Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4HelixMixedStepper.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4HelixMixedStepper.cc (Version 11.3.0) and /geometry/magneticfield/src/G4HelixMixedStepper.cc (Version 9.4.p1)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // class G4HelixMixedStepper                       26 // class G4HelixMixedStepper
 27 //                                                 27 //
 28 // Class description:                              28 // Class description:
 29 //                                                 29 //
 30 // G4HelixMixedStepper split the Method used f     30 // G4HelixMixedStepper split the Method used for Integration in two:
 31 //                                                 31 //
 32 // If Stepping Angle ( h / R_curve) < pi/3         32 // If Stepping Angle ( h / R_curve) < pi/3  
 33 //        use Stepper for small step(Classical     33 //        use Stepper for small step(ClassicalRK4 by default)
 34 // Else use  HelixExplicitEuler Stepper            34 // Else use  HelixExplicitEuler Stepper
 35 //                                                 35 //
 36 // Created: T.Nikitina, CERN - 18.05.2007, der <<  36 // History: 
                                                   >>  37 // Derived from ExactHelicalStepper 18/05/07
                                                   >>  38 //
 37 // -------------------------------------------     39 // -------------------------------------------------------------------------
 38                                                    40 
 39 #include "G4HelixMixedStepper.hh"                  41 #include "G4HelixMixedStepper.hh"
 40 #include "G4PhysicalConstants.hh"              << 
 41 #include "G4ClassicalRK4.hh"                       42 #include "G4ClassicalRK4.hh"
 42 #include "G4CashKarpRKF45.hh"                      43 #include "G4CashKarpRKF45.hh"
 43 #include "G4SimpleRunge.hh"                        44 #include "G4SimpleRunge.hh"
 44 #include "G4HelixImplicitEuler.hh"                 45 #include "G4HelixImplicitEuler.hh"
 45 #include "G4HelixExplicitEuler.hh"                 46 #include "G4HelixExplicitEuler.hh"
 46 #include "G4HelixSimpleRunge.hh"                   47 #include "G4HelixSimpleRunge.hh"
 47 #include "G4ExactHelixStepper.hh"                  48 #include "G4ExactHelixStepper.hh"
 48 #include "G4ExplicitEuler.hh"                      49 #include "G4ExplicitEuler.hh"
 49 #include "G4ImplicitEuler.hh"                      50 #include "G4ImplicitEuler.hh"
 50 #include "G4SimpleHeum.hh"                         51 #include "G4SimpleHeum.hh"
 51 #include "G4RKG3_Stepper.hh"                       52 #include "G4RKG3_Stepper.hh"
 52 #include "G4NystromRK4.hh"                     << 
 53                                                << 
 54 // Additional potential steppers               << 
 55 #include "G4DormandPrince745.hh"               << 
 56 #include "G4BogackiShampine23.hh"              << 
 57 #include "G4BogackiShampine45.hh"              << 
 58 #include "G4TsitourasRK45.hh"                  << 
 59                                                    53 
 60 #include "G4ThreeVector.hh"                        54 #include "G4ThreeVector.hh"
 61 #include "G4LineSection.hh"                        55 #include "G4LineSection.hh"
 62                                                <<  56 G4HelixMixedStepper::G4HelixMixedStepper(G4Mag_EqRhs *EqRhs,G4int fStepperNumber)
 63 // ------------------------------------------- << 
 64 G4HelixMixedStepper::                          << 
 65 G4HelixMixedStepper(G4Mag_EqRhs* EqRhs,        << 
 66                     G4int        stepperNumber << 
 67                     G4double     angleThreshol << 
 68   : G4MagHelicalStepper(EqRhs)                     57   : G4MagHelicalStepper(EqRhs)
                                                   >>  58     
 69 {                                                  59 {
 70    if( angleThreshold < 0.0 )                  <<  60    SetVerbose(1); fNumCallsRK4=0; fNumCallsHelix=0;
 71    {                                           <<  61    if(!fStepperNumber) fStepperNumber=4;
 72      fAngle_threshold = (1.0/3.0)*pi;          << 
 73    }                                           << 
 74    else                                        << 
 75    {                                           << 
 76      fAngle_threshold = angleThreshold;        << 
 77    }                                           << 
 78                                                << 
 79    if(stepperNumber<0)                         << 
 80    {                                           << 
 81      // stepperNumber = 4;  // Default is RK4  << 
 82      stepperNumber = 745;   // Default is Dorm << 
 83      // stepperNumber = 8;  // Default is Cash << 
 84    }                                           << 
 85                                                << 
 86    fStepperNumber = stepperNumber; // Store th << 
 87    fRK4Stepper =  SetupStepper(EqRhs, fStepper     62    fRK4Stepper =  SetupStepper(EqRhs, fStepperNumber);
 88 }                                                  63 }
 89                                                    64 
 90 // ------------------------------------------- << 
 91 G4HelixMixedStepper::~G4HelixMixedStepper()    << 
 92 {                                              << 
 93   delete fRK4Stepper;                          << 
 94   if (fVerbose>0) { PrintCalls(); }            << 
 95 }                                              << 
 96                                                    65 
 97 // ------------------------------------------- <<  66 G4HelixMixedStepper::~G4HelixMixedStepper() {
 98 void G4HelixMixedStepper::Stepper(  const G4do <<  67      
 99                                     const G4do <<  68      delete(fRK4Stepper);
100                                           G4do <<  69      if (fVerbose>0){ PrintCalls();};
101                                           G4do <<  70 } 
102                                           G4do <<  71 void G4HelixMixedStepper::Stepper(  const G4double  yInput[7],
                                                   >>  72                                const G4double dydx[7],
                                                   >>  73                                      G4double Step,
                                                   >>  74                                      G4double yOut[7],
                                                   >>  75                                      G4double yErr[])
                                                   >>  76 
103 {                                                  77 {
104   // Estimation of the Stepping Angle          <<  78 
105   //                                           <<  79  //Estimation of the Stepping Angle
                                                   >>  80 
106   G4ThreeVector Bfld;                              81   G4ThreeVector Bfld;
107   MagFieldEvaluate(yInput, Bfld);              <<  82   MagFieldEvaluate(yInput, Bfld); 
108                                                <<  83 
109   G4double Bmag = Bfld.mag();                      84   G4double Bmag = Bfld.mag();
110   const G4double* pIn = yInput+3;              <<  85   const G4double *pIn = yInput+3;
111   G4ThreeVector initVelocity = G4ThreeVector(  <<  86   G4ThreeVector initVelocity= G4ThreeVector( pIn[0], pIn[1], pIn[2]);
112   G4double velocityVal = initVelocity.mag();   <<  87   G4double      velocityVal = initVelocity.mag();
113                                                <<  88   G4double R_1;  
114   const G4double R_1 = std::abs(GetInverseCurv <<  89   G4double Ang_curve;
115     // curv = inverse Radius                   <<  90 
116   G4double Ang_curve = R_1 * Step;             <<  91    R_1=std::abs(GetInverseCurve(velocityVal,Bmag));
117   // SetAngCurve(Ang_curve);                   <<  92    Ang_curve=R_1*Step;
118   // SetCurve(std::abs(1/R_1));                <<  93    SetAngCurve(Ang_curve);
119                                                <<  94    SetCurve(std::abs(1/R_1));
120   if(Ang_curve < fAngle_threshold)             <<  95    
121   {                                            <<  96 
122     ++fNumCallsRK4;                            <<  97    if(Ang_curve<0.33*pi){
123     fRK4Stepper->Stepper(yInput,dydx,Step,yOut <<  98      fNumCallsRK4++;   
124   }                                            <<  99      fRK4Stepper->Stepper(yInput,dydx,Step,yOut,yErr);
125   else                                         << 
126   {                                            << 
127     constexpr G4int nvar    = 6 ;              << 
128     constexpr G4int nvarMax = 8 ;              << 
129     G4double      yTemp[nvarMax], yIn[nvarMax] << 
130     G4ThreeVector Bfld_midpoint;               << 
131                                                   100     
132     SetAngCurve(Ang_curve);                    << 
133     SetCurve(std::abs(1.0/R_1));               << 
134     ++fNumCallsHelix;                          << 
135                                                << 
136     // Saving yInput because yInput and yOut c << 
137     //                                         << 
138     for(G4int i=0; i<nvar; ++i)                << 
139     {                                          << 
140       yIn[i]=yInput[i];                        << 
141     }                                          << 
142                                                << 
143     G4double halfS = Step * 0.5;               << 
144                                                   101 
145     // 1. Do first half step and full step     << 102    }
146     //                                         << 103     else{
147     AdvanceHelix(yIn, Bfld, halfS, yTemp, yTem << 104       fNumCallsHelix++;
148                                                << 105       const G4int nvar = 6 ;
149     MagFieldEvaluate(yTemp, Bfld_midpoint) ;   << 106       G4int i;
150                                                << 107       G4double      yTemp[7], yIn[7] ;
151     // 2. Do second half step - with revised f << 108       G4double yTemp2[7];
152     // NOTE: Could avoid this call if  'Bfld_m << 109       G4ThreeVector  Bfld_midpoint;
153     //       or diff 'almost' zero             << 110     //  Saving yInput because yInput and yOut can be aliases for same array
154     //                                         << 111         for(i=0;i<nvar;i++) yIn[i]=yInput[i];
155     AdvanceHelix(yTemp, Bfld_midpoint, halfS,  << 112 
156       // Not requesting y at s=2*h (halfS)     << 113       G4double h = Step * 0.5;
157                                                << 114      // Do two half steps and full step
158     // 3. Estimate the integration error       << 115           AdvanceHelix(yIn,   Bfld,  h, yTemp,yTemp2);
159     //    should be (nearly) zero if Bfield= c << 116           MagFieldEvaluate(yTemp, Bfld_midpoint) ;     
160     //                                         << 117           AdvanceHelix(yTemp, Bfld_midpoint, h, yOut);
161     for(G4int i=0; i<nvar; ++i)                << 118      // Error estimation
162     {                                          << 119           for(i=0;i<nvar;i++) {
163       yErr[i] = yOut[i] - yTemp2[i];           << 120           yErr[i] = yOut[i] - yTemp2[i] ;
                                                   >> 121           
                                                   >> 122           }
164     }                                             123     }
165   }                                            << 124 
                                                   >> 125 
                                                   >> 126 
                                                   >> 127 
166 }                                                 128 }
167                                                   129 
168 // ------------------------------------------- << 130 void
169 void G4HelixMixedStepper::DumbStepper( const G << 131 G4HelixMixedStepper::DumbStepper( const G4double  yIn[],
170                                              G << 132            G4ThreeVector   Bfld,
171                                              G << 133            G4double        h,
172                                              G << 134            G4double        yOut[])
173 {                                                 135 {
174   AdvanceHelix(yIn, Bfld, h, yOut);            << 136  
175 }                                              << 137     
                                                   >> 138        AdvanceHelix(yIn, Bfld, h, yOut);
176                                                   139 
177 // ------------------------------------------- << 140     
178 G4double G4HelixMixedStepper::DistChord() cons << 141                
                                                   >> 142 }  
                                                   >> 143 
                                                   >> 144 G4double G4HelixMixedStepper::DistChord()   const 
179 {                                                 145 {
180   // Implementation : must check whether h/R >    146   // Implementation : must check whether h/R > 2 pi  !!
181   //   If( h/R <  pi) use G4LineSection::DistL    147   //   If( h/R <  pi) use G4LineSection::DistLine
182   //   Else           DistChord=R_helix           148   //   Else           DistChord=R_helix
183   //                                              149   //
184   G4double distChord;                             150   G4double distChord;
185   G4double Ang_curve=GetAngCurve();               151   G4double Ang_curve=GetAngCurve();
186                                                << 152 
187   if(Ang_curve<=pi)                            << 153       
188   {                                            << 154    if(Ang_curve<=pi){
189     distChord=GetRadHelix()*(1-std::cos(0.5*An << 155      distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
190   }                                            << 156    }
191   else                                         << 157          else 
192   {                                            << 158          if(Ang_curve<twopi){
193     if(Ang_curve<twopi)                        << 159            distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
194     {                                          << 160          }
195       distChord=GetRadHelix()*(1+std::cos(0.5* << 161          else{
196     }                                          << 162           distChord=2.*GetRadHelix();  
197     else                                       << 163          }
198     {                                          << 164 
199       distChord=2.*GetRadHelix();              << 165    
200     }                                          << 166 
201   }                                            << 
202                                                << 
203   return distChord;                               167   return distChord;
                                                   >> 168   
204 }                                                 169 }
205                                                << 
206 // -------------------------------------------    170 // ---------------------------------------------------------------------------
207 void G4HelixMixedStepper::PrintCalls()            171 void G4HelixMixedStepper::PrintCalls()
208 {                                                 172 {
209   G4cout << "In HelixMixedStepper::Number of c << 173   G4cout<<"In HelixMixedStepper::Number of calls to smallStepStepper = "<<fNumCallsRK4
210          << fNumCallsRK4                       << 174         <<"  and Number of calls to Helix = "<<fNumCallsHelix<<G4endl;
211          << "  and Number of calls to Helix =  << 
212 }                                                 175 }
213                                                   176 
214 // ------------------------------------------- << 177 
215 G4MagIntegratorStepper*                        << 178 
216 G4HelixMixedStepper::SetupStepper(G4Mag_EqRhs* << 179 G4MagIntegratorStepper* G4HelixMixedStepper:: SetupStepper(G4Mag_EqRhs* pE, G4int StepperNumber)
217 {                                                 180 {
218   G4MagIntegratorStepper* pStepper;               181   G4MagIntegratorStepper* pStepper;
219   if (fVerbose>0) { G4cout << " G4HelixMixedSt << 182   if (fVerbose>0)G4cout<<"In G4HelixMixedStepper Stepper for small steps is "; 
220 }                                              << 
221   switch ( StepperNumber )                        183   switch ( StepperNumber )
222   {                                            << 184     {
223       // Robust, classic method                << 185      case 0: pStepper = new G4ExplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4ExplicitEuler"<<G4endl; break;
224       case 4:                                  << 186      case 1: pStepper = new G4ImplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4ImplicitEuler"<<G4endl; break;
225         pStepper = new G4ClassicalRK4( pE );   << 187      case 2: pStepper = new G4SimpleRunge( pE ); if (fVerbose>0)G4cout<<"G4SimpleRunge"<<G4endl; break;
226         if (fVerbose>0) { G4cout << "G4Classic << 188      case 3: pStepper = new G4SimpleHeum( pE );  if (fVerbose>0)G4cout<<"G4SimpleHeum"<<G4endl;break;
227         break;                                 << 189      case 4: pStepper = new G4ClassicalRK4( pE ); if (fVerbose>0)G4cout<<"G4ClassicalRK4"<<G4endl; break;
228                                                << 190      case 5: pStepper = new G4HelixExplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4HelixExplicitEuler"<<G4endl; break;
229       // Steppers with embedded estimation of  << 191      case 6: pStepper = new G4HelixImplicitEuler( pE ); if (fVerbose>0)G4cout<<"G4HelixImplicitEuler"<<G4endl; break;
230       case 8:                                  << 192      case 7: pStepper = new G4HelixSimpleRunge( pE ); if (fVerbose>0)G4cout<<"G4HelixSimpleRunge"<<G4endl; break;
231         pStepper = new G4CashKarpRKF45( pE );  << 193      case 8: pStepper = new G4CashKarpRKF45( pE );    if (fVerbose>0)G4cout<<"G4CashKarpRKF45"<<G4endl; break;
232         if (fVerbose>0) { G4cout << "G4CashKar << 194      case 9: pStepper = new G4ExactHelixStepper( pE );  if (fVerbose>0)G4cout<<"G4ExactHelixStepper"<<G4endl;   break;
233         break;                                 << 195      case 10: pStepper = new G4RKG3_Stepper( pE );  if (fVerbose>0)G4cout<<"G4RKG3_Stepper"<<G4endl;   break;
234       case 13:                                 << 196       
235         pStepper = new G4NystromRK4( pE );     << 197       default: pStepper = new G4ClassicalRK4( pE );G4cout<<"Default G4ClassicalRK4"<<G4endl; break;
236         if (fVerbose>0) { G4cout << "G4Nystrom << 198       
237         break;                                 << 199     }
238                                                << 
239       // Lowest order RK Stepper - experimenta << 
240       case 1:                                  << 
241         pStepper = new G4ImplicitEuler( pE );  << 
242         if (fVerbose>0) { G4cout << "G4Implici << 
243         break;                                 << 
244                                                << 
245       // Lower order RK Steppers - ok overall, << 
246       case 2:                                  << 
247         pStepper = new G4SimpleRunge( pE );    << 
248         if (fVerbose>0) { G4cout << "G4SimpleR << 
249         break;                                 << 
250       case 3:                                  << 
251         pStepper = new G4SimpleHeum( pE );     << 
252         if (fVerbose>0) { G4cout << "G4SimpleH << 
253         break;                                 << 
254       case 23:                                 << 
255         pStepper = new G4BogackiShampine23( pE << 
256         if (fVerbose>0) { G4cout << "G4Bogacki << 
257         break;                                 << 
258                                                << 
259       // Higher order RK Steppers              << 
260       // for smoother fields and high accuracy << 
261       case 45:                                 << 
262         pStepper = new G4BogackiShampine45( pE << 
263         if (fVerbose>0) { G4cout << "G4Bogacki << 
264         break;                                 << 
265       case 145:                                << 
266         pStepper = new G4TsitourasRK45( pE );  << 
267         if (fVerbose>0) { G4cout << "G4Tsitour << 
268         break;                                 << 
269       case 745:                                << 
270         pStepper = new G4DormandPrince745( pE  << 
271         if (fVerbose>0) { G4cout << "G4Dormand << 
272         break;                                 << 
273                                                << 
274       // Helical Steppers                      << 
275       case 6:                                  << 
276         pStepper = new G4HelixImplicitEuler( p << 
277         if (fVerbose>0) { G4cout << "G4HelixIm << 
278         break;                                 << 
279       case 7:                                  << 
280         pStepper = new G4HelixSimpleRunge( pE  << 
281         if (fVerbose>0) { G4cout << "G4HelixSi << 
282         break;                                 << 
283       case 5:                                  << 
284         pStepper = new G4HelixExplicitEuler( p << 
285         if (fVerbose>0) { G4cout << "G4HelixEx << 
286         break; //  Since Helix Explicit is use << 
287                // this is useful only to measu << 
288       // Exact Helix - likely good only for ca << 
289       //            i) uniform field (potentia << 
290       //           ii) segmented uniform field << 
291       case 9:                                  << 
292         pStepper = new G4ExactHelixStepper( pE << 
293         if (fVerbose>0) { G4cout << "G4ExactHe << 
294         break;                                 << 
295       case 10:                                 << 
296         pStepper = new G4RKG3_Stepper( pE );   << 
297         if (fVerbose>0) { G4cout << "G4RKG3_St << 
298         break;                                 << 
299                                                << 
300       // Low Order Steppers - not good except  << 
301       case 11:                                 << 
302         pStepper = new G4ExplicitEuler( pE );  << 
303         if (fVerbose>0) { G4cout << "G4Explici << 
304         break;                                 << 
305       case 12:                                 << 
306         pStepper = new G4ImplicitEuler( pE );  << 
307         if (fVerbose>0) { G4cout << "G4Implici << 
308         break;                                 << 
309                                                << 
310       case 0:                                  << 
311       case -1:                                 << 
312       default:                                 << 
313          pStepper = new G4DormandPrince745( pE << 
314         if (fVerbose>0) { G4cout << "G4Dormand << 
315         break;                                 << 
316   }                                            << 
317                                                << 
318   if(fVerbose>0)                               << 
319   {                                            << 
320     G4cout << " chosen as stepper for small st << 
321            << G4endl;                          << 
322   }                                            << 
323                                                << 
324   return pStepper;                                200   return pStepper;
325 }                                                 201 }
326                                                   202