Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // class G4HelixMixedStepper 26 // class G4HelixMixedStepper 27 // 27 // 28 // Class description: 28 // Class description: 29 // 29 // 30 // G4HelixMixedStepper split the Method used f 30 // G4HelixMixedStepper split the Method used for Integration in two: 31 // 31 // 32 // If Stepping Angle ( h / R_curve) < pi/3 32 // If Stepping Angle ( h / R_curve) < pi/3 33 // use Stepper for small step(Classical 33 // use Stepper for small step(ClassicalRK4 by default) 34 // Else use HelixExplicitEuler Stepper 34 // Else use HelixExplicitEuler Stepper 35 // 35 // 36 // Created: T.Nikitina, CERN - 18.05.2007, der << 36 // History: >> 37 // Derived from ExactHelicalStepper 18/05/07 >> 38 // 37 // ------------------------------------------- 39 // ------------------------------------------------------------------------- 38 40 39 #include "G4HelixMixedStepper.hh" 41 #include "G4HelixMixedStepper.hh" 40 #include "G4PhysicalConstants.hh" 42 #include "G4PhysicalConstants.hh" 41 #include "G4ClassicalRK4.hh" 43 #include "G4ClassicalRK4.hh" 42 #include "G4CashKarpRKF45.hh" 44 #include "G4CashKarpRKF45.hh" 43 #include "G4SimpleRunge.hh" 45 #include "G4SimpleRunge.hh" 44 #include "G4HelixImplicitEuler.hh" 46 #include "G4HelixImplicitEuler.hh" 45 #include "G4HelixExplicitEuler.hh" 47 #include "G4HelixExplicitEuler.hh" 46 #include "G4HelixSimpleRunge.hh" 48 #include "G4HelixSimpleRunge.hh" 47 #include "G4ExactHelixStepper.hh" 49 #include "G4ExactHelixStepper.hh" 48 #include "G4ExplicitEuler.hh" 50 #include "G4ExplicitEuler.hh" 49 #include "G4ImplicitEuler.hh" 51 #include "G4ImplicitEuler.hh" 50 #include "G4SimpleHeum.hh" 52 #include "G4SimpleHeum.hh" 51 #include "G4RKG3_Stepper.hh" 53 #include "G4RKG3_Stepper.hh" 52 #include "G4NystromRK4.hh" 54 #include "G4NystromRK4.hh" 53 << 55 // Additional potential stepper 54 // Additional potential steppers << 55 #include "G4DormandPrince745.hh" 56 #include "G4DormandPrince745.hh" 56 #include "G4BogackiShampine23.hh" 57 #include "G4BogackiShampine23.hh" 57 #include "G4BogackiShampine45.hh" 58 #include "G4BogackiShampine45.hh" 58 #include "G4TsitourasRK45.hh" 59 #include "G4TsitourasRK45.hh" 59 60 60 #include "G4ThreeVector.hh" 61 #include "G4ThreeVector.hh" 61 #include "G4LineSection.hh" 62 #include "G4LineSection.hh" 62 63 63 // ------------------------------------------- << 64 G4HelixMixedStepper:: 64 G4HelixMixedStepper:: 65 G4HelixMixedStepper(G4Mag_EqRhs* EqRhs, << 65 G4HelixMixedStepper(G4Mag_EqRhs *EqRhs, G4int stepperNumber, 66 G4int stepperNumber << 66 G4double angleThreshold) 67 G4double angleThreshol << 67 : G4MagHelicalStepper(EqRhs), fNumCallsRK4(0), fNumCallsHelix(0) 68 : G4MagHelicalStepper(EqRhs) << 69 { 68 { 70 if( angleThreshold < 0.0 ) << 69 SetVerbose(1); 71 { << 70 if( angleThreshold < 0.0 ){ 72 fAngle_threshold = (1.0/3.0)*pi; << 71 fAngle_threshold= 0.33*pi; 73 } << 72 }else{ 74 else << 73 fAngle_threshold= angleThreshold; 75 { << 76 fAngle_threshold = angleThreshold; << 77 } 74 } 78 75 79 if(stepperNumber<0) 76 if(stepperNumber<0) 80 { << 77 stepperNumber=4; // Default is RK4 (original) 81 // stepperNumber = 4; // Default is RK4 << 78 // stepperNumber=745; // Default is DormandPrince745 (ie DoPri5) 82 stepperNumber = 745; // Default is Dorm << 79 // stepperNumber=8; // Default is CashKarp 83 // stepperNumber = 8; // Default is Cash << 84 } << 85 80 86 fStepperNumber = stepperNumber; // Store th 81 fStepperNumber = stepperNumber; // Store the choice 87 fRK4Stepper = SetupStepper(EqRhs, fStepper 82 fRK4Stepper = SetupStepper(EqRhs, fStepperNumber); 88 } 83 } 89 84 90 // ------------------------------------------- << 91 G4HelixMixedStepper::~G4HelixMixedStepper() 85 G4HelixMixedStepper::~G4HelixMixedStepper() 92 { 86 { 93 delete fRK4Stepper; << 87 delete(fRK4Stepper); 94 if (fVerbose>0) { PrintCalls(); } << 88 if (fVerbose>0){ PrintCalls();}; 95 } 89 } 96 90 97 // ------------------------------------------- << 91 void G4HelixMixedStepper::Stepper( const G4double yInput[7], 98 void G4HelixMixedStepper::Stepper( const G4do << 92 const G4double dydx[7], 99 const G4do << 93 G4double Step, 100 G4do << 94 G4double yOut[7], 101 G4do << 95 G4double yErr[]) 102 G4do << 103 { 96 { 104 // Estimation of the Stepping Angle << 97 //Estimation of the Stepping Angle 105 // << 106 G4ThreeVector Bfld; 98 G4ThreeVector Bfld; 107 MagFieldEvaluate(yInput, Bfld); 99 MagFieldEvaluate(yInput, Bfld); 108 100 109 G4double Bmag = Bfld.mag(); 101 G4double Bmag = Bfld.mag(); 110 const G4double* pIn = yInput+3; << 102 const G4double *pIn = yInput+3; 111 G4ThreeVector initVelocity = G4ThreeVector( << 103 G4ThreeVector initVelocity= G4ThreeVector( pIn[0], pIn[1], pIn[2]); 112 G4double velocityVal = initVelocity.mag(); << 104 G4double velocityVal = initVelocity.mag(); 113 << 105 G4double R_1; 114 const G4double R_1 = std::abs(GetInverseCurv << 106 G4double Ang_curve; 115 // curv = inverse Radius << 107 116 G4double Ang_curve = R_1 * Step; << 108 R_1=std::abs(GetInverseCurve(velocityVal,Bmag)); 117 // SetAngCurve(Ang_curve); << 109 Ang_curve=R_1*Step; 118 // SetCurve(std::abs(1/R_1)); << 110 SetAngCurve(Ang_curve); 119 << 111 SetCurve(std::abs(1/R_1)); 120 if(Ang_curve < fAngle_threshold) << 112 121 { << 113 if(Ang_curve< fAngle_threshold){ 122 ++fNumCallsRK4; << 114 fNumCallsRK4++; 123 fRK4Stepper->Stepper(yInput,dydx,Step,yOut 115 fRK4Stepper->Stepper(yInput,dydx,Step,yOut,yErr); 124 } 116 } 125 else 117 else 126 { 118 { 127 constexpr G4int nvar = 6 ; << 119 fNumCallsHelix++; 128 constexpr G4int nvarMax = 8 ; << 120 const G4int nvar = 6 ; 129 G4double yTemp[nvarMax], yIn[nvarMax] << 121 const G4int nvarMax = 8 ; 130 G4ThreeVector Bfld_midpoint; << 122 G4int i; 131 << 123 G4double yTemp[nvarMax], yIn[nvarMax], yTemp2[nvarMax]; 132 SetAngCurve(Ang_curve); << 124 G4ThreeVector Bfld_midpoint; 133 SetCurve(std::abs(1.0/R_1)); << 125 134 ++fNumCallsHelix; << 126 // Saving yInput because yInput and yOut can be aliases for same array 135 << 127 for(i=0;i<nvar;i++) yIn[i]=yInput[i]; 136 // Saving yInput because yInput and yOut c << 137 // << 138 for(G4int i=0; i<nvar; ++i) << 139 { << 140 yIn[i]=yInput[i]; << 141 } << 142 128 143 G4double halfS = Step * 0.5; 129 G4double halfS = Step * 0.5; 144 << 145 // 1. Do first half step and full step 130 // 1. Do first half step and full step 146 // << 147 AdvanceHelix(yIn, Bfld, halfS, yTemp, yTem 131 AdvanceHelix(yIn, Bfld, halfS, yTemp, yTemp2); // yTemp2 for s=2*h (halfS) >> 132 //********** 148 133 149 MagFieldEvaluate(yTemp, Bfld_midpoint) ; 134 MagFieldEvaluate(yTemp, Bfld_midpoint) ; 150 135 151 // 2. Do second half step - with revised f 136 // 2. Do second half step - with revised field 152 // NOTE: Could avoid this call if 'Bfld_m 137 // NOTE: Could avoid this call if 'Bfld_midpoint == Bfld' 153 // or diff 'almost' zero 138 // or diff 'almost' zero 154 // << 155 AdvanceHelix(yTemp, Bfld_midpoint, halfS, 139 AdvanceHelix(yTemp, Bfld_midpoint, halfS, yOut); 156 // Not requesting y at s=2*h (halfS) << 140 // Not requesting y at s=2*h (halfS) >> 141 //********** 157 142 158 // 3. Estimate the integration error 143 // 3. Estimate the integration error 159 // should be (nearly) zero if Bfield= c 144 // should be (nearly) zero if Bfield= constant 160 // << 145 for(i=0;i<nvar;i++) { 161 for(G4int i=0; i<nvar; ++i) << 146 yErr[i] = yOut[i] - yTemp2[i] ; 162 { << 163 yErr[i] = yOut[i] - yTemp2[i]; << 164 } 147 } 165 } 148 } 166 } 149 } 167 150 168 // ------------------------------------------- << 151 void 169 void G4HelixMixedStepper::DumbStepper( const G << 152 G4HelixMixedStepper::DumbStepper( const G4double yIn[], 170 G << 153 G4ThreeVector Bfld, 171 G << 154 G4double h, 172 G << 155 G4double yOut[]) 173 { 156 { 174 AdvanceHelix(yIn, Bfld, h, yOut); 157 AdvanceHelix(yIn, Bfld, h, yOut); 175 } 158 } 176 159 177 // ------------------------------------------- << 160 G4double G4HelixMixedStepper::DistChord() const 178 G4double G4HelixMixedStepper::DistChord() cons << 179 { 161 { 180 // Implementation : must check whether h/R > 162 // Implementation : must check whether h/R > 2 pi !! 181 // If( h/R < pi) use G4LineSection::DistL 163 // If( h/R < pi) use G4LineSection::DistLine 182 // Else DistChord=R_helix 164 // Else DistChord=R_helix 183 // 165 // 184 G4double distChord; 166 G4double distChord; 185 G4double Ang_curve=GetAngCurve(); 167 G4double Ang_curve=GetAngCurve(); 186 168 187 if(Ang_curve<=pi) << 169 if(Ang_curve<=pi){ 188 { << 189 distChord=GetRadHelix()*(1-std::cos(0.5*An 170 distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve)); 190 } 171 } 191 else 172 else 192 { 173 { 193 if(Ang_curve<twopi) << 174 if(Ang_curve<twopi){ 194 { << 195 distChord=GetRadHelix()*(1+std::cos(0.5* 175 distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve))); 196 } 176 } 197 else << 177 else{ 198 { << 199 distChord=2.*GetRadHelix(); 178 distChord=2.*GetRadHelix(); 200 } 179 } 201 } 180 } 202 181 203 return distChord; 182 return distChord; 204 } 183 } 205 184 206 // ------------------------------------------- 185 // --------------------------------------------------------------------------- 207 void G4HelixMixedStepper::PrintCalls() 186 void G4HelixMixedStepper::PrintCalls() 208 { 187 { 209 G4cout << "In HelixMixedStepper::Number of c 188 G4cout << "In HelixMixedStepper::Number of calls to smallStepStepper = " 210 << fNumCallsRK4 189 << fNumCallsRK4 211 << " and Number of calls to Helix = 190 << " and Number of calls to Helix = " << fNumCallsHelix << G4endl; 212 } 191 } 213 192 214 // ------------------------------------------- << 215 G4MagIntegratorStepper* 193 G4MagIntegratorStepper* 216 G4HelixMixedStepper::SetupStepper(G4Mag_EqRhs* 194 G4HelixMixedStepper::SetupStepper(G4Mag_EqRhs* pE, G4int StepperNumber) 217 { 195 { 218 G4MagIntegratorStepper* pStepper; 196 G4MagIntegratorStepper* pStepper; 219 if (fVerbose>0) { G4cout << " G4HelixMixedSt << 197 if (fVerbose>0) G4cout << " G4HelixMixedStepper: "; 220 } << 221 switch ( StepperNumber ) 198 switch ( StepperNumber ) 222 { << 199 { 223 // Robust, classic method 200 // Robust, classic method 224 case 4: 201 case 4: 225 pStepper = new G4ClassicalRK4( pE ); 202 pStepper = new G4ClassicalRK4( pE ); 226 if (fVerbose>0) { G4cout << "G4Classic << 203 if (fVerbose>0) G4cout << "G4ClassicalRK4"; 227 break; 204 break; 228 205 229 // Steppers with embedded estimation of 206 // Steppers with embedded estimation of error 230 case 8: 207 case 8: 231 pStepper = new G4CashKarpRKF45( pE ); 208 pStepper = new G4CashKarpRKF45( pE ); 232 if (fVerbose>0) { G4cout << "G4CashKar << 209 if (fVerbose>0) G4cout << "G4CashKarpRKF45"; 233 break; 210 break; 234 case 13: 211 case 13: 235 pStepper = new G4NystromRK4( pE ); 212 pStepper = new G4NystromRK4( pE ); 236 if (fVerbose>0) { G4cout << "G4Nystrom << 213 if (fVerbose>0) G4cout << "G4NystromRK4"; 237 break; 214 break; 238 215 239 // Lowest order RK Stepper - experimenta 216 // Lowest order RK Stepper - experimental 240 case 1: 217 case 1: 241 pStepper = new G4ImplicitEuler( pE ); 218 pStepper = new G4ImplicitEuler( pE ); 242 if (fVerbose>0) { G4cout << "G4Implici << 219 if (fVerbose>0) G4cout << "G4ImplicitEuler"; 243 break; 220 break; 244 221 245 // Lower order RK Steppers - ok overall, 222 // Lower order RK Steppers - ok overall, good for uneven fields 246 case 2: 223 case 2: 247 pStepper = new G4SimpleRunge( pE ); 224 pStepper = new G4SimpleRunge( pE ); 248 if (fVerbose>0) { G4cout << "G4SimpleR << 225 if (fVerbose>0) G4cout << "G4SimpleRunge"; 249 break; 226 break; 250 case 3: 227 case 3: 251 pStepper = new G4SimpleHeum( pE ); 228 pStepper = new G4SimpleHeum( pE ); 252 if (fVerbose>0) { G4cout << "G4SimpleH << 229 if (fVerbose>0) G4cout << "G4SimpleHeum"; 253 break; 230 break; 254 case 23: 231 case 23: 255 pStepper = new G4BogackiShampine23( pE 232 pStepper = new G4BogackiShampine23( pE ); 256 if (fVerbose>0) { G4cout << "G4Bogacki << 233 if (fVerbose>0) G4cout << "G4BogackiShampine23"; 257 break; 234 break; 258 235 259 // Higher order RK Steppers 236 // Higher order RK Steppers 260 // for smoother fields and high accuracy 237 // for smoother fields and high accuracy requirements 261 case 45: 238 case 45: 262 pStepper = new G4BogackiShampine45( pE 239 pStepper = new G4BogackiShampine45( pE ); 263 if (fVerbose>0) { G4cout << "G4Bogacki << 240 if (fVerbose>0) G4cout << "G4BogackiShampine45"; 264 break; 241 break; 265 case 145: 242 case 145: 266 pStepper = new G4TsitourasRK45( pE ); 243 pStepper = new G4TsitourasRK45( pE ); 267 if (fVerbose>0) { G4cout << "G4Tsitour << 244 if (fVerbose>0) G4cout << "G4TsitourasRK45"; 268 break; 245 break; 269 case 745: 246 case 745: 270 pStepper = new G4DormandPrince745( pE 247 pStepper = new G4DormandPrince745( pE ); 271 if (fVerbose>0) { G4cout << "G4Dormand << 248 if (fVerbose>0) G4cout << "G4DormandPrince745"; 272 break; 249 break; 273 250 274 // Helical Steppers 251 // Helical Steppers 275 case 6: 252 case 6: 276 pStepper = new G4HelixImplicitEuler( p 253 pStepper = new G4HelixImplicitEuler( pE ); 277 if (fVerbose>0) { G4cout << "G4HelixIm << 254 if (fVerbose>0) G4cout << "G4HelixImplicitEuler"; 278 break; 255 break; 279 case 7: 256 case 7: 280 pStepper = new G4HelixSimpleRunge( pE 257 pStepper = new G4HelixSimpleRunge( pE ); 281 if (fVerbose>0) { G4cout << "G4HelixSi << 258 if (fVerbose>0) G4cout << "G4HelixSimpleRunge"; 282 break; 259 break; 283 case 5: 260 case 5: 284 pStepper = new G4HelixExplicitEuler( p 261 pStepper = new G4HelixExplicitEuler( pE ); 285 if (fVerbose>0) { G4cout << "G4HelixEx << 262 if (fVerbose>0) G4cout << "G4HelixExplicitEuler"; 286 break; // Since Helix Explicit is use 263 break; // Since Helix Explicit is used for long steps, 287 // this is useful only to measu 264 // this is useful only to measure overhead. 288 // Exact Helix - likely good only for ca 265 // Exact Helix - likely good only for cases of 289 // i) uniform field (potentia 266 // i) uniform field (potentially over small distances) 290 // ii) segmented uniform field 267 // ii) segmented uniform field (maybe) 291 case 9: 268 case 9: 292 pStepper = new G4ExactHelixStepper( pE 269 pStepper = new G4ExactHelixStepper( pE ); 293 if (fVerbose>0) { G4cout << "G4ExactHe << 270 if (fVerbose>0) G4cout << "G4ExactHelixStepper"; 294 break; 271 break; 295 case 10: 272 case 10: 296 pStepper = new G4RKG3_Stepper( pE ); 273 pStepper = new G4RKG3_Stepper( pE ); 297 if (fVerbose>0) { G4cout << "G4RKG3_St << 274 if (fVerbose>0) G4cout << "G4RKG3_Stepper"; 298 break; 275 break; 299 276 300 // Low Order Steppers - not good except 277 // Low Order Steppers - not good except for very weak fields 301 case 11: 278 case 11: 302 pStepper = new G4ExplicitEuler( pE ); 279 pStepper = new G4ExplicitEuler( pE ); 303 if (fVerbose>0) { G4cout << "G4Explici << 280 if (fVerbose>0) G4cout << "G4ExplicitEuler"; 304 break; 281 break; 305 case 12: 282 case 12: 306 pStepper = new G4ImplicitEuler( pE ); 283 pStepper = new G4ImplicitEuler( pE ); 307 if (fVerbose>0) { G4cout << "G4Implici << 284 if (fVerbose>0) G4cout << "G4ImplicitEuler"; 308 break; 285 break; 309 286 310 case 0: 287 case 0: 311 case -1: 288 case -1: 312 default: 289 default: 313 pStepper = new G4DormandPrince745( pE << 290 pStepper = new G4ClassicalRK4( pE ); 314 if (fVerbose>0) { G4cout << "G4Dormand << 291 if (fVerbose>0) G4cout << "G4ClassicalRK4 (Default)"; 315 break; 292 break; 316 } << 293 } 317 << 318 if(fVerbose>0) 294 if(fVerbose>0) 319 { << 320 G4cout << " chosen as stepper for small st 295 G4cout << " chosen as stepper for small steps in G4HelixMixedStepper." 321 << G4endl; 296 << G4endl; 322 } << 323 297 324 return pStepper; 298 return pStepper; 325 } 299 } 326 300