Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // G4MicroElecSurface.hh, 28 // 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 29 // Q. Gibaru is with CEA [a], ONERA [b] and CNES [c] 30 // D. Lambert is with CEA [a] 31 // 32 // A part of this work has been funded by the French space agency(CNES[c]) 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France 36 // 37 // Based on the following publications 38 // 39 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 40 // Geant4 physics processes for microdosimetry and secondary electron emission simulation : 41 // Extension of MicroElec to very low energies and new materials 42 // NIM B, 2020, in review. 43 // 44 // Based on: 45 // -the class G4OpBoundaryProcess.cc for the surface crossing of 46 // optical photons. 47 // 48 // 49 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 50 51 #ifndef G4MicroElecSurface_h 52 #define G4MicroElecSurface_h 1 53 54 ///////////// 55 // Includes 56 ///////////// 57 58 #include "globals.hh" 59 #include "templates.hh" 60 #include "geomdefs.hh" 61 #include "Randomize.hh" 62 #include "G4ProductionCutsTable.hh" 63 #include "G4RandomTools.hh" 64 #include "G4RandomDirection.hh" 65 #include "G4MicroElecMaterialStructure.hh" 66 #include "G4Step.hh" 67 #include "G4VDiscreteProcess.hh" 68 #include "G4DynamicParticle.hh" 69 #include "G4Material.hh" 70 #include "G4LogicalBorderSurface.hh" 71 #include "G4LogicalSkinSurface.hh" 72 #include "G4OpticalPhoton.hh" 73 #include "G4Electron.hh" 74 #include "G4TransportationManager.hh" 75 76 // Class Description: 77 // Discrete Process -- reflection/refraction at interfaces for electrons. 78 // Class inherits publicly from G4VDiscreteProcess. 79 // Class Description - End: 80 81 ///////////////////// 82 // Class Definition 83 ///////////////////// 84 85 enum G4MicroElecSurfaceStatus { UndefinedSurf, 86 NotAtBoundarySurf, 87 SameMaterialSurf, 88 StepTooSmallSurf }; 89 90 class G4MicroElecSurface : public G4VDiscreteProcess 91 { 92 public: 93 explicit G4MicroElecSurface(const G4String& processName = "MicroElecSurface", 94 G4ProcessType type = fElectromagnetic); 95 96 ~G4MicroElecSurface() override; 97 98 G4bool IsApplicable(const G4ParticleDefinition& aParticleType) override; 99 // Returns true -> 'is applicable' only for an electron. 100 101 void SetFlagFranchissement(); 102 103 G4double GetMeanFreePath(const G4Track& , 104 G4double , 105 G4ForceCondition* condition) override; 106 // Returns infinity; i. e. the process does not limit the step, 107 // but sets the 'Forced' condition for the DoIt to be invoked at 108 // every step. However, only at a boundary will any action be 109 // taken. 110 111 G4VParticleChange* PostStepDoIt(const G4Track& aTrack, 112 const G4Step& aStep) override; 113 // This is the method implementing boundary processes. 114 115 void BuildPhysicsTable(const G4ParticleDefinition&) override; 116 // Initialisation 117 118 G4MicroElecSurfaceStatus GetStatus() const; 119 // Returns the current status. 120 121 G4MicroElecSurface(const G4MicroElecSurface &right) = delete; 122 G4MicroElecSurface& operator=(const G4MicroElecSurface &right) = delete; 123 124 void Initialise(); 125 126 private: 127 // Returns the incident angle of electron 128 G4double GetIncidentAngle(); 129 G4ThreeVector Reflexion(const G4StepPoint* PostStepPoint); 130 131 // private elements 132 typedef std::map<G4String, G4double, std::less<G4String> > WorkFunctionTable; 133 WorkFunctionTable tableWF; //Table of all materials simulated 134 135 G4double theParticleMomentum; 136 G4ThreeVector oldMomentum, previousMomentum; 137 G4ThreeVector theGlobalNormal; 138 G4ThreeVector theFacetNormal; 139 const G4Material* material1; 140 const G4Material* material2; 141 G4MicroElecSurfaceStatus theStatus; 142 143 G4double kCarTolerance; 144 G4double ekint, thetat, thetaft, energyThreshold, crossingProbability; 145 G4bool flag_franchissement_surface, flag_reflexion,flag_normal, teleportToDo, teleportDone, isInitialised; 146 147 }; 148 149 #endif 150