Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lepto_nuclear/src/G4NuElNucleusNcModel.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // $Id: G4NuElNucleusNcModel.cc 91806 2015-08-06 12:20:45Z gcosmo $
 27 //
 28 // Geant4 Header : G4NuElNucleusNcModel
 29 //
 30 // Author : V.Grichine 12.2.19
 31 //  
 32 
 33 #include "G4NuElNucleusNcModel.hh"
 34 #include "G4NeutrinoNucleusModel.hh" 
 35 
 36 // #include "G4NuMuResQX.hh" 
 37 
 38 #include "G4SystemOfUnits.hh"
 39 #include "G4ParticleTable.hh"
 40 #include "G4ParticleDefinition.hh"
 41 #include "G4IonTable.hh"
 42 #include "Randomize.hh"
 43 #include "G4RandomDirection.hh"
 44 
 45 // #include "G4Integrator.hh"
 46 #include "G4DataVector.hh"
 47 #include "G4PhysicsTable.hh"
 48 #include "G4KineticTrack.hh"
 49 #include "G4DecayKineticTracks.hh"
 50 #include "G4KineticTrackVector.hh"
 51 #include "G4Fragment.hh"
 52 #include "G4ReactionProductVector.hh"
 53 
 54 
 55 #include "G4NeutrinoE.hh"
 56 // #include "G4AntiNeutrinoMu.hh"
 57 #include "G4Nucleus.hh"
 58 #include "G4LorentzVector.hh"
 59 
 60 using namespace std;
 61 using namespace CLHEP;
 62 
 63 #ifdef G4MULTITHREADED
 64     G4Mutex G4NuElNucleusNcModel::numuNucleusModel = G4MUTEX_INITIALIZER;
 65 #endif     
 66 
 67 
 68 G4NuElNucleusNcModel::G4NuElNucleusNcModel(const G4String& name) 
 69   : G4NeutrinoNucleusModel(name)
 70 {
 71   SetMinEnergy( 0.0*GeV );
 72   SetMaxEnergy( 100.*TeV );
 73   SetMinEnergy(1.e-6*eV);
 74 
 75   theNuE =  G4NeutrinoE::NeutrinoE();
 76 
 77   fMnumu = 0.; 
 78   fData = fMaster = false;
 79   InitialiseModel();  
 80      
 81 }
 82 
 83 
 84 G4NuElNucleusNcModel::~G4NuElNucleusNcModel()
 85 {}
 86 
 87 
 88 void G4NuElNucleusNcModel::ModelDescription(std::ostream& outFile) const
 89 {
 90 
 91     outFile << "G4NuElNucleusNcModel is a neutrino-nucleus (neutral current) scattering\n"
 92             << "model which uses the standard model \n"
 93             << "transfer parameterization.  The model is fully relativistic\n";
 94 
 95 }
 96 
 97 /////////////////////////////////////////////////////////
 98 //
 99 // Read data from G4PARTICLEXSDATA (locally PARTICLEXSDATA)
100 
101 void G4NuElNucleusNcModel::InitialiseModel()
102 {
103   G4String pName  = "nu_e";
104   
105   G4int nSize(0), i(0), j(0), k(0);
106 
107   if(!fData)
108   { 
109 #ifdef G4MULTITHREADED
110     G4MUTEXLOCK(&numuNucleusModel);
111     if(!fData)
112     { 
113 #endif     
114       fMaster = true;
115 #ifdef G4MULTITHREADED
116     }
117     G4MUTEXUNLOCK(&numuNucleusModel);
118 #endif
119   }
120 
121   if(fMaster)
122   {  
123     const char* path = G4FindDataDir("G4PARTICLEXSDATA");
124     std::ostringstream ost1, ost2, ost3, ost4;
125     ost1 << path << "/" << "neutrino" << "/" << pName << "/xarraynckr";
126 
127     std::ifstream filein1( ost1.str().c_str() );
128 
129     // filein.open("$PARTICLEXSDATA/");
130 
131     filein1>>nSize;
132 
133     for( k = 0; k < fNbin; ++k )
134     {
135       for( i = 0; i <= fNbin; ++i )
136       {
137         filein1 >> fNuMuXarrayKR[k][i];
138         // G4cout<< fNuMuXarrayKR[k][i] << "  ";
139       }
140     }
141     // G4cout<<G4endl<<G4endl;
142 
143     ost2 << path << "/" << "neutrino" << "/" << pName << "/xdistrnckr";
144     std::ifstream  filein2( ost2.str().c_str() );
145 
146     filein2>>nSize;
147 
148     for( k = 0; k < fNbin; ++k )
149     {
150       for( i = 0; i < fNbin; ++i )
151       {
152         filein2 >> fNuMuXdistrKR[k][i];
153         // G4cout<< fNuMuXdistrKR[k][i] << "  ";
154       }
155     }
156     // G4cout<<G4endl<<G4endl;
157 
158     ost3 << path << "/" << "neutrino" << "/" << pName << "/q2arraynckr";
159     std::ifstream  filein3( ost3.str().c_str() );
160 
161     filein3>>nSize;
162 
163     for( k = 0; k < fNbin; ++k )
164     {
165       for( i = 0; i <= fNbin; ++i )
166       {
167         for( j = 0; j <= fNbin; ++j )
168         {
169           filein3 >> fNuMuQarrayKR[k][i][j];
170           // G4cout<< fNuMuQarrayKR[k][i][j] << "  ";
171         }
172       }
173     }
174     // G4cout<<G4endl<<G4endl;
175 
176     ost4 << path << "/" << "neutrino" << "/" << pName << "/q2distrnckr";
177     std::ifstream  filein4( ost4.str().c_str() );
178 
179     filein4>>nSize;
180 
181     for( k = 0; k < fNbin; ++k )
182     {
183       for( i = 0; i <= fNbin; ++i )
184       {
185         for( j = 0; j < fNbin; ++j )
186         {
187           filein4 >> fNuMuQdistrKR[k][i][j];
188           // G4cout<< fNuMuQdistrKR[k][i][j] << "  ";
189         }
190       }
191     }
192     fData = true;
193   }
194 }
195 
196 /////////////////////////////////////////////////////////
197 
198 G4bool G4NuElNucleusNcModel::IsApplicable(const G4HadProjectile & aPart, 
199                   G4Nucleus & )
200 {
201   G4bool result  = false;
202   G4String pName = aPart.GetDefinition()->GetParticleName();
203   G4double energy = aPart.GetTotalEnergy();
204   fMinNuEnergy = GetMinNuElEnergy();
205   
206   if(  pName == "nu_e"
207         &&
208         energy > fMinNuEnergy                                )
209   {
210     result = true;
211   }
212 
213   return result;
214 }
215 
216 /////////////////////////////////////////// ClusterDecay ////////////////////////////////////////////////////////////
217 //
218 //
219 
220 G4HadFinalState* G4NuElNucleusNcModel::ApplyYourself(
221      const G4HadProjectile& aTrack, G4Nucleus& targetNucleus)
222 {
223   theParticleChange.Clear();
224   fProton = f2p2h = fBreak = false;
225   const G4HadProjectile* aParticle = &aTrack;
226   G4double energy = aParticle->GetTotalEnergy();
227 
228   G4String pName  = aParticle->GetDefinition()->GetParticleName();
229 
230   if( energy < fMinNuEnergy ) 
231   {
232     theParticleChange.SetEnergyChange(energy);
233     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
234     return &theParticleChange;
235   }
236   SampleLVkr( aTrack, targetNucleus);
237 
238   if( fBreak == true || fEmu < fMnumu ) // ~5*10^-6
239   {
240     // G4cout<<"ni, ";
241     theParticleChange.SetEnergyChange(energy);
242     theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
243     return &theParticleChange;
244   }
245 
246   // LVs of initial state
247 
248   G4LorentzVector lvp1 = aParticle->Get4Momentum();
249   G4LorentzVector lvt1( 0., 0., 0., fM1 );
250   G4double mPip = G4ParticleTable::GetParticleTable()->FindParticle(211)->GetPDGMass();
251 
252   // 1-pi by fQtransfer && nu-energy
253   G4LorentzVector lvpip1( 0., 0., 0., mPip );
254   G4LorentzVector lvsum, lv2, lvX;
255   G4ThreeVector eP;
256   G4double cost(1.), sint(0.), phi(0.), muMom(0.), massX2(0.);
257   G4DynamicParticle* aLept = nullptr; // lepton lv
258 
259   G4int Z = targetNucleus.GetZ_asInt();
260   G4int A = targetNucleus.GetA_asInt();
261   G4double  mTarg = targetNucleus.AtomicMass(A,Z);
262   G4int pdgP(0), qB(0);
263   // G4double mSum = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass() + mPip;
264 
265   G4int iPi     = GetOnePionIndex(energy);
266   G4double p1pi = GetNuMuOnePionProb( iPi, energy);
267 
268   if( p1pi > G4UniformRand() && fCosTheta > 0.9  ) // && fQtransfer < 0.95*GeV ) // mu- & coherent pion + nucleus
269   {
270     // lvsum = lvp1 + lvpip1;
271     lvsum = lvp1 + lvt1;
272     // cost = fCosThetaPi;
273     cost = fCosTheta;
274     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
275     phi  = G4UniformRand()*CLHEP::twopi;
276     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
277 
278     // muMom = sqrt(fEmuPi*fEmuPi-fMnumu*fMnumu);
279     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);
280 
281     eP *= muMom;
282 
283     // lv2 = G4LorentzVector( eP, fEmuPi );
284     lv2 = G4LorentzVector( eP, fEmu );
285     lv2 = fLVl;
286 
287     lvX = lvsum - lv2;
288     lvX = fLVh;
289     massX2 = lvX.m2();
290     G4double massX = lvX.m();
291     G4double massR = fLVt.m();
292 
293     // if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved
294     if ( massX2 <= fM1*fM1 ) // 9-3-20 vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved
295       if ( lvX.e() <= fM1 ) // 9-3-20 vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved
296     {
297       theParticleChange.SetEnergyChange(energy);
298       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
299       return &theParticleChange;
300     }
301     fW2 = massX2;
302 
303     if(  pName == "nu_e" )         aLept = new G4DynamicParticle( theNuE, lv2 );  
304     // else if( pName == "anti_nu_mu") aLept = new G4DynamicParticle( theANuMu,  lv2 );
305     else
306     {
307       theParticleChange.SetEnergyChange(energy);
308       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
309       return &theParticleChange;
310     } 
311  
312     pdgP = 111;
313 
314     G4double eCut; // = fMpi + 0.5*(fMpi*fMpi - massX2)/mTarg; // massX -> fMpi
315 
316     if( A > 1 )
317     {
318       eCut = (fMpi + mTarg)*(fMpi + mTarg) - (massX + massR)*(massX + massR);
319       eCut /= 2.*massR;
320       eCut += massX;
321     }
322     else  eCut = fM1 + fMpi;
323 
324     if ( lvX.e() > eCut ) // && sqrt( GetW2() ) < 1.4*GeV ) // 
325     {
326       CoherentPion( lvX, pdgP, targetNucleus);
327     }
328     else
329     {
330       theParticleChange.SetEnergyChange(energy);
331       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
332       return &theParticleChange;
333     } 
334     theParticleChange.AddSecondary( aLept, fSecID );
335 
336     return &theParticleChange;
337   }
338   else // lepton part in lab
339   { 
340     lvsum = lvp1 + lvt1;
341     cost = fCosTheta;
342     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
343     phi  = G4UniformRand()*CLHEP::twopi;
344     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
345 
346     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);
347 
348     eP *= muMom;
349 
350     lv2 = G4LorentzVector( eP, fEmu );
351 
352     lvX = lvsum - lv2;
353 
354     massX2 = lvX.m2();
355 
356     if ( massX2 <= 0. ) // vmg: very rarely ~ (1-4)e-6 due to big Q2/x, to be improved
357     {
358       theParticleChange.SetEnergyChange(energy);
359       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
360       return &theParticleChange;
361     }
362     fW2 = massX2;
363 
364     aLept = new G4DynamicParticle( theNuE, lv2 );  
365     
366     theParticleChange.AddSecondary( aLept, fSecID );
367   }
368 
369   // hadron part
370 
371   fRecoil  = nullptr;
372   fCascade = false;
373   fString  = false;
374   
375   if( A == 1 )
376   {
377     qB = 1;
378 
379     // if( G4UniformRand() > 0.1 ) //  > 0.9999 ) // > 0.0001 ) //
380     {
381       ClusterDecay( lvX, qB );
382     }
383     return &theParticleChange;
384   }
385   G4Nucleus recoil;
386   G4double rM(0.), ratio = G4double(Z)/G4double(A);
387 
388   if( ratio > G4UniformRand() ) // proton is excited
389   {
390     fProton = true;
391     recoil = G4Nucleus(A-1,Z-1);
392     fRecoil = &recoil;
393     rM = recoil.AtomicMass(A-1,Z-1);
394 
395     fMt = G4ParticleTable::GetParticleTable()->FindParticle(2212)->GetPDGMass()
396           + G4ParticleTable::GetParticleTable()->FindParticle(111)->GetPDGMass();
397   }
398   else // excited neutron
399   {
400     fProton = false;
401     recoil = G4Nucleus(A-1,Z);
402     fRecoil = &recoil;
403     rM = recoil.AtomicMass(A-1,Z);
404 
405     fMt = G4ParticleTable::GetParticleTable()->FindParticle(2112)->GetPDGMass()
406           + G4ParticleTable::GetParticleTable()->FindParticle(111)->GetPDGMass(); 
407   }
408   // G4int       index = GetEnergyIndex(energy);
409   G4int nepdg = aParticle->GetDefinition()->GetPDGEncoding();
410   G4double qeTotRat; // = GetNuMuQeTotRat(index, energy);
411   qeTotRat = CalculateQEratioA( Z, A, energy, nepdg);
412 
413   G4ThreeVector dX = (lvX.vect()).unit();
414   G4double eX   = lvX.e();  // excited nucleon
415   G4double mX   = sqrt(massX2);
416 
417   if( qeTotRat > G4UniformRand() || mX <= fMt ) // || eX <= 1232.*MeV) // QE
418   {  
419     fString = false;
420 
421     if( fProton ) 
422     {  
423       fPDGencoding = 2212;
424       fMr =  proton_mass_c2;
425       recoil = G4Nucleus(A-1,Z-1);
426       fRecoil = &recoil;
427       rM = recoil.AtomicMass(A-1,Z-1);
428     } 
429     else
430     {  
431       fPDGencoding = 2112;
432       fMr =   G4ParticleTable::GetParticleTable()->
433   FindParticle(fPDGencoding)->GetPDGMass(); // 939.5654133*MeV;
434       recoil = G4Nucleus(A-1,Z);
435       fRecoil = &recoil;
436       rM = recoil.AtomicMass(A-1,Z);
437     } 
438     G4double eTh = fMr+0.5*(fMr*fMr-mX*mX)/rM;
439 
440     if(eX <= eTh) // vmg, very rarely out of kinematics
441     {
442       theParticleChange.SetEnergyChange(energy);
443       theParticleChange.SetMomentumChange(aTrack.Get4Momentum().vect().unit());
444       return &theParticleChange;
445     } 
446     FinalBarion( lvX, 0, fPDGencoding ); // p(n)+deexcited recoil
447   }
448   else // if ( eX < 9500000.*GeV ) // < 25.*GeV) //  < 95.*GeV ) // < 2.5*GeV ) //cluster decay
449   {  
450     if     (  fProton && pName == "nu_e" )      qB =  1;
451     else if( !fProton && pName == "nu_e" )      qB =  0;
452 
453     ClusterDecay( lvX, qB );
454   }
455   return &theParticleChange;
456 }
457 
458 
459 /////////////////////////////////////////////////////////////////////
460 ////////////////////////////////////////////////////////////////////
461 ///////////////////////////////////////////////////////////////////
462 
463 /////////////////////////////////////////////////
464 //
465 // sample x, then Q2
466 
467 void G4NuElNucleusNcModel::SampleLVkr(const G4HadProjectile & aTrack, G4Nucleus& targetNucleus)
468 {
469   fBreak = false;
470   G4int A = targetNucleus.GetA_asInt(), iTer(0), iTerMax(100); 
471   G4int Z = targetNucleus.GetZ_asInt(); 
472   G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.), rM(0.), hM(0.), tM = targetNucleus.AtomicMass(A,Z);
473   G4double cost(1.), sint(0.), phi(0.), muMom(0.); 
474   G4ThreeVector eP, bst;
475   const G4HadProjectile* aParticle = &aTrack;
476   G4LorentzVector lvp1 = aParticle->Get4Momentum();
477   nMom = NucleonMomentum( targetNucleus );
478 
479   if( A == 1 || nMom == 0. ) // hydrogen, no Fermi motion ???
480   {
481     fNuEnergy = aParticle->GetTotalEnergy();
482     iTer = 0;
483 
484     do
485     {
486       fXsample = SampleXkr(fNuEnergy);
487       fQtransfer = SampleQkr(fNuEnergy, fXsample);
488       fQ2 = fQtransfer*fQtransfer;
489 
490      if( fXsample > 0. )
491       {
492         fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass
493         fEmu = fNuEnergy - fQ2/2./fM1/fXsample;
494       }
495       else
496       {
497         fW2 = fM1*fM1;
498         fEmu = fNuEnergy;
499       }
500       e3 = fNuEnergy + fM1 - fEmu;
501 
502       // if( e3 < sqrt(fW2) )  G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl; // vmg ~10^-5 for NC
503     
504       pMu2 = fEmu*fEmu - fMnumu*fMnumu;
505       pX2  = e3*e3 - fW2;
506 
507       fCosTheta  = fNuEnergy*fNuEnergy  + pMu2 - pX2;
508       fCosTheta /= 2.*fNuEnergy*sqrt(pMu2);
509       iTer++;
510     }
511     while( ( abs(fCosTheta) > 1. || fEmu < fMnumu ) && iTer < iTerMax );
512 
513     if( iTer >= iTerMax ) { fBreak = true; return; }
514 
515     if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ...
516     { 
517       G4cout<<"H2: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl;
518       // fCosTheta = -1. + 2.*G4UniformRand(); 
519       if(fCosTheta < -1.) fCosTheta = -1.;
520       if(fCosTheta >  1.) fCosTheta =  1.;
521     }
522     // LVs
523 
524     G4LorentzVector lvt1  = G4LorentzVector( 0., 0., 0., fM1 );
525     G4LorentzVector lvsum = lvp1 + lvt1;
526 
527     cost = fCosTheta;
528     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
529     phi  = G4UniformRand()*CLHEP::twopi;
530     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
531     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);
532     eP *= muMom;
533     fLVl = G4LorentzVector( eP, fEmu );
534 
535     fLVh = lvsum - fLVl;
536     fLVt = G4LorentzVector( 0., 0., 0., 0. ); // no recoil
537   }
538   else // Fermi motion, Q2 in nucleon rest frame
539   {
540     G4ThreeVector nMomDir = nMom*G4RandomDirection();
541 
542     if( !f2p2h ) // 1p1h
543     {
544       G4Nucleus recoil(A-1,Z);
545       rM = sqrt( recoil.AtomicMass(A-1,Z)*recoil.AtomicMass(A-1,Z) + nMom*nMom );
546       hM = tM - rM;
547 
548       fLVt = G4LorentzVector( nMomDir, sqrt( rM*rM+nMom*nMom ) );
549       fLVh = G4LorentzVector(-nMomDir, sqrt( hM*hM+nMom*nMom ) ); 
550     }
551     else // 2p2h
552     {
553       G4Nucleus recoil(A-2,Z-1);
554       rM = recoil.AtomicMass(A-2,Z-1)+sqrt(nMom*nMom+fM1*fM1);
555       hM = tM - rM;
556 
557       fLVt = G4LorentzVector( nMomDir, sqrt( rM*rM+nMom*nMom ) );
558       fLVh = G4LorentzVector(-nMomDir, sqrt( hM*hM+nMom*nMom ) ); 
559     }
560     // G4cout<<hM<<", ";
561     // bst = fLVh.boostVector(); // 9-3-20
562 
563     // lvp1.boost(-bst); // 9-3-20 -> nucleon rest system, where Q2 transfer is ???
564 
565     fNuEnergy  = lvp1.e();
566     iTer = 0;
567 
568     do
569     {
570       fXsample = SampleXkr(fNuEnergy);
571       fQtransfer = SampleQkr(fNuEnergy, fXsample);
572       fQ2 = fQtransfer*fQtransfer;
573 
574       if( fXsample > 0. )
575       {
576         fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // sample excited hadron mass
577         fEmu = fNuEnergy - fQ2/2./fM1/fXsample;
578       }
579       else
580       {
581         fW2 = fM1*fM1;
582         fEmu = fNuEnergy;
583       }
584 
585       // if(fEmu < 0.) G4cout<<"fEmu = "<<fEmu<<" hM = "<<hM<<G4endl;
586 
587       e3 = fNuEnergy + fM1 - fEmu;
588 
589       // if( e3 < sqrt(fW2) )  G4cout<<"energyX = "<<e3/GeV<<", fW = "<<sqrt(fW2)/GeV<<G4endl;
590     
591       pMu2 = fEmu*fEmu - fMnumu*fMnumu;
592       pX2  = e3*e3 - fW2;
593 
594       fCosTheta  = fNuEnergy*fNuEnergy  + pMu2 - pX2;
595       fCosTheta /= 2.*fNuEnergy*sqrt(pMu2);
596       iTer++;
597     }
598     while( ( abs(fCosTheta) > 1. || fEmu < fMnumu ) && iTer < iTerMax );
599 
600     if( iTer >= iTerMax ) { fBreak = true; return; }
601 
602     if( abs(fCosTheta) > 1.) // vmg: due to big Q2/x values. To be improved ...
603     { 
604       G4cout<<"FM: fCosTheta = "<<fCosTheta<<", fEmu = "<<fEmu<<G4endl;
605       // fCosTheta = -1. + 2.*G4UniformRand(); 
606       if(fCosTheta < -1.) fCosTheta = -1.;
607       if(fCosTheta >  1.) fCosTheta =  1.;
608     }
609     // LVs
610     G4LorentzVector lvt1  = G4LorentzVector( 0., 0., 0., fM1 );
611     G4LorentzVector lvsum = lvp1 + lvt1;
612 
613     cost = fCosTheta;
614     sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
615     phi  = G4UniformRand()*CLHEP::twopi;
616     eP   = G4ThreeVector( sint*std::cos(phi), sint*std::sin(phi), cost );
617     muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu);
618     eP *= muMom;
619     fLVl = G4LorentzVector( eP, fEmu );
620     fLVh = lvsum - fLVl;
621     // back to lab system
622     // fLVl.boost(bst); // 9-3-20
623     // fLVh.boost(bst); // 9-3-20
624   }
625   //G4cout<<iTer<<", "<<fBreak<<"; ";
626 }
627 
628 //
629 //
630 ///////////////////////////
631