yi*cosCPhi-xi*sinCPhi) >= 0) )
1111           {                                      1163           {
1112             // Check theta intersection          1164             // Check theta intersection
1113             // rhoi & zi can never both be 0     1165             // rhoi & zi can never both be 0
1114             // (=>intersect at origin =>fRmax    1166             // (=>intersect at origin =>fRmax=0)
1115             //                                   1167             //
1116             if ( !fFullThetaSphere )             1168             if ( !fFullThetaSphere )
1117             {                                    1169             {
1118               iTheta = std::atan2(std::sqrt(r    1170               iTheta = std::atan2(std::sqrt(rhoi2),zi) ;
1119               if ( (iTheta >= tolSTheta) && (    1171               if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
1120               {                                  1172               {
1121                 // r and theta intersections     1173                 // r and theta intersections good
1122                 // - check intersecting with     1174                 // - check intersecting with correct half-plane
1123                                                  1175 
1124                 if ((yi*cosCPhi-xi*sinCPhi) >    1176                 if ((yi*cosCPhi-xi*sinCPhi) >= 0)
1125                 {                                1177                 {
1126                   snxt = sd;                     1178                   snxt = sd;
1127                 }                                1179                 }
1128               }                                  1180               }
1129             }                                    1181             }
1130             else                                 1182             else
1131             {                                    1183             {
1132               snxt = sd;                         1184               snxt = sd;
1133             }                                    1185             }
1134           }                                      1186           }
1135         }                                        1187         }
1136       }                                          1188       }
1137     }                                            1189     }
1138   }                                              1190   }
1139                                                  1191 
1140   // Theta segment intersection                  1192   // Theta segment intersection
1141                                                  1193 
1142   if ( !fFullThetaSphere )                       1194   if ( !fFullThetaSphere )
1143   {                                              1195   {
1144                                                  1196 
1145     // Intersection with theta surfaces          1197     // Intersection with theta surfaces
1146     // Known failure cases:                      1198     // Known failure cases:
1147     // o  Inside tolerance of stheta surface,    1199     // o  Inside tolerance of stheta surface, skim
1148     //    ~parallel to cone and Hit & enter e    1200     //    ~parallel to cone and Hit & enter etheta surface [& visa versa]
1149     //                                           1201     //
1150     //    To solve: Check 2nd root of etheta     1202     //    To solve: Check 2nd root of etheta surface in addition to stheta
1151     //                                           1203     //
1152     // o  start/end theta is exactly pi/2     << 1204     // o  start/end theta is exactly pi/2 
1153     // Intersections with cones                  1205     // Intersections with cones
1154     //                                           1206     //
1155     // Cone equation: x^2+y^2=z^2tan^2(t)        1207     // Cone equation: x^2+y^2=z^2tan^2(t)
1156     //                                           1208     //
1157     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan    1209     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t)
1158     //                                           1210     //
1159     // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p    1211     // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+pyvy-pzvztan^2(t))
1160     //       + sd^2(vx^2+vy^2-vz^2tan^2(t)) =    1212     //       + sd^2(vx^2+vy^2-vz^2tan^2(t)) = 0
1161     //                                           1213     //
1162     // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d    1214     // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d-pzvztan^2(t))
1163     //       + (rho2-pz^2tan^2(t)) = 0           1215     //       + (rho2-pz^2tan^2(t)) = 0
1164                                                  1216 
1165     if (fSTheta != 0.0)                       << 1217     if (fSTheta)
1166     {                                            1218     {
1167       dist2STheta = rho2 - p.z()*p.z()*tanSTh    1219       dist2STheta = rho2 - p.z()*p.z()*tanSTheta2 ;
1168     }                                            1220     }
1169     else                                         1221     else
1170     {                                            1222     {
1171       dist2STheta = kInfinity ;                  1223       dist2STheta = kInfinity ;
1172     }                                            1224     }
1173     if ( eTheta < pi )                           1225     if ( eTheta < pi )
1174     {                                            1226     {
1175       dist2ETheta=rho2-p.z()*p.z()*tanETheta2    1227       dist2ETheta=rho2-p.z()*p.z()*tanETheta2;
1176     }                                            1228     }
1177     else                                         1229     else
1178     {                                            1230     {
1179       dist2ETheta=kInfinity;                     1231       dist2ETheta=kInfinity;
1180     }                                         << 1232     }      
1181     if ( pTheta < tolSTheta )                    1233     if ( pTheta < tolSTheta )
1182     {                                            1234     {
1183       // Inside (theta<stheta-tol) stheta con    1235       // Inside (theta<stheta-tol) stheta cone
1184       // First root of stheta cone, second if    1236       // First root of stheta cone, second if first root -ve
1185                                                  1237 
1186       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;    1238       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
1187       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;    1239       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
1188       if (t1 != 0.0)                          << 1240       if (t1)
1189       {                                       << 1241       {   
1190         b  = t2/t1 ;                             1242         b  = t2/t1 ;
1191         c  = dist2STheta/t1 ;                    1243         c  = dist2STheta/t1 ;
1192         d2 = b*b - c ;                           1244         d2 = b*b - c ;
1193                                                  1245 
1194         if ( d2 >= 0 )                           1246         if ( d2 >= 0 )
1195         {                                        1247         {
1196           d  = std::sqrt(d2) ;                   1248           d  = std::sqrt(d2) ;
1197           sd = -b - d ;    // First root         1249           sd = -b - d ;    // First root
1198           zi = p.z() + sd*v.z();                 1250           zi = p.z() + sd*v.z();
1199                                                  1251 
1200           if ( (sd < 0) || (zi*(fSTheta - hal    1252           if ( (sd < 0) || (zi*(fSTheta - halfpi) > 0) )
1201           {                                      1253           {
1202             sd = -b+d;    // Second root         1254             sd = -b+d;    // Second root
1203           }                                      1255           }
1204           if ((sd >= 0) && (sd < snxt))          1256           if ((sd >= 0) && (sd < snxt))
1205           {                                      1257           {
1206             xi    = p.x() + sd*v.x();            1258             xi    = p.x() + sd*v.x();
1207             yi    = p.y() + sd*v.y();            1259             yi    = p.y() + sd*v.y();
1208             zi    = p.z() + sd*v.z();            1260             zi    = p.z() + sd*v.z();
1209             rhoi2 = xi*xi + yi*yi;               1261             rhoi2 = xi*xi + yi*yi;
1210             radi2 = rhoi2 + zi*zi;               1262             radi2 = rhoi2 + zi*zi;
1211             if ( (radi2 <= tolORMax2)            1263             if ( (radi2 <= tolORMax2)
1212               && (radi2 >= tolORMin2)            1264               && (radi2 >= tolORMin2)
1213               && (zi*(fSTheta - halfpi) <= 0)    1265               && (zi*(fSTheta - halfpi) <= 0) )
1214             {                                    1266             {
1215               if ( !fFullPhiSphere && (rhoi2  << 1267               if ( !fFullPhiSphere && rhoi2 )  // Check phi intersection
1216               {                                  1268               {
1217                 cosPsi = (xi*cosCPhi + yi*sin    1269                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1218                 if (cosPsi >= cosHDPhiOT)        1270                 if (cosPsi >= cosHDPhiOT)
1219                 {                                1271                 {
1220                   snxt = sd;                     1272                   snxt = sd;
1221                 }                                1273                 }
1222               }                                  1274               }
1223               else                               1275               else
1224               {                                  1276               {
1225                 snxt = sd;                       1277                 snxt = sd;
1226               }                                  1278               }
1227             }                                    1279             }
1228           }                                      1280           }
1229         }                                        1281         }
1230       }                                          1282       }
1231                                                  1283 
1232       // Possible intersection with ETheta co << 1284       // Possible intersection with ETheta cone. 
1233       // Second >= 0 root should be considere    1285       // Second >= 0 root should be considered
1234                                               << 1286         
1235       if ( eTheta < pi )                         1287       if ( eTheta < pi )
1236       {                                          1288       {
1237         t1 = 1 - v.z()*v.z()*(1 + tanETheta2)    1289         t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
1238         t2 = pDotV2d - p.z()*v.z()*tanETheta2    1290         t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
1239         if (t1 != 0.0)                        << 1291         if (t1)
1240         {                                     << 1292         { 
1241           b  = t2/t1 ;                           1293           b  = t2/t1 ;
1242           c  = dist2ETheta/t1 ;                  1294           c  = dist2ETheta/t1 ;
1243           d2 = b*b - c ;                         1295           d2 = b*b - c ;
1244                                                  1296 
1245           if (d2 >= 0)                           1297           if (d2 >= 0)
1246           {                                      1298           {
1247             d  = std::sqrt(d2) ;                 1299             d  = std::sqrt(d2) ;
1248             sd = -b + d ;    // Second root      1300             sd = -b + d ;    // Second root
1249                                                  1301 
1250             if ( (sd >= 0) && (sd < snxt) )      1302             if ( (sd >= 0) && (sd < snxt) )
1251             {                                    1303             {
1252               xi    = p.x() + sd*v.x() ;         1304               xi    = p.x() + sd*v.x() ;
1253               yi    = p.y() + sd*v.y() ;         1305               yi    = p.y() + sd*v.y() ;
1254               zi    = p.z() + sd*v.z() ;         1306               zi    = p.z() + sd*v.z() ;
1255               rhoi2 = xi*xi + yi*yi   ;          1307               rhoi2 = xi*xi + yi*yi   ;
1256               radi2 = rhoi2 + zi*zi   ;          1308               radi2 = rhoi2 + zi*zi   ;
1257                                                  1309 
1258               if ( (radi2 <= tolORMax2)          1310               if ( (radi2 <= tolORMax2)
1259                 && (radi2 >= tolORMin2)          1311                 && (radi2 >= tolORMin2)
1260                 && (zi*(eTheta - halfpi) <= 0    1312                 && (zi*(eTheta - halfpi) <= 0) )
1261               {                                  1313               {
1262                 if (!fFullPhiSphere && (rhoi2 << 1314                 if (!fFullPhiSphere && rhoi2)   // Check phi intersection
1263                 {                                1315                 {
1264                   cosPsi = (xi*cosCPhi + yi*s    1316                   cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1265                   if (cosPsi >= cosHDPhiOT)      1317                   if (cosPsi >= cosHDPhiOT)
1266                   {                              1318                   {
1267                     snxt = sd;                   1319                     snxt = sd;
1268                   }                              1320                   }
1269                 }                                1321                 }
1270                 else                             1322                 else
1271                 {                                1323                 {
1272                   snxt = sd;                     1324                   snxt = sd;
1273                 }                                1325                 }
1274               }                                  1326               }
1275             }                                    1327             }
1276           }                                      1328           }
1277         }                                        1329         }
1278       }                                          1330       }
1279     }                                         << 1331     }  
1280     else if ( pTheta > tolETheta )            << 1332     else if ( pTheta > tolETheta ) 
1281     {                                         << 1333     { 
1282       // dist2ETheta<-kRadTolerance*0.5 && di    1334       // dist2ETheta<-kRadTolerance*0.5 && dist2STheta>0)
1283       // Inside (theta > etheta+tol) e-theta     1335       // Inside (theta > etheta+tol) e-theta cone
1284       // First root of etheta cone, second if    1336       // First root of etheta cone, second if first root 'imaginary'
1285                                                  1337 
1286       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;    1338       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
1287       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;    1339       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
1288       if (t1 != 0.0)                          << 1340       if (t1)
1289       {                                       << 1341       {  
1290         b  = t2/t1 ;                             1342         b  = t2/t1 ;
1291         c  = dist2ETheta/t1 ;                    1343         c  = dist2ETheta/t1 ;
1292         d2 = b*b - c ;                           1344         d2 = b*b - c ;
1293                                                  1345 
1294         if (d2 >= 0)                             1346         if (d2 >= 0)
1295         {                                        1347         {
1296           d  = std::sqrt(d2) ;                   1348           d  = std::sqrt(d2) ;
1297           sd = -b - d ;    // First root         1349           sd = -b - d ;    // First root
1298           zi = p.z() + sd*v.z();                 1350           zi = p.z() + sd*v.z();
1299                                                  1351 
1300           if ( (sd < 0) || (zi*(eTheta - half    1352           if ( (sd < 0) || (zi*(eTheta - halfpi) > 0) )
1301           {                                      1353           {
1302             sd = -b + d ;           // second    1354             sd = -b + d ;           // second root
1303           }                                      1355           }
1304           if ( (sd >= 0) && (sd < snxt) )        1356           if ( (sd >= 0) && (sd < snxt) )
1305           {                                      1357           {
1306             xi    = p.x() + sd*v.x() ;           1358             xi    = p.x() + sd*v.x() ;
1307             yi    = p.y() + sd*v.y() ;           1359             yi    = p.y() + sd*v.y() ;
1308             zi    = p.z() + sd*v.z() ;           1360             zi    = p.z() + sd*v.z() ;
1309             rhoi2 = xi*xi + yi*yi   ;            1361             rhoi2 = xi*xi + yi*yi   ;
1310             radi2 = rhoi2 + zi*zi   ;            1362             radi2 = rhoi2 + zi*zi   ;
1311                                                  1363 
1312             if ( (radi2 <= tolORMax2)            1364             if ( (radi2 <= tolORMax2)
1313               && (radi2 >= tolORMin2)         << 1365               && (radi2 >= tolORMin2) 
1314               && (zi*(eTheta - halfpi) <= 0)     1366               && (zi*(eTheta - halfpi) <= 0) )
1315             {                                    1367             {
1316               if (!fFullPhiSphere && (rhoi2 ! << 1368               if (!fFullPhiSphere && rhoi2)  // Check phi intersection
1317               {                                  1369               {
1318                 cosPsi = (xi*cosCPhi + yi*sin    1370                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1319                 if (cosPsi >= cosHDPhiOT)        1371                 if (cosPsi >= cosHDPhiOT)
1320                 {                                1372                 {
1321                   snxt = sd;                     1373                   snxt = sd;
1322                 }                                1374                 }
1323               }                                  1375               }
1324               else                               1376               else
1325               {                                  1377               {
1326                 snxt = sd;                       1378                 snxt = sd;
1327               }                                  1379               }
1328             }                                    1380             }
1329           }                                      1381           }
1330         }                                        1382         }
1331       }                                          1383       }
1332                                                  1384 
1333       // Possible intersection with STheta co << 1385       // Possible intersection with STheta cone. 
1334       // Second >= 0 root should be considere    1386       // Second >= 0 root should be considered
1335                                               << 1387         
1336       if ( fSTheta != 0.0 )                   << 1388       if ( fSTheta )
1337       {                                          1389       {
1338         t1 = 1 - v.z()*v.z()*(1 + tanSTheta2)    1390         t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
1339         t2 = pDotV2d - p.z()*v.z()*tanSTheta2    1391         t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
1340         if (t1 != 0.0)                        << 1392         if (t1)
1341         {                                     << 1393         { 
1342           b  = t2/t1 ;                           1394           b  = t2/t1 ;
1343           c  = dist2STheta/t1 ;                  1395           c  = dist2STheta/t1 ;
1344           d2 = b*b - c ;                         1396           d2 = b*b - c ;
1345                                                  1397 
1346           if (d2 >= 0)                           1398           if (d2 >= 0)
1347           {                                      1399           {
1348             d  = std::sqrt(d2) ;                 1400             d  = std::sqrt(d2) ;
1349             sd = -b + d ;    // Second root      1401             sd = -b + d ;    // Second root
1350                                                  1402 
1351             if ( (sd >= 0) && (sd < snxt) )      1403             if ( (sd >= 0) && (sd < snxt) )
1352             {                                    1404             {
1353               xi    = p.x() + sd*v.x() ;         1405               xi    = p.x() + sd*v.x() ;
1354               yi    = p.y() + sd*v.y() ;         1406               yi    = p.y() + sd*v.y() ;
1355               zi    = p.z() + sd*v.z() ;         1407               zi    = p.z() + sd*v.z() ;
1356               rhoi2 = xi*xi + yi*yi   ;          1408               rhoi2 = xi*xi + yi*yi   ;
1357               radi2 = rhoi2 + zi*zi   ;          1409               radi2 = rhoi2 + zi*zi   ;
1358                                                  1410 
1359               if ( (radi2 <= tolORMax2)          1411               if ( (radi2 <= tolORMax2)
1360                 && (radi2 >= tolORMin2)          1412                 && (radi2 >= tolORMin2)
1361                 && (zi*(fSTheta - halfpi) <=     1413                 && (zi*(fSTheta - halfpi) <= 0) )
1362               {                                  1414               {
1363                 if (!fFullPhiSphere && (rhoi2 << 1415                 if (!fFullPhiSphere && rhoi2)   // Check phi intersection
1364                 {                                1416                 {
1365                   cosPsi = (xi*cosCPhi + yi*s    1417                   cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1366                   if (cosPsi >= cosHDPhiOT)      1418                   if (cosPsi >= cosHDPhiOT)
1367                   {                              1419                   {
1368                     snxt = sd;                   1420                     snxt = sd;
1369                   }                              1421                   }
1370                 }                                1422                 }
1371                 else                             1423                 else
1372                 {                                1424                 {
1373                   snxt = sd;                     1425                   snxt = sd;
1374                 }                                1426                 }
1375               }                                  1427               }
1376             }                                    1428             }
1377           }                                      1429           }
1378         }                                        1430         }
1379       }                                       << 1431       }  
1380     }                                         << 1432     }     
1381     else if ( (pTheta < tolSTheta + kAngToler    1433     else if ( (pTheta < tolSTheta + kAngTolerance)
1382            && (fSTheta > halfAngTolerance) )     1434            && (fSTheta > halfAngTolerance) )
1383     {                                            1435     {
1384       // In tolerance of stheta                  1436       // In tolerance of stheta
1385       // If entering through solid [r,phi] =>    1437       // If entering through solid [r,phi] => 0 to in
1386       // else try 2nd root                       1438       // else try 2nd root
1387                                                  1439 
1388       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;    1440       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
1389       if ( (t2>=0 && tolIRMin2<rad2 && rad2<t    1441       if ( (t2>=0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta<halfpi)
1390         || (t2<0  && tolIRMin2<rad2 && rad2<t    1442         || (t2<0  && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta>halfpi)
1391         || (v.z()<0 && tolIRMin2<rad2 && rad2    1443         || (v.z()<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta==halfpi) )
1392       {                                          1444       {
1393         if (!fFullPhiSphere && (rho2 != 0.0)) << 1445         if (!fFullPhiSphere && rho2)  // Check phi intersection
1394         {                                        1446         {
1395           cosPsi = (p.x()*cosCPhi + p.y()*sin    1447           cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
1396           if (cosPsi >= cosHDPhiIT)              1448           if (cosPsi >= cosHDPhiIT)
1397           {                                      1449           {
1398             return 0 ;                           1450             return 0 ;
1399           }                                      1451           }
1400         }                                        1452         }
1401         else                                     1453         else
1402         {                                        1454         {
1403           return 0 ;                             1455           return 0 ;
1404         }                                        1456         }
1405       }                                          1457       }
1406                                                  1458 
1407       // Not entering immediately/travelling     1459       // Not entering immediately/travelling through
1408                                                  1460 
1409       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;    1461       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
1410       if (t1 != 0.0)                          << 1462       if (t1)
1411       {                                       << 1463       { 
1412         b  = t2/t1 ;                             1464         b  = t2/t1 ;
1413         c  = dist2STheta/t1 ;                    1465         c  = dist2STheta/t1 ;
1414         d2 = b*b - c ;                           1466         d2 = b*b - c ;
1415                                                  1467 
1416         if (d2 >= 0)                             1468         if (d2 >= 0)
1417         {                                        1469         {
1418           d  = std::sqrt(d2) ;                   1470           d  = std::sqrt(d2) ;
1419           sd = -b + d ;                          1471           sd = -b + d ;
1420           if ( (sd >= halfCarTolerance) && (s    1472           if ( (sd >= halfCarTolerance) && (sd < snxt) && (fSTheta < halfpi) )
1421           {   // ^^^^^^^^^^^^^^^^^^^^^  shoul    1473           {   // ^^^^^^^^^^^^^^^^^^^^^  shouldn't it be >=0 instead ?
1422             xi    = p.x() + sd*v.x() ;           1474             xi    = p.x() + sd*v.x() ;
1423             yi    = p.y() + sd*v.y() ;           1475             yi    = p.y() + sd*v.y() ;
1424             zi    = p.z() + sd*v.z() ;           1476             zi    = p.z() + sd*v.z() ;
1425             rhoi2 = xi*xi + yi*yi   ;            1477             rhoi2 = xi*xi + yi*yi   ;
1426             radi2 = rhoi2 + zi*zi   ;            1478             radi2 = rhoi2 + zi*zi   ;
1427                                                  1479 
1428             if ( (radi2 <= tolORMax2)            1480             if ( (radi2 <= tolORMax2)
1429               && (radi2 >= tolORMin2)            1481               && (radi2 >= tolORMin2)
1430               && (zi*(fSTheta - halfpi) <= 0)    1482               && (zi*(fSTheta - halfpi) <= 0) )
1431             {                                    1483             {
1432               if ( !fFullPhiSphere && (rhoi2  << 1484               if ( !fFullPhiSphere && rhoi2 )    // Check phi intersection
1433               {                                  1485               {
1434                 cosPsi = (xi*cosCPhi + yi*sin    1486                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1435                 if ( cosPsi >= cosHDPhiOT )      1487                 if ( cosPsi >= cosHDPhiOT )
1436                 {                                1488                 {
1437                   snxt = sd;                     1489                   snxt = sd;
1438                 }                                1490                 }
1439               }                                  1491               }
1440               else                               1492               else
1441               {                                  1493               {
1442                 snxt = sd;                       1494                 snxt = sd;
1443               }                                  1495               }
1444             }                                    1496             }
1445           }                                      1497           }
1446         }                                        1498         }
1447       }                                          1499       }
1448     }                                         << 1500     }   
1449     else if ((pTheta > tolETheta-kAngToleranc    1501     else if ((pTheta > tolETheta-kAngTolerance) && (eTheta < pi-kAngTolerance))
1450     {                                            1502     {
1451                                                  1503 
1452       // In tolerance of etheta                  1504       // In tolerance of etheta
1453       // If entering through solid [r,phi] =>    1505       // If entering through solid [r,phi] => 0 to in
1454       // else try 2nd root                       1506       // else try 2nd root
1455                                                  1507 
1456       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;    1508       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
1457                                                  1509 
1458       if (   ((t2<0) && (eTheta < halfpi)        1510       if (   ((t2<0) && (eTheta < halfpi)
1459           && (tolIRMin2 < rad2) && (rad2 < to    1511           && (tolIRMin2 < rad2) && (rad2 < tolIRMax2))
1460         ||   ((t2>=0) && (eTheta > halfpi)       1512         ||   ((t2>=0) && (eTheta > halfpi)
1461           && (tolIRMin2 < rad2) && (rad2 < to    1513           && (tolIRMin2 < rad2) && (rad2 < tolIRMax2))
1462         ||   ((v.z()>0) && (eTheta == halfpi)    1514         ||   ((v.z()>0) && (eTheta == halfpi)
1463           && (tolIRMin2 < rad2) && (rad2 < to    1515           && (tolIRMin2 < rad2) && (rad2 < tolIRMax2))  )
1464       {                                          1516       {
1465         if (!fFullPhiSphere && (rho2 != 0.0)) << 1517         if (!fFullPhiSphere && rho2)   // Check phi intersection
1466         {                                        1518         {
1467           cosPsi = (p.x()*cosCPhi + p.y()*sin    1519           cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
1468           if (cosPsi >= cosHDPhiIT)              1520           if (cosPsi >= cosHDPhiIT)
1469           {                                      1521           {
1470             return 0 ;                           1522             return 0 ;
1471           }                                      1523           }
1472         }                                        1524         }
1473         else                                     1525         else
1474         {                                        1526         {
1475           return 0 ;                             1527           return 0 ;
1476         }                                        1528         }
1477       }                                          1529       }
1478                                                  1530 
1479       // Not entering immediately/travelling     1531       // Not entering immediately/travelling through
1480                                                  1532 
1481       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;    1533       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
1482       if (t1 != 0.0)                          << 1534       if (t1)
1483       {                                       << 1535       { 
1484         b  = t2/t1 ;                             1536         b  = t2/t1 ;
1485         c  = dist2ETheta/t1 ;                    1537         c  = dist2ETheta/t1 ;
1486         d2 = b*b - c ;                           1538         d2 = b*b - c ;
1487                                                  1539 
1488         if (d2 >= 0)                             1540         if (d2 >= 0)
1489         {                                        1541         {
1490           d  = std::sqrt(d2) ;                   1542           d  = std::sqrt(d2) ;
1491           sd = -b + d ;                          1543           sd = -b + d ;
1492                                               << 1544         
1493           if ( (sd >= halfCarTolerance)          1545           if ( (sd >= halfCarTolerance)
1494             && (sd < snxt) && (eTheta > halfp    1546             && (sd < snxt) && (eTheta > halfpi) )
1495           {                                      1547           {
1496             xi    = p.x() + sd*v.x() ;           1548             xi    = p.x() + sd*v.x() ;
1497             yi    = p.y() + sd*v.y() ;           1549             yi    = p.y() + sd*v.y() ;
1498             zi    = p.z() + sd*v.z() ;           1550             zi    = p.z() + sd*v.z() ;
1499             rhoi2 = xi*xi + yi*yi   ;            1551             rhoi2 = xi*xi + yi*yi   ;
1500             radi2 = rhoi2 + zi*zi   ;            1552             radi2 = rhoi2 + zi*zi   ;
1501                                                  1553 
1502             if ( (radi2 <= tolORMax2)            1554             if ( (radi2 <= tolORMax2)
1503               && (radi2 >= tolORMin2)            1555               && (radi2 >= tolORMin2)
1504               && (zi*(eTheta - halfpi) <= 0)     1556               && (zi*(eTheta - halfpi) <= 0) )
1505             {                                    1557             {
1506               if (!fFullPhiSphere && (rhoi2 ! << 1558               if (!fFullPhiSphere && rhoi2)   // Check phi intersection
1507               {                                  1559               {
1508                 cosPsi = (xi*cosCPhi + yi*sin    1560                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1509                 if (cosPsi >= cosHDPhiOT)        1561                 if (cosPsi >= cosHDPhiOT)
1510                 {                                1562                 {
1511                   snxt = sd;                     1563                   snxt = sd;
1512                 }                                1564                 }
1513               }                                  1565               }
1514               else                               1566               else
1515               {                                  1567               {
1516                 snxt = sd;                       1568                 snxt = sd;
1517               }                                  1569               }
1518             }                                    1570             }
1519           }                                      1571           }
1520         }                                     << 1572         } 
1521       }                                       << 1573       }   
1522     }                                         << 1574     }  
1523     else                                         1575     else
1524     {                                            1576     {
1525       // stheta+tol<theta<etheta-tol             1577       // stheta+tol<theta<etheta-tol
1526       // For BOTH stheta & etheta check 2nd r    1578       // For BOTH stheta & etheta check 2nd root for validity [r,phi]
1527                                                  1579 
1528       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;    1580       t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
1529       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;    1581       t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
1530       if (t1 != 0.0)                          << 1582       if (t1)
1531       {                                       << 1583       { 
1532         b  = t2/t1;                              1584         b  = t2/t1;
1533         c  = dist2STheta/t1 ;                    1585         c  = dist2STheta/t1 ;
1534         d2 = b*b - c ;                           1586         d2 = b*b - c ;
1535                                                  1587 
1536         if (d2 >= 0)                             1588         if (d2 >= 0)
1537         {                                        1589         {
1538           d  = std::sqrt(d2) ;                   1590           d  = std::sqrt(d2) ;
1539           sd = -b + d ;    // second root        1591           sd = -b + d ;    // second root
1540                                                  1592 
1541           if ((sd >= 0) && (sd < snxt))          1593           if ((sd >= 0) && (sd < snxt))
1542           {                                      1594           {
1543             xi    = p.x() + sd*v.x() ;           1595             xi    = p.x() + sd*v.x() ;
1544             yi    = p.y() + sd*v.y() ;           1596             yi    = p.y() + sd*v.y() ;
1545             zi    = p.z() + sd*v.z() ;           1597             zi    = p.z() + sd*v.z() ;
1546             rhoi2 = xi*xi + yi*yi   ;            1598             rhoi2 = xi*xi + yi*yi   ;
1547             radi2 = rhoi2 + zi*zi   ;            1599             radi2 = rhoi2 + zi*zi   ;
1548                                                  1600 
1549             if ( (radi2 <= tolORMax2)            1601             if ( (radi2 <= tolORMax2)
1550               && (radi2 >= tolORMin2)            1602               && (radi2 >= tolORMin2)
1551               && (zi*(fSTheta - halfpi) <= 0)    1603               && (zi*(fSTheta - halfpi) <= 0) )
1552             {                                    1604             {
1553               if (!fFullPhiSphere && (rhoi2 ! << 1605               if (!fFullPhiSphere && rhoi2)   // Check phi intersection
1554               {                                  1606               {
1555                 cosPsi = (xi*cosCPhi + yi*sin    1607                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1556                 if (cosPsi >= cosHDPhiOT)        1608                 if (cosPsi >= cosHDPhiOT)
1557                 {                                1609                 {
1558                   snxt = sd;                     1610                   snxt = sd;
1559                 }                                1611                 }
1560               }                                  1612               }
1561               else                               1613               else
1562               {                                  1614               {
1563                 snxt = sd;                       1615                 snxt = sd;
1564               }                                  1616               }
1565             }                                    1617             }
1566           }                                      1618           }
1567         }                                        1619         }
1568       }                                       << 1620       }        
1569       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;    1621       t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
1570       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;    1622       t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
1571       if (t1 != 0.0)                          << 1623       if (t1)
1572       {                                       << 1624       {   
1573         b  = t2/t1 ;                             1625         b  = t2/t1 ;
1574         c  = dist2ETheta/t1 ;                    1626         c  = dist2ETheta/t1 ;
1575         d2 = b*b - c ;                           1627         d2 = b*b - c ;
1576                                                  1628 
1577         if (d2 >= 0)                             1629         if (d2 >= 0)
1578         {                                        1630         {
1579           d  = std::sqrt(d2) ;                   1631           d  = std::sqrt(d2) ;
1580           sd = -b + d;    // second root         1632           sd = -b + d;    // second root
1581                                                  1633 
1582           if ((sd >= 0) && (sd < snxt))          1634           if ((sd >= 0) && (sd < snxt))
1583           {                                      1635           {
1584             xi    = p.x() + sd*v.x() ;           1636             xi    = p.x() + sd*v.x() ;
1585             yi    = p.y() + sd*v.y() ;           1637             yi    = p.y() + sd*v.y() ;
1586             zi    = p.z() + sd*v.z() ;           1638             zi    = p.z() + sd*v.z() ;
1587             rhoi2 = xi*xi + yi*yi   ;            1639             rhoi2 = xi*xi + yi*yi   ;
1588             radi2 = rhoi2 + zi*zi   ;            1640             radi2 = rhoi2 + zi*zi   ;
1589                                                  1641 
1590             if ( (radi2 <= tolORMax2)            1642             if ( (radi2 <= tolORMax2)
1591               && (radi2 >= tolORMin2)            1643               && (radi2 >= tolORMin2)
1592               && (zi*(eTheta - halfpi) <= 0)     1644               && (zi*(eTheta - halfpi) <= 0) )
1593             {                                    1645             {
1594               if (!fFullPhiSphere && (rhoi2 ! << 1646               if (!fFullPhiSphere && rhoi2)   // Check phi intersection
1595               {                                  1647               {
1596                 cosPsi = (xi*cosCPhi + yi*sin    1648                 cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
1597                 if ( cosPsi >= cosHDPhiOT )      1649                 if ( cosPsi >= cosHDPhiOT )
1598                 {                                1650                 {
1599                   snxt = sd;                     1651                   snxt = sd;
1600                 }                                1652                 }
1601               }                                  1653               }
1602               else                               1654               else
1603               {                                  1655               {
1604                 snxt = sd;                       1656                 snxt = sd;
1605               }                                  1657               }
1606             }                                    1658             }
1607           }                                      1659           }
1608         }                                        1660         }
1609       }                                          1661       }
1610     }                                         << 1662     }  
1611   }                                              1663   }
1612   return snxt;                                   1664   return snxt;
1613 }                                                1665 }
1614                                                  1666 
1615 /////////////////////////////////////////////    1667 //////////////////////////////////////////////////////////////////////
1616 //                                               1668 //
1617 // Calculate distance (<= actual) to closest     1669 // Calculate distance (<= actual) to closest surface of shape from outside
1618 // - Calculate distance to radial planes         1670 // - Calculate distance to radial planes
1619 // - Only to phi planes if outside phi extent    1671 // - Only to phi planes if outside phi extent
1620 // - Only to theta planes if outside theta ex    1672 // - Only to theta planes if outside theta extent
1621 // - Return 0 if point inside                    1673 // - Return 0 if point inside
1622                                                  1674 
1623 G4double G4Sphere::DistanceToIn( const G4Thre    1675 G4double G4Sphere::DistanceToIn( const G4ThreeVector& p ) const
1624 {                                                1676 {
1625   G4double safe=0.0,safeRMin,safeRMax,safePhi    1677   G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta;
1626   G4double rho2,rds,rho;                         1678   G4double rho2,rds,rho;
1627   G4double cosPsi;                               1679   G4double cosPsi;
1628   G4double pTheta,dTheta1,dTheta2;               1680   G4double pTheta,dTheta1,dTheta2;
1629   rho2=p.x()*p.x()+p.y()*p.y();                  1681   rho2=p.x()*p.x()+p.y()*p.y();
1630   rds=std::sqrt(rho2+p.z()*p.z());               1682   rds=std::sqrt(rho2+p.z()*p.z());
1631   rho=std::sqrt(rho2);                           1683   rho=std::sqrt(rho2);
1632                                                  1684 
1633   //                                             1685   //
1634   // Distance to r shells                        1686   // Distance to r shells
1635   //                                          << 1687   //    
1636   if (fRmin != 0.0)                           << 1688   if (fRmin)
1637   {                                              1689   {
1638     safeRMin=fRmin-rds;                          1690     safeRMin=fRmin-rds;
1639     safeRMax=rds-fRmax;                          1691     safeRMax=rds-fRmax;
1640     if (safeRMin>safeRMax)                       1692     if (safeRMin>safeRMax)
1641     {                                            1693     {
1642       safe=safeRMin;                             1694       safe=safeRMin;
1643     }                                            1695     }
1644     else                                         1696     else
1645     {                                            1697     {
1646       safe=safeRMax;                             1698       safe=safeRMax;
1647     }                                            1699     }
1648   }                                              1700   }
1649   else                                           1701   else
1650   {                                              1702   {
1651     safe=rds-fRmax;                              1703     safe=rds-fRmax;
1652   }                                              1704   }
1653                                                  1705 
1654   //                                             1706   //
1655   // Distance to phi extent                      1707   // Distance to phi extent
1656   //                                             1708   //
1657   if (!fFullPhiSphere && (rho != 0.0))        << 1709   if (!fFullPhiSphere && rho)
1658   {                                              1710   {
1659     // Psi=angle from central phi to point       1711     // Psi=angle from central phi to point
1660     //                                           1712     //
1661     cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho;    1713     cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho;
1662     if (cosPsi<cosHDPhi)                      << 1714     if (cosPsi<std::cos(hDPhi))
1663     {                                            1715     {
1664       // Point lies outside phi range            1716       // Point lies outside phi range
1665       //                                         1717       //
1666       if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0)      1718       if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0)
1667       {                                          1719       {
1668         safePhi=std::fabs(p.x()*sinSPhi-p.y()    1720         safePhi=std::fabs(p.x()*sinSPhi-p.y()*cosSPhi);
1669       }                                          1721       }
1670       else                                       1722       else
1671       {                                          1723       {
1672         safePhi=std::fabs(p.x()*sinEPhi-p.y()    1724         safePhi=std::fabs(p.x()*sinEPhi-p.y()*cosEPhi);
1673       }                                          1725       }
1674       if (safePhi>safe)  { safe=safePhi; }       1726       if (safePhi>safe)  { safe=safePhi; }
1675     }                                            1727     }
1676   }                                              1728   }
1677   //                                             1729   //
1678   // Distance to Theta extent                    1730   // Distance to Theta extent
1679   //                                          << 1731   //    
1680   if ((rds!=0.0) && (!fFullThetaSphere))         1732   if ((rds!=0.0) && (!fFullThetaSphere))
1681   {                                              1733   {
1682     pTheta=std::acos(p.z()/rds);                 1734     pTheta=std::acos(p.z()/rds);
1683     if (pTheta<0)  { pTheta+=pi; }               1735     if (pTheta<0)  { pTheta+=pi; }
1684     dTheta1=fSTheta-pTheta;                      1736     dTheta1=fSTheta-pTheta;
1685     dTheta2=pTheta-eTheta;                       1737     dTheta2=pTheta-eTheta;
1686     if (dTheta1>dTheta2)                         1738     if (dTheta1>dTheta2)
1687     {                                            1739     {
1688       if (dTheta1>=0)             // WHY ????    1740       if (dTheta1>=0)             // WHY ???????????
1689       {                                          1741       {
1690         safeTheta=rds*std::sin(dTheta1);         1742         safeTheta=rds*std::sin(dTheta1);
1691         if (safe<=safeTheta)                     1743         if (safe<=safeTheta)
1692         {                                        1744         {
1693           safe=safeTheta;                        1745           safe=safeTheta;
1694         }                                        1746         }
1695       }                                          1747       }
1696     }                                            1748     }
1697     else                                         1749     else
1698     {                                            1750     {
1699       if (dTheta2>=0)                            1751       if (dTheta2>=0)
1700       {                                          1752       {
1701         safeTheta=rds*std::sin(dTheta2);         1753         safeTheta=rds*std::sin(dTheta2);
1702         if (safe<=safeTheta)                     1754         if (safe<=safeTheta)
1703         {                                        1755         {
1704           safe=safeTheta;                        1756           safe=safeTheta;
1705         }                                        1757         }
1706       }                                          1758       }
1707     }                                            1759     }
1708   }                                              1760   }
1709                                                  1761 
1710   if (safe<0)  { safe=0; }                       1762   if (safe<0)  { safe=0; }
1711   return safe;                                   1763   return safe;
1712 }                                                1764 }
1713                                                  1765 
1714 /////////////////////////////////////////////    1766 /////////////////////////////////////////////////////////////////////
1715 //                                               1767 //
1716 // Calculate distance to surface of shape fro    1768 // Calculate distance to surface of shape from 'inside', allowing for tolerance
1717 // - Only Calc rmax intersection if no valid     1769 // - Only Calc rmax intersection if no valid rmin intersection
1718                                                  1770 
1719 G4double G4Sphere::DistanceToOut( const G4Thr    1771 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p,
1720                                   const G4Thr    1772                                   const G4ThreeVector& v,
1721                                   const G4boo    1773                                   const G4bool calcNorm,
1722                                         G4boo << 1774                                         G4bool *validNorm,
1723                                         G4Thr << 1775                                         G4ThreeVector *n   ) const
1724 {                                                1776 {
1725   G4double snxt = kInfinity;     // snxt is d    1777   G4double snxt = kInfinity;     // snxt is default return value
1726   G4double sphi= kInfinity,stheta= kInfinity;    1778   G4double sphi= kInfinity,stheta= kInfinity;
1727   ESide side=kNull,sidephi=kNull,sidetheta=kN << 1779   ESide side=kNull,sidephi=kNull,sidetheta=kNull;  
1728                                                  1780 
1729   const G4double halfRmaxTolerance = fRmaxTol    1781   const G4double halfRmaxTolerance = fRmaxTolerance*0.5;
1730   const G4double halfRminTolerance = fRminTol    1782   const G4double halfRminTolerance = fRminTolerance*0.5;
1731   const G4double Rmax_plus  = fRmax + halfRma    1783   const G4double Rmax_plus  = fRmax + halfRmaxTolerance;
1732   const G4double Rmin_minus = (fRmin) != 0.0  << 1784   const G4double Rmin_minus = (fRmin) ? fRmin-halfRminTolerance : 0;
1733   G4double t1,t2;                                1785   G4double t1,t2;
1734   G4double b,c,d;                                1786   G4double b,c,d;
1735                                                  1787 
1736   // Variables for phi intersection:             1788   // Variables for phi intersection:
1737                                                  1789 
1738   G4double pDistS,compS,pDistE,compE,sphi2,vp    1790   G4double pDistS,compS,pDistE,compE,sphi2,vphi;
1739                                               << 1791     
1740   G4double rho2,rad2,pDotV2d,pDotV3d;            1792   G4double rho2,rad2,pDotV2d,pDotV3d;
1741                                                  1793 
1742   G4double xi,yi,zi;      // Intersection poi    1794   G4double xi,yi,zi;      // Intersection point
1743                                                  1795 
1744   // Theta precals                               1796   // Theta precals
1745   //                                             1797   //
1746   G4double rhoSecTheta;                          1798   G4double rhoSecTheta;
1747   G4double dist2STheta, dist2ETheta, distThet    1799   G4double dist2STheta, dist2ETheta, distTheta;
1748   G4double d2,sd;                                1800   G4double d2,sd;
1749                                                  1801 
1750   // General Precalcs                            1802   // General Precalcs
1751   //                                             1803   //
1752   rho2 = p.x()*p.x()+p.y()*p.y();                1804   rho2 = p.x()*p.x()+p.y()*p.y();
1753   rad2 = rho2+p.z()*p.z();                       1805   rad2 = rho2+p.z()*p.z();
1754                                                  1806 
1755   pDotV2d = p.x()*v.x()+p.y()*v.y();             1807   pDotV2d = p.x()*v.x()+p.y()*v.y();
1756   pDotV3d = pDotV2d+p.z()*v.z();                 1808   pDotV3d = pDotV2d+p.z()*v.z();
1757                                                  1809 
1758   // Radial Intersections from G4Sphere::Dist    1810   // Radial Intersections from G4Sphere::DistanceToIn
1759   //                                             1811   //
1760   // Outer spherical shell intersection          1812   // Outer spherical shell intersection
1761   // - Only if outside tolerant fRmax            1813   // - Only if outside tolerant fRmax
1762   // - Check for if inside and outer G4Sphere    1814   // - Check for if inside and outer G4Sphere heading through solid (-> 0)
1763   // - No intersect -> no intersection with G    1815   // - No intersect -> no intersection with G4Sphere
1764   //                                             1816   //
1765   // Shell eqn: x^2+y^2+z^2=RSPH^2               1817   // Shell eqn: x^2+y^2+z^2=RSPH^2
1766   //                                             1818   //
1767   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2     1819   // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2
1768   //                                             1820   //
1769   // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)    1821   // => (px^2+py^2+pz^2) +2sd(pxvx+pyvy+pzvz)+sd^2(vx^2+vy^2+vz^2)=R^2
1770   // =>      rad2        +2sd(pDotV3d)           1822   // =>      rad2        +2sd(pDotV3d)       +sd^2                =R^2
1771   //                                             1823   //
1772   // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad    1824   // => sd=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2))
1773                                                  1825 
1774   if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2     1826   if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2 >= Rmin_minus*Rmin_minus) )
1775   {                                              1827   {
1776     c = rad2 - fRmax*fRmax;                      1828     c = rad2 - fRmax*fRmax;
1777                                                  1829 
1778     if (c < fRmaxTolerance*fRmax)             << 1830     if (c < fRmaxTolerance*fRmax) 
1779     {                                            1831     {
1780       // Within tolerant Outer radius         << 1832       // Within tolerant Outer radius 
1781       //                                      << 1833       // 
1782       // The test is                             1834       // The test is
1783       //     rad  - fRmax < 0.5*kRadTolerance    1835       //     rad  - fRmax < 0.5*kRadTolerance
1784       // =>  rad  < fRmax + 0.5*kRadTol          1836       // =>  rad  < fRmax + 0.5*kRadTol
1785       // =>  rad2 < (fRmax + 0.5*kRadTol)^2      1837       // =>  rad2 < (fRmax + 0.5*kRadTol)^2
1786       // =>  rad2 < fRmax^2 + 2.*0.5*fRmax*kR    1838       // =>  rad2 < fRmax^2 + 2.*0.5*fRmax*kRadTol + 0.25*kRadTol*kRadTol
1787       // =>  rad2 - fRmax^2    <~    fRmax*kR << 1839       // =>  rad2 - fRmax^2    <~    fRmax*kRadTol 
1788                                                  1840 
1789       d2 = pDotV3d*pDotV3d - c;                  1841       d2 = pDotV3d*pDotV3d - c;
1790                                                  1842 
1791       if( (c >- fRmaxTolerance*fRmax)       /    1843       if( (c >- fRmaxTolerance*fRmax)       // on tolerant surface
1792        && ((pDotV3d >=0) || (d2 < 0)) )     / << 1844        && ((pDotV3d >=0) || (d2 < 0)) )     // leaving outside from Rmax 
1793                                             /    1845                                             // not re-entering
1794       {                                          1846       {
1795         if(calcNorm)                             1847         if(calcNorm)
1796         {                                        1848         {
1797           *validNorm = true ;                    1849           *validNorm = true ;
1798           *n         = G4ThreeVector(p.x()/fR    1850           *n         = G4ThreeVector(p.x()/fRmax,p.y()/fRmax,p.z()/fRmax) ;
1799         }                                        1851         }
1800         return snxt = 0;                         1852         return snxt = 0;
1801       }                                          1853       }
1802       else                                    << 1854       else 
1803       {                                          1855       {
1804         snxt = -pDotV3d+std::sqrt(d2);    //     1856         snxt = -pDotV3d+std::sqrt(d2);    // second root since inside Rmax
1805         side =  kRMax ;                       << 1857         side =  kRMax ; 
1806       }                                          1858       }
1807     }                                            1859     }
1808                                                  1860 
1809     // Inner spherical shell intersection:       1861     // Inner spherical shell intersection:
1810     // Always first >=0 root, because would h    1862     // Always first >=0 root, because would have passed
1811     // from outside of Rmin surface .            1863     // from outside of Rmin surface .
1812                                                  1864 
1813     if (fRmin != 0.0)                         << 1865     if (fRmin)
1814     {                                            1866     {
1815       c  = rad2 - fRmin*fRmin;                   1867       c  = rad2 - fRmin*fRmin;
1816       d2 = pDotV3d*pDotV3d - c;                  1868       d2 = pDotV3d*pDotV3d - c;
1817                                                  1869 
1818       if (c >- fRminTolerance*fRmin) // 2.0 *    1870       if (c >- fRminTolerance*fRmin) // 2.0 * (0.5*kRadTolerance) * fRmin
1819       {                                          1871       {
1820         if ( (c < fRminTolerance*fRmin)          1872         if ( (c < fRminTolerance*fRmin)              // leaving from Rmin
1821           && (d2 >= fRminTolerance*fRmin) &&     1873           && (d2 >= fRminTolerance*fRmin) && (pDotV3d < 0) )
1822         {                                        1874         {
1823           if(calcNorm)  { *validNorm = false;    1875           if(calcNorm)  { *validNorm = false; }  // Rmin surface is concave
1824           return snxt = 0 ;                      1876           return snxt = 0 ;
1825         }                                        1877         }
1826         else                                     1878         else
1827         {                                     << 1879         {  
1828           if ( d2 >= 0. )                        1880           if ( d2 >= 0. )
1829           {                                      1881           {
1830             sd = -pDotV3d-std::sqrt(d2);         1882             sd = -pDotV3d-std::sqrt(d2);
1831                                                  1883 
1832             if ( sd >= 0. )     // Always int    1884             if ( sd >= 0. )     // Always intersect Rmin first
1833             {                                    1885             {
1834               snxt = sd ;                        1886               snxt = sd ;
1835               side = kRMin ;                     1887               side = kRMin ;
1836             }                                    1888             }
1837           }                                      1889           }
1838         }                                        1890         }
1839       }                                          1891       }
1840     }                                            1892     }
1841   }                                              1893   }
1842                                                  1894 
1843   // Theta segment intersection                  1895   // Theta segment intersection
1844                                                  1896 
1845   if ( !fFullThetaSphere )                       1897   if ( !fFullThetaSphere )
1846   {                                              1898   {
1847     // Intersection with theta surfaces          1899     // Intersection with theta surfaces
1848     //                                           1900     //
1849     // Known failure cases:                      1901     // Known failure cases:
1850     // o  Inside tolerance of stheta surface,    1902     // o  Inside tolerance of stheta surface, skim
1851     //    ~parallel to cone and Hit & enter e    1903     //    ~parallel to cone and Hit & enter etheta surface [& visa versa]
1852     //                                           1904     //
1853     //    To solve: Check 2nd root of etheta     1905     //    To solve: Check 2nd root of etheta surface in addition to stheta
1854     //                                           1906     //
1855     // o  start/end theta is exactly pi/2     << 1907     // o  start/end theta is exactly pi/2 
1856     //                                           1908     //
1857     // Intersections with cones                  1909     // Intersections with cones
1858     //                                           1910     //
1859     // Cone equation: x^2+y^2=z^2tan^2(t)        1911     // Cone equation: x^2+y^2=z^2tan^2(t)
1860     //                                           1912     //
1861     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan    1913     // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t)
1862     //                                           1914     //
1863     // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+p    1915     // => (px^2+py^2-pz^2tan^2(t))+2sd(pxvx+pyvy-pzvztan^2(t))
1864     //       + sd^2(vx^2+vy^2-vz^2tan^2(t)) =    1916     //       + sd^2(vx^2+vy^2-vz^2tan^2(t)) = 0
1865     //                                           1917     //
1866     // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d    1918     // => sd^2(1-vz^2(1+tan^2(t))+2sd(pdotv2d-pzvztan^2(t))
1867     //       + (rho2-pz^2tan^2(t)) = 0           1919     //       + (rho2-pz^2tan^2(t)) = 0
1868     //                                           1920     //
1869                                               << 1921   
1870     if(fSTheta != 0.0) // intersection with f << 1922     if(fSTheta) // intersection with first cons
1871     {                                            1923     {
1872       if( std::fabs(tanSTheta) > 5./kAngToler    1924       if( std::fabs(tanSTheta) > 5./kAngTolerance ) // kons is plane z=0
1873       {                                          1925       {
1874         if( v.z() > 0. )                      << 1926         if( v.z() > 0. ) 
1875         {                                        1927         {
1876           if ( std::fabs( p.z() ) <= halfRmax    1928           if ( std::fabs( p.z() ) <= halfRmaxTolerance )
1877           {                                      1929           {
1878             if(calcNorm)                         1930             if(calcNorm)
1879             {                                    1931             {
1880               *validNorm = true;                 1932               *validNorm = true;
1881               *n = G4ThreeVector(0.,0.,1.);      1933               *n = G4ThreeVector(0.,0.,1.);
1882             }                                    1934             }
1883             return snxt = 0 ;                    1935             return snxt = 0 ;
1884           }                                   << 1936           }  
1885           stheta    = -p.z()/v.z();              1937           stheta    = -p.z()/v.z();
1886           sidetheta = kSTheta;                   1938           sidetheta = kSTheta;
1887         }                                        1939         }
1888       }                                          1940       }
1889       else // kons is not plane               << 1941       else // kons is not plane 
1890       {                                          1942       {
1891         t1          = 1-v.z()*v.z()*(1+tanSTh    1943         t1          = 1-v.z()*v.z()*(1+tanSTheta2);
1892         t2          = pDotV2d-p.z()*v.z()*tan    1944         t2          = pDotV2d-p.z()*v.z()*tanSTheta2;  // ~vDotN if p on cons
1893         dist2STheta = rho2-p.z()*p.z()*tanSTh    1945         dist2STheta = rho2-p.z()*p.z()*tanSTheta2;     // t3
1894                                                  1946 
1895         distTheta = std::sqrt(rho2)-p.z()*tan    1947         distTheta = std::sqrt(rho2)-p.z()*tanSTheta;
1896                                                  1948 
1897         if( std::fabs(t1) < halfAngTolerance     1949         if( std::fabs(t1) < halfAngTolerance ) // 1st order equation,
1898         {                                        1950         {                                      // v parallel to kons
1899           if( v.z() > 0. )                       1951           if( v.z() > 0. )
1900           {                                      1952           {
1901             if(std::fabs(distTheta) < halfRma    1953             if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface
1902             {                                    1954             {
1903               if( (fSTheta < halfpi) && (p.z(    1955               if( (fSTheta < halfpi) && (p.z() > 0.) )
1904               {                                  1956               {
1905                 if( calcNorm )  { *validNorm     1957                 if( calcNorm )  { *validNorm = false; }
1906                 return snxt = 0.;                1958                 return snxt = 0.;
1907               }                                  1959               }
1908               else if( (fSTheta > halfpi) &&     1960               else if( (fSTheta > halfpi) && (p.z() <= 0) )
1909               {                                  1961               {
1910                 if( calcNorm )                << 1962                 if( calcNorm ) 
1911                 {                                1963                 {
1912                   *validNorm = true;             1964                   *validNorm = true;
1913                   if (rho2 != 0.0)            << 1965                   if (rho2)
1914                   {                              1966                   {
1915                     rhoSecTheta = std::sqrt(r    1967                     rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2));
1916                                               << 1968                    
1917                     *n = G4ThreeVector( p.x() << 1969                     *n = G4ThreeVector( p.x()/rhoSecTheta,   
1918                                         p.y()    1970                                         p.y()/rhoSecTheta,
1919                                         std::    1971                                         std::sin(fSTheta)  );
1920                   }                              1972                   }
1921                   else *n = G4ThreeVector(0.,    1973                   else *n = G4ThreeVector(0.,0.,1.);
1922                 }                                1974                 }
1923                 return snxt = 0.;             << 1975                 return snxt = 0.;               
1924               }                                  1976               }
1925             }                                    1977             }
1926             stheta    = -0.5*dist2STheta/t2;     1978             stheta    = -0.5*dist2STheta/t2;
1927             sidetheta = kSTheta;                 1979             sidetheta = kSTheta;
1928           }                                   << 1980           }  
1929         }      // 2nd order equation, 1st roo    1981         }      // 2nd order equation, 1st root of fSTheta cone,
1930         else   // 2nd if 1st root -ve            1982         else   // 2nd if 1st root -ve
1931         {                                        1983         {
1932           if( std::fabs(distTheta) < halfRmax    1984           if( std::fabs(distTheta) < halfRmaxTolerance )
1933           {                                      1985           {
1934             if( (fSTheta > halfpi) && (t2 >=     1986             if( (fSTheta > halfpi) && (t2 >= 0.) ) // leave
1935             {                                    1987             {
1936               if( calcNorm )                  << 1988               if( calcNorm ) 
1937               {                                  1989               {
1938                 *validNorm = true;               1990                 *validNorm = true;
1939                 if (rho2 != 0.0)              << 1991                 if (rho2)
1940                 {                                1992                 {
1941                   rhoSecTheta = std::sqrt(rho    1993                   rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2));
1942                                               << 1994                    
1943                   *n = G4ThreeVector( p.x()/r << 1995                   *n = G4ThreeVector( p.x()/rhoSecTheta,   
1944                                       p.y()/r    1996                                       p.y()/rhoSecTheta,
1945                                       std::si    1997                                       std::sin(fSTheta)  );
1946                 }                                1998                 }
1947                 else  { *n = G4ThreeVector(0.    1999                 else  { *n = G4ThreeVector(0.,0.,1.); }
1948               }                                  2000               }
1949               return snxt = 0.;                  2001               return snxt = 0.;
1950             }                                    2002             }
1951             else if( (fSTheta < halfpi) && (t    2003             else if( (fSTheta < halfpi) && (t2 < 0.) && (p.z() >=0.) ) // leave
1952             {                                    2004             {
1953               if( calcNorm )  { *validNorm =     2005               if( calcNorm )  { *validNorm = false; }
1954               return snxt = 0.;                  2006               return snxt = 0.;
1955             }                                 << 2007             }                               
1956           }                                      2008           }
1957           b  = t2/t1;                            2009           b  = t2/t1;
1958           c  = dist2STheta/t1;                   2010           c  = dist2STheta/t1;
1959           d2 = b*b - c ;                         2011           d2 = b*b - c ;
1960                                                  2012 
1961           if ( d2 >= 0. )                        2013           if ( d2 >= 0. )
1962           {                                      2014           {
1963             d = std::sqrt(d2);                   2015             d = std::sqrt(d2);
1964                                                  2016 
1965             if( fSTheta > halfpi )               2017             if( fSTheta > halfpi )
1966             {                                    2018             {
1967               sd = -b - d;         // First r    2019               sd = -b - d;         // First root
1968                                                  2020 
1969               if ( ((std::fabs(s) < halfRmaxT    2021               if ( ((std::fabs(s) < halfRmaxTolerance) && (t2 < 0.))
1970                ||  (sd < 0.)  || ( (sd > 0.)  << 2022                ||  (sd < 0.)  || ( (sd > 0.) && (p.z() + sd*v.z() > 0.) )     ) 
1971               {                                  2023               {
1972                 sd = -b + d ; // 2nd root        2024                 sd = -b + d ; // 2nd root
1973               }                                  2025               }
1974               if( (sd > halfRmaxTolerance) && << 2026               if( (sd > halfRmaxTolerance) && (p.z() + sd*v.z() <= 0.) )  
1975               {                                  2027               {
1976                 stheta    = sd;                  2028                 stheta    = sd;
1977                 sidetheta = kSTheta;             2029                 sidetheta = kSTheta;
1978               }                                  2030               }
1979             }                                    2031             }
1980             else // sTheta < pi/2, concave su    2032             else // sTheta < pi/2, concave surface, no normal
1981             {                                    2033             {
1982               sd = -b - d;         // First r    2034               sd = -b - d;         // First root
1983                                                  2035 
1984               if ( ( (std::fabs(sd) < halfRma    2036               if ( ( (std::fabs(sd) < halfRmaxTolerance) && (t2 >= 0.) )
1985                 || (sd < 0.) || ( (sd > 0.) &    2037                 || (sd < 0.) || ( (sd > 0.) && (p.z() + sd*v.z() < 0.) )   )
1986               {                                  2038               {
1987                 sd = -b + d ; // 2nd root        2039                 sd = -b + d ; // 2nd root
1988               }                                  2040               }
1989               if( (sd > halfRmaxTolerance) && << 2041               if( (sd > halfRmaxTolerance) && (p.z() + sd*v.z() >= 0.) )  
1990               {                                  2042               {
1991                 stheta    = sd;                  2043                 stheta    = sd;
1992                 sidetheta = kSTheta;             2044                 sidetheta = kSTheta;
1993               }                               << 2045               }            
1994             }                                    2046             }
1995           }                                      2047           }
1996         }                                        2048         }
1997       }                                          2049       }
1998     }                                            2050     }
1999     if (eTheta < pi) // intersection with sec    2051     if (eTheta < pi) // intersection with second cons
2000     {                                            2052     {
2001       if( std::fabs(tanETheta) > 5./kAngToler    2053       if( std::fabs(tanETheta) > 5./kAngTolerance ) // kons is plane z=0
2002       {                                          2054       {
2003         if( v.z() < 0. )                      << 2055         if( v.z() < 0. ) 
2004         {                                        2056         {
2005           if ( std::fabs( p.z() ) <= halfRmax    2057           if ( std::fabs( p.z() ) <= halfRmaxTolerance )
2006           {                                      2058           {
2007             if(calcNorm)                         2059             if(calcNorm)
2008             {                                    2060             {
2009               *validNorm = true;                 2061               *validNorm = true;
2010               *n = G4ThreeVector(0.,0.,-1.);     2062               *n = G4ThreeVector(0.,0.,-1.);
2011             }                                    2063             }
2012             return snxt = 0 ;                    2064             return snxt = 0 ;
2013           }                                   << 2065           }  
2014           sd = -p.z()/v.z();                     2066           sd = -p.z()/v.z();
2015                                                  2067 
2016           if( sd < stheta )                      2068           if( sd < stheta )
2017           {                                      2069           {
2018             stheta    = sd;                      2070             stheta    = sd;
2019             sidetheta = kETheta;                 2071             sidetheta = kETheta;
2020           }                                      2072           }
2021         }                                        2073         }
2022       }                                          2074       }
2023       else // kons is not plane               << 2075       else // kons is not plane 
2024       {                                          2076       {
2025         t1          = 1-v.z()*v.z()*(1+tanETh    2077         t1          = 1-v.z()*v.z()*(1+tanETheta2);
2026         t2          = pDotV2d-p.z()*v.z()*tan    2078         t2          = pDotV2d-p.z()*v.z()*tanETheta2;  // ~vDotN if p on cons
2027         dist2ETheta = rho2-p.z()*p.z()*tanETh    2079         dist2ETheta = rho2-p.z()*p.z()*tanETheta2;     // t3
2028                                                  2080 
2029         distTheta = std::sqrt(rho2)-p.z()*tan    2081         distTheta = std::sqrt(rho2)-p.z()*tanETheta;
2030                                                  2082 
2031         if( std::fabs(t1) < halfAngTolerance     2083         if( std::fabs(t1) < halfAngTolerance ) // 1st order equation,
2032         {                                        2084         {                                      // v parallel to kons
2033           if( v.z() < 0. )                       2085           if( v.z() < 0. )
2034           {                                      2086           {
2035             if(std::fabs(distTheta) < halfRma    2087             if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface
2036             {                                    2088             {
2037               if( (eTheta > halfpi) && (p.z()    2089               if( (eTheta > halfpi) && (p.z() < 0.) )
2038               {                                  2090               {
2039                 if( calcNorm )  { *validNorm     2091                 if( calcNorm )  { *validNorm = false; }
2040                 return snxt = 0.;                2092                 return snxt = 0.;
2041               }                                  2093               }
2042               else if ( (eTheta < halfpi) &&     2094               else if ( (eTheta < halfpi) && (p.z() >= 0) )
2043               {                                  2095               {
2044                 if( calcNorm )                << 2096                 if( calcNorm ) 
2045                 {                                2097                 {
2046                   *validNorm = true;             2098                   *validNorm = true;
2047                   if (rho2 != 0.0)            << 2099                   if (rho2)
2048                   {                              2100                   {
2049                     rhoSecTheta = std::sqrt(r    2101                     rhoSecTheta = std::sqrt(rho2*(1+tanETheta2));
2050                     *n = G4ThreeVector( p.x() << 2102                     *n = G4ThreeVector( p.x()/rhoSecTheta,   
2051                                         p.y()    2103                                         p.y()/rhoSecTheta,
2052                                         -sinE    2104                                         -sinETheta  );
2053                   }                              2105                   }
2054                   else  { *n = G4ThreeVector(    2106                   else  { *n = G4ThreeVector(0.,0.,-1.); }
2055                 }                                2107                 }
2056                 return snxt = 0.;             << 2108                 return snxt = 0.;               
2057               }                                  2109               }
2058             }                                    2110             }
2059             sd = -0.5*dist2ETheta/t2;            2111             sd = -0.5*dist2ETheta/t2;
2060                                                  2112 
2061             if( sd < stheta )                    2113             if( sd < stheta )
2062             {                                    2114             {
2063               stheta    = sd;                    2115               stheta    = sd;
2064               sidetheta = kETheta;               2116               sidetheta = kETheta;
2065             }                                    2117             }
2066           }                                   << 2118           }  
2067         }      // 2nd order equation, 1st roo    2119         }      // 2nd order equation, 1st root of fSTheta cone
2068         else   // 2nd if 1st root -ve            2120         else   // 2nd if 1st root -ve
2069         {                                        2121         {
2070           if ( std::fabs(distTheta) < halfRma    2122           if ( std::fabs(distTheta) < halfRmaxTolerance )
2071           {                                      2123           {
2072             if( (eTheta < halfpi) && (t2 >= 0    2124             if( (eTheta < halfpi) && (t2 >= 0.) ) // leave
2073             {                                    2125             {
2074               if( calcNorm )                  << 2126               if( calcNorm ) 
2075               {                                  2127               {
2076                 *validNorm = true;               2128                 *validNorm = true;
2077                 if (rho2 != 0.0)              << 2129                 if (rho2)
2078                 {                                2130                 {
2079                     rhoSecTheta = std::sqrt(r    2131                     rhoSecTheta = std::sqrt(rho2*(1+tanETheta2));
2080                     *n = G4ThreeVector( p.x() << 2132                     *n = G4ThreeVector( p.x()/rhoSecTheta,   
2081                                         p.y()    2133                                         p.y()/rhoSecTheta,
2082                                         -sinE    2134                                         -sinETheta  );
2083                 }                                2135                 }
2084                 else *n = G4ThreeVector(0.,0.    2136                 else *n = G4ThreeVector(0.,0.,-1.);
2085               }                               << 2137               }                           
2086               return snxt = 0.;                  2138               return snxt = 0.;
2087             }                                    2139             }
2088             else if ( (eTheta > halfpi)          2140             else if ( (eTheta > halfpi)
2089                    && (t2 < 0.) && (p.z() <=0    2141                    && (t2 < 0.) && (p.z() <=0.) ) // leave
2090             {                                    2142             {
2091               if( calcNorm )  { *validNorm =     2143               if( calcNorm )  { *validNorm = false; }
2092               return snxt = 0.;                  2144               return snxt = 0.;
2093             }                                 << 2145             }                               
2094           }                                      2146           }
2095           b  = t2/t1;                            2147           b  = t2/t1;
2096           c  = dist2ETheta/t1;                   2148           c  = dist2ETheta/t1;
2097           d2 = b*b - c ;                         2149           d2 = b*b - c ;
2098           if ( (d2 <halfRmaxTolerance) && (d2    2150           if ( (d2 <halfRmaxTolerance) && (d2 > -halfRmaxTolerance) )
2099           {                                      2151           {
2100             d2 = 0.;                             2152             d2 = 0.;
2101           }                                      2153           }
2102           if ( d2 >= 0. )                        2154           if ( d2 >= 0. )
2103           {                                      2155           {
2104             d = std::sqrt(d2);                   2156             d = std::sqrt(d2);
2105                                                  2157 
2106             if( eTheta < halfpi )                2158             if( eTheta < halfpi )
2107             {                                    2159             {
2108               sd = -b - d;         // First r    2160               sd = -b - d;         // First root
2109                                                  2161 
2110               if( ((std::fabs(sd) < halfRmaxT    2162               if( ((std::fabs(sd) < halfRmaxTolerance) && (t2 < 0.))
2111                || (sd < 0.) )                 << 2163                || (sd < 0.) ) 
2112               {                                  2164               {
2113                 sd = -b + d ; // 2nd root        2165                 sd = -b + d ; // 2nd root
2114               }                                  2166               }
2115               if( sd > halfRmaxTolerance )    << 2167               if( sd > halfRmaxTolerance )  
2116               {                                  2168               {
2117                 if( sd < stheta )                2169                 if( sd < stheta )
2118                 {                                2170                 {
2119                   stheta    = sd;                2171                   stheta    = sd;
2120                   sidetheta = kETheta;           2172                   sidetheta = kETheta;
2121                 }                                2173                 }
2122               }                                  2174               }
2123             }                                    2175             }
2124             else // sTheta+fDTheta > pi/2, co    2176             else // sTheta+fDTheta > pi/2, concave surface, no normal
2125             {                                    2177             {
2126               sd = -b - d;         // First r    2178               sd = -b - d;         // First root
2127                                                  2179 
2128               if ( ((std::fabs(sd) < halfRmax    2180               if ( ((std::fabs(sd) < halfRmaxTolerance) && (t2 >= 0.))
2129                 || (sd < 0.)                     2181                 || (sd < 0.)
2130                 || ( (sd > 0.) && (p.z() + sd    2182                 || ( (sd > 0.) && (p.z() + sd*v.z() > halfRmaxTolerance) ) )
2131               {                                  2183               {
2132                 sd = -b + d ; // 2nd root        2184                 sd = -b + d ; // 2nd root
2133               }                                  2185               }
2134               if ( ( sd>halfRmaxTolerance )      2186               if ( ( sd>halfRmaxTolerance )
2135                 && ( p.z()+sd*v.z() <= halfRm    2187                 && ( p.z()+sd*v.z() <= halfRmaxTolerance ) )
2136               {                                  2188               {
2137                 if( sd < stheta )                2189                 if( sd < stheta )
2138                 {                                2190                 {
2139                   stheta    = sd;                2191                   stheta    = sd;
2140                   sidetheta = kETheta;           2192                   sidetheta = kETheta;
2141                 }                                2193                 }
2142               }                               << 2194               }            
2143             }                                    2195             }
2144           }                                      2196           }
2145         }                                        2197         }
2146       }                                          2198       }
2147     }                                            2199     }
2148                                                  2200 
2149   } // end theta intersections                   2201   } // end theta intersections
2150                                                  2202 
2151   // Phi Intersection                            2203   // Phi Intersection
2152                                               << 2204     
2153   if ( !fFullPhiSphere )                         2205   if ( !fFullPhiSphere )
2154   {                                              2206   {
2155     if ( (p.x() != 0.0) || (p.y() != 0.0) ) / << 2207     if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
2156     {                                            2208     {
2157       // pDist -ve when inside                   2209       // pDist -ve when inside
2158                                                  2210 
2159       pDistS=p.x()*sinSPhi-p.y()*cosSPhi;        2211       pDistS=p.x()*sinSPhi-p.y()*cosSPhi;
2160       pDistE=-p.x()*sinEPhi+p.y()*cosEPhi;       2212       pDistE=-p.x()*sinEPhi+p.y()*cosEPhi;
2161                                                  2213 
2162       // Comp -ve when in direction of outwar    2214       // Comp -ve when in direction of outwards normal
2163                                                  2215 
2164       compS   = -sinSPhi*v.x()+cosSPhi*v.y()     2216       compS   = -sinSPhi*v.x()+cosSPhi*v.y() ;
2165       compE   =  sinEPhi*v.x()-cosEPhi*v.y()     2217       compE   =  sinEPhi*v.x()-cosEPhi*v.y() ;
2166       sidephi = kNull ;                          2218       sidephi = kNull ;
2167                                                  2219 
2168       if ( (pDistS <= 0) && (pDistE <= 0) )      2220       if ( (pDistS <= 0) && (pDistE <= 0) )
2169       {                                          2221       {
2170         // Inside both phi *full* planes         2222         // Inside both phi *full* planes
2171                                                  2223 
2172         if ( compS < 0 )                         2224         if ( compS < 0 )
2173         {                                        2225         {
2174           sphi = pDistS/compS ;                  2226           sphi = pDistS/compS ;
2175           xi   = p.x()+sphi*v.x() ;              2227           xi   = p.x()+sphi*v.x() ;
2176           yi   = p.y()+sphi*v.y() ;              2228           yi   = p.y()+sphi*v.y() ;
2177                                                  2229 
2178           // Check intersection with correct     2230           // Check intersection with correct half-plane (if not -> no intersect)
2179           //                                     2231           //
2180           if( (std::fabs(xi)<=kCarTolerance)     2232           if( (std::fabs(xi)<=kCarTolerance) && (std::fabs(yi)<=kCarTolerance) )
2181           {                                      2233           {
2182             vphi = std::atan2(v.y(),v.x());      2234             vphi = std::atan2(v.y(),v.x());
2183             sidephi = kSPhi;                     2235             sidephi = kSPhi;
2184             if ( ( (fSPhi-halfAngTolerance) <    2236             if ( ( (fSPhi-halfAngTolerance) <= vphi)
2185               && ( (ePhi+halfAngTolerance)  >    2237               && ( (ePhi+halfAngTolerance)  >= vphi) )
2186             {                                    2238             {
2187               sphi = kInfinity;                  2239               sphi = kInfinity;
2188             }                                    2240             }
2189           }                                      2241           }
2190           else if ( ( yi*cosCPhi - xi*sinCPhi    2242           else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
2191           {                                      2243           {
2192             sphi=kInfinity;                      2244             sphi=kInfinity;
2193           }                                      2245           }
2194           else                                   2246           else
2195           {                                      2247           {
2196             sidephi = kSPhi ;                    2248             sidephi = kSPhi ;
2197             if ( pDistS > -halfCarTolerance)  << 2249             if ( pDistS > -halfCarTolerance)  { sphi = 0; } // Leave by sphi 
2198           }                                      2250           }
2199         }                                        2251         }
2200         else  { sphi = kInfinity; }              2252         else  { sphi = kInfinity; }
2201                                                  2253 
2202         if ( compE < 0 )                         2254         if ( compE < 0 )
2203         {                                        2255         {
2204           sphi2=pDistE/compE ;                   2256           sphi2=pDistE/compE ;
2205           if (sphi2 < sphi) // Only check fur    2257           if (sphi2 < sphi) // Only check further if < starting phi intersection
2206           {                                      2258           {
2207             xi = p.x()+sphi2*v.x() ;             2259             xi = p.x()+sphi2*v.x() ;
2208             yi = p.y()+sphi2*v.y() ;             2260             yi = p.y()+sphi2*v.y() ;
2209                                                  2261 
2210             // Check intersection with correc    2262             // Check intersection with correct half-plane
2211             //                                   2263             //
2212             if ( (std::fabs(xi)<=kCarToleranc    2264             if ( (std::fabs(xi)<=kCarTolerance)
2213               && (std::fabs(yi)<=kCarToleranc    2265               && (std::fabs(yi)<=kCarTolerance))
2214             {                                    2266             {
2215               // Leaving via ending phi          2267               // Leaving via ending phi
2216               //                                 2268               //
2217               vphi = std::atan2(v.y(),v.x())     2269               vphi = std::atan2(v.y(),v.x()) ;
2218                                               << 2270                
2219               if( (fSPhi-halfAngTolerance > v << 2271               if( !((fSPhi-halfAngTolerance <= vphi)
2220                   ||(fSPhi+fDPhi+halfAngToler << 2272                   &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) )
2221               {                               << 2273               { 
2222                 sidephi = kEPhi;                 2274                 sidephi = kEPhi;
2223                 if ( pDistE <= -halfCarTolera    2275                 if ( pDistE <= -halfCarTolerance )  { sphi = sphi2; }
2224                 else                             2276                 else                                { sphi = 0.0;   }
2225               }                                  2277               }
2226             }                                    2278             }
2227             else if ((yi*cosCPhi-xi*sinCPhi)>    2279             else if ((yi*cosCPhi-xi*sinCPhi)>=0) // Leaving via ending phi
2228             {                                    2280             {
2229               sidephi = kEPhi ;                  2281               sidephi = kEPhi ;
2230               if ( pDistE <= -halfCarToleranc    2282               if ( pDistE <= -halfCarTolerance )
2231               {                                  2283               {
2232                 sphi=sphi2;                      2284                 sphi=sphi2;
2233               }                                  2285               }
2234               else                            << 2286               else 
2235               {                                  2287               {
2236                 sphi = 0 ;                       2288                 sphi = 0 ;
2237               }                                  2289               }
2238             }                                    2290             }
2239           }                                      2291           }
2240         }                                     << 2292         }        
2241       }                                          2293       }
2242       else if ((pDistS >= 0) && (pDistE >= 0)    2294       else if ((pDistS >= 0) && (pDistE >= 0)) // Outside both *full* phi planes
2243       {                                          2295       {
2244         if ( pDistS <= pDistE )                  2296         if ( pDistS <= pDistE )
2245         {                                        2297         {
2246           sidephi = kSPhi ;                      2298           sidephi = kSPhi ;
2247         }                                        2299         }
2248         else                                     2300         else
2249         {                                        2301         {
2250           sidephi = kEPhi ;                      2302           sidephi = kEPhi ;
2251         }                                        2303         }
2252         if ( fDPhi > pi )                        2304         if ( fDPhi > pi )
2253         {                                        2305         {
2254           if ( (compS < 0) && (compE < 0) )      2306           if ( (compS < 0) && (compE < 0) )  { sphi = 0; }
2255           else                                   2307           else                               { sphi = kInfinity; }
2256         }                                        2308         }
2257         else                                     2309         else
2258         {                                        2310         {
2259           // if towards both >=0 then once in    2311           // if towards both >=0 then once inside (after error)
2260           // will remain inside                  2312           // will remain inside
2261                                                  2313 
2262           if ( (compS >= 0) && (compE >= 0) )    2314           if ( (compS >= 0) && (compE >= 0) ) { sphi = kInfinity; }
2263           else                                   2315           else                                { sphi = 0; }
2264         }                                     << 2316         }    
2265       }                                          2317       }
2266       else if ( (pDistS > 0) && (pDistE < 0)     2318       else if ( (pDistS > 0) && (pDistE < 0) )
2267       {                                          2319       {
2268         // Outside full starting plane, insid    2320         // Outside full starting plane, inside full ending plane
2269                                                  2321 
2270         if ( fDPhi > pi )                        2322         if ( fDPhi > pi )
2271         {                                        2323         {
2272           if ( compE < 0 )                       2324           if ( compE < 0 )
2273           {                                      2325           {
2274             sphi = pDistE/compE ;                2326             sphi = pDistE/compE ;
2275             xi   = p.x() + sphi*v.x() ;          2327             xi   = p.x() + sphi*v.x() ;
2276             yi   = p.y() + sphi*v.y() ;          2328             yi   = p.y() + sphi*v.y() ;
2277                                                  2329 
2278             // Check intersection in correct     2330             // Check intersection in correct half-plane
2279             // (if not -> not leaving phi ext    2331             // (if not -> not leaving phi extent)
2280             //                                   2332             //
2281             if( (std::fabs(xi)<=kCarTolerance    2333             if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) )
2282             {                                    2334             {
2283               vphi = std::atan2(v.y(),v.x());    2335               vphi = std::atan2(v.y(),v.x());
2284               sidephi = kSPhi;                   2336               sidephi = kSPhi;
2285               if ( ( (fSPhi-halfAngTolerance)    2337               if ( ( (fSPhi-halfAngTolerance) <= vphi)
2286                 && ( (ePhi+halfAngTolerance)     2338                 && ( (ePhi+halfAngTolerance)  >= vphi) )
2287               {                                  2339               {
2288                 sphi = kInfinity;                2340                 sphi = kInfinity;
2289               }                                  2341               }
2290             }                                    2342             }
2291             else if ( ( yi*cosCPhi - xi*sinCP    2343             else if ( ( yi*cosCPhi - xi*sinCPhi ) <= 0 )
2292             {                                    2344             {
2293               sphi = kInfinity ;                 2345               sphi = kInfinity ;
2294             }                                    2346             }
2295             else // Leaving via Ending phi       2347             else // Leaving via Ending phi
2296             {                                    2348             {
2297               sidephi = kEPhi ;                  2349               sidephi = kEPhi ;
2298               if ( pDistE > -halfCarTolerance    2350               if ( pDistE > -halfCarTolerance )  { sphi = 0.; }
2299             }                                    2351             }
2300           }                                      2352           }
2301           else                                   2353           else
2302           {                                      2354           {
2303             sphi = kInfinity ;                   2355             sphi = kInfinity ;
2304           }                                      2356           }
2305         }                                        2357         }
2306         else                                     2358         else
2307         {                                        2359         {
2308           if ( compS >= 0 )                      2360           if ( compS >= 0 )
2309           {                                      2361           {
2310             if ( compE < 0 )                     2362             if ( compE < 0 )
2311             {                                 << 2363             {            
2312               sphi = pDistE/compE ;              2364               sphi = pDistE/compE ;
2313               xi   = p.x() + sphi*v.x() ;        2365               xi   = p.x() + sphi*v.x() ;
2314               yi   = p.y() + sphi*v.y() ;        2366               yi   = p.y() + sphi*v.y() ;
2315                                                  2367 
2316               // Check intersection in correc    2368               // Check intersection in correct half-plane
2317               // (if not -> remain in extent)    2369               // (if not -> remain in extent)
2318               //                                 2370               //
2319               if( (std::fabs(xi)<=kCarToleran    2371               if( (std::fabs(xi)<=kCarTolerance)
2320                && (std::fabs(yi)<=kCarToleran    2372                && (std::fabs(yi)<=kCarTolerance) )
2321               {                                  2373               {
2322                 vphi = std::atan2(v.y(),v.x()    2374                 vphi = std::atan2(v.y(),v.x());
2323                 sidephi = kSPhi;                 2375                 sidephi = kSPhi;
2324                 if ( ( (fSPhi-halfAngToleranc    2376                 if ( ( (fSPhi-halfAngTolerance) <= vphi)
2325                   && ( (ePhi+halfAngTolerance    2377                   && ( (ePhi+halfAngTolerance)  >= vphi) )
2326                 {                                2378                 {
2327                   sphi = kInfinity;              2379                   sphi = kInfinity;
2328                 }                                2380                 }
2329               }                                  2381               }
2330               else if ( ( yi*cosCPhi - xi*sin    2382               else if ( ( yi*cosCPhi - xi*sinCPhi) <= 0 )
2331               {                                  2383               {
2332                 sphi=kInfinity;                  2384                 sphi=kInfinity;
2333               }                                  2385               }
2334               else // otherwise leaving via E    2386               else // otherwise leaving via Ending phi
2335               {                                  2387               {
2336                 sidephi = kEPhi ;                2388                 sidephi = kEPhi ;
2337               }                                  2389               }
2338             }                                    2390             }
2339             else sphi=kInfinity;                 2391             else sphi=kInfinity;
2340           }                                      2392           }
2341           else // leaving immediately by star    2393           else // leaving immediately by starting phi
2342           {                                      2394           {
2343             sidephi = kSPhi ;                    2395             sidephi = kSPhi ;
2344             sphi    = 0 ;                        2396             sphi    = 0 ;
2345           }                                      2397           }
2346         }                                        2398         }
2347       }                                          2399       }
2348       else                                       2400       else
2349       {                                          2401       {
2350         // Must be pDistS < 0 && pDistE > 0      2402         // Must be pDistS < 0 && pDistE > 0
2351         // Inside full starting plane, outsid    2403         // Inside full starting plane, outside full ending plane
2352                                                  2404 
2353         if ( fDPhi > pi )                        2405         if ( fDPhi > pi )
2354         {                                        2406         {
2355           if ( compS < 0 )                       2407           if ( compS < 0 )
2356           {                                      2408           {
2357             sphi=pDistS/compS;                   2409             sphi=pDistS/compS;
2358             xi=p.x()+sphi*v.x();                 2410             xi=p.x()+sphi*v.x();
2359             yi=p.y()+sphi*v.y();                 2411             yi=p.y()+sphi*v.y();
2360                                               << 2412             
2361             // Check intersection in correct     2413             // Check intersection in correct half-plane
2362             // (if not -> not leaving phi ext    2414             // (if not -> not leaving phi extent)
2363             //                                   2415             //
2364             if( (std::fabs(xi)<=kCarTolerance    2416             if( (std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance) )
2365             {                                    2417             {
2366               vphi = std::atan2(v.y(),v.x())     2418               vphi = std::atan2(v.y(),v.x()) ;
2367               sidephi = kSPhi;                   2419               sidephi = kSPhi;
2368               if ( ( (fSPhi-halfAngTolerance)    2420               if ( ( (fSPhi-halfAngTolerance) <= vphi)
2369                 && ( (ePhi+halfAngTolerance)     2421                 && ( (ePhi+halfAngTolerance)  >= vphi) )
2370               {                                  2422               {
2371               sphi = kInfinity;                  2423               sphi = kInfinity;
2372               }                                  2424               }
2373             }                                    2425             }
2374             else if ( ( yi*cosCPhi - xi*sinCP    2426             else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
2375             {                                    2427             {
2376               sphi = kInfinity ;                 2428               sphi = kInfinity ;
2377             }                                    2429             }
2378             else  // Leaving via Starting phi    2430             else  // Leaving via Starting phi
2379             {                                    2431             {
2380               sidephi = kSPhi ;                  2432               sidephi = kSPhi ;
2381               if ( pDistS > -halfCarTolerance    2433               if ( pDistS > -halfCarTolerance )  { sphi = 0; }
2382             }                                    2434             }
2383           }                                      2435           }
2384           else                                   2436           else
2385           {                                      2437           {
2386             sphi = kInfinity ;                   2438             sphi = kInfinity ;
2387           }                                      2439           }
2388         }                                        2440         }
2389         else                                     2441         else
2390         {                                        2442         {
2391           if ( compE >= 0 )                      2443           if ( compE >= 0 )
2392           {                                      2444           {
2393             if ( compS < 0 )                     2445             if ( compS < 0 )
2394             {                                    2446             {
2395               sphi = pDistS/compS ;              2447               sphi = pDistS/compS ;
2396               xi   = p.x()+sphi*v.x() ;          2448               xi   = p.x()+sphi*v.x() ;
2397               yi   = p.y()+sphi*v.y() ;          2449               yi   = p.y()+sphi*v.y() ;
2398                                               << 2450               
2399               // Check intersection in correc    2451               // Check intersection in correct half-plane
2400               // (if not -> remain in extent)    2452               // (if not -> remain in extent)
2401               //                                 2453               //
2402               if( (std::fabs(xi)<=kCarToleran    2454               if( (std::fabs(xi)<=kCarTolerance)
2403                && (std::fabs(yi)<=kCarToleran    2455                && (std::fabs(yi)<=kCarTolerance))
2404               {                                  2456               {
2405                 vphi = std::atan2(v.y(),v.x()    2457                 vphi = std::atan2(v.y(),v.x()) ;
2406                 sidephi = kSPhi;                 2458                 sidephi = kSPhi;
2407                 if ( ( (fSPhi-halfAngToleranc    2459                 if ( ( (fSPhi-halfAngTolerance) <= vphi)
2408                   && ( (ePhi+halfAngTolerance    2460                   && ( (ePhi+halfAngTolerance)  >= vphi) )
2409                 {                                2461                 {
2410                   sphi = kInfinity;              2462                   sphi = kInfinity;
2411                 }                                2463                 }
2412               }                                  2464               }
2413               else if ( ( yi*cosCPhi - xi*sin    2465               else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
2414               {                                  2466               {
2415                 sphi = kInfinity ;               2467                 sphi = kInfinity ;
2416               }                                  2468               }
2417               else // otherwise leaving via S    2469               else // otherwise leaving via Starting phi
2418               {                                  2470               {
2419                 sidephi = kSPhi ;                2471                 sidephi = kSPhi ;
2420               }                                  2472               }
2421             }                                    2473             }
2422             else                                 2474             else
2423             {                                    2475             {
2424               sphi = kInfinity ;                 2476               sphi = kInfinity ;
2425             }                                    2477             }
2426           }                                      2478           }
2427           else // leaving immediately by endi    2479           else // leaving immediately by ending
2428           {                                      2480           {
2429             sidephi = kEPhi ;                    2481             sidephi = kEPhi ;
2430             sphi    = 0     ;                    2482             sphi    = 0     ;
2431           }                                      2483           }
2432         }                                        2484         }
2433       }                                       << 2485       }      
2434     }                                            2486     }
2435     else                                         2487     else
2436     {                                            2488     {
2437       // On z axis + travel not || to z axis     2489       // On z axis + travel not || to z axis -> if phi of vector direction
2438       // within phi of shape, Step limited by    2490       // within phi of shape, Step limited by rmax, else Step =0
2439                                                  2491 
2440       if ( (v.x() != 0.0) || (v.y() != 0.0) ) << 2492       if ( v.x() || v.y() )
2441       {                                          2493       {
2442         vphi = std::atan2(v.y(),v.x()) ;         2494         vphi = std::atan2(v.y(),v.x()) ;
2443         if ((fSPhi-halfAngTolerance < vphi) &    2495         if ((fSPhi-halfAngTolerance < vphi) && (vphi < ePhi+halfAngTolerance))
2444         {                                        2496         {
2445           sphi = kInfinity;                      2497           sphi = kInfinity;
2446         }                                        2498         }
2447         else                                     2499         else
2448         {                                        2500         {
2449           sidephi = kSPhi ; // arbitrary      << 2501           sidephi = kSPhi ; // arbitrary 
2450           sphi    = 0     ;                      2502           sphi    = 0     ;
2451         }                                        2503         }
2452       }                                          2504       }
2453       else  // travel along z - no phi inters    2505       else  // travel along z - no phi intersection
2454       {                                          2506       {
2455         sphi = kInfinity ;                       2507         sphi = kInfinity ;
2456       }                                          2508       }
2457     }                                            2509     }
2458     if ( sphi < snxt )  // Order intersecttio    2510     if ( sphi < snxt )  // Order intersecttions
2459     {                                            2511     {
2460       snxt = sphi ;                              2512       snxt = sphi ;
2461       side = sidephi ;                           2513       side = sidephi ;
2462     }                                            2514     }
2463   }                                              2515   }
2464   if (stheta < snxt ) // Order intersections     2516   if (stheta < snxt ) // Order intersections
2465   {                                              2517   {
2466     snxt = stheta ;                              2518     snxt = stheta ;
2467     side = sidetheta ;                           2519     side = sidetheta ;
2468   }                                              2520   }
2469                                                  2521 
2470   if (calcNorm)    // Output switch operator     2522   if (calcNorm)    // Output switch operator
2471   {                                              2523   {
2472     switch( side )                               2524     switch( side )
2473     {                                            2525     {
2474       case kRMax:                                2526       case kRMax:
2475         xi=p.x()+snxt*v.x();                     2527         xi=p.x()+snxt*v.x();
2476         yi=p.y()+snxt*v.y();                     2528         yi=p.y()+snxt*v.y();
2477         zi=p.z()+snxt*v.z();                     2529         zi=p.z()+snxt*v.z();
2478         *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi    2530         *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi/fRmax);
2479         *validNorm=true;                         2531         *validNorm=true;
2480         break;                                   2532         break;
2481                                                  2533 
2482       case kRMin:                                2534       case kRMin:
2483         *validNorm=false;  // Rmin is concave    2535         *validNorm=false;  // Rmin is concave
2484         break;                                   2536         break;
2485                                                  2537 
2486       case kSPhi:                                2538       case kSPhi:
2487         if ( fDPhi <= pi )     // Normal to P    2539         if ( fDPhi <= pi )     // Normal to Phi-
2488         {                                        2540         {
2489           *n=G4ThreeVector(sinSPhi,-cosSPhi,0    2541           *n=G4ThreeVector(sinSPhi,-cosSPhi,0);
2490           *validNorm=true;                       2542           *validNorm=true;
2491         }                                        2543         }
2492         else  { *validNorm=false; }              2544         else  { *validNorm=false; }
2493         break ;                                  2545         break ;
2494                                                  2546 
2495       case kEPhi:                                2547       case kEPhi:
2496         if ( fDPhi <= pi )      // Normal to     2548         if ( fDPhi <= pi )      // Normal to Phi+
2497         {                                        2549         {
2498           *n=G4ThreeVector(-sinEPhi,cosEPhi,0    2550           *n=G4ThreeVector(-sinEPhi,cosEPhi,0);
2499           *validNorm=true;                       2551           *validNorm=true;
2500         }                                        2552         }
2501         else  { *validNorm=false; }              2553         else  { *validNorm=false; }
2502         break;                                   2554         break;
2503                                                  2555 
2504       case kSTheta:                              2556       case kSTheta:
2505         if( fSTheta == halfpi )                  2557         if( fSTheta == halfpi )
2506         {                                        2558         {
2507           *n=G4ThreeVector(0.,0.,1.);            2559           *n=G4ThreeVector(0.,0.,1.);
2508           *validNorm=true;                       2560           *validNorm=true;
2509         }                                        2561         }
2510         else if ( fSTheta > halfpi )             2562         else if ( fSTheta > halfpi )
2511         {                                        2563         {
2512           xi = p.x() + snxt*v.x();               2564           xi = p.x() + snxt*v.x();
2513           yi = p.y() + snxt*v.y();               2565           yi = p.y() + snxt*v.y();
2514           rho2=xi*xi+yi*yi;                      2566           rho2=xi*xi+yi*yi;
2515           if (rho2 != 0.0)                    << 2567           if (rho2)
2516           {                                   << 2568           { 
2517             rhoSecTheta = std::sqrt(rho2*(1+t    2569             rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2));
2518             *n = G4ThreeVector( xi/rhoSecThet    2570             *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta,
2519                                -tanSTheta/std    2571                                -tanSTheta/std::sqrt(1+tanSTheta2));
2520           }                                      2572           }
2521           else                                   2573           else
2522           {                                      2574           {
2523             *n = G4ThreeVector(0.,0.,1.);        2575             *n = G4ThreeVector(0.,0.,1.);
2524           }                                      2576           }
2525           *validNorm=true;                       2577           *validNorm=true;
2526         }                                        2578         }
2527         else  { *validNorm=false; }  // Conca    2579         else  { *validNorm=false; }  // Concave STheta cone
2528         break;                                   2580         break;
2529                                                  2581 
2530       case kETheta:                              2582       case kETheta:
2531         if( eTheta == halfpi )                   2583         if( eTheta == halfpi )
2532         {                                        2584         {
2533           *n         = G4ThreeVector(0.,0.,-1    2585           *n         = G4ThreeVector(0.,0.,-1.);
2534           *validNorm = true;                     2586           *validNorm = true;
2535         }                                        2587         }
2536         else if ( eTheta < halfpi )              2588         else if ( eTheta < halfpi )
2537         {                                        2589         {
2538           xi=p.x()+snxt*v.x();                   2590           xi=p.x()+snxt*v.x();
2539           yi=p.y()+snxt*v.y();                   2591           yi=p.y()+snxt*v.y();
2540           rho2=xi*xi+yi*yi;                      2592           rho2=xi*xi+yi*yi;
2541           if (rho2 != 0.0)                    << 2593           if (rho2)
2542           {                                   << 2594           { 
2543             rhoSecTheta = std::sqrt(rho2*(1+t    2595             rhoSecTheta = std::sqrt(rho2*(1+tanETheta2));
2544             *n = G4ThreeVector( xi/rhoSecThet    2596             *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta,
2545                                -tanETheta/std    2597                                -tanETheta/std::sqrt(1+tanETheta2) );
2546           }                                      2598           }
2547           else                                   2599           else
2548           {                                      2600           {
2549             *n = G4ThreeVector(0.,0.,-1.);       2601             *n = G4ThreeVector(0.,0.,-1.);
2550           }                                      2602           }
2551           *validNorm=true;                       2603           *validNorm=true;
2552         }                                        2604         }
2553         else  { *validNorm=false; }   // Conc    2605         else  { *validNorm=false; }   // Concave ETheta cone
2554         break;                                   2606         break;
2555                                                  2607 
2556       default:                                   2608       default:
2557         G4cout << G4endl;                        2609         G4cout << G4endl;
2558         DumpInfo();                              2610         DumpInfo();
2559         std::ostringstream message;              2611         std::ostringstream message;
2560         G4long oldprc = message.precision(16) << 2612         G4int oldprc = message.precision(16);
2561         message << "Undefined side for valid     2613         message << "Undefined side for valid surface normal to solid."
2562                 << G4endl                        2614                 << G4endl
2563                 << "Position:"  << G4endl <<     2615                 << "Position:"  << G4endl << G4endl
2564                 << "p.x() = "   << p.x()/mm <    2616                 << "p.x() = "   << p.x()/mm << " mm" << G4endl
2565                 << "p.y() = "   << p.y()/mm <    2617                 << "p.y() = "   << p.y()/mm << " mm" << G4endl
2566                 << "p.z() = "   << p.z()/mm <    2618                 << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl
2567                 << "Direction:" << G4endl <<     2619                 << "Direction:" << G4endl << G4endl
2568                 << "v.x() = "   << v.x() << G    2620                 << "v.x() = "   << v.x() << G4endl
2569                 << "v.y() = "   << v.y() << G    2621                 << "v.y() = "   << v.y() << G4endl
2570                 << "v.z() = "   << v.z() << G    2622                 << "v.z() = "   << v.z() << G4endl << G4endl
2571                 << "Proposed distance :" << G    2623                 << "Proposed distance :" << G4endl << G4endl
2572                 << "snxt = "    << snxt/mm <<    2624                 << "snxt = "    << snxt/mm << " mm" << G4endl;
2573         message.precision(oldprc);               2625         message.precision(oldprc);
2574         G4Exception("G4Sphere::DistanceToOut(    2626         G4Exception("G4Sphere::DistanceToOut(p,v,..)",
2575                     "GeomSolids1002", JustWar    2627                     "GeomSolids1002", JustWarning, message);
2576         break;                                   2628         break;
2577     }                                            2629     }
2578   }                                              2630   }
2579   if (snxt == kInfinity)                         2631   if (snxt == kInfinity)
2580   {                                              2632   {
2581     G4cout << G4endl;                            2633     G4cout << G4endl;
2582     DumpInfo();                                  2634     DumpInfo();
2583     std::ostringstream message;                  2635     std::ostringstream message;
2584     G4long oldprc = message.precision(16);    << 2636     G4int oldprc = message.precision(16);
2585     message << "Logic error: snxt = kInfinity    2637     message << "Logic error: snxt = kInfinity  ???" << G4endl
2586             << "Position:"  << G4endl << G4en    2638             << "Position:"  << G4endl << G4endl
2587             << "p.x() = "   << p.x()/mm << "     2639             << "p.x() = "   << p.x()/mm << " mm" << G4endl
2588             << "p.y() = "   << p.y()/mm << "     2640             << "p.y() = "   << p.y()/mm << " mm" << G4endl
2589             << "p.z() = "   << p.z()/mm << "     2641             << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl
2590             << "Rp = "<< std::sqrt( p.x()*p.x    2642             << "Rp = "<< std::sqrt( p.x()*p.x()+p.y()*p.y()+p.z()*p.z() )/mm
2591             << " mm" << G4endl << G4endl         2643             << " mm" << G4endl << G4endl
2592             << "Direction:" << G4endl << G4en    2644             << "Direction:" << G4endl << G4endl
2593             << "v.x() = "   << v.x() << G4end    2645             << "v.x() = "   << v.x() << G4endl
2594             << "v.y() = "   << v.y() << G4end    2646             << "v.y() = "   << v.y() << G4endl
2595             << "v.z() = "   << v.z() << G4end    2647             << "v.z() = "   << v.z() << G4endl << G4endl
2596             << "Proposed distance :" << G4end    2648             << "Proposed distance :" << G4endl << G4endl
2597             << "snxt = "    << snxt/mm << " m    2649             << "snxt = "    << snxt/mm << " mm" << G4endl;
2598     message.precision(oldprc);                   2650     message.precision(oldprc);
2599     G4Exception("G4Sphere::DistanceToOut(p,v,    2651     G4Exception("G4Sphere::DistanceToOut(p,v,..)",
2600                 "GeomSolids1002", JustWarning    2652                 "GeomSolids1002", JustWarning, message);
2601   }                                              2653   }
2602                                                  2654 
2603   return snxt;                                   2655   return snxt;
2604 }                                                2656 }
2605                                                  2657 
2606 /////////////////////////////////////////////    2658 /////////////////////////////////////////////////////////////////////////
2607 //                                               2659 //
2608 // Calculate distance (<=actual) to closest s    2660 // Calculate distance (<=actual) to closest surface of shape from inside
2609                                                  2661 
2610 G4double G4Sphere::DistanceToOut( const G4Thr    2662 G4double G4Sphere::DistanceToOut( const G4ThreeVector& p ) const
2611 {                                                2663 {
2612   G4double safe=0.0,safeRMin,safeRMax,safePhi    2664   G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta;
2613   G4double rho2,rds,rho;                         2665   G4double rho2,rds,rho;
2614   G4double pTheta,dTheta1 = kInfinity,dTheta2    2666   G4double pTheta,dTheta1 = kInfinity,dTheta2 = kInfinity;
2615   rho2=p.x()*p.x()+p.y()*p.y();                  2667   rho2=p.x()*p.x()+p.y()*p.y();
2616   rds=std::sqrt(rho2+p.z()*p.z());               2668   rds=std::sqrt(rho2+p.z()*p.z());
2617   rho=std::sqrt(rho2);                           2669   rho=std::sqrt(rho2);
2618                                                  2670 
2619 #ifdef G4CSGDEBUG                                2671 #ifdef G4CSGDEBUG
2620   if( Inside(p) == kOutside )                    2672   if( Inside(p) == kOutside )
2621   {                                              2673   {
2622      G4long old_prc = G4cout.precision(16);   << 2674      G4int old_prc = G4cout.precision(16);
2623      G4cout << G4endl;                           2675      G4cout << G4endl;
2624      DumpInfo();                                 2676      DumpInfo();
2625      G4cout << "Position:"  << G4endl << G4en    2677      G4cout << "Position:"  << G4endl << G4endl ;
2626      G4cout << "p.x() = "   << p.x()/mm << "     2678      G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
2627      G4cout << "p.y() = "   << p.y()/mm << "     2679      G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
2628      G4cout << "p.z() = "   << p.z()/mm << "     2680      G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
2629      G4cout.precision(old_prc) ;                 2681      G4cout.precision(old_prc) ;
2630      G4Exception("G4Sphere::DistanceToOut(p)"    2682      G4Exception("G4Sphere::DistanceToOut(p)",
2631                  "GeomSolids1002", JustWarnin    2683                  "GeomSolids1002", JustWarning, "Point p is outside !?" );
2632   }                                              2684   }
2633 #endif                                           2685 #endif
2634                                                  2686 
2635   // Distance to r shells                        2687   // Distance to r shells
2636   //                                             2688   //
2637   safeRMax = fRmax-rds;                          2689   safeRMax = fRmax-rds;
2638   safe = safeRMax;                            << 2690   safe = safeRMax;  
2639   if (fRmin != 0.0)                           << 2691   if (fRmin)
2640   {                                              2692   {
2641      safeRMin = rds-fRmin;                       2693      safeRMin = rds-fRmin;
2642      safe = std::min( safeRMin, safeRMax );   << 2694      safe = std::min( safeRMin, safeRMax ); 
2643   }                                              2695   }
2644                                                  2696 
2645   // Distance to phi extent                      2697   // Distance to phi extent
2646   //                                             2698   //
2647   if ( !fFullPhiSphere )                         2699   if ( !fFullPhiSphere )
2648   {                                              2700   {
2649      if (rho>0.0)                                2701      if (rho>0.0)
2650      {                                           2702      {
2651         if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0)    2703         if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0)
2652         {                                        2704         {
2653            safePhi=-(p.x()*sinSPhi-p.y()*cosS    2705            safePhi=-(p.x()*sinSPhi-p.y()*cosSPhi);
2654         }                                        2706         }
2655         else                                     2707         else
2656         {                                        2708         {
2657            safePhi=(p.x()*sinEPhi-p.y()*cosEP    2709            safePhi=(p.x()*sinEPhi-p.y()*cosEPhi);
2658         }                                        2710         }
2659      }                                           2711      }
2660      else                                        2712      else
2661      {                                           2713      {
2662         safePhi = 0.0;  // Distance to both P    2714         safePhi = 0.0;  // Distance to both Phi surfaces (extended)
2663      }                                           2715      }
2664      // Both cases above can be improved - in    2716      // Both cases above can be improved - in case fRMin > 0.0
2665      //  although it may be costlier (good fo    2717      //  although it may be costlier (good for precise, not fast version)
2666                                               << 2718      
2667      safe= std::min(safe, safePhi);              2719      safe= std::min(safe, safePhi);
2668   }                                              2720   }
2669                                                  2721 
2670   // Distance to Theta extent                    2722   // Distance to Theta extent
2671   //                                             2723   //
2672   if ( !fFullThetaSphere )                       2724   if ( !fFullThetaSphere )
2673   {                                              2725   {
2674     if( rds > 0.0 )                              2726     if( rds > 0.0 )
2675     {                                            2727     {
2676        pTheta=std::acos(p.z()/rds);              2728        pTheta=std::acos(p.z()/rds);
2677        if (pTheta<0) { pTheta+=pi; }             2729        if (pTheta<0) { pTheta+=pi; }
2678        if(fSTheta>0.)                            2730        if(fSTheta>0.)
2679        { dTheta1=pTheta-fSTheta;}                2731        { dTheta1=pTheta-fSTheta;}
2680        if(eTheta<pi)                             2732        if(eTheta<pi)
2681        { dTheta2=eTheta-pTheta;}                 2733        { dTheta2=eTheta-pTheta;}
2682                                               << 2734       
2683        safeTheta=rds*std::sin(std::min(dTheta    2735        safeTheta=rds*std::sin(std::min(dTheta1, dTheta2) );
2684     }                                            2736     }
2685     else                                         2737     else
2686     {                                            2738     {
2687        safeTheta= 0.0;                           2739        safeTheta= 0.0;
2688          // An improvement will be to return     2740          // An improvement will be to return negative answer if outside (TODO)
2689     }                                            2741     }
2690     safe = std::min( safe, safeTheta );          2742     safe = std::min( safe, safeTheta );
2691   }                                              2743   }
2692                                                  2744 
2693   if (safe<0.0) { safe=0; }                      2745   if (safe<0.0) { safe=0; }
2694     // An improvement to return negative answ    2746     // An improvement to return negative answer if outside (TODO)
2695                                               << 2747   
2696   return safe;                                   2748   return safe;
2697 }                                                2749 }
2698                                                  2750 
2699 /////////////////////////////////////////////    2751 //////////////////////////////////////////////////////////////////////////
2700 //                                               2752 //
2701 // G4EntityType                                  2753 // G4EntityType
2702                                                  2754 
2703 G4GeometryType G4Sphere::GetEntityType() cons    2755 G4GeometryType G4Sphere::GetEntityType() const
2704 {                                                2756 {
2705   return {"G4Sphere"};                        << 2757   return G4String("G4Sphere");
2706 }                                                2758 }
2707                                                  2759 
2708 /////////////////////////////////////////////    2760 //////////////////////////////////////////////////////////////////////////
2709 //                                               2761 //
2710 // Make a clone of the object                    2762 // Make a clone of the object
2711 //                                               2763 //
2712 G4VSolid* G4Sphere::Clone() const                2764 G4VSolid* G4Sphere::Clone() const
2713 {                                                2765 {
2714   return new G4Sphere(*this);                    2766   return new G4Sphere(*this);
2715 }                                                2767 }
2716                                                  2768 
2717 /////////////////////////////////////////////    2769 //////////////////////////////////////////////////////////////////////////
2718 //                                               2770 //
2719 // Stream object contents to an output stream    2771 // Stream object contents to an output stream
2720                                                  2772 
2721 std::ostream& G4Sphere::StreamInfo( std::ostr    2773 std::ostream& G4Sphere::StreamInfo( std::ostream& os ) const
2722 {                                                2774 {
2723   G4long oldprc = os.precision(16);           << 2775   G4int oldprc = os.precision(16);
2724   os << "------------------------------------    2776   os << "-----------------------------------------------------------\n"
2725      << "    *** Dump for solid - " << GetNam    2777      << "    *** Dump for solid - " << GetName() << " ***\n"
2726      << "    ================================    2778      << "    ===================================================\n"
2727      << " Solid type: G4Sphere\n"                2779      << " Solid type: G4Sphere\n"
2728      << " Parameters: \n"                        2780      << " Parameters: \n"
2729      << "    inner radius: " << fRmin/mm << "    2781      << "    inner radius: " << fRmin/mm << " mm \n"
2730      << "    outer radius: " << fRmax/mm << "    2782      << "    outer radius: " << fRmax/mm << " mm \n"
2731      << "    starting phi of segment  : " <<     2783      << "    starting phi of segment  : " << fSPhi/degree << " degrees \n"
2732      << "    delta phi of segment     : " <<     2784      << "    delta phi of segment     : " << fDPhi/degree << " degrees \n"
2733      << "    starting theta of segment: " <<     2785      << "    starting theta of segment: " << fSTheta/degree << " degrees \n"
2734      << "    delta theta of segment   : " <<     2786      << "    delta theta of segment   : " << fDTheta/degree << " degrees \n"
2735      << "------------------------------------    2787      << "-----------------------------------------------------------\n";
2736   os.precision(oldprc);                          2788   os.precision(oldprc);
2737                                                  2789 
2738   return os;                                     2790   return os;
2739 }                                                2791 }
2740                                                  2792 
2741 /////////////////////////////////////////////    2793 ////////////////////////////////////////////////////////////////////////////////
2742 //                                               2794 //
2743 // Get volume                                 << 2795 // GetPointOnSurface
2744                                                  2796 
2745 G4double G4Sphere::GetCubicVolume()           << 2797 G4ThreeVector G4Sphere::GetPointOnSurface() const
2746 {                                                2798 {
2747   if (fCubicVolume == 0.)                     << 2799   G4double zRand, aOne, aTwo, aThr, aFou, aFiv, chose, phi, sinphi, cosphi;
                                                   >> 2800   G4double height1, height2, slant1, slant2, costheta, sintheta, rRand;
                                                   >> 2801 
                                                   >> 2802   height1 = (fRmax-fRmin)*cosSTheta;
                                                   >> 2803   height2 = (fRmax-fRmin)*cosETheta;
                                                   >> 2804   slant1  = std::sqrt(sqr((fRmax - fRmin)*sinSTheta) + height1*height1);
                                                   >> 2805   slant2  = std::sqrt(sqr((fRmax - fRmin)*sinETheta) + height2*height2);
                                                   >> 2806   rRand   = GetRadiusInRing(fRmin,fRmax);
                                                   >> 2807   
                                                   >> 2808   aOne = fRmax*fRmax*fDPhi*(cosSTheta-cosETheta);
                                                   >> 2809   aTwo = fRmin*fRmin*fDPhi*(cosSTheta-cosETheta);
                                                   >> 2810   aThr = fDPhi*((fRmax + fRmin)*sinSTheta)*slant1;
                                                   >> 2811   aFou = fDPhi*((fRmax + fRmin)*sinETheta)*slant2;
                                                   >> 2812   aFiv = 0.5*fDTheta*(fRmax*fRmax-fRmin*fRmin);
                                                   >> 2813   
                                                   >> 2814   phi = G4RandFlat::shoot(fSPhi, ePhi); 
                                                   >> 2815   cosphi = std::cos(phi); 
                                                   >> 2816   sinphi = std::sin(phi);
                                                   >> 2817   costheta = G4RandFlat::shoot(cosETheta,cosSTheta);
                                                   >> 2818   sintheta = std::sqrt(1.-sqr(costheta));
                                                   >> 2819 
                                                   >> 2820   if(fFullPhiSphere) { aFiv = 0; }
                                                   >> 2821   if(fSTheta == 0)   { aThr=0; }
                                                   >> 2822   if(eTheta == pi) { aFou = 0; }
                                                   >> 2823   if(fSTheta == halfpi) { aThr = pi*(fRmax*fRmax-fRmin*fRmin); }
                                                   >> 2824   if(eTheta == halfpi)  { aFou = pi*(fRmax*fRmax-fRmin*fRmin); }
                                                   >> 2825 
                                                   >> 2826   chose = G4RandFlat::shoot(0.,aOne+aTwo+aThr+aFou+2.*aFiv);
                                                   >> 2827   if( (chose>=0.) && (chose<aOne) )
                                                   >> 2828   {
                                                   >> 2829     return G4ThreeVector(fRmax*sintheta*cosphi,
                                                   >> 2830                          fRmax*sintheta*sinphi, fRmax*costheta);
                                                   >> 2831   }
                                                   >> 2832   else if( (chose>=aOne) && (chose<aOne+aTwo) )
                                                   >> 2833   {
                                                   >> 2834     return G4ThreeVector(fRmin*sintheta*cosphi,
                                                   >> 2835                          fRmin*sintheta*sinphi, fRmin*costheta);
                                                   >> 2836   }
                                                   >> 2837   else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThr) )
                                                   >> 2838   {
                                                   >> 2839     if (fSTheta != halfpi)
                                                   >> 2840     {
                                                   >> 2841       zRand = G4RandFlat::shoot(fRmin*cosSTheta,fRmax*cosSTheta);
                                                   >> 2842       return G4ThreeVector(tanSTheta*zRand*cosphi,
                                                   >> 2843                            tanSTheta*zRand*sinphi,zRand);
                                                   >> 2844     }
                                                   >> 2845     else
                                                   >> 2846     {
                                                   >> 2847       return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.);
                                                   >> 2848     }    
                                                   >> 2849   }
                                                   >> 2850   else if( (chose>=aOne+aTwo+aThr) && (chose<aOne+aTwo+aThr+aFou) )
2748   {                                              2851   {
2749     G4double RRR = fRmax*fRmax*fRmax;         << 2852     if(eTheta != halfpi)
2750     G4double rrr = fRmin*fRmin*fRmin;         << 2853     {
2751     fCubicVolume = fDPhi*(cosSTheta - cosEThe << 2854       zRand = G4RandFlat::shoot(fRmin*cosETheta, fRmax*cosETheta);
                                                   >> 2855       return G4ThreeVector  (tanETheta*zRand*cosphi,
                                                   >> 2856                              tanETheta*zRand*sinphi,zRand);
                                                   >> 2857     }
                                                   >> 2858     else
                                                   >> 2859     {
                                                   >> 2860       return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.);
                                                   >> 2861     }
2752   }                                              2862   }
2753   return fCubicVolume;                        << 2863   else if( (chose>=aOne+aTwo+aThr+aFou) && (chose<aOne+aTwo+aThr+aFou+aFiv) )
2754 }                                             << 
2755                                               << 
2756 ///////////////////////////////////////////// << 
2757 //                                            << 
2758 // Get surface area                           << 
2759                                               << 
2760 G4double G4Sphere::GetSurfaceArea()           << 
2761 {                                             << 
2762   if (fSurfaceArea == 0.)                     << 
2763   {                                              2864   {
2764     G4double RR = fRmax*fRmax;                << 2865     return G4ThreeVector(rRand*sintheta*cosSPhi,
2765     G4double rr = fRmin*fRmin;                << 2866                          rRand*sintheta*sinSPhi,rRand*costheta);
2766     fSurfaceArea = fDPhi*(RR + rr)*(cosSTheta << 2867   }
2767     if (!fFullPhiSphere)    fSurfaceArea += f << 2868   else
2768     if (fSTheta > 0)        fSurfaceArea += 0 << 2869   {
2769     if (eTheta < CLHEP::pi) fSurfaceArea += 0 << 2870     return G4ThreeVector(rRand*sintheta*cosEPhi,
                                                   >> 2871                          rRand*sintheta*sinEPhi,rRand*costheta);
2770   }                                              2872   }
2771   return fSurfaceArea;                        << 
2772 }                                                2873 }
2773                                                  2874 
2774 /////////////////////////////////////////////    2875 ////////////////////////////////////////////////////////////////////////////////
2775 //                                               2876 //
2776 // Return a point randomly and uniformly sele << 2877 // GetSurfaceArea
2777                                                  2878 
2778 G4ThreeVector G4Sphere::GetPointOnSurface() c << 2879 G4double G4Sphere::GetSurfaceArea()
2779 {                                                2880 {
2780   G4double RR = fRmax*fRmax;                  << 2881   if(fSurfaceArea != 0.) {;}
2781   G4double rr = fRmin*fRmin;                  << 2882   else
2782                                               << 2883   {   
2783   // Find surface areas                       << 2884     G4double Rsq=fRmax*fRmax;
2784   //                                          << 2885     G4double rsq=fRmin*fRmin;
2785   G4double aInner   = fDPhi*rr*(cosSTheta - c << 2886          
2786   G4double aOuter   = fDPhi*RR*(cosSTheta - c << 2887     fSurfaceArea = fDPhi*(rsq+Rsq)*(cosSTheta - cosETheta);
2787   G4double aPhi     = (!fFullPhiSphere) ? fDT << 2888     if(!fFullPhiSphere)
2788   G4double aSTheta  = (fSTheta > 0) ? 0.5*fDP << 2889     {
2789   G4double aETheta  = (eTheta < pi) ? 0.5*fDP << 2890       fSurfaceArea = fSurfaceArea + fDTheta*(Rsq-rsq);
2790   G4double aTotal   = aInner + aOuter + aPhi  << 2891     }
2791                                               << 2892     if(fSTheta >0)
2792   // Select surface and generate a point      << 2893     {
2793   //                                          << 2894       G4double acos1=std::acos( std::pow(sinSTheta,2) * std::cos(fDPhi)
2794   G4double select = aTotal*G4QuickRand();     << 2895                               + std::pow(cosSTheta,2));
2795   G4double u = G4QuickRand();                 << 2896       if(fDPhi>pi)
2796   G4double v = G4QuickRand();                 << 2897       { 
2797   if (select < aInner + aOuter)            // << 2898         fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*(twopi-acos1);
2798   {                                           << 2899       }
2799     G4double r   = (select < aInner) ? fRmin  << 2900       else
2800     G4double z   = cosSTheta + (cosETheta - c << 2901       {
2801     G4double rho = std::sqrt(1. - z*z);       << 2902         fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*acos1;
2802     G4double phi = fDPhi*v + fSPhi;           << 2903       }
2803     return { r*rho*std::cos(phi), r*rho*std:: << 2904     }
2804   }                                           << 2905     if(eTheta < pi)
2805   else if (select < aInner + aOuter + aPhi) / << 2906     {
2806   {                                           << 2907       G4double acos2=std::acos( std::pow(sinETheta,2) * std::cos(fDPhi)
2807     G4double phi   = (select < aInner + aOute << 2908                               + std::pow(cosETheta,2));
2808     G4double r     = std::sqrt((RR - rr)*u +  << 2909       if(fDPhi>pi)
2809     G4double theta = fDTheta*v + fSTheta;     << 2910       { 
2810     G4double z     = std::cos(theta);         << 2911         fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*(twopi-acos2);
2811     G4double rho   = std::sin(theta);         << 2912       }
2812     return { r*rho*std::cos(phi), r*rho*std:: << 2913       else
2813   }                                           << 2914       {
2814   else                                     // << 2915         fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*acos2;
2815   {                                           << 2916       }
2816     G4double theta = (select < aTotal - aEThe << 2917     }
2817     G4double r     = std::sqrt((RR - rr)*u +  << 
2818     G4double phi   = fDPhi*v + fSPhi;         << 
2819     G4double z     = std::cos(theta);         << 
2820     G4double rho   = std::sin(theta);         << 
2821     return { r*rho*std::cos(phi), r*rho*std:: << 
2822   }                                              2918   }
                                                   >> 2919   return fSurfaceArea;
2823 }                                                2920 }
2824                                                  2921 
2825 /////////////////////////////////////////////    2922 /////////////////////////////////////////////////////////////////////////////
2826 //                                               2923 //
2827 // Methods for visualisation                     2924 // Methods for visualisation
2828                                                  2925 
2829 G4VisExtent G4Sphere::GetExtent() const          2926 G4VisExtent G4Sphere::GetExtent() const
2830 {                                                2927 {
2831   return { -fRmax, fRmax,-fRmax, fRmax,-fRmax << 2928   return G4VisExtent(-fRmax, fRmax,-fRmax, fRmax,-fRmax, fRmax );
2832 }                                                2929 }
2833                                                  2930 
2834                                                  2931 
2835 void G4Sphere::DescribeYourselfTo ( G4VGraphi    2932 void G4Sphere::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
2836 {                                                2933 {
2837   scene.AddSolid (*this);                        2934   scene.AddSolid (*this);
2838 }                                                2935 }
2839                                                  2936 
2840 G4Polyhedron* G4Sphere::CreatePolyhedron () c    2937 G4Polyhedron* G4Sphere::CreatePolyhedron () const
2841 {                                                2938 {
2842   return new G4PolyhedronSphere (fRmin, fRmax    2939   return new G4PolyhedronSphere (fRmin, fRmax, fSPhi, fDPhi, fSTheta, fDTheta);
2843 }                                                2940 }
2844                                                  2941 
2845 #endif                                           2942 #endif
2846                                                  2943