Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/specific/src/G4TessellatedSolid.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration and of QinetiQ Ltd,   *
 20 // * subject to DEFCON 705 IPR conditions.                            *
 21 // * By using,  copying,  modifying or  distributing the software (or *
 22 // * any work based  on the software)  you  agree  to acknowledge its *
 23 // * use  in  resulting  scientific  publications,  and indicate your *
 24 // * acceptance of all terms of the Geant4 Software license.          *
 25 // ********************************************************************
 26 //
 27 // G4TessellatedSolid implementation
 28 //
 29 // 31.10.2004, P R Truscott, QinetiQ Ltd, UK - Created.
 30 // 17.09.2007, P R Truscott, QinetiQ Ltd & Richard Holmberg
 31 //                    Updated extensively prior to this date to deal with
 32 //                    concaved tessellated surfaces, based on the algorithm
 33 //                    of Richard Holmberg.  This had been slightly modified
 34 //                    to determine with inside the geometry by projecting
 35 //                    random rays from the point provided.  Now random rays
 36 //                    are predefined rather than making use of random
 37 //                    number generator at run-time.
 38 // 12.10.2012, M Gayer, CERN, complete rewrite reducing memory
 39 //                    requirements more than 50% and speedup by a factor of
 40 //                    tens or more depending on the number of facets, thanks
 41 //                    to voxelization of surface and improvements.
 42 //                    Speedup factor of thousands for solids with number of
 43 //                    facets in hundreds of thousands.
 44 // 23.10.2016, E Tcherniaev, reimplemented CalculateExtent() to make
 45 //                    use of G4BoundingEnvelope.
 46 // --------------------------------------------------------------------
 47 
 48 #include "G4TessellatedSolid.hh"
 49 
 50 #if !defined(G4GEOM_USE_UTESSELLATEDSOLID)
 51 
 52 #include <algorithm>
 53 #include <fstream>
 54 #include <iomanip>
 55 #include <iostream>
 56 #include <list>
 57 #include <random>
 58 #include <stack>
 59 
 60 #include "geomdefs.hh"
 61 #include "Randomize.hh"
 62 #include "G4SystemOfUnits.hh"
 63 #include "G4PhysicalConstants.hh"
 64 #include "G4GeometryTolerance.hh"
 65 #include "G4VoxelLimits.hh"
 66 #include "G4AffineTransform.hh"
 67 #include "G4BoundingEnvelope.hh"
 68 
 69 #include "G4VGraphicsScene.hh"
 70 #include "G4VisExtent.hh"
 71 
 72 #include "G4AutoLock.hh"
 73 
 74 namespace
 75 {
 76   G4Mutex polyhedronMutex = G4MUTEX_INITIALIZER;
 77 }
 78 
 79 using namespace std;
 80 
 81 ///////////////////////////////////////////////////////////////////////////////
 82 //
 83 // Standard contructor has blank name and defines no fFacets.
 84 //
 85 G4TessellatedSolid::G4TessellatedSolid () : G4VSolid("dummy")
 86 {
 87   Initialize();
 88 }
 89 
 90 ///////////////////////////////////////////////////////////////////////////////
 91 //
 92 // Alternative constructor. Simple define name and geometry type - no fFacets
 93 // to detine.
 94 //
 95 G4TessellatedSolid::G4TessellatedSolid (const G4String& name)
 96   : G4VSolid(name)
 97 {
 98   Initialize();
 99 }
100 
101 ///////////////////////////////////////////////////////////////////////////////
102 //
103 // Fake default constructor - sets only member data and allocates memory
104 //                            for usage restricted to object persistency.
105 //
106 G4TessellatedSolid::G4TessellatedSolid( __void__& a) : G4VSolid(a)
107 {
108   Initialize();
109   fMinExtent.set(0,0,0);
110   fMaxExtent.set(0,0,0);
111 }
112 
113 
114 ///////////////////////////////////////////////////////////////////////////////
115 G4TessellatedSolid::~G4TessellatedSolid()
116 {
117   DeleteObjects();
118 }
119 
120 ///////////////////////////////////////////////////////////////////////////////
121 //
122 // Copy constructor.
123 //
124 G4TessellatedSolid::G4TessellatedSolid (const G4TessellatedSolid& ts)
125   : G4VSolid(ts)
126 {
127   Initialize();
128 
129   CopyObjects(ts);
130 }
131 
132 ///////////////////////////////////////////////////////////////////////////////
133 //
134 // Assignment operator.
135 //
136 G4TessellatedSolid&
137 G4TessellatedSolid::operator= (const G4TessellatedSolid &ts)
138 {
139   if (&ts == this) return *this;
140 
141   // Copy base class data
142   G4VSolid::operator=(ts);
143 
144   DeleteObjects ();
145 
146   Initialize();
147 
148   CopyObjects (ts);
149 
150   return *this;
151 }
152 
153 ///////////////////////////////////////////////////////////////////////////////
154 //
155 void G4TessellatedSolid::Initialize()
156 {
157   kCarToleranceHalf = 0.5*kCarTolerance;
158 
159   fRebuildPolyhedron = false; fpPolyhedron = nullptr;
160   fCubicVolume = 0.; fSurfaceArea = 0.;
161 
162   fGeometryType = "G4TessellatedSolid";
163   fSolidClosed  = false;
164 
165   fMinExtent.set(kInfinity,kInfinity,kInfinity);
166   fMaxExtent.set(-kInfinity,-kInfinity,-kInfinity);
167 
168   SetRandomVectors();
169 }
170 
171 ///////////////////////////////////////////////////////////////////////////////
172 //
173 void G4TessellatedSolid::DeleteObjects()
174 {
175   std::size_t size = fFacets.size();
176   for (std::size_t i = 0; i < size; ++i)  { delete fFacets[i]; }
177   fFacets.clear();
178   delete fpPolyhedron; fpPolyhedron = nullptr;
179 }
180 
181 ///////////////////////////////////////////////////////////////////////////////
182 //
183 void G4TessellatedSolid::CopyObjects (const G4TessellatedSolid &ts)
184 {
185   G4ThreeVector reductionRatio;
186   G4int fmaxVoxels = fVoxels.GetMaxVoxels(reductionRatio);
187   if (fmaxVoxels < 0)
188     fVoxels.SetMaxVoxels(reductionRatio);
189   else
190     fVoxels.SetMaxVoxels(fmaxVoxels);
191 
192   G4int n = ts.GetNumberOfFacets();
193   for (G4int i = 0; i < n; ++i)
194   {
195     G4VFacet *facetClone = (ts.GetFacet(i))->GetClone();
196     AddFacet(facetClone);
197   }
198   if (ts.GetSolidClosed()) SetSolidClosed(true);
199 }
200 
201 ///////////////////////////////////////////////////////////////////////////////
202 //
203 // Add a facet to the facet list.
204 // Note that you can add, but you cannot delete.
205 //
206 G4bool G4TessellatedSolid::AddFacet (G4VFacet* aFacet)
207 {
208   // Add the facet to the vector.
209   //
210   if (fSolidClosed)
211   {
212     G4Exception("G4TessellatedSolid::AddFacet()", "GeomSolids1002",
213                 JustWarning, "Attempt to add facets when solid is closed.");
214     return false;
215   }
216   else if (aFacet->IsDefined())
217   {
218     set<G4VertexInfo,G4VertexComparator>::iterator begin
219       = fFacetList.begin(), end = fFacetList.end(), pos, it;
220     G4ThreeVector p = aFacet->GetCircumcentre();
221     G4VertexInfo value;
222     value.id = (G4int)fFacetList.size();
223     value.mag2 = p.x() + p.y() + p.z();
224 
225     G4bool found = false;
226     if (!OutsideOfExtent(p, kCarTolerance))
227     {
228       G4double kCarTolerance3 = 3 * kCarTolerance;
229       pos = fFacetList.lower_bound(value);
230 
231       it = pos;
232       while (!found && it != end)    // Loop checking, 13.08.2015, G.Cosmo
233       {
234         G4int id = (*it).id;
235         G4VFacet *facet = fFacets[id];
236         G4ThreeVector q = facet->GetCircumcentre();
237         if ((found = (facet == aFacet))) break;
238         G4double dif = q.x() + q.y() + q.z() - value.mag2;
239         if (dif > kCarTolerance3) break;
240         it++;
241       }
242 
243       if (fFacets.size() > 1)
244       {
245         it = pos;
246         while (!found && it != begin)    // Loop checking, 13.08.2015, G.Cosmo
247         {
248           --it;
249           G4int id = (*it).id;
250           G4VFacet *facet = fFacets[id];
251           G4ThreeVector q = facet->GetCircumcentre();
252           found = (facet == aFacet);
253           if (found) break;
254           G4double dif = value.mag2 - (q.x() + q.y() + q.z());
255           if (dif > kCarTolerance3) break;
256         }
257       }
258     }
259 
260     if (!found)
261     {
262       fFacets.push_back(aFacet);
263       fFacetList.insert(value);
264     }
265     return true;
266   }
267   else
268   {
269     G4Exception("G4TessellatedSolid::AddFacet()", "GeomSolids1002",
270                 JustWarning, "Attempt to add facet not properly defined.");
271     aFacet->StreamInfo(G4cout);
272     return false;
273   }
274 }
275 
276 ///////////////////////////////////////////////////////////////////////////////
277 //
278 G4int G4TessellatedSolid::SetAllUsingStack(const std::vector<G4int>& voxel,
279                                            const std::vector<G4int>& max,
280                                            G4bool status, G4SurfBits& checked)
281 {
282   vector<G4int> xyz = voxel;
283   stack<vector<G4int> > pos;
284   pos.push(xyz);
285   G4int filled = 0;
286 
287   vector<G4int> candidates;
288 
289   while (!pos.empty())    // Loop checking, 13.08.2015, G.Cosmo
290   {
291     xyz = pos.top();
292     pos.pop();
293     G4int index = fVoxels.GetVoxelsIndex(xyz);
294     if (!checked[index])
295     {
296       checked.SetBitNumber(index, true);
297 
298       if (fVoxels.IsEmpty(index))
299       {
300         ++filled;
301 
302         fInsides.SetBitNumber(index, status);
303 
304         for (auto i = 0; i <= 2; ++i)
305         {
306           if (xyz[i] < max[i] - 1)
307           {
308             xyz[i]++;
309             pos.push(xyz);
310             xyz[i]--;
311           }
312 
313           if (xyz[i] > 0)
314           {
315             xyz[i]--;
316             pos.push(xyz);
317             xyz[i]++;
318           }
319         }
320       }
321     }
322   }
323   return filled;
324 }
325 
326 ///////////////////////////////////////////////////////////////////////////////
327 //
328 void G4TessellatedSolid::PrecalculateInsides()
329 {
330   vector<G4int> voxel(3), maxVoxels(3);
331   for (auto i = 0; i <= 2; ++i)
332     maxVoxels[i] = (G4int)fVoxels.GetBoundary(i).size();
333   G4int size = maxVoxels[0] * maxVoxels[1] * maxVoxels[2];
334 
335   G4SurfBits checked(size-1);
336   fInsides.Clear();
337   fInsides.ResetBitNumber(size-1);
338 
339   G4ThreeVector point;
340   for (voxel[2] = 0; voxel[2] < maxVoxels[2] - 1; ++voxel[2])
341   {
342     for (voxel[1] = 0; voxel[1] < maxVoxels[1] - 1; ++voxel[1])
343     {
344       for (voxel[0] = 0; voxel[0] < maxVoxels[0] - 1; ++voxel[0])
345       {
346         G4int index = fVoxels.GetVoxelsIndex(voxel);
347         if (!checked[index] && fVoxels.IsEmpty(index))
348         {
349           for (auto i = 0; i <= 2; ++i)
350           {
351             point[i] = fVoxels.GetBoundary(i)[voxel[i]];
352           }
353           auto inside = (G4bool) (InsideNoVoxels(point) == kInside);
354           SetAllUsingStack(voxel, maxVoxels, inside, checked);
355         }
356         else checked.SetBitNumber(index);
357       }
358     }
359   }
360 }
361 
362 ///////////////////////////////////////////////////////////////////////////////
363 //
364 void G4TessellatedSolid::Voxelize ()
365 {
366 #ifdef G4SPECSDEBUG
367   G4cout << "Voxelizing..." << G4endl;
368 #endif
369   fVoxels.Voxelize(fFacets);
370 
371   if (fVoxels.Empty().GetNbits() != 0u)
372   {
373 #ifdef G4SPECSDEBUG
374     G4cout << "Precalculating Insides..." << G4endl;
375 #endif
376     PrecalculateInsides();
377   }
378 }
379 
380 ///////////////////////////////////////////////////////////////////////////////
381 //
382 // Compute extremeFacets, i.e. find those facets that have surface
383 // planes that bound the volume.
384 // Note that this is going to reject concaved surfaces as being extreme. Also
385 // note that if the vertex is on the facet, displacement is zero, so IsInside
386 // returns true. So will this work??  Need non-equality
387 // "G4bool inside = displacement < 0.0;"
388 // or
389 // "G4bool inside = displacement <= -0.5*kCarTolerance"
390 // (Notes from PT 13/08/2007).
391 //
392 void G4TessellatedSolid::SetExtremeFacets()
393 {
394   // Copy vertices to local array
395   std::size_t vsize = fVertexList.size();
396   std::vector<G4ThreeVector> vertices(vsize);
397   for (std::size_t i = 0; i < vsize; ++i) { vertices[i] = fVertexList[i]; }
398 
399   // Shuffle vertices
400   std::mt19937 gen(12345678);
401   std::shuffle(vertices.begin(), vertices.end(), gen);
402 
403   // Select six extreme vertices in different directions
404   G4ThreeVector points[6];
405   for (auto & point : points) { point = vertices[0]; }
406   for (std::size_t i=1; i < vsize; ++i)
407   {
408     if (vertices[i].x() < points[0].x()) points[0] = vertices[i];
409     if (vertices[i].x() > points[1].x()) points[1] = vertices[i];
410     if (vertices[i].y() < points[2].y()) points[2] = vertices[i];
411     if (vertices[i].y() > points[3].y()) points[3] = vertices[i];
412     if (vertices[i].z() < points[4].z()) points[4] = vertices[i];
413     if (vertices[i].z() > points[5].z()) points[5] = vertices[i];
414   }
415 
416   // Find extreme facets
417   std::size_t size = fFacets.size();
418   for (std::size_t j = 0; j < size; ++j)
419   {
420     G4VFacet &facet = *fFacets[j];
421 
422     // Check extreme vertices
423     if (!facet.IsInside(points[0])) continue;
424     if (!facet.IsInside(points[1])) continue;
425     if (!facet.IsInside(points[2])) continue;
426     if (!facet.IsInside(points[3])) continue;
427     if (!facet.IsInside(points[4])) continue;
428     if (!facet.IsInside(points[5])) continue;
429 
430     // Check vertices
431     G4bool isExtreme = true;
432     for (std::size_t i=0; i < vsize; ++i)
433     {
434       if (!facet.IsInside(vertices[i]))
435       {
436         isExtreme = false;
437         break;
438       }
439     }
440     if (isExtreme) fExtremeFacets.insert(&facet);
441   }
442 }
443 
444 ///////////////////////////////////////////////////////////////////////////////
445 //
446 void G4TessellatedSolid::CreateVertexList()
447 {
448   // The algorithm:
449   // we will have additional vertexListSorted, where all the items will be
450   // sorted by magnitude of vertice vector.
451   // New candidate for fVertexList - we will determine the position fo first
452   // item which would be within its magnitude - 0.5*kCarTolerance.
453   // We will go trough until we will reach > +0.5 kCarTolerance.
454   // Comparison (q-p).mag() < 0.5*kCarTolerance will be made.
455   // They can be just stored in std::vector, with custom insertion based
456   // on binary search.
457 
458   set<G4VertexInfo,G4VertexComparator> vertexListSorted;
459   set<G4VertexInfo,G4VertexComparator>::iterator begin
460      = vertexListSorted.begin(), end = vertexListSorted.end(), pos, it;
461   G4ThreeVector p;
462   G4VertexInfo value;
463 
464   fVertexList.clear();
465   std::size_t size = fFacets.size();
466 
467   G4double kCarTolerance24 = kCarTolerance * kCarTolerance / 4.0;
468   G4double kCarTolerance3 = 3 * kCarTolerance;
469   vector<G4int> newIndex(100);
470 
471   for (std::size_t k = 0; k < size; ++k)
472   {
473     G4VFacet &facet = *fFacets[k];
474     G4int max = facet.GetNumberOfVertices();
475 
476     for (G4int i = 0; i < max; ++i)
477     {
478       p = facet.GetVertex(i);
479       value.id = (G4int)fVertexList.size();
480       value.mag2 = p.x() + p.y() + p.z();
481 
482       G4bool found = false;
483       G4int id = 0;
484       if (!OutsideOfExtent(p, kCarTolerance))
485       {
486         pos = vertexListSorted.lower_bound(value);
487         it = pos;
488         while (it != end)    // Loop checking, 13.08.2015, G.Cosmo
489         {
490           id = (*it).id;
491           G4ThreeVector q = fVertexList[id];
492           G4double dif = (q-p).mag2();
493           found = (dif < kCarTolerance24);
494           if (found) break;
495           dif = q.x() + q.y() + q.z() - value.mag2;
496           if (dif > kCarTolerance3) break;
497           ++it;
498         }
499 
500         if (!found && (fVertexList.size() > 1))
501         {
502           it = pos;
503           while (it != begin)    // Loop checking, 13.08.2015, G.Cosmo
504           {
505             --it;
506             id = (*it).id;
507             G4ThreeVector q = fVertexList[id];
508             G4double dif = (q-p).mag2();
509             found = (dif < kCarTolerance24);
510             if (found) break;
511             dif = value.mag2 - (q.x() + q.y() + q.z());
512             if (dif > kCarTolerance3) break;
513           }
514         }
515       }
516 
517       if (!found)
518       {
519 #ifdef G4SPECSDEBUG
520         G4cout << p.x() << ":" << p.y() << ":" << p.z() << G4endl;
521         G4cout << "Adding new vertex #" << i << " of facet " << k
522                << " id " << value.id << G4endl;
523         G4cout << "===" << G4endl;
524 #endif
525         fVertexList.push_back(p);
526         vertexListSorted.insert(value);
527         begin = vertexListSorted.begin();
528         end = vertexListSorted.end();
529         newIndex[i] = value.id;
530         //
531         // Now update the maximum x, y and z limits of the volume.
532         //
533         if (value.id == 0) fMinExtent = fMaxExtent = p;
534         else
535         {
536           if (p.x() > fMaxExtent.x()) fMaxExtent.setX(p.x());
537           else if (p.x() < fMinExtent.x()) fMinExtent.setX(p.x());
538           if (p.y() > fMaxExtent.y()) fMaxExtent.setY(p.y());
539           else if (p.y() < fMinExtent.y()) fMinExtent.setY(p.y());
540           if (p.z() > fMaxExtent.z()) fMaxExtent.setZ(p.z());
541           else if (p.z() < fMinExtent.z()) fMinExtent.setZ(p.z());
542         }
543       }
544       else
545       {
546 #ifdef G4SPECSDEBUG
547         G4cout << p.x() << ":" << p.y() << ":" << p.z() << G4endl;
548         G4cout << "Vertex #" << i << " of facet " << k
549                << " found, redirecting to " << id << G4endl;
550         G4cout << "===" << G4endl;
551 #endif
552         newIndex[i] = id;
553       }
554     }
555     // only now it is possible to change vertices pointer
556     //
557     facet.SetVertices(&fVertexList);
558     for (G4int i = 0; i < max; ++i)
559       facet.SetVertexIndex(i,newIndex[i]);
560   }
561   vector<G4ThreeVector>(fVertexList).swap(fVertexList);
562 
563 #ifdef G4SPECSDEBUG
564   G4double previousValue = 0.;
565   for (auto res=vertexListSorted.cbegin(); res!=vertexListSorted.cend(); ++res)
566   {
567     G4int id = (*res).id;
568     G4ThreeVector vec = fVertexList[id];
569     G4double mvalue = vec.x() + vec.y() + vec.z();
570     if (previousValue && (previousValue - 1e-9 > mvalue))
571       G4cout << "Error in CreateVertexList: previousValue " << previousValue
572              <<  " is smaller than mvalue " << mvalue << G4endl;
573     previousValue = mvalue;
574   }
575 #endif
576 }
577 
578 ///////////////////////////////////////////////////////////////////////////////
579 //
580 void G4TessellatedSolid::DisplayAllocatedMemory()
581 {
582   G4int without = AllocatedMemoryWithoutVoxels();
583   G4int with = AllocatedMemory();
584   G4double ratio = (G4double) with / without;
585   G4cout << "G4TessellatedSolid - Allocated memory without voxel overhead "
586          << without << "; with " << with << "; ratio: " << ratio << G4endl;
587 }
588 
589 ///////////////////////////////////////////////////////////////////////////////
590 //
591 void G4TessellatedSolid::SetSolidClosed (const G4bool t)
592 {
593   if (t)
594   {
595 #ifdef G4SPECSDEBUG
596     G4cout << "Creating vertex list..." << G4endl;
597 #endif
598     CreateVertexList();
599 
600 #ifdef G4SPECSDEBUG
601     G4cout << "Setting extreme facets..." << G4endl;
602 #endif
603     SetExtremeFacets();
604 
605 #ifdef G4SPECSDEBUG
606     G4cout << "Voxelizing..." << G4endl;
607 #endif
608     Voxelize();
609 
610 #ifdef G4SPECSDEBUG
611     DisplayAllocatedMemory();
612 #endif
613 
614 #ifdef G4SPECSDEBUG
615     G4cout << "Checking Structure..." << G4endl;
616 #endif
617     G4int irep = CheckStructure();
618     if (irep != 0)
619     {
620       if ((irep & 1) != 0)
621       {
622          std::ostringstream message;
623          message << "Defects in solid: " << GetName()
624                  << " - negative cubic volume, please check orientation of facets!";
625          G4Exception("G4TessellatedSolid::SetSolidClosed()",
626                      "GeomSolids1001", JustWarning, message);
627       }
628       if ((irep & 2) != 0)
629       {
630          std::ostringstream message;
631          message << "Defects in solid: " << GetName()
632                  << " - some facets have wrong orientation!";
633          G4Exception("G4TessellatedSolid::SetSolidClosed()",
634                      "GeomSolids1001", JustWarning, message);
635       }
636       if ((irep & 4) != 0)
637       {
638          std::ostringstream message;
639          message << "Defects in solid: " << GetName()
640                  << " - there are holes in the surface!";
641          G4Exception("G4TessellatedSolid::SetSolidClosed()",
642                      "GeomSolids1001", JustWarning, message);
643       }
644     }
645   }
646   fSolidClosed = t;
647 }
648 
649 ///////////////////////////////////////////////////////////////////////////////
650 //
651 // GetSolidClosed
652 //
653 // Used to determine whether the solid is closed to adding further fFacets.
654 //
655 G4bool G4TessellatedSolid::GetSolidClosed () const
656 {
657   return fSolidClosed;
658 }
659 
660 ///////////////////////////////////////////////////////////////////////////////
661 //
662 // CheckStructure
663 //
664 // Checks structure of the solid. Return value is a sum of the following
665 // defect indicators, if any (0 means no defects):
666 //   1 - cubic volume is negative, wrong orientation of facets
667 //   2 - some facets have wrong orientation
668 //   4 - holes in the surface
669 //
670 G4int G4TessellatedSolid::CheckStructure() const
671 {
672   G4int nedge = 0;
673   std::size_t nface = fFacets.size();
674 
675   // Calculate volume
676   //
677   G4double volume = 0.;
678   for (std::size_t i = 0; i < nface; ++i)
679   {
680     G4VFacet& facet = *fFacets[i];
681     nedge += facet.GetNumberOfVertices();
682     volume += facet.GetArea()*(facet.GetVertex(0).dot(facet.GetSurfaceNormal()));
683   }
684   auto  ivolume = static_cast<G4int>(volume <= 0.);
685 
686   // Create sorted vector of edges
687   //
688   std::vector<int64_t> iedge(nedge);
689   G4int kk = 0;
690   for (std::size_t i = 0; i < nface; ++i)
691   {
692     G4VFacet& facet = *fFacets[i];
693     G4int nnode = facet.GetNumberOfVertices();
694     for (G4int k = 0; k < nnode; ++k)
695     {
696       int64_t i1 = facet.GetVertexIndex((k == 0) ? nnode - 1 : k - 1);
697       int64_t i2 = facet.GetVertexIndex(k);
698       auto  inverse = static_cast<int64_t>(i2 > i1);
699       if (inverse != 0) std::swap(i1, i2);
700       iedge[kk++] = i1*1000000000 + i2*2 + inverse;
701     }
702   }
703   std::sort(iedge.begin(), iedge.end());
704 
705   // Check edges, correct structure should consist of paired edges
706   // with different orientation
707   //
708   G4int iorder = 0;
709   G4int ihole = 0;
710   G4int i = 0;
711   while (i < nedge - 1)
712   {
713     if (iedge[i + 1] - iedge[i] == 1) // paired edges with different orientation
714     {
715       i += 2;
716     }
717     else if (iedge[i + 1] == iedge[i]) // paired edges with the same orientation
718     {
719       iorder = 2;
720       i += 2;
721     }
722     else // unpaired edge
723     {
724       ihole = 4;
725       i++;
726     }
727   }
728   return ivolume + iorder + ihole;
729 }
730 
731 ///////////////////////////////////////////////////////////////////////////////
732 //
733 // operator+=
734 //
735 // This operator allows the user to add two tessellated solids together, so
736 // that the solid on the left then includes all of the facets in the solid
737 // on the right.  Note that copies of the facets are generated, rather than
738 // using the original facet set of the solid on the right.
739 //
740 G4TessellatedSolid&
741 G4TessellatedSolid::operator+=(const G4TessellatedSolid& right)
742 {
743   G4int size = right.GetNumberOfFacets();
744   for (G4int i = 0; i < size; ++i)
745     AddFacet(right.GetFacet(i)->GetClone());
746 
747   return *this;
748 }
749 
750 ///////////////////////////////////////////////////////////////////////////////
751 //
752 // GetNumberOfFacets
753 //
754 G4int G4TessellatedSolid::GetNumberOfFacets() const
755 {
756   return (G4int)fFacets.size();
757 }
758 
759 ///////////////////////////////////////////////////////////////////////////////
760 //
761 EInside G4TessellatedSolid::InsideVoxels(const G4ThreeVector& p) const
762 {
763   //
764   // First the simple test - check if we're outside of the X-Y-Z extremes
765   // of the tessellated solid.
766   //
767   if (OutsideOfExtent(p, kCarTolerance))
768     return kOutside;
769 
770   vector<G4int> startingVoxel(3);
771   fVoxels.GetVoxel(startingVoxel, p);
772 
773   const G4double dirTolerance = 1.0E-14;
774 
775   const vector<G4int> &startingCandidates =
776     fVoxels.GetCandidates(startingVoxel);
777   std::size_t limit = startingCandidates.size();
778   if (limit == 0 && (fInsides.GetNbits() != 0u))
779   {
780     G4int index = fVoxels.GetPointIndex(p);
781     EInside location = fInsides[index] ? kInside : kOutside;
782     return location;
783   }
784 
785   G4double minDist = kInfinity;
786 
787   for(std::size_t i = 0; i < limit; ++i)
788   {
789     G4int candidate = startingCandidates[i];
790     G4VFacet &facet = *fFacets[candidate];
791     G4double dist = facet.Distance(p,minDist);
792     if (dist < minDist) minDist = dist;
793     if (dist <= kCarToleranceHalf)
794       return kSurface;
795   }
796 
797   // The following is something of an adaptation of the method implemented by
798   // Rickard Holmberg augmented with information from Schneider & Eberly,
799   // "Geometric Tools for Computer Graphics," pp700-701, 2003. In essence,
800   // we're trying to determine whether we're inside the volume by projecting
801   // a few rays and determining if the first surface crossed is has a normal
802   // vector between 0 to pi/2 (out-going) or pi/2 to pi (in-going).
803   // We should also avoid rays which are nearly within the plane of the
804   // tessellated surface, and therefore produce rays randomly.
805   // For the moment, this is a bit over-engineered (belt-braces-and-ducttape).
806   //
807   G4double distOut          = kInfinity;
808   G4double distIn           = kInfinity;
809   G4double distO            = 0.0;
810   G4double distI            = 0.0;
811   G4double distFromSurfaceO = 0.0;
812   G4double distFromSurfaceI = 0.0;
813   G4ThreeVector normalO, normalI;
814   G4bool crossingO          = false;
815   G4bool crossingI          = false;
816   EInside location          = kOutside;
817   G4int sm                  = 0;
818 
819   G4bool nearParallel = false;
820   do    // Loop checking, 13.08.2015, G.Cosmo
821   {
822     // We loop until we find direction where the vector is not nearly parallel
823     // to the surface of any facet since this causes ambiguities.  The usual
824     // case is that the angles should be sufficiently different, but there
825     // are 20 random directions to select from - hopefully sufficient.
826     //
827     distOut = distIn = kInfinity;
828     const G4ThreeVector& v = fRandir[sm];
829     ++sm;
830     //
831     // This code could be voxelized by the same algorithm, which is used for
832     // DistanceToOut(). We will traverse through fVoxels. we will call
833     // intersect only for those, which would be candidates and was not
834     // checked before.
835     //
836     G4ThreeVector currentPoint = p;
837     G4ThreeVector direction = v.unit();
838     // G4SurfBits exclusion(fVoxels.GetBitsPerSlice());
839     vector<G4int> curVoxel(3);
840     curVoxel = startingVoxel;
841     G4double shiftBonus = kCarTolerance;
842 
843     G4bool crossed = false;
844     G4bool started = true;
845 
846     do    // Loop checking, 13.08.2015, G.Cosmo
847     {
848       const vector<G4int> &candidates =
849         started ? startingCandidates : fVoxels.GetCandidates(curVoxel);
850       started = false;
851       if (auto candidatesCount = (G4int)candidates.size())
852       {
853         for (G4int i = 0 ; i < candidatesCount; ++i)
854         {
855           G4int candidate = candidates[i];
856           // bits.SetBitNumber(candidate);
857           G4VFacet& facet = *fFacets[candidate];
858 
859           crossingO = facet.Intersect(p,v,true,distO,distFromSurfaceO,normalO);
860           crossingI = facet.Intersect(p,v,false,distI,distFromSurfaceI,normalI);
861 
862           if (crossingO || crossingI)
863           {
864             crossed = true;
865 
866             nearParallel = (crossingO
867                      && std::fabs(normalO.dot(v))<dirTolerance)
868                      || (crossingI && std::fabs(normalI.dot(v))<dirTolerance);
869             if (!nearParallel)
870             {
871               if (crossingO && distO > 0.0 && distO < distOut)
872                 distOut = distO;
873               if (crossingI && distI > 0.0 && distI < distIn)
874                 distIn  = distI;
875             }
876             else break;
877           }
878         }
879         if (nearParallel) break;
880       }
881       else
882       {
883         if (!crossed)
884         {
885           G4int index = fVoxels.GetVoxelsIndex(curVoxel);
886           G4bool inside = fInsides[index];
887           location = inside ? kInside : kOutside;
888           return location;
889         }
890       }
891 
892       G4double shift=fVoxels.DistanceToNext(currentPoint, direction, curVoxel);
893       if (shift == kInfinity) break;
894 
895       currentPoint += direction * (shift + shiftBonus);
896     }
897     while (fVoxels.UpdateCurrentVoxel(currentPoint, direction, curVoxel));
898 
899   }
900   while (nearParallel && sm != fMaxTries);
901   //
902   // Here we loop through the facets to find out if there is an intersection
903   // between the ray and that facet.  The test if performed separately whether
904   // the ray is entering the facet or exiting.
905   //
906 #ifdef G4VERBOSE
907   if (sm == fMaxTries)
908   {
909     //
910     // We've run out of random vector directions. If nTries is set sufficiently
911     // low (nTries <= 0.5*maxTries) then this would indicate that there is
912     // something wrong with geometry.
913     //
914     std::ostringstream message;
915     G4long oldprc = message.precision(16);
916     message << "Cannot determine whether point is inside or outside volume!"
917       << G4endl
918       << "Solid name       = " << GetName()  << G4endl
919       << "Geometry Type    = " << fGeometryType  << G4endl
920       << "Number of facets = " << fFacets.size() << G4endl
921       << "Position:"  << G4endl << G4endl
922       << "p.x() = "   << p.x()/mm << " mm" << G4endl
923       << "p.y() = "   << p.y()/mm << " mm" << G4endl
924       << "p.z() = "   << p.z()/mm << " mm";
925     message.precision(oldprc);
926     G4Exception("G4TessellatedSolid::Inside()",
927                 "GeomSolids1002", JustWarning, message);
928   }
929 #endif
930 
931   // In the next if-then-elseif G4String the logic is as follows:
932   // (1) You don't hit anything so cannot be inside volume, provided volume
933   //     constructed correctly!
934   // (2) Distance to inside (ie. nearest facet such that you enter facet) is
935   //     shorter than distance to outside (nearest facet such that you exit
936   //     facet) - on condition of safety distance - therefore we're outside.
937   // (3) Distance to outside is shorter than distance to inside therefore
938   //     we're inside.
939   //
940   if (distIn == kInfinity && distOut == kInfinity)
941     location = kOutside;
942   else if (distIn <= distOut - kCarToleranceHalf)
943     location = kOutside;
944   else if (distOut <= distIn - kCarToleranceHalf)
945     location = kInside;
946 
947   return location;
948 }
949 
950 ///////////////////////////////////////////////////////////////////////////////
951 //
952 EInside G4TessellatedSolid::InsideNoVoxels (const G4ThreeVector &p) const
953 {
954   //
955   // First the simple test - check if we're outside of the X-Y-Z extremes
956   // of the tessellated solid.
957   //
958   if (OutsideOfExtent(p, kCarTolerance))
959     return kOutside;
960 
961   const G4double dirTolerance = 1.0E-14;
962 
963   G4double minDist = kInfinity;
964   //
965   // Check if we are close to a surface
966   //
967   std::size_t size = fFacets.size();
968   for (std::size_t i = 0; i < size; ++i)
969   {
970     G4VFacet& facet = *fFacets[i];
971     G4double dist = facet.Distance(p,minDist);
972     if (dist < minDist) minDist = dist;
973     if (dist <= kCarToleranceHalf)
974     {
975       return kSurface;
976     }
977   }
978   //
979   // The following is something of an adaptation of the method implemented by
980   // Rickard Holmberg augmented with information from Schneider & Eberly,
981   // "Geometric Tools for Computer Graphics," pp700-701, 2003. In essence, we're
982   // trying to determine whether we're inside the volume by projecting a few
983   // rays and determining if the first surface crossed is has a normal vector
984   // between 0 to pi/2 (out-going) or pi/2 to pi (in-going). We should also
985   // avoid rays which are nearly within the plane of the tessellated surface,
986   // and therefore produce rays randomly. For the moment, this is a bit
987   // over-engineered (belt-braces-and-ducttape).
988   //
989 #if G4SPECSDEBUG
990   G4int nTry                = 7;
991 #else
992   G4int nTry                = 3;
993 #endif
994   G4double distOut          = kInfinity;
995   G4double distIn           = kInfinity;
996   G4double distO            = 0.0;
997   G4double distI            = 0.0;
998   G4double distFromSurfaceO = 0.0;
999   G4double distFromSurfaceI = 0.0;
1000   G4ThreeVector normalO(0.0,0.0,0.0);
1001   G4ThreeVector normalI(0.0,0.0,0.0);
1002   G4bool crossingO          = false;
1003   G4bool crossingI          = false;
1004   EInside location          = kOutside;
1005   EInside locationprime     = kOutside;
1006   G4int sm = 0;
1007 
1008   for (G4int i=0; i<nTry; ++i)
1009   {
1010     G4bool nearParallel = false;
1011     do    // Loop checking, 13.08.2015, G.Cosmo
1012     {
1013       //
1014       // We loop until we find direction where the vector is not nearly parallel
1015       // to the surface of any facet since this causes ambiguities.  The usual
1016       // case is that the angles should be sufficiently different, but there
1017       // are 20 random directions to select from - hopefully sufficient.
1018       //
1019       distOut = distIn = kInfinity;
1020       G4ThreeVector v = fRandir[sm];
1021       sm++;
1022       auto f = fFacets.cbegin();
1023 
1024       do    // Loop checking, 13.08.2015, G.Cosmo
1025       {
1026         //
1027         // Here we loop through the facets to find out if there is an
1028         // intersection between the ray and that facet. The test if performed
1029         // separately whether the ray is entering the facet or exiting.
1030         //
1031         crossingO = ((*f)->Intersect(p,v,true,distO,distFromSurfaceO,normalO));
1032         crossingI = ((*f)->Intersect(p,v,false,distI,distFromSurfaceI,normalI));
1033         if (crossingO || crossingI)
1034         {
1035           nearParallel = (crossingO && std::fabs(normalO.dot(v))<dirTolerance)
1036                       || (crossingI && std::fabs(normalI.dot(v))<dirTolerance);
1037           if (!nearParallel)
1038           {
1039             if (crossingO && distO > 0.0 && distO < distOut) distOut = distO;
1040             if (crossingI && distI > 0.0 && distI < distIn)  distIn  = distI;
1041           }
1042         }
1043       } while (!nearParallel && ++f != fFacets.cend());
1044     } while (nearParallel && sm != fMaxTries);
1045 
1046 #ifdef G4VERBOSE
1047     if (sm == fMaxTries)
1048     {
1049       //
1050       // We've run out of random vector directions. If nTries is set
1051       // sufficiently low (nTries <= 0.5*maxTries) then this would indicate
1052       // that there is something wrong with geometry.
1053       //
1054       std::ostringstream message;
1055       G4long oldprc = message.precision(16);
1056       message << "Cannot determine whether point is inside or outside volume!"
1057         << G4endl
1058         << "Solid name       = " << GetName()  << G4endl
1059         << "Geometry Type    = " << fGeometryType  << G4endl
1060         << "Number of facets = " << fFacets.size() << G4endl
1061         << "Position:"  << G4endl << G4endl
1062         << "p.x() = "   << p.x()/mm << " mm" << G4endl
1063         << "p.y() = "   << p.y()/mm << " mm" << G4endl
1064         << "p.z() = "   << p.z()/mm << " mm";
1065       message.precision(oldprc);
1066       G4Exception("G4TessellatedSolid::Inside()",
1067         "GeomSolids1002", JustWarning, message);
1068     }
1069 #endif
1070     //
1071     // In the next if-then-elseif G4String the logic is as follows:
1072     // (1) You don't hit anything so cannot be inside volume, provided volume
1073     //     constructed correctly!
1074     // (2) Distance to inside (ie. nearest facet such that you enter facet) is
1075     //     shorter than distance to outside (nearest facet such that you exit
1076     //     facet) - on condition of safety distance - therefore we're outside.
1077     // (3) Distance to outside is shorter than distance to inside therefore
1078     // we're inside.
1079     //
1080     if (distIn == kInfinity && distOut == kInfinity)
1081       locationprime = kOutside;
1082     else if (distIn <= distOut - kCarToleranceHalf)
1083       locationprime = kOutside;
1084     else if (distOut <= distIn - kCarToleranceHalf)
1085       locationprime = kInside;
1086 
1087     if (i == 0) location = locationprime;
1088   }
1089 
1090   return location;
1091 }
1092 
1093 ///////////////////////////////////////////////////////////////////////////////
1094 //
1095 // Return index of the facet closest to the point p, normally the point should
1096 // be located on the surface. Return -1 if no facet selected.
1097 //
1098 G4int G4TessellatedSolid::GetFacetIndex (const G4ThreeVector& p) const
1099 {
1100   G4int index = -1;
1101 
1102   if (fVoxels.GetCountOfVoxels() > 1)
1103   {
1104     vector<G4int> curVoxel(3);
1105     fVoxels.GetVoxel(curVoxel, p);
1106     const vector<G4int> &candidates = fVoxels.GetCandidates(curVoxel);
1107     if (auto limit = (G4int)candidates.size())
1108     {
1109       G4double minDist = kInfinity;
1110       for(G4int i = 0 ; i < limit ; ++i)
1111       {
1112         G4int candidate = candidates[i];
1113         G4VFacet& facet = *fFacets[candidate];
1114         G4double dist = facet.Distance(p, minDist);
1115         if (dist <= kCarToleranceHalf) return index = candidate;
1116         if (dist < minDist)
1117   {
1118     minDist = dist;
1119     index = candidate;
1120   }
1121       }
1122     }
1123   }
1124   else
1125   {
1126     G4double minDist = kInfinity;
1127     std::size_t size = fFacets.size();
1128     for (std::size_t i = 0; i < size; ++i)
1129     {
1130       G4VFacet& facet = *fFacets[i];
1131       G4double dist = facet.Distance(p, minDist);
1132       if (dist < minDist)
1133       {
1134         minDist  = dist;
1135         index = (G4int)i;
1136       }
1137     }
1138   }
1139   return index;
1140 }
1141 
1142 ///////////////////////////////////////////////////////////////////////////////
1143 //
1144 // Return the outwards pointing unit normal of the shape for the
1145 // surface closest to the point at offset p.
1146 //
1147 G4bool G4TessellatedSolid::Normal (const G4ThreeVector& p,
1148                                          G4ThreeVector& aNormal) const
1149 {
1150   G4double minDist;
1151   G4VFacet* facet = nullptr;
1152 
1153   if (fVoxels.GetCountOfVoxels() > 1)
1154   {
1155     vector<G4int> curVoxel(3);
1156     fVoxels.GetVoxel(curVoxel, p);
1157     const vector<G4int> &candidates = fVoxels.GetCandidates(curVoxel);
1158     // fVoxels.GetCandidatesVoxelArray(p, candidates, 0);
1159 
1160     if (auto limit = (G4int)candidates.size())
1161     {
1162       minDist = kInfinity;
1163       for(G4int i = 0 ; i < limit ; ++i)
1164       {
1165         G4int candidate = candidates[i];
1166         G4VFacet &fct = *fFacets[candidate];
1167         G4double dist = fct.Distance(p,minDist);
1168         if (dist < minDist) minDist = dist;
1169         if (dist <= kCarToleranceHalf)
1170         {
1171           aNormal = fct.GetSurfaceNormal();
1172           return true;
1173         }
1174       }
1175     }
1176     minDist = MinDistanceFacet(p, true, facet);
1177   }
1178   else
1179   {
1180     minDist = kInfinity;
1181     std::size_t size = fFacets.size();
1182     for (std::size_t i = 0; i < size; ++i)
1183     {
1184       G4VFacet& f = *fFacets[i];
1185       G4double dist = f.Distance(p, minDist);
1186       if (dist < minDist)
1187       {
1188         minDist  = dist;
1189         facet = &f;
1190       }
1191     }
1192   }
1193 
1194   if (minDist != kInfinity)
1195   {
1196     if (facet != nullptr)  { aNormal = facet->GetSurfaceNormal(); }
1197     return minDist <= kCarToleranceHalf;
1198   }
1199   else
1200   {
1201 #ifdef G4VERBOSE
1202     std::ostringstream message;
1203     message << "Point p is not on surface !?" << G4endl
1204       << "          No facets found for point: " << p << " !" << G4endl
1205       << "          Returning approximated value for normal.";
1206 
1207     G4Exception("G4TessellatedSolid::SurfaceNormal(p)",
1208                 "GeomSolids1002", JustWarning, message );
1209 #endif
1210     aNormal = (p.z() > 0 ? G4ThreeVector(0,0,1) : G4ThreeVector(0,0,-1));
1211     return false;
1212   }
1213 }
1214 
1215 ///////////////////////////////////////////////////////////////////////////////
1216 //
1217 // G4double DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& v)
1218 //
1219 // Return the distance along the normalised vector v to the shape,
1220 // from the point at offset p. If there is no intersection, return
1221 // kInfinity. The first intersection resulting from 'leaving' a
1222 // surface/volume is discarded. Hence, this is tolerant of points on
1223 // surface of shape.
1224 //
1225 G4double
1226 G4TessellatedSolid::DistanceToInNoVoxels (const G4ThreeVector& p,
1227                                           const G4ThreeVector& v,
1228                                                 G4double /*aPstep*/) const
1229 {
1230   G4double minDist         = kInfinity;
1231   G4double dist            = 0.0;
1232   G4double distFromSurface = 0.0;
1233   G4ThreeVector normal;
1234 
1235 #if G4SPECSDEBUG
1236   if (Inside(p) == kInside )
1237   {
1238     std::ostringstream message;
1239     G4int oldprc = message.precision(16) ;
1240     message << "Point p is already inside!?" << G4endl
1241       << "Position:"  << G4endl << G4endl
1242       << "   p.x() = "   << p.x()/mm << " mm" << G4endl
1243       << "   p.y() = "   << p.y()/mm << " mm" << G4endl
1244       << "   p.z() = "   << p.z()/mm << " mm" << G4endl
1245       << "DistanceToOut(p) == " << DistanceToOut(p);
1246     message.precision(oldprc) ;
1247     G4Exception("G4TriangularFacet::DistanceToIn(p,v)",
1248                 "GeomSolids1002", JustWarning, message);
1249   }
1250 #endif
1251 
1252   std::size_t size = fFacets.size();
1253   for (std::size_t i = 0; i < size; ++i)
1254   {
1255     G4VFacet& facet = *fFacets[i];
1256     if (facet.Intersect(p,v,false,dist,distFromSurface,normal))
1257     {
1258       //
1259       // set minDist to the new distance to current facet if distFromSurface
1260       // is in positive direction and point is not at surface. If the point is
1261       // within 0.5*kCarTolerance of the surface, then force distance to be
1262       // zero and leave member function immediately (for efficiency), as
1263       // proposed by & credit to Akira Okumura.
1264       //
1265       if (distFromSurface > kCarToleranceHalf && dist >= 0.0 && dist < minDist)
1266       {
1267         minDist  = dist;
1268       }
1269       else
1270       {
1271         if (-kCarToleranceHalf <= dist && dist <= kCarToleranceHalf)
1272         {
1273           return 0.0;
1274         }
1275         else
1276         {
1277           if  (distFromSurface > -kCarToleranceHalf
1278             && distFromSurface <  kCarToleranceHalf)
1279           {
1280             minDist = dist;
1281           }
1282         }
1283       }
1284     }
1285   }
1286   return minDist;
1287 }
1288 
1289 ///////////////////////////////////////////////////////////////////////////////
1290 //
1291 G4double
1292 G4TessellatedSolid::DistanceToOutNoVoxels (const G4ThreeVector& p,
1293                                            const G4ThreeVector& v,
1294                                                  G4ThreeVector& aNormalVector,
1295                                                  G4bool& aConvex,
1296                                                  G4double /*aPstep*/) const
1297 {
1298   G4double minDist         = kInfinity;
1299   G4double dist            = 0.0;
1300   G4double distFromSurface = 0.0;
1301   G4ThreeVector normal, minNormal;
1302 
1303 #if G4SPECSDEBUG
1304   if ( Inside(p) == kOutside )
1305   {
1306     std::ostringstream message;
1307     G4int oldprc = message.precision(16) ;
1308     message << "Point p is already outside!?" << G4endl
1309       << "Position:"  << G4endl << G4endl
1310       << "   p.x() = "   << p.x()/mm << " mm" << G4endl
1311       << "   p.y() = "   << p.y()/mm << " mm" << G4endl
1312       << "   p.z() = "   << p.z()/mm << " mm" << G4endl
1313       << "DistanceToIn(p) == " << DistanceToIn(p);
1314     message.precision(oldprc) ;
1315     G4Exception("G4TriangularFacet::DistanceToOut(p)",
1316                 "GeomSolids1002", JustWarning, message);
1317   }
1318 #endif
1319 
1320   G4bool isExtreme = false;
1321   std::size_t size = fFacets.size();
1322   for (std::size_t i = 0; i < size; ++i)
1323   {
1324     G4VFacet& facet = *fFacets[i];
1325     if (facet.Intersect(p,v,true,dist,distFromSurface,normal))
1326     {
1327       if (distFromSurface > 0.0 && distFromSurface <= kCarToleranceHalf
1328         && facet.Distance(p,kCarTolerance) <= kCarToleranceHalf)
1329       {
1330         // We are on a surface. Return zero.
1331         aConvex = (fExtremeFacets.find(&facet) != fExtremeFacets.end());
1332         // Normal(p, aNormalVector);
1333         // aNormalVector = facet.GetSurfaceNormal();
1334         aNormalVector = normal;
1335         return 0.0;
1336       }
1337       if (dist >= 0.0 && dist < minDist)
1338       {
1339         minDist   = dist;
1340         minNormal = normal;
1341         isExtreme = (fExtremeFacets.find(&facet) != fExtremeFacets.end());
1342       }
1343     }
1344   }
1345   if (minDist < kInfinity)
1346   {
1347     aNormalVector = minNormal;
1348     aConvex = isExtreme;
1349     return minDist;
1350   }
1351   else
1352   {
1353     // No intersection found
1354     aConvex = false;
1355     Normal(p, aNormalVector);
1356     return 0.0;
1357   }
1358 }
1359 
1360 ///////////////////////////////////////////////////////////////////////////////
1361 //
1362 void G4TessellatedSolid::
1363 DistanceToOutCandidates(const std::vector<G4int>& candidates,
1364                         const G4ThreeVector& aPoint,
1365                         const G4ThreeVector& direction,
1366                               G4double& minDist, G4ThreeVector& minNormal,
1367                               G4int& minCandidate ) const
1368 {
1369   auto candidatesCount = (G4int)candidates.size();
1370   G4double dist            = 0.0;
1371   G4double distFromSurface = 0.0;
1372   G4ThreeVector normal;
1373 
1374   for (G4int i = 0 ; i < candidatesCount; ++i)
1375   {
1376     G4int candidate = candidates[i];
1377     G4VFacet& facet = *fFacets[candidate];
1378     if (facet.Intersect(aPoint,direction,true,dist,distFromSurface,normal))
1379     {
1380       if (distFromSurface > 0.0 && distFromSurface <= kCarToleranceHalf
1381        && facet.Distance(aPoint,kCarTolerance) <= kCarToleranceHalf)
1382       {
1383         // We are on a surface
1384         //
1385         minDist = 0.0;
1386         minNormal = normal;
1387         minCandidate = candidate;
1388         break;
1389       }
1390       if (dist >= 0.0 && dist < minDist)
1391       {
1392         minDist = dist;
1393         minNormal = normal;
1394         minCandidate = candidate;
1395       }
1396     }
1397   }
1398 }
1399 
1400 ///////////////////////////////////////////////////////////////////////////////
1401 //
1402 G4double
1403 G4TessellatedSolid::DistanceToOutCore(const G4ThreeVector& aPoint,
1404                                       const G4ThreeVector& aDirection,
1405                                             G4ThreeVector& aNormalVector,
1406                                             G4bool &aConvex,
1407                                             G4double aPstep) const
1408 {
1409   G4double minDistance;
1410 
1411   if (fVoxels.GetCountOfVoxels() > 1)
1412   {
1413     minDistance = kInfinity;
1414 
1415     G4ThreeVector currentPoint = aPoint;
1416     G4ThreeVector direction = aDirection.unit();
1417     G4double totalShift = 0.;
1418     vector<G4int> curVoxel(3);
1419     if (!fVoxels.Contains(aPoint)) return 0.;
1420 
1421     fVoxels.GetVoxel(curVoxel, currentPoint);
1422 
1423     G4double shiftBonus = kCarTolerance;
1424 
1425     const vector<G4int>* old = nullptr;
1426 
1427     G4int minCandidate = -1;
1428     do    // Loop checking, 13.08.2015, G.Cosmo
1429     {
1430       const vector<G4int>& candidates = fVoxels.GetCandidates(curVoxel);
1431       if (old == &candidates)
1432         ++old;
1433       if (old != &candidates && !candidates.empty())
1434       {
1435         DistanceToOutCandidates(candidates, aPoint, direction, minDistance,
1436                                 aNormalVector, minCandidate);
1437         if (minDistance <= totalShift) break;
1438       }
1439 
1440       G4double shift=fVoxels.DistanceToNext(currentPoint, direction, curVoxel);
1441       if (shift == kInfinity) break;
1442 
1443       totalShift += shift;
1444       if (minDistance <= totalShift) break;
1445 
1446       currentPoint += direction * (shift + shiftBonus);
1447 
1448       old = &candidates;
1449     }
1450     while (fVoxels.UpdateCurrentVoxel(currentPoint, direction, curVoxel));
1451 
1452     if (minCandidate < 0)
1453     {
1454       // No intersection found
1455       minDistance = 0.;
1456       aConvex = false;
1457       Normal(aPoint, aNormalVector);
1458     }
1459     else
1460     {
1461       aConvex = (fExtremeFacets.find(fFacets[minCandidate])
1462               != fExtremeFacets.end());
1463     }
1464   }
1465   else
1466   {
1467     minDistance = DistanceToOutNoVoxels(aPoint, aDirection, aNormalVector,
1468                                         aConvex, aPstep);
1469   }
1470   return minDistance;
1471 }
1472 
1473 ///////////////////////////////////////////////////////////////////////////////
1474 //
1475 G4double G4TessellatedSolid::
1476 DistanceToInCandidates(const std::vector<G4int>& candidates,
1477                        const G4ThreeVector& aPoint,
1478                        const G4ThreeVector& direction) const
1479 {
1480   auto candidatesCount = (G4int)candidates.size();
1481   G4double dist            = 0.0;
1482   G4double distFromSurface = 0.0;
1483   G4ThreeVector normal;
1484 
1485   G4double minDistance = kInfinity;
1486   for (G4int i = 0 ; i < candidatesCount; ++i)
1487   {
1488     G4int candidate = candidates[i];
1489     G4VFacet& facet = *fFacets[candidate];
1490     if (facet.Intersect(aPoint,direction,false,dist,distFromSurface,normal))
1491     {
1492       //
1493       // Set minDist to the new distance to current facet if distFromSurface is
1494       // in positive direction and point is not at surface. If the point is
1495       // within 0.5*kCarTolerance of the surface, then force distance to be
1496       // zero and leave member function immediately (for efficiency), as
1497       // proposed by & credit to Akira Okumura.
1498       //
1499       if ( (distFromSurface > kCarToleranceHalf)
1500         && (dist >= 0.0) && (dist < minDistance))
1501       {
1502         minDistance  = dist;
1503       }
1504       else
1505       {
1506         if (-kCarToleranceHalf <= dist && dist <= kCarToleranceHalf)
1507         {
1508          return 0.0;
1509         }
1510         else if  (distFromSurface > -kCarToleranceHalf
1511                && distFromSurface <  kCarToleranceHalf)
1512         {
1513           minDistance = dist;
1514         }
1515       }
1516     }
1517   }
1518   return minDistance;
1519 }
1520 
1521 ///////////////////////////////////////////////////////////////////////////////
1522 //
1523 G4double
1524 G4TessellatedSolid::DistanceToInCore(const G4ThreeVector& aPoint,
1525                                      const G4ThreeVector& aDirection,
1526                                            G4double aPstep) const
1527 {
1528   G4double minDistance;
1529 
1530   if (fVoxels.GetCountOfVoxels() > 1)
1531   {
1532     minDistance = kInfinity;
1533     G4ThreeVector currentPoint = aPoint;
1534     G4ThreeVector direction = aDirection.unit();
1535     G4double shift = fVoxels.DistanceToFirst(currentPoint, direction);
1536     if (shift == kInfinity) return shift;
1537     G4double shiftBonus = kCarTolerance;
1538     if (shift != 0.0)
1539       currentPoint += direction * (shift + shiftBonus);
1540     // if (!fVoxels.Contains(currentPoint))  return minDistance;
1541     G4double totalShift = shift;
1542 
1543     // G4SurfBits exclusion; // (1/*fVoxels.GetBitsPerSlice()*/);
1544     vector<G4int> curVoxel(3);
1545 
1546     fVoxels.GetVoxel(curVoxel, currentPoint);
1547     do    // Loop checking, 13.08.2015, G.Cosmo
1548     {
1549       const vector<G4int>& candidates = fVoxels.GetCandidates(curVoxel);
1550       if (!candidates.empty())
1551       {
1552         G4double distance=DistanceToInCandidates(candidates, aPoint, direction);
1553         if (minDistance > distance) minDistance = distance;
1554         if (distance < totalShift) break;
1555       }
1556 
1557       shift = fVoxels.DistanceToNext(currentPoint, direction, curVoxel);
1558       if (shift == kInfinity /*|| shift == 0*/) break;
1559 
1560       totalShift += shift;
1561       if (minDistance < totalShift) break;
1562 
1563       currentPoint += direction * (shift + shiftBonus);
1564     }
1565     while (fVoxels.UpdateCurrentVoxel(currentPoint, direction, curVoxel));
1566   }
1567   else
1568   {
1569     minDistance = DistanceToInNoVoxels(aPoint, aDirection, aPstep);
1570   }
1571 
1572   return minDistance;
1573 }
1574 
1575 ///////////////////////////////////////////////////////////////////////////////
1576 //
1577 G4bool
1578 G4TessellatedSolid::CompareSortedVoxel(const std::pair<G4int, G4double>& l,
1579                                        const std::pair<G4int, G4double>& r)
1580 {
1581   return l.second < r.second;
1582 }
1583 
1584 ///////////////////////////////////////////////////////////////////////////////
1585 //
1586 G4double
1587 G4TessellatedSolid::MinDistanceFacet(const G4ThreeVector& p,
1588                                            G4bool simple,
1589                                            G4VFacet* &minFacet) const
1590 {
1591   G4double minDist = kInfinity;
1592 
1593   G4int size = fVoxels.GetVoxelBoxesSize();
1594   vector<pair<G4int, G4double> > voxelsSorted(size);
1595 
1596   pair<G4int, G4double> info;
1597 
1598   for (G4int i = 0; i < size; ++i)
1599   {
1600     const G4VoxelBox& voxelBox = fVoxels.GetVoxelBox(i);
1601 
1602     G4ThreeVector pointShifted = p - voxelBox.pos;
1603     G4double safety = fVoxels.MinDistanceToBox(pointShifted, voxelBox.hlen);
1604     info.first = i;
1605     info.second = safety;
1606     voxelsSorted[i] = info;
1607   }
1608 
1609   std::sort(voxelsSorted.begin(), voxelsSorted.end(),
1610             &G4TessellatedSolid::CompareSortedVoxel);
1611 
1612   for (G4int i = 0; i < size; ++i)
1613   {
1614     const pair<G4int,G4double>& inf = voxelsSorted[i];
1615     G4double dist = inf.second;
1616     if (dist > minDist) break;
1617 
1618     const vector<G4int>& candidates = fVoxels.GetVoxelBoxCandidates(inf.first);
1619     auto csize = (G4int)candidates.size();
1620     for (G4int j = 0; j < csize; ++j)
1621     {
1622       G4int candidate = candidates[j];
1623       G4VFacet& facet = *fFacets[candidate];
1624       dist = simple ? facet.Distance(p,minDist)
1625                     : facet.Distance(p,minDist,false);
1626       if (dist < minDist)
1627       {
1628         minDist  = dist;
1629         minFacet = &facet;
1630       }
1631     }
1632   }
1633   return minDist;
1634 }
1635 
1636 ///////////////////////////////////////////////////////////////////////////////
1637 //
1638 G4double G4TessellatedSolid::SafetyFromOutside (const G4ThreeVector& p,
1639                                                       G4bool aAccurate) const
1640 {
1641 #if G4SPECSDEBUG
1642   if ( Inside(p) == kInside )
1643   {
1644     std::ostringstream message;
1645     G4int oldprc = message.precision(16) ;
1646     message << "Point p is already inside!?" << G4endl
1647       << "Position:"  << G4endl << G4endl
1648       << "p.x() = "   << p.x()/mm << " mm" << G4endl
1649       << "p.y() = "   << p.y()/mm << " mm" << G4endl
1650       << "p.z() = "   << p.z()/mm << " mm" << G4endl
1651       << "DistanceToOut(p) == " << DistanceToOut(p);
1652     message.precision(oldprc) ;
1653     G4Exception("G4TriangularFacet::DistanceToIn(p)",
1654                 "GeomSolids1002", JustWarning, message);
1655   }
1656 #endif
1657 
1658   G4double minDist;
1659 
1660   if (fVoxels.GetCountOfVoxels() > 1)
1661   {
1662     if (!aAccurate)
1663       return fVoxels.DistanceToBoundingBox(p);
1664 
1665     if (!OutsideOfExtent(p, kCarTolerance))
1666     {
1667       vector<G4int> startingVoxel(3);
1668       fVoxels.GetVoxel(startingVoxel, p);
1669       const vector<G4int> &candidates = fVoxels.GetCandidates(startingVoxel);
1670       if (candidates.empty() && (fInsides.GetNbits() != 0u))
1671       {
1672         G4int index = fVoxels.GetPointIndex(p);
1673         if (fInsides[index]) return 0.;
1674       }
1675     }
1676 
1677     G4VFacet* facet;
1678     minDist = MinDistanceFacet(p, true, facet);
1679   }
1680   else
1681   {
1682     minDist = kInfinity;
1683     std::size_t size = fFacets.size();
1684     for (std::size_t i = 0; i < size; ++i)
1685     {
1686       G4VFacet& facet = *fFacets[i];
1687       G4double dist = facet.Distance(p,minDist);
1688       if (dist < minDist) minDist = dist;
1689     }
1690   }
1691   return minDist;
1692 }
1693 
1694 ///////////////////////////////////////////////////////////////////////////////
1695 //
1696 G4double
1697 G4TessellatedSolid::SafetyFromInside (const G4ThreeVector& p, G4bool) const
1698 {
1699 #if G4SPECSDEBUG
1700   if ( Inside(p) == kOutside )
1701   {
1702     std::ostringstream message;
1703     G4int oldprc = message.precision(16) ;
1704     message << "Point p is already outside!?" << G4endl
1705       << "Position:"  << G4endl << G4endl
1706       << "p.x() = "   << p.x()/mm << " mm" << G4endl
1707       << "p.y() = "   << p.y()/mm << " mm" << G4endl
1708       << "p.z() = "   << p.z()/mm << " mm" << G4endl
1709       << "DistanceToIn(p) == " << DistanceToIn(p);
1710     message.precision(oldprc) ;
1711     G4Exception("G4TriangularFacet::DistanceToOut(p)",
1712                 "GeomSolids1002", JustWarning, message);
1713   }
1714 #endif
1715 
1716   G4double minDist;
1717 
1718   if (OutsideOfExtent(p, kCarTolerance)) return 0.0;
1719 
1720   if (fVoxels.GetCountOfVoxels() > 1)
1721   {
1722     G4VFacet* facet;
1723     minDist = MinDistanceFacet(p, true, facet);
1724   }
1725   else
1726   {
1727     minDist = kInfinity;
1728     G4double dist = 0.0;
1729     std::size_t size = fFacets.size();
1730     for (std::size_t i = 0; i < size; ++i)
1731     {
1732       G4VFacet& facet = *fFacets[i];
1733       dist = facet.Distance(p,minDist);
1734       if (dist < minDist) minDist  = dist;
1735     }
1736   }
1737   return minDist;
1738 }
1739 
1740 ///////////////////////////////////////////////////////////////////////////////
1741 //
1742 // G4GeometryType GetEntityType() const;
1743 //
1744 // Provide identification of the class of an object
1745 //
1746 G4GeometryType G4TessellatedSolid::GetEntityType () const
1747 {
1748   return fGeometryType;
1749 }
1750 
1751 ///////////////////////////////////////////////////////////////////////////////
1752 //
1753 // IsFaceted
1754 //
1755 G4bool G4TessellatedSolid::IsFaceted () const
1756 {
1757   return true;
1758 }
1759 
1760 ///////////////////////////////////////////////////////////////////////////////
1761 //
1762 std::ostream &G4TessellatedSolid::StreamInfo(std::ostream &os) const
1763 {
1764   os << G4endl;
1765   os << "Solid name       = " << GetName()      << G4endl;
1766   os << "Geometry Type    = " << fGeometryType  << G4endl;
1767   os << "Number of facets = " << fFacets.size() << G4endl;
1768 
1769   std::size_t size = fFacets.size();
1770   for (std::size_t i = 0; i < size; ++i)
1771   {
1772     os << "FACET #          = " << i + 1 << G4endl;
1773     G4VFacet &facet = *fFacets[i];
1774     facet.StreamInfo(os);
1775   }
1776   os << G4endl;
1777 
1778   return os;
1779 }
1780 
1781 ///////////////////////////////////////////////////////////////////////////////
1782 //
1783 // Make a clone of the object
1784 //
1785 G4VSolid* G4TessellatedSolid::Clone() const
1786 {
1787   return new G4TessellatedSolid(*this);
1788 }
1789 
1790 ///////////////////////////////////////////////////////////////////////////////
1791 //
1792 // EInside G4TessellatedSolid::Inside (const G4ThreeVector &p) const
1793 //
1794 // This method must return:
1795 //    * kOutside if the point at offset p is outside the shape
1796 //      boundaries plus kCarTolerance/2,
1797 //    * kSurface if the point is <= kCarTolerance/2 from a surface, or
1798 //    * kInside otherwise.
1799 //
1800 EInside G4TessellatedSolid::Inside (const G4ThreeVector& aPoint) const
1801 {
1802   EInside location;
1803 
1804   if (fVoxels.GetCountOfVoxels() > 1)
1805   {
1806     location = InsideVoxels(aPoint);
1807   }
1808   else
1809   {
1810     location = InsideNoVoxels(aPoint);
1811   }
1812   return location;
1813 }
1814 
1815 ///////////////////////////////////////////////////////////////////////////////
1816 //
1817 G4ThreeVector G4TessellatedSolid::SurfaceNormal(const G4ThreeVector& p) const
1818 {
1819   G4ThreeVector n;
1820   Normal(p, n);
1821   return n;
1822 }
1823 
1824 ///////////////////////////////////////////////////////////////////////////////
1825 //
1826 // G4double DistanceToIn(const G4ThreeVector& p)
1827 //
1828 // Calculate distance to nearest surface of shape from an outside point p. The
1829 // distance can be an underestimate.
1830 //
1831 G4double G4TessellatedSolid::DistanceToIn(const G4ThreeVector& p) const
1832 {
1833   return SafetyFromOutside(p, false);
1834 }
1835 
1836 ///////////////////////////////////////////////////////////////////////////////
1837 //
1838 G4double G4TessellatedSolid::DistanceToIn(const G4ThreeVector& p,
1839                                           const G4ThreeVector& v)const
1840 {
1841   G4double dist = DistanceToInCore(p,v,kInfinity);
1842 #ifdef G4SPECSDEBUG
1843   if (dist < kInfinity)
1844   {
1845     if (Inside(p + dist*v) != kSurface)
1846     {
1847       std::ostringstream message;
1848       message << "Invalid response from facet in solid '" << GetName() << "',"
1849               << G4endl
1850               << "at point: " << p <<  "and direction: " << v;
1851       G4Exception("G4TessellatedSolid::DistanceToIn(p,v)",
1852                   "GeomSolids1002", JustWarning, message);
1853     }
1854   }
1855 #endif
1856   return dist;
1857 }
1858 
1859 ///////////////////////////////////////////////////////////////////////////////
1860 //
1861 // G4double DistanceToOut(const G4ThreeVector& p)
1862 //
1863 // Calculate distance to nearest surface of shape from an inside
1864 // point. The distance can be an underestimate.
1865 //
1866 G4double G4TessellatedSolid::DistanceToOut(const G4ThreeVector& p) const
1867 {
1868   return SafetyFromInside(p, false);
1869 }
1870 
1871 ///////////////////////////////////////////////////////////////////////////////
1872 //
1873 // G4double DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v,
1874 //                        const G4bool calcNorm=false,
1875 //                        G4bool *validNorm=0, G4ThreeVector *n=0);
1876 //
1877 // Return distance along the normalised vector v to the shape, from a
1878 // point at an offset p inside or on the surface of the
1879 // shape. Intersections with surfaces, when the point is not greater
1880 // than kCarTolerance/2 from a surface, must be ignored.
1881 //     If calcNorm is true, then it must also set validNorm to either
1882 //     * true, if the solid lies entirely behind or on the exiting
1883 //        surface. Then it must set n to the outwards normal vector
1884 //        (the Magnitude of the vector is not defined).
1885 //     * false, if the solid does not lie entirely behind or on the
1886 //       exiting surface.
1887 // If calcNorm is false, then validNorm and n are unused.
1888 //
1889 G4double G4TessellatedSolid::DistanceToOut(const G4ThreeVector& p,
1890                                            const G4ThreeVector& v,
1891                                            const G4bool calcNorm,
1892                                                  G4bool* validNorm,
1893                                                  G4ThreeVector* norm) const
1894 {
1895   G4ThreeVector n;
1896   G4bool valid;
1897 
1898   G4double dist = DistanceToOutCore(p, v, n, valid);
1899   if (calcNorm)
1900   {
1901     *norm = n;
1902     *validNorm = valid;
1903   }
1904 #ifdef G4SPECSDEBUG
1905   if (dist < kInfinity)
1906   {
1907     if (Inside(p + dist*v) != kSurface)
1908     {
1909       std::ostringstream message;
1910       message << "Invalid response from facet in solid '" << GetName() << "',"
1911               << G4endl
1912               << "at point: " << p <<  "and direction: " << v;
1913       G4Exception("G4TessellatedSolid::DistanceToOut(p,v,..)",
1914                   "GeomSolids1002", JustWarning, message);
1915     }
1916   }
1917 #endif
1918   return dist;
1919 }
1920 
1921 ///////////////////////////////////////////////////////////////////////////////
1922 //
1923 void G4TessellatedSolid::DescribeYourselfTo (G4VGraphicsScene& scene) const
1924 {
1925   scene.AddSolid (*this);
1926 }
1927 
1928 ///////////////////////////////////////////////////////////////////////////////
1929 //
1930 G4Polyhedron* G4TessellatedSolid::CreatePolyhedron () const
1931 {
1932   auto nVertices = (G4int)fVertexList.size();
1933   auto nFacets = (G4int)fFacets.size();
1934   auto polyhedron = new G4Polyhedron(nVertices, nFacets);
1935   for (auto i = 0; i < nVertices; ++i)
1936   {
1937     polyhedron->SetVertex(i+1, fVertexList[i]);
1938   }
1939 
1940   for (auto i = 0; i < nFacets; ++i)
1941   {
1942     G4VFacet* facet = fFacets[i];
1943     G4int v[4] = {0};
1944     G4int n = facet->GetNumberOfVertices();
1945     if (n > 4) n = 4;
1946     for (auto j = 0; j < n; ++j)
1947     {
1948       v[j] = facet->GetVertexIndex(j) + 1;
1949     }
1950     polyhedron->SetFacet(i+1, v[0], v[1], v[2], v[3]);
1951   }
1952   polyhedron->SetReferences();
1953 
1954   return polyhedron;
1955 }
1956 
1957 ///////////////////////////////////////////////////////////////////////////////
1958 //
1959 // GetPolyhedron
1960 //
1961 G4Polyhedron* G4TessellatedSolid::GetPolyhedron() const
1962 {
1963   if (fpPolyhedron == nullptr ||
1964       fRebuildPolyhedron ||
1965       fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
1966       fpPolyhedron->GetNumberOfRotationSteps())
1967   {
1968     G4AutoLock l(&polyhedronMutex);
1969     delete fpPolyhedron;
1970     fpPolyhedron = CreatePolyhedron();
1971     fRebuildPolyhedron = false;
1972     l.unlock();
1973   }
1974   return fpPolyhedron;
1975 }
1976 
1977 ///////////////////////////////////////////////////////////////////////////////
1978 //
1979 // Get bounding box
1980 //
1981 void G4TessellatedSolid::BoundingLimits(G4ThreeVector& pMin,
1982                                         G4ThreeVector& pMax) const
1983 {
1984   pMin = fMinExtent;
1985   pMax = fMaxExtent;
1986 
1987   // Check correctness of the bounding box
1988   //
1989   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
1990   {
1991     std::ostringstream message;
1992     message << "Bad bounding box (min >= max) for solid: "
1993             << GetName() << " !"
1994             << "\npMin = " << pMin
1995             << "\npMax = " << pMax;
1996     G4Exception("G4TessellatedSolid::BoundingLimits()",
1997                 "GeomMgt0001", JustWarning, message);
1998     DumpInfo();
1999   }
2000 }
2001 
2002 ///////////////////////////////////////////////////////////////////////////////
2003 //
2004 // Calculate extent under transform and specified limit
2005 //
2006 G4bool
2007 G4TessellatedSolid::CalculateExtent(const EAxis pAxis,
2008                                     const G4VoxelLimits& pVoxelLimit,
2009                                     const G4AffineTransform& pTransform,
2010                                           G4double& pMin, G4double& pMax) const
2011 {
2012   G4ThreeVector bmin, bmax;
2013 
2014   // Check bounding box (bbox)
2015   //
2016   BoundingLimits(bmin,bmax);
2017   G4BoundingEnvelope bbox(bmin,bmax);
2018 
2019   // Use simple bounding-box to help in the case of complex meshes
2020   //
2021   return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
2022 
2023 #if 0
2024   // Precise extent computation (disabled by default for this shape)
2025   //
2026   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
2027   {
2028     return (pMin < pMax) ? true : false;
2029   }
2030 
2031   // The extent is calculated as cumulative extent of the pyramids
2032   // formed by facets and the center of the bounding box.
2033   //
2034   G4double eminlim = pVoxelLimit.GetMinExtent(pAxis);
2035   G4double emaxlim = pVoxelLimit.GetMaxExtent(pAxis);
2036 
2037   G4ThreeVectorList base;
2038   G4ThreeVectorList apex(1);
2039   std::vector<const G4ThreeVectorList *> pyramid(2);
2040   pyramid[0] = &base;
2041   pyramid[1] = &apex;
2042   apex[0] = (bmin+bmax)*0.5;
2043 
2044   // main loop along facets
2045   pMin =  kInfinity;
2046   pMax = -kInfinity;
2047   for (G4int i=0; i<GetNumberOfFacets(); ++i)
2048   {
2049     G4VFacet* facet = GetFacet(i);
2050     if (std::abs((facet->GetSurfaceNormal()).dot(facet->GetVertex(0)-apex[0]))
2051         < kCarToleranceHalf) continue;
2052 
2053     G4int nv = facet->GetNumberOfVertices();
2054     base.resize(nv);
2055     for (G4int k=0; k<nv; ++k) { base[k] = facet->GetVertex(k); }
2056 
2057     G4double emin,emax;
2058     G4BoundingEnvelope benv(pyramid);
2059     if (!benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,emin,emax)) continue;
2060     if (emin < pMin) pMin = emin;
2061     if (emax > pMax) pMax = emax;
2062     if (eminlim > pMin && emaxlim < pMax) break; // max possible extent
2063   }
2064   return (pMin < pMax);
2065 #endif
2066 }
2067 
2068 ///////////////////////////////////////////////////////////////////////////////
2069 //
2070 G4double G4TessellatedSolid::GetMinXExtent () const
2071 {
2072   return fMinExtent.x();
2073 }
2074 
2075 ///////////////////////////////////////////////////////////////////////////////
2076 //
2077 G4double G4TessellatedSolid::GetMaxXExtent () const
2078 {
2079   return fMaxExtent.x();
2080 }
2081 
2082 ///////////////////////////////////////////////////////////////////////////////
2083 //
2084 G4double G4TessellatedSolid::GetMinYExtent () const
2085 {
2086   return fMinExtent.y();
2087 }
2088 
2089 ///////////////////////////////////////////////////////////////////////////////
2090 //
2091 G4double G4TessellatedSolid::GetMaxYExtent () const
2092 {
2093   return fMaxExtent.y();
2094 }
2095 
2096 ///////////////////////////////////////////////////////////////////////////////
2097 //
2098 G4double G4TessellatedSolid::GetMinZExtent () const
2099 {
2100   return fMinExtent.z();
2101 }
2102 
2103 ///////////////////////////////////////////////////////////////////////////////
2104 //
2105 G4double G4TessellatedSolid::GetMaxZExtent () const
2106 {
2107   return fMaxExtent.z();
2108 }
2109 
2110 ///////////////////////////////////////////////////////////////////////////////
2111 //
2112 G4VisExtent G4TessellatedSolid::GetExtent () const
2113 {
2114   return { fMinExtent.x(), fMaxExtent.x(),
2115            fMinExtent.y(), fMaxExtent.y(),
2116            fMinExtent.z(), fMaxExtent.z() };
2117 }
2118 
2119 ///////////////////////////////////////////////////////////////////////////////
2120 //
2121 G4double G4TessellatedSolid::GetCubicVolume ()
2122 {
2123   if (fCubicVolume != 0.) return fCubicVolume;
2124 
2125   // For explanation of the following algorithm see:
2126   // https://en.wikipedia.org/wiki/Polyhedron#Volume
2127   // http://wwwf.imperial.ac.uk/~rn/centroid.pdf
2128 
2129   std::size_t size = fFacets.size();
2130   for (std::size_t i = 0; i < size; ++i)
2131   {
2132     G4VFacet &facet = *fFacets[i];
2133     G4double area = facet.GetArea();
2134     G4ThreeVector unit_normal = facet.GetSurfaceNormal();
2135     fCubicVolume += area * (facet.GetVertex(0).dot(unit_normal));
2136   }
2137   fCubicVolume /= 3.;
2138   return fCubicVolume;
2139 }
2140 
2141 ///////////////////////////////////////////////////////////////////////////////
2142 //
2143 G4double G4TessellatedSolid::GetSurfaceArea ()
2144 {
2145   if (fSurfaceArea != 0.) return fSurfaceArea;
2146 
2147   std::size_t size = fFacets.size();
2148   for (std::size_t i = 0; i < size; ++i)
2149   {
2150     G4VFacet &facet = *fFacets[i];
2151     fSurfaceArea += facet.GetArea();
2152   }
2153   return fSurfaceArea;
2154 }
2155 
2156 ///////////////////////////////////////////////////////////////////////////////
2157 //
2158 G4ThreeVector G4TessellatedSolid::GetPointOnSurface() const
2159 {
2160   // Select randomly a facet and return a random point on it
2161 
2162   auto i = (G4int) G4RandFlat::shoot(0., fFacets.size());
2163   return fFacets[i]->GetPointOnFace();
2164 }
2165 
2166 ///////////////////////////////////////////////////////////////////////////////
2167 //
2168 // SetRandomVectorSet
2169 //
2170 // This is a set of predefined random vectors (if that isn't a contradition
2171 // in terms!) used to generate rays from a user-defined point.  The member
2172 // function Inside uses these to determine whether the point is inside or
2173 // outside of the tessellated solid.  All vectors should be unit vectors.
2174 //
2175 void G4TessellatedSolid::SetRandomVectors ()
2176 {
2177   fRandir.resize(20);
2178   fRandir[0]  =
2179     G4ThreeVector(-0.9577428892113370, 0.2732676269591740, 0.0897405271949221);
2180   fRandir[1]  =
2181     G4ThreeVector(-0.8331264504940770,-0.5162067214954600,-0.1985722492445700);
2182   fRandir[2]  =
2183     G4ThreeVector(-0.1516671651108820, 0.9666292616127460, 0.2064580868390110);
2184   fRandir[3]  =
2185     G4ThreeVector( 0.6570250350323190,-0.6944539025883300, 0.2933460081893360);
2186   fRandir[4]  =
2187     G4ThreeVector(-0.4820456281280320,-0.6331060000098690,-0.6056474264406270);
2188   fRandir[5]  =
2189     G4ThreeVector( 0.7629032554236800 , 0.1016854697539910,-0.6384658864065180);
2190   fRandir[6]  =
2191     G4ThreeVector( 0.7689540409061150, 0.5034929891988220, 0.3939600142169160);
2192   fRandir[7]  =
2193     G4ThreeVector( 0.5765188359255740, 0.5997271636278330,-0.5549354566343150);
2194   fRandir[8]  =
2195     G4ThreeVector( 0.6660632777862070,-0.6362809868288380, 0.3892379937580790);
2196   fRandir[9]  =
2197     G4ThreeVector( 0.3824415020414780, 0.6541792713761380,-0.6525243125110690);
2198   fRandir[10] =
2199     G4ThreeVector(-0.5107726564526760, 0.6020905056811610, 0.6136760679616570);
2200   fRandir[11] =
2201     G4ThreeVector( 0.7459135439578050, 0.6618796061649330, 0.0743530220183488);
2202   fRandir[12] =
2203     G4ThreeVector( 0.1536405855311580, 0.8117477913978260,-0.5634359711967240);
2204   fRandir[13] =
2205     G4ThreeVector( 0.0744395301705579,-0.8707110101772920,-0.4861286795736560);
2206   fRandir[14] =
2207     G4ThreeVector(-0.1665874645185400, 0.6018553940549240,-0.7810369397872780);
2208   fRandir[15] =
2209     G4ThreeVector( 0.7766902003633100, 0.6014617505959970,-0.1870724331097450);
2210   fRandir[16] =
2211     G4ThreeVector(-0.8710128685847430,-0.1434320216603030,-0.4698551243971010);
2212   fRandir[17] =
2213     G4ThreeVector( 0.8901082092766820,-0.4388411398893870, 0.1229871120030100);
2214   fRandir[18] =
2215     G4ThreeVector(-0.6430417431544370,-0.3295938228697690, 0.6912779675984150);
2216   fRandir[19] =
2217     G4ThreeVector( 0.6331124368380410, 0.6306211461665000, 0.4488714875425340);
2218 
2219   fMaxTries = 20;
2220 }
2221 
2222 ///////////////////////////////////////////////////////////////////////////////
2223 //
2224 G4int G4TessellatedSolid::AllocatedMemoryWithoutVoxels()
2225 {
2226   G4int base = sizeof(*this);
2227   base += fVertexList.capacity() * sizeof(G4ThreeVector);
2228   base += fRandir.capacity() * sizeof(G4ThreeVector);
2229 
2230   std::size_t limit = fFacets.size();
2231   for (std::size_t i = 0; i < limit; ++i)
2232   {
2233     G4VFacet& facet = *fFacets[i];
2234     base += facet.AllocatedMemory();
2235   }
2236 
2237   for (const auto & fExtremeFacet : fExtremeFacets)
2238   {
2239     G4VFacet &facet = *fExtremeFacet;
2240     base += facet.AllocatedMemory();
2241   }
2242   return base;
2243 }
2244 
2245 ///////////////////////////////////////////////////////////////////////////////
2246 //
2247 G4int G4TessellatedSolid::AllocatedMemory()
2248 {
2249   G4int size = AllocatedMemoryWithoutVoxels();
2250   G4int sizeInsides = fInsides.GetNbytes();
2251   G4int sizeVoxels = fVoxels.AllocatedMemory();
2252   size += sizeInsides + sizeVoxels;
2253   return size;
2254 }
2255 
2256 #endif
2257