Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4UCutTubs.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Implementation for G4UCutTubs wrapper class
 27 //
 28 // 07.07.17 G.Cosmo, CERN/PH
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4CutTubs.hh"
 32 #include "G4UCutTubs.hh"
 33 
 34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G4GEOM_USE_PARTIAL_USOLIDS) )
 35 
 36 #include "G4GeomTools.hh"
 37 #include "G4AffineTransform.hh"
 38 #include "G4VPVParameterisation.hh"
 39 #include "G4BoundingEnvelope.hh"
 40 
 41 using namespace CLHEP;
 42 
 43 /////////////////////////////////////////////////////////////////////////
 44 //
 45 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 46 //             - note if pdphi>2PI then reset to 2PI
 47 
 48 G4UCutTubs::G4UCutTubs( const G4String& pName,
 49                               G4double pRMin, G4double pRMax,
 50                               G4double pDz,
 51                               G4double pSPhi, G4double pDPhi,
 52                               const G4ThreeVector& pLowNorm,
 53                               const G4ThreeVector& pHighNorm )
 54   : Base_t(pName, pRMin, pRMax, pDz, pSPhi, pDPhi,
 55            pLowNorm.x(), pLowNorm.y(), pLowNorm.z(),
 56            pHighNorm.x(), pHighNorm.y(), pHighNorm.z())
 57 {
 58 }
 59 
 60 ///////////////////////////////////////////////////////////////////////
 61 //
 62 // Fake default constructor - sets only member data and allocates memory
 63 //                            for usage restricted to object persistency.
 64 //
 65 G4UCutTubs::G4UCutTubs( __void__& a )
 66   : Base_t(a)
 67 {
 68 }
 69 
 70 //////////////////////////////////////////////////////////////////////////
 71 //
 72 // Destructor
 73 
 74 G4UCutTubs::~G4UCutTubs() = default;
 75 
 76 //////////////////////////////////////////////////////////////////////////
 77 //
 78 // Copy constructor
 79 
 80 G4UCutTubs::G4UCutTubs(const G4UCutTubs& rhs)
 81   : Base_t(rhs)
 82 {
 83 }
 84 
 85 //////////////////////////////////////////////////////////////////////////
 86 //
 87 // Assignment operator
 88 
 89 G4UCutTubs& G4UCutTubs::operator = (const G4UCutTubs& rhs) 
 90 {
 91    // Check assignment to self
 92    //
 93    if (this == &rhs)  { return *this; }
 94 
 95    // Copy base class data
 96    //
 97    Base_t::operator=(rhs);
 98 
 99    return *this;
100 }
101 
102 /////////////////////////////////////////////////////////////////////////
103 //
104 // Accessors and modifiers
105 
106 G4double G4UCutTubs::GetInnerRadius() const
107 {
108   return rmin();
109 }
110 G4double G4UCutTubs::GetOuterRadius() const
111 {
112   return rmax();
113 }
114 G4double G4UCutTubs::GetZHalfLength() const
115 {
116   return z();
117 }
118 G4double G4UCutTubs::GetStartPhiAngle() const
119 {
120   return sphi();
121 }
122 G4double G4UCutTubs::GetDeltaPhiAngle() const
123 {
124   return dphi();
125 }
126 G4double G4UCutTubs::GetSinStartPhi() const
127 {
128   return std::sin(GetStartPhiAngle());
129 }
130 G4double G4UCutTubs::GetCosStartPhi() const
131 {
132   return std::cos(GetStartPhiAngle());
133 }
134 G4double G4UCutTubs::GetSinEndPhi() const
135 {
136   return std::sin(GetStartPhiAngle()+GetDeltaPhiAngle());
137 }
138 G4double G4UCutTubs::GetCosEndPhi() const
139 {
140   return std::cos(GetStartPhiAngle()+GetDeltaPhiAngle());
141 }
142 G4ThreeVector G4UCutTubs::GetLowNorm  () const
143 {
144   U3Vector lc = BottomNormal();
145   return {lc.x(), lc.y(), lc.z()};
146 }
147 G4ThreeVector G4UCutTubs::GetHighNorm () const
148 {
149   U3Vector hc = TopNormal();
150   return {hc.x(), hc.y(), hc.z()};
151 } 
152 
153 void G4UCutTubs::SetInnerRadius(G4double newRMin)
154 {
155   SetRMin(newRMin);
156   fRebuildPolyhedron = true;
157 }
158 void G4UCutTubs::SetOuterRadius(G4double newRMax)
159 {
160   SetRMax(newRMax);
161   fRebuildPolyhedron = true;
162 }
163 void G4UCutTubs::SetZHalfLength(G4double newDz)
164 {
165   SetDz(newDz);
166   fRebuildPolyhedron = true;
167 }
168 void G4UCutTubs::SetStartPhiAngle(G4double newSPhi, G4bool)
169 {
170   SetSPhi(newSPhi);
171   fRebuildPolyhedron = true;
172 }
173 void G4UCutTubs::SetDeltaPhiAngle(G4double newDPhi)
174 {
175   SetDPhi(newDPhi);
176   fRebuildPolyhedron = true;
177 }
178 
179 /////////////////////////////////////////////////////////////////////////
180 //
181 // Make a clone of the object
182 
183 G4VSolid* G4UCutTubs::Clone() const
184 {
185   return new G4UCutTubs(*this);
186 }
187 
188 //////////////////////////////////////////////////////////////////////////
189 //
190 // Get bounding box
191 
192 void G4UCutTubs::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
193 {
194   static G4bool checkBBox = true;
195 
196   G4double rmin = GetInnerRadius();
197   G4double rmax = GetOuterRadius();
198   G4double dz   = GetZHalfLength();
199   G4double dphi = GetDeltaPhiAngle();
200 
201   G4double sinSphi = GetSinStartPhi(); 
202   G4double cosSphi = GetCosStartPhi(); 
203   G4double sinEphi = GetSinEndPhi(); 
204   G4double cosEphi = GetCosEndPhi(); 
205 
206   G4ThreeVector norm;
207   G4double mag, topx, topy, dists, diste; 
208   G4bool iftop;
209 
210   // Find Zmin
211   //
212   G4double zmin;
213   norm = GetLowNorm();
214   mag  = std::sqrt(norm.x()*norm.x() + norm.y()*norm.y());
215   topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; 
216   topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; 
217   dists =  sinSphi*topx - cosSphi*topy;
218   diste = -sinEphi*topx + cosEphi*topy;
219   if (dphi > pi)
220   {
221     iftop = true;
222     if (dists > 0 && diste > 0)iftop = false;
223   }
224   else
225   {
226     iftop = false;
227     if (dists <= 0 && diste <= 0) iftop = true;
228   }
229   if (iftop)
230   {
231     zmin = -(norm.x()*topx + norm.y()*topy)/norm.z() - dz;
232   }
233   else
234   {
235     G4double z1 = -rmin*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() - dz;  
236     G4double z2 = -rmin*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() - dz;  
237     G4double z3 = -rmax*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() - dz;  
238     G4double z4 = -rmax*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() - dz;  
239     zmin = std::min(std::min(std::min(z1,z2),z3),z4);
240   }
241 
242   // Find Zmax
243   //
244   G4double zmax;
245   norm = GetHighNorm();
246   mag  = std::sqrt(norm.x()*norm.x() + norm.y()*norm.y());
247   topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; 
248   topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; 
249   dists =  sinSphi*topx - cosSphi*topy;
250   diste = -sinEphi*topx + cosEphi*topy;
251   if (dphi > pi)
252   {
253     iftop = true;
254     if (dists > 0 && diste > 0) iftop = false;
255   }
256   else
257   {
258     iftop = false;
259     if (dists <= 0 && diste <= 0) iftop = true;
260   }
261   if (iftop)
262   {
263     zmax = -(norm.x()*topx + norm.y()*topy)/norm.z() + dz;
264   }
265   else
266   {
267     G4double z1 = -rmin*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() + dz;  
268     G4double z2 = -rmin*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() + dz;  
269     G4double z3 = -rmax*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() + dz;  
270     G4double z4 = -rmax*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() + dz;  
271     zmax = std::max(std::max(std::max(z1,z2),z3),z4);
272   }
273 
274   // Find bounding box
275   //
276   if (GetDeltaPhiAngle() < twopi)
277   {
278     G4TwoVector vmin,vmax;
279     G4GeomTools::DiskExtent(rmin,rmax,
280                             GetSinStartPhi(),GetCosStartPhi(),
281                             GetSinEndPhi(),GetCosEndPhi(),
282                             vmin,vmax);
283     pMin.set(vmin.x(),vmin.y(), zmin);
284     pMax.set(vmax.x(),vmax.y(), zmax);
285   }
286   else
287   {
288     pMin.set(-rmax,-rmax, zmin);
289     pMax.set( rmax, rmax, zmax);
290   }
291 
292   // Check correctness of the bounding box
293   //
294   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
295   {
296     std::ostringstream message;
297     message << "Bad bounding box (min >= max) for solid: "
298             << GetName() << " !"
299             << "\npMin = " << pMin
300             << "\npMax = " << pMax;
301     G4Exception("G4CUutTubs::BoundingLimits()", "GeomMgt0001",
302                 JustWarning, message);
303     StreamInfo(G4cout);
304   }
305 
306   // Check consistency of bounding boxes
307   //
308   if (checkBBox)
309   {
310     U3Vector vmin, vmax;
311     Extent(vmin,vmax);
312     if (std::abs(pMin.x()-vmin.x()) > kCarTolerance ||
313         std::abs(pMin.y()-vmin.y()) > kCarTolerance ||
314         std::abs(pMin.z()-vmin.z()) > kCarTolerance ||
315         std::abs(pMax.x()-vmax.x()) > kCarTolerance ||
316         std::abs(pMax.y()-vmax.y()) > kCarTolerance ||
317         std::abs(pMax.z()-vmax.z()) > kCarTolerance)
318     {
319       std::ostringstream message;
320       message << "Inconsistency in bounding boxes for solid: "
321               << GetName() << " !"
322               << "\nBBox min: wrapper = " << pMin << " solid = " << vmin
323               << "\nBBox max: wrapper = " << pMax << " solid = " << vmax;
324       G4Exception("G4UCutTubs::BoundingLimits()", "GeomMgt0001",
325                   JustWarning, message);
326       checkBBox = false;
327     }
328   }
329 }
330 
331 //////////////////////////////////////////////////////////////////////////
332 //
333 // Calculate extent under transform and specified limit
334 
335 G4bool
336 G4UCutTubs::CalculateExtent(const EAxis pAxis,
337                             const G4VoxelLimits& pVoxelLimit,
338                             const G4AffineTransform& pTransform,
339                                   G4double& pMin, G4double& pMax) const
340 {
341   G4ThreeVector bmin, bmax;
342   G4bool exist;
343 
344   // Get bounding box
345   BoundingLimits(bmin,bmax);
346 
347   // Check bounding box
348   G4BoundingEnvelope bbox(bmin,bmax);
349 #ifdef G4BBOX_EXTENT
350   if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
351 #endif
352   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
353   {
354     return exist = pMin < pMax;
355   }
356 
357   // Get parameters of the solid
358   G4double rmin = GetInnerRadius();
359   G4double rmax = GetOuterRadius();
360   G4double dphi = GetDeltaPhiAngle();
361   G4double zmin = bmin.z();
362   G4double zmax = bmax.z();
363 
364   // Find bounding envelope and calculate extent
365   //
366   const G4int NSTEPS = 24;            // number of steps for whole circle
367   G4double astep  = twopi/NSTEPS;     // max angle for one step
368   G4int    ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
369   G4double ang    = dphi/ksteps;
370 
371   G4double sinHalf = std::sin(0.5*ang);
372   G4double cosHalf = std::cos(0.5*ang);
373   G4double sinStep = 2.*sinHalf*cosHalf;
374   G4double cosStep = 1. - 2.*sinHalf*sinHalf;
375   G4double rext    = rmax/cosHalf;
376 
377   // bounding envelope for full cylinder consists of two polygons,
378   // in other cases it is a sequence of quadrilaterals
379   if (rmin == 0 && dphi == twopi)
380   {
381     G4double sinCur = sinHalf;
382     G4double cosCur = cosHalf;
383 
384     G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS);
385     for (G4int k=0; k<NSTEPS; ++k)
386     {
387       baseA[k].set(rext*cosCur,rext*sinCur,zmin);
388       baseB[k].set(rext*cosCur,rext*sinCur,zmax);
389 
390       G4double sinTmp = sinCur;
391       sinCur = sinCur*cosStep + cosCur*sinStep;
392       cosCur = cosCur*cosStep - sinTmp*sinStep;
393     }
394     std::vector<const G4ThreeVectorList *> polygons(2);
395     polygons[0] = &baseA;
396     polygons[1] = &baseB;
397     G4BoundingEnvelope benv(bmin,bmax,polygons);
398     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
399   }
400   else
401   {
402     G4double sinStart = GetSinStartPhi();
403     G4double cosStart = GetCosStartPhi();
404     G4double sinEnd   = GetSinEndPhi();
405     G4double cosEnd   = GetCosEndPhi();
406     G4double sinCur   = sinStart*cosHalf + cosStart*sinHalf;
407     G4double cosCur   = cosStart*cosHalf - sinStart*sinHalf;
408 
409     // set quadrilaterals
410     G4ThreeVectorList pols[NSTEPS+2];
411     for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4);
412     pols[0][0].set(rmin*cosStart,rmin*sinStart,zmax);
413     pols[0][1].set(rmin*cosStart,rmin*sinStart,zmin);
414     pols[0][2].set(rmax*cosStart,rmax*sinStart,zmin);
415     pols[0][3].set(rmax*cosStart,rmax*sinStart,zmax);
416     for (G4int k=1; k<ksteps+1; ++k)
417     {
418       pols[k][0].set(rmin*cosCur,rmin*sinCur,zmax);
419       pols[k][1].set(rmin*cosCur,rmin*sinCur,zmin);
420       pols[k][2].set(rext*cosCur,rext*sinCur,zmin);
421       pols[k][3].set(rext*cosCur,rext*sinCur,zmax);
422 
423       G4double sinTmp = sinCur;
424       sinCur = sinCur*cosStep + cosCur*sinStep;
425       cosCur = cosCur*cosStep - sinTmp*sinStep;
426     }
427     pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd,zmax);
428     pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,zmin);
429     pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,zmin);
430     pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd,zmax);
431 
432     // set envelope and calculate extent
433     std::vector<const G4ThreeVectorList *> polygons;
434     polygons.resize(ksteps+2);
435     for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k];
436     G4BoundingEnvelope benv(bmin,bmax,polygons);
437     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
438   }
439   return exist;
440 }
441 
442 ///////////////////////////////////////////////////////////////////////////
443 //
444 // Return real Z coordinate of point on Cutted +/- fDZ plane
445 
446 G4double G4UCutTubs::GetCutZ(const G4ThreeVector& p) const
447 {
448   G4double newz = p.z();  // p.z() should be either +fDz or -fDz
449   G4ThreeVector fLowNorm = GetLowNorm();
450   G4ThreeVector fHighNorm = GetHighNorm();
451   
452   if (p.z()<0)
453   {
454     if(fLowNorm.z()!=0.)
455     {
456        newz = -GetZHalfLength()
457             - (p.x()*fLowNorm.x()+p.y()*fLowNorm.y())/fLowNorm.z();
458     }
459   }
460   else
461   {
462     if(fHighNorm.z()!=0.)
463     {
464        newz = GetZHalfLength()
465             - (p.x()*fHighNorm.x()+p.y()*fHighNorm.y())/fHighNorm.z();
466     }
467   }
468   return newz;
469 }
470 
471 //////////////////////////////////////////////////////////////////////////
472 //
473 // Create polyhedron for visualization
474 //
475 G4Polyhedron* G4UCutTubs::CreatePolyhedron() const
476 {
477   typedef G4double G4double3[3];
478   typedef G4int G4int4[4];
479 
480   auto ph = new G4Polyhedron;
481   G4Polyhedron *ph1 = new G4PolyhedronTubs(GetInnerRadius(),
482                                            GetOuterRadius(),
483                                            GetZHalfLength(),
484                                            GetStartPhiAngle(),
485                                            GetDeltaPhiAngle());
486   G4int nn=ph1->GetNoVertices();
487   G4int nf=ph1->GetNoFacets();
488   auto xyz = new G4double3[nn];  // number of nodes 
489   auto faces = new G4int4[nf] ;  // number of faces
490   G4double fDz = GetZHalfLength();
491 
492   for(G4int i=0; i<nn; ++i)
493   {
494     xyz[i][0]=ph1->GetVertex(i+1).x();
495     xyz[i][1]=ph1->GetVertex(i+1).y();
496     G4double tmpZ=ph1->GetVertex(i+1).z();
497     if (tmpZ>=fDz-kCarTolerance)
498     {
499       xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],fDz));
500     }
501     else if(tmpZ<=-fDz+kCarTolerance)
502     {
503       xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],-fDz));
504     }
505     else
506     {
507       xyz[i][2]=tmpZ;
508     }
509   }
510   G4int iNodes[4];
511   G4int* iEdge=nullptr;
512   G4int n;
513   for(G4int i=0; i<nf; ++i)
514   {
515     ph1->GetFacet(i+1,n,iNodes,iEdge);
516     for(G4int k=0; k<n; ++k)
517     {
518       faces[i][k]=iNodes[k];
519     }
520     for(G4int k=n; k<4; ++k)
521     {
522       faces[i][k]=0;
523     }
524   }
525   ph->createPolyhedron(nn,nf,xyz,faces);
526 
527   delete [] xyz;
528   delete [] faces;
529   delete ph1;
530 
531   return ph;
532 }
533 
534 #endif  // G4GEOM_USE_USOLIDS
535