Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/magneticfield/src/G4HelixMixedStepper.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

Diff markup

Differences between /geometry/magneticfield/src/G4HelixMixedStepper.cc (Version 11.3.0) and /geometry/magneticfield/src/G4HelixMixedStepper.cc (Version 10.3.p3)


  1 //                                                  1 //
  2 // *******************************************      2 // ********************************************************************
  3 // * License and Disclaimer                         3 // * License and Disclaimer                                           *
  4 // *                                                4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of th      5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided      6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License      7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/      8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.           9 // * include a list of copyright holders.                             *
 10 // *                                               10 // *                                                                  *
 11 // * Neither the authors of this software syst     11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing fin     12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warran     13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assum     14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file      15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitatio     16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                               17 // *                                                                  *
 18 // * This  code  implementation is the result      18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboratio     19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distri     20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  ag     21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publicati     22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Sof     23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // *******************************************     24 // ********************************************************************
 25 //                                                 25 //
 26 // class G4HelixMixedStepper                       26 // class G4HelixMixedStepper
 27 //                                                 27 //
 28 // Class description:                              28 // Class description:
 29 //                                                 29 //
 30 // G4HelixMixedStepper split the Method used f     30 // G4HelixMixedStepper split the Method used for Integration in two:
 31 //                                                 31 //
 32 // If Stepping Angle ( h / R_curve) < pi/3         32 // If Stepping Angle ( h / R_curve) < pi/3  
 33 //        use Stepper for small step(Classical     33 //        use Stepper for small step(ClassicalRK4 by default)
 34 // Else use  HelixExplicitEuler Stepper            34 // Else use  HelixExplicitEuler Stepper
 35 //                                                 35 //
 36 // Created: T.Nikitina, CERN - 18.05.2007, der <<  36 // History: 
                                                   >>  37 // Derived from ExactHelicalStepper 18/05/07
                                                   >>  38 //
 37 // -------------------------------------------     39 // -------------------------------------------------------------------------
 38                                                    40 
 39 #include "G4HelixMixedStepper.hh"                  41 #include "G4HelixMixedStepper.hh"
 40 #include "G4PhysicalConstants.hh"                  42 #include "G4PhysicalConstants.hh"
 41 #include "G4ClassicalRK4.hh"                       43 #include "G4ClassicalRK4.hh"
 42 #include "G4CashKarpRKF45.hh"                      44 #include "G4CashKarpRKF45.hh"
 43 #include "G4SimpleRunge.hh"                        45 #include "G4SimpleRunge.hh"
 44 #include "G4HelixImplicitEuler.hh"                 46 #include "G4HelixImplicitEuler.hh"
 45 #include "G4HelixExplicitEuler.hh"                 47 #include "G4HelixExplicitEuler.hh"
 46 #include "G4HelixSimpleRunge.hh"                   48 #include "G4HelixSimpleRunge.hh"
 47 #include "G4ExactHelixStepper.hh"                  49 #include "G4ExactHelixStepper.hh"
 48 #include "G4ExplicitEuler.hh"                      50 #include "G4ExplicitEuler.hh"
 49 #include "G4ImplicitEuler.hh"                      51 #include "G4ImplicitEuler.hh"
 50 #include "G4SimpleHeum.hh"                         52 #include "G4SimpleHeum.hh"
 51 #include "G4RKG3_Stepper.hh"                       53 #include "G4RKG3_Stepper.hh"
 52 #include "G4NystromRK4.hh"                         54 #include "G4NystromRK4.hh"
 53                                                <<  55 // Additional potential stepper 
 54 // Additional potential steppers               << 
 55 #include "G4DormandPrince745.hh"                   56 #include "G4DormandPrince745.hh"
 56 #include "G4BogackiShampine23.hh"                  57 #include "G4BogackiShampine23.hh"
 57 #include "G4BogackiShampine45.hh"                  58 #include "G4BogackiShampine45.hh"
 58 #include "G4TsitourasRK45.hh"                      59 #include "G4TsitourasRK45.hh"
 59                                                    60 
 60 #include "G4ThreeVector.hh"                        61 #include "G4ThreeVector.hh"
 61 #include "G4LineSection.hh"                        62 #include "G4LineSection.hh"
 62                                                    63 
 63 // ------------------------------------------- << 
 64 G4HelixMixedStepper::                              64 G4HelixMixedStepper::
 65 G4HelixMixedStepper(G4Mag_EqRhs* EqRhs,        <<  65 G4HelixMixedStepper(G4Mag_EqRhs *EqRhs, G4int stepperNumber,
 66                     G4int        stepperNumber <<  66                     G4double angleThreshold)
 67                     G4double     angleThreshol <<  67   : G4MagHelicalStepper(EqRhs), fNumCallsRK4(0), fNumCallsHelix(0)
 68   : G4MagHelicalStepper(EqRhs)                 << 
 69 {                                                  68 {
 70    if( angleThreshold < 0.0 )                  <<  69    SetVerbose(1);
 71    {                                           <<  70    if( angleThreshold < 0.0 ){
 72      fAngle_threshold = (1.0/3.0)*pi;          <<  71      fAngle_threshold= 0.33*pi;
 73    }                                           <<  72    }else{
 74    else                                        <<  73      fAngle_threshold= angleThreshold;
 75    {                                           << 
 76      fAngle_threshold = angleThreshold;        << 
 77    }                                               74    }
 78                                                    75 
 79    if(stepperNumber<0)                             76    if(stepperNumber<0)
 80    {                                           <<  77      stepperNumber=4;  // Default is RK4   (original)      
 81      // stepperNumber = 4;  // Default is RK4  <<  78      // stepperNumber=745;   // Default is DormandPrince745 (ie DoPri5)
 82      stepperNumber = 745;   // Default is Dorm <<  79      // stepperNumber=8;  // Default is CashKarp
 83      // stepperNumber = 8;  // Default is Cash << 
 84    }                                           << 
 85                                                    80 
 86    fStepperNumber = stepperNumber; // Store th     81    fStepperNumber = stepperNumber; // Store the choice
 87    fRK4Stepper =  SetupStepper(EqRhs, fStepper     82    fRK4Stepper =  SetupStepper(EqRhs, fStepperNumber);
 88 }                                                  83 }
 89                                                    84 
 90 // ------------------------------------------- << 
 91 G4HelixMixedStepper::~G4HelixMixedStepper()        85 G4HelixMixedStepper::~G4HelixMixedStepper()
 92 {                                                  86 {  
 93   delete fRK4Stepper;                          <<  87   delete(fRK4Stepper);
 94   if (fVerbose>0) { PrintCalls(); }            <<  88   if (fVerbose>0){ PrintCalls();};
 95 }                                                  89 }
 96                                                    90 
 97 // ------------------------------------------- <<  91 void G4HelixMixedStepper::Stepper(  const G4double  yInput[7],
 98 void G4HelixMixedStepper::Stepper(  const G4do <<  92                                const G4double dydx[7],
 99                                     const G4do <<  93                                      G4double Step,
100                                           G4do <<  94                                      G4double yOut[7],
101                                           G4do <<  95                                      G4double yErr[])
102                                           G4do << 
103 {                                                  96 {
104   // Estimation of the Stepping Angle          <<  97   //Estimation of the Stepping Angle
105   //                                           << 
106   G4ThreeVector Bfld;                              98   G4ThreeVector Bfld;
107   MagFieldEvaluate(yInput, Bfld);                  99   MagFieldEvaluate(yInput, Bfld);
108                                                   100   
109   G4double Bmag = Bfld.mag();                     101   G4double Bmag = Bfld.mag();
110   const G4double* pIn = yInput+3;              << 102   const G4double *pIn = yInput+3;
111   G4ThreeVector initVelocity = G4ThreeVector(  << 103   G4ThreeVector initVelocity= G4ThreeVector( pIn[0], pIn[1], pIn[2]);
112   G4double velocityVal = initVelocity.mag();   << 104   G4double      velocityVal = initVelocity.mag();
113                                                << 105   G4double R_1;
114   const G4double R_1 = std::abs(GetInverseCurv << 106   G4double Ang_curve;
115     // curv = inverse Radius                   << 107   
116   G4double Ang_curve = R_1 * Step;             << 108   R_1=std::abs(GetInverseCurve(velocityVal,Bmag));
117   // SetAngCurve(Ang_curve);                   << 109   Ang_curve=R_1*Step;
118   // SetCurve(std::abs(1/R_1));                << 110   SetAngCurve(Ang_curve);
119                                                << 111   SetCurve(std::abs(1/R_1));
120   if(Ang_curve < fAngle_threshold)             << 112   
121   {                                            << 113   if(Ang_curve< fAngle_threshold){
122     ++fNumCallsRK4;                            << 114     fNumCallsRK4++;
123     fRK4Stepper->Stepper(yInput,dydx,Step,yOut    115     fRK4Stepper->Stepper(yInput,dydx,Step,yOut,yErr);
124   }                                               116   }
125   else                                            117   else
126   {                                               118   {
127     constexpr G4int nvar    = 6 ;              << 119     fNumCallsHelix++;
128     constexpr G4int nvarMax = 8 ;              << 120     const G4int    nvar    = 6 ;
129     G4double      yTemp[nvarMax], yIn[nvarMax] << 121     const G4int    nvarMax = 8 ;    
130     G4ThreeVector Bfld_midpoint;               << 122     G4int          i;
131                                                << 123     G4double       yTemp[nvarMax], yIn[nvarMax], yTemp2[nvarMax];
132     SetAngCurve(Ang_curve);                    << 124     G4ThreeVector  Bfld_midpoint;
133     SetCurve(std::abs(1.0/R_1));               << 125 
134     ++fNumCallsHelix;                          << 126     //  Saving yInput because yInput and yOut can be aliases for same array
135                                                << 127     for(i=0;i<nvar;i++) yIn[i]=yInput[i];
136     // Saving yInput because yInput and yOut c << 
137     //                                         << 
138     for(G4int i=0; i<nvar; ++i)                << 
139     {                                          << 
140       yIn[i]=yInput[i];                        << 
141     }                                          << 
142                                                   128     
143     G4double halfS = Step * 0.5;                  129     G4double halfS = Step * 0.5;
144                                                << 
145     // 1. Do first half step and full step        130     // 1. Do first half step and full step
146     //                                         << 
147     AdvanceHelix(yIn, Bfld, halfS, yTemp, yTem    131     AdvanceHelix(yIn, Bfld, halfS, yTemp, yTemp2); // yTemp2 for s=2*h (halfS)
                                                   >> 132     //**********
148                                                   133 
149     MagFieldEvaluate(yTemp, Bfld_midpoint) ;      134     MagFieldEvaluate(yTemp, Bfld_midpoint) ;
150                                                   135 
151     // 2. Do second half step - with revised f    136     // 2. Do second half step - with revised field
152     // NOTE: Could avoid this call if  'Bfld_m    137     // NOTE: Could avoid this call if  'Bfld_midpoint == Bfld'
153     //       or diff 'almost' zero                138     //       or diff 'almost' zero
154     //                                         << 
155     AdvanceHelix(yTemp, Bfld_midpoint, halfS,     139     AdvanceHelix(yTemp, Bfld_midpoint, halfS, yOut);
156       // Not requesting y at s=2*h (halfS)     << 140     // Not requesting y at s=2*h (halfS)
                                                   >> 141     //**********
157                                                   142     
158     // 3. Estimate the integration error          143     // 3. Estimate the integration error
159     //    should be (nearly) zero if Bfield= c    144     //    should be (nearly) zero if Bfield= constant
160     //                                         << 145     for(i=0;i<nvar;i++) {
161     for(G4int i=0; i<nvar; ++i)                << 146       yErr[i] = yOut[i] - yTemp2[i] ;
162     {                                          << 
163       yErr[i] = yOut[i] - yTemp2[i];           << 
164     }                                             147     }
165   }                                               148   }
166 }                                                 149 }
167                                                   150 
168 // ------------------------------------------- << 151 void
169 void G4HelixMixedStepper::DumbStepper( const G << 152 G4HelixMixedStepper::DumbStepper( const G4double  yIn[],
170                                              G << 153            G4ThreeVector   Bfld,
171                                              G << 154            G4double        h,
172                                              G << 155            G4double        yOut[])
173 {                                                 156 {
174   AdvanceHelix(yIn, Bfld, h, yOut);               157   AdvanceHelix(yIn, Bfld, h, yOut);
175 }                                                 158 }
176                                                   159 
177 // ------------------------------------------- << 160 G4double G4HelixMixedStepper::DistChord()   const
178 G4double G4HelixMixedStepper::DistChord() cons << 
179 {                                                 161 {
180   // Implementation : must check whether h/R >    162   // Implementation : must check whether h/R > 2 pi  !!
181   //   If( h/R <  pi) use G4LineSection::DistL    163   //   If( h/R <  pi) use G4LineSection::DistLine
182   //   Else           DistChord=R_helix           164   //   Else           DistChord=R_helix
183   //                                              165   //
184   G4double distChord;                             166   G4double distChord;
185   G4double Ang_curve=GetAngCurve();               167   G4double Ang_curve=GetAngCurve();
186                                                   168   
187   if(Ang_curve<=pi)                            << 169   if(Ang_curve<=pi){
188   {                                            << 
189     distChord=GetRadHelix()*(1-std::cos(0.5*An    170     distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
190   }                                               171   }
191   else                                            172   else
192   {                                               173   {
193     if(Ang_curve<twopi)                        << 174     if(Ang_curve<twopi){
194     {                                          << 
195       distChord=GetRadHelix()*(1+std::cos(0.5*    175       distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
196     }                                             176     }
197     else                                       << 177     else{
198     {                                          << 
199       distChord=2.*GetRadHelix();                 178       distChord=2.*GetRadHelix();
200     }                                             179     }
201   }                                               180   }
202                                                   181   
203   return distChord;                               182   return distChord;
204 }                                                 183 }
205                                                   184 
206 // -------------------------------------------    185 // ---------------------------------------------------------------------------
207 void G4HelixMixedStepper::PrintCalls()            186 void G4HelixMixedStepper::PrintCalls()
208 {                                                 187 {
209   G4cout << "In HelixMixedStepper::Number of c    188   G4cout << "In HelixMixedStepper::Number of calls to smallStepStepper = "
210          << fNumCallsRK4                          189          << fNumCallsRK4
211          << "  and Number of calls to Helix =     190          << "  and Number of calls to Helix = " << fNumCallsHelix << G4endl;
212 }                                                 191 }
213                                                   192 
214 // ------------------------------------------- << 
215 G4MagIntegratorStepper*                           193 G4MagIntegratorStepper*
216 G4HelixMixedStepper::SetupStepper(G4Mag_EqRhs*    194 G4HelixMixedStepper::SetupStepper(G4Mag_EqRhs* pE, G4int StepperNumber)
217 {                                                 195 {
218   G4MagIntegratorStepper* pStepper;               196   G4MagIntegratorStepper* pStepper;
219   if (fVerbose>0) { G4cout << " G4HelixMixedSt << 197   if (fVerbose>0) G4cout << " G4HelixMixedStepper: ";
220 }                                              << 
221   switch ( StepperNumber )                        198   switch ( StepperNumber )
222   {                                            << 199     {
223       // Robust, classic method                   200       // Robust, classic method
224       case 4:                                     201       case 4:
225         pStepper = new G4ClassicalRK4( pE );      202         pStepper = new G4ClassicalRK4( pE );
226         if (fVerbose>0) { G4cout << "G4Classic << 203         if (fVerbose>0) G4cout << "G4ClassicalRK4";
227         break;                                    204         break;
228                                                   205 
229       // Steppers with embedded estimation of     206       // Steppers with embedded estimation of error
230       case 8:                                     207       case 8:
231         pStepper = new G4CashKarpRKF45( pE );     208         pStepper = new G4CashKarpRKF45( pE );
232         if (fVerbose>0) { G4cout << "G4CashKar << 209         if (fVerbose>0) G4cout << "G4CashKarpRKF45";
233         break;                                    210         break;
234       case 13:                                    211       case 13:
235         pStepper = new G4NystromRK4( pE );        212         pStepper = new G4NystromRK4( pE );
236         if (fVerbose>0) { G4cout << "G4Nystrom << 213         if (fVerbose>0) G4cout << "G4NystromRK4";
237         break;                                    214         break;
238                                                   215         
239       // Lowest order RK Stepper - experimenta    216       // Lowest order RK Stepper - experimental
240       case 1:                                     217       case 1:
241         pStepper = new G4ImplicitEuler( pE );     218         pStepper = new G4ImplicitEuler( pE );
242         if (fVerbose>0) { G4cout << "G4Implici << 219         if (fVerbose>0) G4cout << "G4ImplicitEuler";
243         break;                                    220         break;
244                                                   221 
245       // Lower order RK Steppers - ok overall,    222       // Lower order RK Steppers - ok overall, good for uneven fields        
246       case 2:                                     223       case 2:
247         pStepper = new G4SimpleRunge( pE );       224         pStepper = new G4SimpleRunge( pE );
248         if (fVerbose>0) { G4cout << "G4SimpleR << 225         if (fVerbose>0) G4cout << "G4SimpleRunge";
249         break;                                    226         break;
250       case 3:                                     227       case 3:
251         pStepper = new G4SimpleHeum( pE );        228         pStepper = new G4SimpleHeum( pE );
252         if (fVerbose>0) { G4cout << "G4SimpleH << 229         if (fVerbose>0) G4cout << "G4SimpleHeum";
253         break;                                    230         break;
254       case 23:                                    231       case 23:
255         pStepper = new G4BogackiShampine23( pE    232         pStepper = new G4BogackiShampine23( pE );
256         if (fVerbose>0) { G4cout << "G4Bogacki << 233         if (fVerbose>0) G4cout << "G4BogackiShampine23";
257         break;                                    234         break;
258                                                   235 
259       // Higher order RK Steppers                 236       // Higher order RK Steppers
260       // for smoother fields and high accuracy    237       // for smoother fields and high accuracy requirements 
261       case 45:                                    238       case 45:
262         pStepper = new G4BogackiShampine45( pE    239         pStepper = new G4BogackiShampine45( pE );
263         if (fVerbose>0) { G4cout << "G4Bogacki << 240         if (fVerbose>0) G4cout << "G4BogackiShampine45";
264         break;                                    241         break;
265       case 145:                                   242       case 145:
266         pStepper = new G4TsitourasRK45( pE );     243         pStepper = new G4TsitourasRK45( pE );
267         if (fVerbose>0) { G4cout << "G4Tsitour << 244         if (fVerbose>0) G4cout << "G4TsitourasRK45";
268         break;                                    245         break;
269       case 745:                                   246       case 745:
270         pStepper = new G4DormandPrince745( pE     247         pStepper = new G4DormandPrince745( pE );
271         if (fVerbose>0) { G4cout << "G4Dormand << 248         if (fVerbose>0) G4cout << "G4DormandPrince745";
272         break;                                    249         break;
273                                                   250 
274       // Helical Steppers                         251       // Helical Steppers
275       case 6:                                     252       case 6:
276         pStepper = new G4HelixImplicitEuler( p    253         pStepper = new G4HelixImplicitEuler( pE );
277         if (fVerbose>0) { G4cout << "G4HelixIm << 254         if (fVerbose>0) G4cout << "G4HelixImplicitEuler";
278         break;                                    255         break;
279       case 7:                                     256       case 7:
280         pStepper = new G4HelixSimpleRunge( pE     257         pStepper = new G4HelixSimpleRunge( pE );
281         if (fVerbose>0) { G4cout << "G4HelixSi << 258         if (fVerbose>0) G4cout << "G4HelixSimpleRunge";
282         break;                                    259         break;
283       case 5:                                     260       case 5:
284         pStepper = new G4HelixExplicitEuler( p    261         pStepper = new G4HelixExplicitEuler( pE );
285         if (fVerbose>0) { G4cout << "G4HelixEx << 262         if (fVerbose>0) G4cout << "G4HelixExplicitEuler";
286         break; //  Since Helix Explicit is use    263         break; //  Since Helix Explicit is used for long steps,
287                // this is useful only to measu    264                // this is useful only to measure overhead.
288       // Exact Helix - likely good only for ca    265       // Exact Helix - likely good only for cases of
289       //            i) uniform field (potentia    266       //            i) uniform field (potentially over small distances)
290       //           ii) segmented uniform field    267       //           ii) segmented uniform field (maybe)
291       case 9:                                     268       case 9:
292         pStepper = new G4ExactHelixStepper( pE    269         pStepper = new G4ExactHelixStepper( pE );
293         if (fVerbose>0) { G4cout << "G4ExactHe << 270         if (fVerbose>0) G4cout << "G4ExactHelixStepper";
294         break;                                    271         break;
295       case 10:                                    272       case 10:
296         pStepper = new G4RKG3_Stepper( pE );      273         pStepper = new G4RKG3_Stepper( pE );
297         if (fVerbose>0) { G4cout << "G4RKG3_St << 274         if (fVerbose>0) G4cout << "G4RKG3_Stepper";
298         break;                                    275         break;
299                                                   276 
300       // Low Order Steppers - not good except     277       // Low Order Steppers - not good except for very weak fields
301       case 11:                                    278       case 11:
302         pStepper = new G4ExplicitEuler( pE );     279         pStepper = new G4ExplicitEuler( pE );
303         if (fVerbose>0) { G4cout << "G4Explici << 280         if (fVerbose>0) G4cout << "G4ExplicitEuler";
304         break;                                    281         break;
305       case 12:                                    282       case 12:
306         pStepper = new G4ImplicitEuler( pE );     283         pStepper = new G4ImplicitEuler( pE );
307         if (fVerbose>0) { G4cout << "G4Implici << 284         if (fVerbose>0) G4cout << "G4ImplicitEuler";
308         break;                                    285         break;
309                                                   286 
310       case 0:                                     287       case 0:
311       case -1:                                    288       case -1:
312       default:                                    289       default:
313          pStepper = new G4DormandPrince745( pE << 290         pStepper = new G4ClassicalRK4( pE );
314         if (fVerbose>0) { G4cout << "G4Dormand << 291         if (fVerbose>0) G4cout << "G4ClassicalRK4 (Default)";
315         break;                                    292         break;
316   }                                            << 293     }
317                                                << 
318   if(fVerbose>0)                                  294   if(fVerbose>0)
319   {                                            << 
320     G4cout << " chosen as stepper for small st    295     G4cout << " chosen as stepper for small steps in G4HelixMixedStepper."
321            << G4endl;                             296            << G4endl;
322   }                                            << 
323                                                   297 
324   return pStepper;                                298   return pStepper;
325 }                                                 299 }
326                                                   300