Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4ParticleDefinition 27 // 28 // Class description: 29 // 30 // This class contains all the static data of a particle. 31 // It uses the process manager in order to collect all the processes 32 // this kind of particle can undertake. 33 34 // Authors: G.Cosmo, 2 December 1995 - Design, based on object model 35 // M.Asai, 29 January 1996 - First implementation 36 // History: 37 // - 1996-2003, H.Kurashige - Revisions 38 // - 11.03.2003, H.Kurashige - Restructuring for Cuts per Region 39 // - 25.01.2013, G.Cosmo, A.Dotti - Introduced thread-safety for MT 40 // - 15.06.2017, K.L.Genser - Added support for MuonicAtom 41 // -------------------------------------------------------------------- 42 #ifndef G4ParticleDefinition_hh 43 #define G4ParticleDefinition_hh 1 44 45 #include "G4PDefManager.hh" 46 #include "G4ios.hh" 47 #include "globals.hh" 48 49 #include <CLHEP/Units/PhysicalConstants.h> 50 51 #include <vector> 52 53 class G4ProcessManager; 54 class G4DecayTable; 55 class G4ParticleTable; 56 class G4ParticlePropertyTable; 57 class G4VTrackingManager; 58 59 using G4ParticleDefinitionSubInstanceManager = G4PDefManager; 60 61 class G4ParticleDefinition 62 { 63 friend class G4ParticlePropertyTable; 64 65 public: 66 // Only one type of constructor can be used for G4ParticleDefinition. 67 // If you want to create new particle, you must set name of the particle 68 // at construction. Most of members seen as arguments of the constructor 69 // (except last 3 arguments concerning with decay ) are "constant" 70 // and can not be changed later. (No "SET" methods are available) 71 // Each type of particle must be constructed as a unique object 72 // of special class derived from G4ParticleDefinition. 73 // See G4ParticleTypes for detail 74 // clang-format off 75 G4ParticleDefinition(const G4String& aName, G4double mass, G4double width, G4double charge, 76 G4int iSpin, G4int iParity, G4int iConjugation, G4int iIsospin, 77 G4int iIsospinZ, G4int gParity, const G4String& pType, G4int lepton, 78 G4int baryon, G4int encoding, G4bool stable, G4double lifetime, 79 G4DecayTable* decaytable, G4bool shortlived = false, 80 const G4String& subType = "", G4int anti_encoding = 0, 81 G4double magneticMoment = 0.0); 82 // clang-format on 83 84 virtual ~G4ParticleDefinition(); 85 86 // Can not use "copy constructor", equality nor "default constructor"! 87 G4ParticleDefinition(const G4ParticleDefinition&) = delete; 88 G4ParticleDefinition& operator=(const G4ParticleDefinition&) = delete; 89 90 G4bool operator==(const G4ParticleDefinition& right) const; 91 G4bool operator!=(const G4ParticleDefinition& right) const; 92 93 // With the following Getxxxx methods, one can get values 94 // for members which can not be changed 95 96 const G4String& GetParticleName() const { return theParticleName; } 97 98 G4double GetPDGMass() const { return thePDGMass; } 99 G4double GetPDGWidth() const { return thePDGWidth; } 100 G4double GetPDGCharge() const { return thePDGCharge; } 101 102 G4double GetPDGSpin() const { return thePDGSpin; } 103 G4int GetPDGiSpin() const { return thePDGiSpin; } 104 G4int GetPDGiParity() const { return thePDGiParity; } 105 G4int GetPDGiConjugation() const { return thePDGiConjugation; } 106 G4double GetPDGIsospin() const { return thePDGIsospin; } 107 G4double GetPDGIsospin3() const { return thePDGIsospin3; } 108 G4int GetPDGiIsospin() const { return thePDGiIsospin; } 109 G4int GetPDGiIsospin3() const { return thePDGiIsospin3; } 110 G4int GetPDGiGParity() const { return thePDGiGParity; } 111 112 G4double GetPDGMagneticMoment() const { return thePDGMagneticMoment; } 113 inline void SetPDGMagneticMoment(G4double mageticMoment); 114 115 // Gives the anomaly of magnetic moment for spin 1/2 particles 116 G4double CalculateAnomaly() const; 117 118 const G4String& GetParticleType() const { return theParticleType; } 119 const G4String& GetParticleSubType() const { return theParticleSubType; } 120 G4int GetLeptonNumber() const { return theLeptonNumber; } 121 G4int GetBaryonNumber() const { return theBaryonNumber; } 122 123 G4int GetPDGEncoding() const { return thePDGEncoding; } 124 G4int GetAntiPDGEncoding() const { return theAntiPDGEncoding; } 125 inline void SetAntiPDGEncoding(G4int aEncoding); 126 127 // Returns the number of quark with flavor contained in this particle. 128 // The value of flavor is assigned as follows 129 // 1:d, 2:u, 3:s, 4:c, 5:b, 6:t 130 inline G4int GetQuarkContent(G4int flavor) const; 131 inline G4int GetAntiQuarkContent(G4int flavor) const; 132 133 G4bool IsShortLived() const { return fShortLivedFlag; } 134 135 inline G4bool GetPDGStable() const; 136 void SetPDGStable(const G4bool aFlag) { thePDGStable = aFlag; } 137 138 inline G4double GetPDGLifeTime() const; 139 void SetPDGLifeTime(G4double aLifeTime) { thePDGLifeTime = aLifeTime; } 140 141 // Get life time of a generic ion through G4NuclideTable. 142 inline G4double GetIonLifeTime() const; 143 144 // Set/Get Decay Table 145 // !! Decay Table can be modified !! 146 inline G4DecayTable* GetDecayTable() const; 147 inline void SetDecayTable(G4DecayTable* aDecayTable); 148 149 // Set/Get Process Manager 150 // !! Process Manager can be modified !! 151 G4ProcessManager* GetProcessManager() const; 152 void SetProcessManager(G4ProcessManager* aProcessManager); 153 154 // Set/Get Tracking Manager; nullptr means the default 155 // !! Tracking Manager can be modified !! 156 G4VTrackingManager* GetTrackingManager() const; 157 void SetTrackingManager(G4VTrackingManager* aTrackingManager); 158 159 // Get pointer to the particle table 160 inline G4ParticleTable* GetParticleTable() const; 161 162 // Get AtomicNumber and AtomicMass 163 // These properties are defined for nucleus 164 inline G4int GetAtomicNumber() const; 165 inline G4int GetAtomicMass() const; 166 167 // Prints information of data members. 168 void DumpTable() const; 169 170 // Control flag for output message 171 // 0: Silent 172 // 1: Warning message 173 // 2: More 174 inline void SetVerboseLevel(G4int value); 175 inline G4int GetVerboseLevel() const; 176 177 void SetApplyCutsFlag(G4bool); 178 inline G4bool GetApplyCutsFlag() const; 179 180 // True only if the particle is G4Ions 181 // (it means that theProcessManager is same as one for G4GenricIon) 182 inline G4bool IsGeneralIon() const; 183 184 // True only if the particle is a G4MuonicAtom 185 // (it means that theProcessManager is same as the one for G4MuonicAtom) 186 inline G4bool IsMuonicAtom() const; 187 188 // Returns the process manager master pointer. 189 inline G4ProcessManager* GetMasterProcessManager() const; 190 191 // Sets the shadow master pointer (not to be used by user) 192 inline void SetMasterProcessManager(G4ProcessManager* aNewPM); 193 194 // Returns the instance ID 195 inline G4int GetInstanceID() const; 196 197 // Returns the private data instance manager 198 static const G4PDefManager& GetSubInstanceManager(); 199 200 // Clear memory allocated by sub-instance manager 201 static void Clean(); 202 203 void SetParticleDefinitionID(G4int id = -1); 204 inline G4int GetParticleDefinitionID() const; 205 206 // The first two methods return "false" and 0, respectively, 207 // if the particle is not an hypernucleus; else, they return 208 // "true" and the number of Lambdas bound in the nucleus. 209 // Similarly, the last two methods return "false" and 0, 210 // respectively, if the particle is not an anti-hypernucleus; 211 // else, they return "true" and the number of anti-Lambdas 212 // bound in the anti-nucleus. 213 // Notice that, for the time being, we are assuming that 214 // (anti-)Lambda is the only type of (anti-)hyperon present 215 // in all (anti-)hypernuclei. 216 inline G4bool IsHypernucleus() const; 217 inline G4int GetNumberOfLambdasInHypernucleus() const; 218 inline G4bool IsAntiHypernucleus() const; 219 inline G4int GetNumberOfAntiLambdasInAntiHypernucleus() const; 220 221 protected: 222 // Cannot be used 223 G4ParticleDefinition(); 224 225 // Calculates quark and anti-quark contents 226 // return value is the PDG encoding for this particle. 227 // It means error if the return value is different from 228 // this->thePDGEncoding. 229 G4int FillQuarkContents(); 230 231 inline void SetParticleSubType(const G4String& subtype); 232 233 inline void SetAtomicNumber(G4int); 234 inline void SetAtomicMass(G4int); 235 236 enum 237 { 238 NumberOfQuarkFlavor = 6 239 }; 240 241 // the number of quark (minus Sign means anti-quark) contents 242 // The value of flavor is assigned as follows 243 // 0:d, 1:u, 2:s, 3:c, 4:b, 5:t 244 G4int theQuarkContent[NumberOfQuarkFlavor]; 245 G4int theAntiQuarkContent[NumberOfQuarkFlavor]; 246 247 G4bool isGeneralIon = false; 248 G4bool isMuonicAtom = false; 249 250 private: 251 // --- Shadow of master pointers 252 253 // Each worker thread can access this field from the master thread 254 // through this pointer. 255 G4ProcessManager* theProcessManagerShadow = nullptr; 256 257 // This field is used as instance ID. 258 G4int g4particleDefinitionInstanceID = 0; 259 260 // This field helps to use the class G4PDefManager introduced above. 261 G4PART_DLL static G4PDefManager subInstanceManager; 262 263 // --- Following values can not be changed 264 // --- i.e. No Setxxxx Methods for them 265 266 // The name of the particle. 267 // Each object must have its specific name!! 268 G4String theParticleName = ""; 269 270 // --- Following member values must be defined with Units 271 272 // The mass of the particle, in units of equivalent energy. 273 G4double thePDGMass = 0.0; 274 275 // The decay width of the particle, usually the width of a 276 // Breit-Wigner function, assuming that you are near the 277 // mass center anyway. (in units of equivalent energy) 278 G4double thePDGWidth = 0.0; 279 280 // The charge of the particle.(in units of Coulomb) 281 G4double thePDGCharge = 0.0; 282 283 // --- Following members are quantum number 284 // i.e. discrete numbers can be allowed 285 // So, you can define them only by using integer in constructor 286 287 // The total spin of the particle, also often denoted as 288 // capital J, in units of 1/2. 289 G4int thePDGiSpin = 0; 290 291 // The total spin of the particle, in units of 1. 292 G4double thePDGSpin = 0.0; 293 294 // The parity quantum number, in units of 1. If the parity 295 // is not defined for this particle, we will set this to 0. 296 G4int thePDGiParity = 0; 297 298 // This charge conjugation quantum number in units of 1. 299 G4int thePDGiConjugation = 0; 300 301 // The value of the G-parity quantum number. 302 G4int thePDGiGParity = 0; 303 304 // The isospin and its 3rd-component in units of 1/2. 305 G4int thePDGiIsospin = 0; 306 G4int thePDGiIsospin3 = 0; 307 308 // The isospin quantum number in units of 1. 309 G4double thePDGIsospin = 0.0; 310 G4double thePDGIsospin3 = 0.0; 311 312 // The magnetic moment. 313 G4double thePDGMagneticMoment = 0.0; 314 315 // The lepton quantum number. 316 G4int theLeptonNumber = 0; 317 318 // The baryon quantum number. 319 G4int theBaryonNumber = 0; 320 321 // More general textual type description of the particle. 322 G4String theParticleType = ""; 323 324 // Textual type description of the particle 325 // eg. pion, lamda etc. 326 G4String theParticleSubType = ""; 327 328 // The Particle Data Group integer identifier of this particle 329 G4int thePDGEncoding = 0; 330 331 // The Particle Data Group integer identifier of the anti-particle 332 G4int theAntiPDGEncoding = 0; 333 334 // --- Following members can be changed after construction 335 336 // Particles which have true value of this flag 337 // will not be tracked by TrackingManager 338 G4bool fShortLivedFlag = false; 339 340 // Is an indicator that this particle is stable. It must 341 // not decay. If the user tries to assign a kind of decay 342 // object to it, it will refuse to take it. 343 G4bool thePDGStable = false; 344 345 // Is related to the decay width of the particle. The mean 346 // life time is given in seconds. 347 G4double thePDGLifeTime = 0.0; 348 349 // Points DecayTable 350 G4DecayTable* theDecayTable = nullptr; 351 352 G4ParticleTable* theParticleTable = nullptr; 353 354 G4int theAtomicNumber = 0; 355 G4int theAtomicMass = 0; 356 357 G4int verboseLevel = 1; 358 G4bool fApplyCutsFlag = false; 359 }; 360 361 #include "G4ParticleDefinition.icc" 362 363 #endif 364