Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/processes/hadronic/models/lepto_nuclear/include/G4NeutrinoNucleusModel.hh

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 //
 27 // $Id: G4NeutrinoNucleusModel.hh 90228 2015-05-21 08:49:57Z gcosmo $
 28 //
 29 // Geant4 Header : G4NeutrinoNucleusModel
 30 //
 31 // Author : V.Grichine 12.2.19
 32 //  
 33 // Modified:
 34 //
 35 // Class Description
 36 // Default model for muon neutrino-nucleus charge current scattering; 
 37 // Class Description - End
 38 
 39 #ifndef G4NeutrinoNucleusModel_h
 40 #define G4NeutrinoNucleusModel_h 1
 41  
 42 #include "globals.hh"
 43 #include "G4HadronicInteraction.hh"
 44 #include "G4HadProjectile.hh"
 45 #include "G4Nucleus.hh"
 46 #include "G4NucleiProperties.hh"
 47 #include "G4LorentzVector.hh"
 48 
 49 class G4ParticleDefinition;
 50 class G4PreCompoundModel;
 51 // class G4CascadeInterface;
 52 // class G4BinaryCascade;
 53 // class G4TheoFSGenerator;
 54 // class G4LundStringFragmentation;
 55 // class G4ExcitedStringDecay;
 56 // class G4INCLXXInterface;
 57 class G4Nucleus;
 58 class G4Fragment;
 59 class G4GeneratorPrecompoundInterface;
 60 class G4ExcitationHandler;
 61 
 62 class G4NeutrinoNucleusModel : public G4HadronicInteraction
 63 {
 64 public:
 65 
 66   G4NeutrinoNucleusModel(const G4String& name = "neutrino-nucleus");
 67 
 68   virtual ~G4NeutrinoNucleusModel();
 69 
 70   virtual G4bool IsApplicable(const G4HadProjectile & aTrack, 
 71               G4Nucleus & targetNucleus);
 72 
 73   G4double SampleXkr(G4double energy);
 74   G4double GetXkr(G4int iEnergy, G4double prob);
 75   G4double SampleQkr(G4double energy, G4double xx);
 76   G4double GetQkr(G4int iE, G4int jX, G4double prob);
 77 
 78   virtual G4HadFinalState * ApplyYourself(const G4HadProjectile & aTrack, 
 79             G4Nucleus & targetNucleus)=0;
 80 
 81  //////// fragmentation functions /////////////////////////
 82 
 83   void ClusterDecay( G4LorentzVector & lvX, G4int qX);
 84 
 85   void MesonDecay( G4LorentzVector & lvX, G4int qX);
 86 
 87   void FinalBarion( G4LorentzVector & lvB, G4int qB, G4int pdgB);
 88 
 89   void RecoilDeexcitation( G4Fragment& fragment);
 90 
 91   void FinalMeson( G4LorentzVector & lvM, G4int qM, G4int pdgM);
 92 
 93   void CoherentPion( G4LorentzVector & lvP, G4int pdgP, G4Nucleus & targetNucleus);
 94 
 95 
 96   // set/get class fields
 97 
 98   void SetCutEnergy(G4double ec){fCutEnergy=ec;};
 99   G4double GetCutEnergy(){return fCutEnergy;};
100 
101   G4double GetNuEnergy(){return fNuEnergy;};
102   G4double GetQtransfer(){return fQtransfer;};
103   G4double GetQ2(){return fQ2;};
104   G4double GetXsample(){return fXsample;};
105 
106   G4int    GetPDGencoding(){return fPDGencoding;};
107   G4bool   GetCascade(){return fCascade;};
108   G4bool   GetString(){return fString;};
109 
110   G4double GetCosTheta(){return fCosTheta;};
111   G4double GetEmu(){return fEmu;};
112   G4double GetEx(){return fEx;};
113   G4double GetMuMass(){return fMu;};
114   G4double GetW2(){return fW2;};
115   G4double GetM1(){return fM1;};
116   G4double GetMr(){return fMr;};
117   G4double GetTr(){return fTr;};
118   G4double GetDp(){return fDp;};
119 
120   G4bool GetfBreak()  {return fBreak;};
121   G4bool GetfCascade(){return fCascade;};
122   G4bool GetfString() {return fString;};
123 
124   G4LorentzVector GetLVl(){return fLVl;};
125   G4LorentzVector GetLVh(){return fLVh;};
126   G4LorentzVector GetLVt(){return fLVt;};
127   G4LorentzVector GetLVcpi(){return fLVcpi;};
128 
129   G4double GetMinNuMuEnergy(){ return fMu + 0.5*fMu*fMu/fM1 + 4.*CLHEP::MeV; }; // kinematics + accuracy for sqrts
130 
131   G4double ThresholdEnergy(G4double mI, G4double mF, G4double mP) // for cluster decay
132   { 
133     G4double w = std::sqrt(fW2);
134     return w + 0.5*( (mP+mF)*(mP+mF)-(w+mI)*(w+mI) )/mI;
135   };
136   G4double GetQEratioA(){ return fQEratioA; };
137   void     SetQEratioA( G4double qea ){ fQEratioA = qea; };
138 
139 
140   G4double FinalMomentum(G4double mI, G4double mF, G4double mP, G4LorentzVector lvX); // for cluster decay
141 
142   // nucleon binding
143 
144   G4double FermiMomentum( G4Nucleus & targetNucleus);
145   G4double NucleonMomentum( G4Nucleus & targetNucleus);
146   
147   G4double GetEx( G4int A, G4bool fP );
148   G4double GgSampleNM(G4Nucleus & nucl);
149   
150   G4int    GetEnergyIndex(G4double energy);
151   G4double GetNuMuQeTotRat(G4int index, G4double energy);
152 
153   G4int    GetOnePionIndex(G4double energy);
154   G4double GetNuMuOnePionProb(G4int index, G4double energy);
155 
156   G4double CalculateQEratioA( G4int Z, G4int A, G4double energy, G4int nepdg);
157   
158   virtual void ModelDescription(std::ostream&) const;
159 
160 protected:
161 
162   G4ParticleDefinition* theMuonMinus;
163   G4ParticleDefinition* theMuonPlus;
164  
165   G4double fSin2tW;    // sin^2theta_Weinberg
166   G4double fCutEnergy; // minimal recoil electron energy detected
167 
168   G4int fNbin, fIndex, fEindex, fXindex, fQindex, fOnePionIndex, fPDGencoding;
169   G4bool fCascade, fString, fProton, f2p2h, fBreak;
170 
171   G4double fNuEnergy, fQ2, fQtransfer, fXsample;
172 
173   G4double fM1, fM2, fMt, fMu, fW2,  fMpi, fW2pi, fMinNuEnergy, fDp, fTr;
174 
175   G4double fEmu, fEmuPi, fEx, fMr, fCosTheta, fCosThetaPi, fQEratioA; 
176 
177   G4LorentzVector fLVh, fLVl, fLVt, fLVcpi;
178 
179   G4GeneratorPrecompoundInterface* fPrecoInterface;
180   G4PreCompoundModel*              fPreCompound;
181   G4ExcitationHandler*             fDeExcitation;
182 
183   G4Nucleus* fRecoil;
184 
185   G4int fSecID;  // Creator model ID for the secondaries created by this model  
186   
187   static const G4int fResNumber;
188   static const G4double fResMass[6]; // [fResNumber];
189 
190   static const G4int fClustNumber;
191 
192   static const G4double fMesMass[4];
193   static const G4int    fMesPDG[4];
194 
195   static const G4double fBarMass[4];
196   static const G4int    fBarPDG[4];
197 
198   static const G4double fNuMuResQ[50][50];
199   
200 
201   static const G4double fNuMuEnergy[50];
202   static const G4double fNuMuQeTotRat[50];
203   static const G4double fOnePionEnergy[58];
204   static const G4double fOnePionProb[58];
205  
206   static const G4double fNuMuEnergyLogVector[50];
207 
208   // KR sample distributions, X at E_nu and Q2 at E_nu and X
209 
210   static G4double fNuMuXarrayKR[50][51];
211   static G4double fNuMuXdistrKR[50][50];
212   static G4double fNuMuQarrayKR[50][51][51];
213   static G4double fNuMuQdistrKR[50][51][50];
214 
215   // QEratio(Z,A,Enu)
216 
217   static const G4double fQEnergy[50];
218   static const G4double fANeMuQEratio[50];
219   static const G4double fNeMuQEratio[50];
220  
221 };
222 
223 
224 
225 #endif
226