Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // 27 // G4MicroElecMaterialStructure.hh, 2011/08/29 A.Valentin, M. Raine are with CEA [a] 28 // 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b] 29 // Q. Gibaru is with CEA [a], ONERA [b] and CNES [c] 30 // M. Raine and D. Lambert are with CEA [a] 31 // 32 // A part of this work has been funded by the French space agency(CNES[c]) 33 // [a] CEA, DAM, DIF - 91297 ARPAJON, France 34 // [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France 35 // [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France 36 // 37 // Based on the following publications 38 // - A.Valentin, M. Raine, 39 // Inelastic cross-sections of low energy electrons in silicon 40 // for the simulation of heavy ion tracks with the Geant4-DNA toolkit, 41 // NSS Conf. Record 2010, pp. 80-85 42 // https://doi.org/10.1109/NSSMIC.2010.5873720 43 // 44 // - A.Valentin, M. Raine, M.Gaillardin, P.Paillet 45 // Geant4 physics processes for microdosimetry simulation: 46 // very low energy electromagnetic models for electrons in Silicon, 47 // https://doi.org/10.1016/j.nimb.2012.06.007 48 // NIM B, vol. 288, pp. 66-73, 2012, part A 49 // heavy ions in Si, NIM B, vol. 287, pp. 124-129, 2012, part B 50 // https://doi.org/10.1016/j.nimb.2012.07.028 51 // 52 // - M. Raine, M. Gaillardin, P. Paillet 53 // Geant4 physics processes for silicon microdosimetry simulation: 54 // Improvements and extension of the energy-range validity up to 10 GeV/nucleon 55 // NIM B, vol. 325, pp. 97-100, 2014 56 // https://doi.org/10.1016/j.nimb.2014.01.014 57 // 58 // - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine 59 // Electron emission yield for low energy electrons: 60 // Monte Carlo simulation and experimental comparison for Al, Ag, and Si 61 // Journal of Applied Physics 121 (2017) 215107. 62 // https://doi.org/10.1063/1.4984761 63 // 64 // - P. Caron, 65 // Study of Electron-Induced Single-Event Upset in Integrated Memory Devices 66 // PHD, 16th October 2019 67 // 68 // - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech, 69 // Geant4 physics processes for microdosimetry and secondary electron emission simulation : 70 // Extension of MicroElec to very low energies and new materials 71 // NIM B, 2020, in review. 72 // 73 // 74 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 75 76 #ifndef G4MICROELECMATERIALSTRUCTURE_HH 77 #define G4MICROELECMATERIALSTRUCTURE_HH 1 78 79 #include "globals.hh" 80 #include "G4Material.hh" 81 #include <vector> 82 83 class G4MicroElecMaterialStructure 84 { 85 public: 86 G4MicroElecMaterialStructure(const G4String& matName = ""); 87 virtual ~G4MicroElecMaterialStructure() = default; 88 89 void ReadMaterialFile(); 90 G4double Energy(G4int level); 91 G4int NumberOfLevels() { return nLevels; } 92 G4double GetZ(G4int Shell); 93 G4double ConvertUnit(const G4String& unitName); 94 G4double GetEnergyGap() { return energyGap; } 95 G4double GetInitialEnergy() { return initialEnergy; } 96 G4int GetEADL_Enumerator(G4int shell) { return EADL_Enumerator[shell]; }; 97 G4double GetWorkFunction() { return workFunction; }; 98 G4String GetMaterialName() { return materialName; }; 99 G4double GetLimitEnergy(G4int level); 100 G4double GetElasticModelLowLimit() {return flimitElastic[0];} 101 G4double GetElasticModelHighLimit() { return flimitElastic[1]; } 102 G4double GetInelasticModelLowLimit(G4int pdg); 103 G4double GetInelasticModelHighLimit(G4int pdg); 104 G4bool IsShellWeaklyBound(G4int level); 105 106 private: 107 // private elements 108 G4int nLevels = 3; // Number of levels of material 109 G4bool isCompound = false; 110 G4String materialName = ""; 111 std::vector<G4bool> isShellWeaklyBoundVector; 112 std::vector<G4double> energyConstant; 113 std::vector<G4double> LimitEnergy; 114 std::vector<G4int> EADL_Enumerator; 115 G4double workFunction = 0.0; 116 G4double initialEnergy = 0.0; 117 std::vector<G4double> compoundShellZ; 118 G4double Z = 0.0; 119 G4double energyGap = 0.0; 120 G4double flimitElastic[2] = { 0,0 }; 121 G4double flimitInelastic[4] = { 0,0,0,0 }; 122 }; 123 124 #endif 125