Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4UCons.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // Implementation for G4UCons wrapper class
 27 //
 28 // 30.10.13 G.Cosmo, CERN/PH
 29 // --------------------------------------------------------------------
 30 
 31 #include "G4Cons.hh"
 32 #include "G4UCons.hh"
 33 
 34 #if ( defined(G4GEOM_USE_USOLIDS) || defined(G4GEOM_USE_PARTIAL_USOLIDS) )
 35 
 36 #include "G4GeomTools.hh"
 37 #include "G4AffineTransform.hh"
 38 #include "G4VPVParameterisation.hh"
 39 #include "G4BoundingEnvelope.hh"
 40 
 41 using namespace CLHEP;
 42 
 43 //////////////////////////////////////////////////////////////////////////
 44 //
 45 // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 46 //               - note if pDPhi>2PI then reset to 2PI
 47 
 48 G4UCons::G4UCons( const G4String& pName,
 49                         G4double  pRmin1, G4double pRmax1,
 50                         G4double  pRmin2, G4double pRmax2,
 51                         G4double pDz,
 52                         G4double pSPhi, G4double pDPhi)
 53   : Base_t(pName, pRmin1, pRmax1, pRmin2, pRmax2, pDz, pSPhi, pDPhi)
 54 {
 55 }
 56 
 57 ///////////////////////////////////////////////////////////////////////
 58 //
 59 // Fake default constructor - sets only member data and allocates memory
 60 //                            for usage restricted to object persistency.
 61 //
 62 G4UCons::G4UCons( __void__& a )
 63   : Base_t(a)
 64 {
 65 }
 66 
 67 ///////////////////////////////////////////////////////////////////////
 68 //
 69 // Destructor
 70 
 71 G4UCons::~G4UCons() = default;
 72 
 73 //////////////////////////////////////////////////////////////////////////
 74 //
 75 // Copy constructor
 76 
 77 G4UCons::G4UCons(const G4UCons& rhs)
 78   : Base_t(rhs)
 79 {
 80 }
 81 
 82 //////////////////////////////////////////////////////////////////////////
 83 //
 84 // Assignment operator
 85 
 86 G4UCons& G4UCons::operator = (const G4UCons& rhs) 
 87 {
 88    // Check assignment to self
 89    //
 90    if (this == &rhs)  { return *this; }
 91 
 92    // Copy base class data
 93    //
 94    Base_t::operator=(rhs);
 95 
 96    return *this;
 97 }
 98 
 99 /////////////////////////////////////////////////////////////////////////
100 //
101 // Accessors and modifiers
102 
103 G4double G4UCons::GetInnerRadiusMinusZ() const
104 {
105   return GetRmin1();
106 }
107 G4double G4UCons::GetOuterRadiusMinusZ() const
108 {
109   return GetRmax1();
110 }
111 G4double G4UCons::GetInnerRadiusPlusZ() const
112 {
113   return GetRmin2();
114 }
115 G4double G4UCons::GetOuterRadiusPlusZ() const
116 {
117   return GetRmax2();
118 }
119 G4double G4UCons::GetZHalfLength() const
120 {
121   return GetDz();
122 }
123 G4double G4UCons::GetStartPhiAngle() const
124 {
125   return GetSPhi();
126 }
127 G4double G4UCons::GetDeltaPhiAngle() const
128 {
129   return GetDPhi();
130 }
131 G4double G4UCons::GetSinStartPhi() const
132 {
133   G4double phi = GetStartPhiAngle();
134   return std::sin(phi);
135 }
136 G4double G4UCons::GetCosStartPhi() const
137 {
138   G4double phi = GetStartPhiAngle();
139   return std::cos(phi);
140 }
141 G4double G4UCons::GetSinEndPhi() const
142 {
143   G4double phi = GetStartPhiAngle() + GetDeltaPhiAngle();
144   return std::sin(phi);
145 }
146 G4double G4UCons::GetCosEndPhi() const
147 {
148   G4double phi = GetStartPhiAngle() + GetDeltaPhiAngle();
149   return std::cos(phi);
150 }
151   
152 void G4UCons::SetInnerRadiusMinusZ(G4double Rmin1)
153 {
154   SetRmin1(Rmin1);
155   fRebuildPolyhedron = true;
156 }
157 void G4UCons::SetOuterRadiusMinusZ(G4double Rmax1)
158 {
159   SetRmax1(Rmax1);
160   fRebuildPolyhedron = true;
161 }
162 void G4UCons::SetInnerRadiusPlusZ(G4double Rmin2)
163 {
164   SetRmin2(Rmin2);
165   fRebuildPolyhedron = true;
166 }
167 void G4UCons::SetOuterRadiusPlusZ(G4double Rmax2)
168 {
169   SetRmax2(Rmax2);
170   fRebuildPolyhedron = true;
171 }
172 void G4UCons::SetZHalfLength(G4double newDz)
173 {
174   SetDz(newDz);
175   fRebuildPolyhedron = true;
176 }
177 void G4UCons::SetStartPhiAngle(G4double newSPhi, G4bool)
178 {
179   SetSPhi(newSPhi);
180   fRebuildPolyhedron = true;
181 }
182 void G4UCons::SetDeltaPhiAngle(G4double newDPhi)
183 {
184   SetDPhi(newDPhi);
185   fRebuildPolyhedron = true;
186 }
187 
188 /////////////////////////////////////////////////////////////////////////
189 //
190 // Dispatch to parameterisation for replication mechanism dimension
191 // computation & modification.
192 
193 void G4UCons::ComputeDimensions(      G4VPVParameterisation* p,
194                                 const G4int                  n,
195                                 const G4VPhysicalVolume*     pRep    )
196 {
197   p->ComputeDimensions(*(G4Cons*)this,n,pRep);
198 }
199 
200 //////////////////////////////////////////////////////////////////////////
201 //
202 // Make a clone of the object
203 
204 G4VSolid* G4UCons::Clone() const
205 {
206   return new G4UCons(*this);
207 }
208 
209 //////////////////////////////////////////////////////////////////////////
210 //
211 // Get bounding box
212 
213 void G4UCons::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
214 {
215   static G4bool checkBBox = true;
216 
217   G4double rmin = std::min(GetInnerRadiusMinusZ(),GetInnerRadiusPlusZ());
218   G4double rmax = std::max(GetOuterRadiusMinusZ(),GetOuterRadiusPlusZ());
219   G4double dz   = GetZHalfLength();
220 
221   // Find bounding box
222   //
223   if (GetDeltaPhiAngle() < twopi)
224   {
225     G4TwoVector vmin,vmax;
226     G4GeomTools::DiskExtent(rmin,rmax,
227                             GetSinStartPhi(),GetCosStartPhi(),
228                             GetSinEndPhi(),GetCosEndPhi(),
229                             vmin,vmax);
230     pMin.set(vmin.x(),vmin.y(),-dz);
231     pMax.set(vmax.x(),vmax.y(), dz);
232   }
233   else
234   {
235     pMin.set(-rmax,-rmax,-dz);
236     pMax.set( rmax, rmax, dz);
237   }
238 
239   // Check correctness of the bounding box
240   //
241   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
242   {
243     std::ostringstream message;
244     message << "Bad bounding box (min >= max) for solid: "
245             << GetName() << " !"
246             << "\npMin = " << pMin
247             << "\npMax = " << pMax;
248     G4Exception("G4UCons::BoundingLimits()", "GeomMgt0001",
249                 JustWarning, message);
250     StreamInfo(G4cout);
251   }
252 
253   // Check consistency of bounding boxes
254   //
255   if (checkBBox)
256   {
257     U3Vector vmin, vmax;
258     Extent(vmin,vmax);
259     if (std::abs(pMin.x()-vmin.x()) > kCarTolerance ||
260         std::abs(pMin.y()-vmin.y()) > kCarTolerance ||
261         std::abs(pMin.z()-vmin.z()) > kCarTolerance ||
262         std::abs(pMax.x()-vmax.x()) > kCarTolerance ||
263         std::abs(pMax.y()-vmax.y()) > kCarTolerance ||
264         std::abs(pMax.z()-vmax.z()) > kCarTolerance)
265     {
266       std::ostringstream message;
267       message << "Inconsistency in bounding boxes for solid: "
268               << GetName() << " !"
269               << "\nBBox min: wrapper = " << pMin << " solid = " << vmin
270               << "\nBBox max: wrapper = " << pMax << " solid = " << vmax;
271       G4Exception("G4UCons::BoundingLimits()", "GeomMgt0001",
272                   JustWarning, message);
273       checkBBox = false;
274     }
275   }
276 }
277 
278 /////////////////////////////////////////////////////////////////////////
279 //
280 // Calculate extent under transform and specified limit
281 
282 G4bool
283 G4UCons::CalculateExtent(const EAxis pAxis,
284                          const G4VoxelLimits& pVoxelLimit,
285                          const G4AffineTransform& pTransform,
286                                G4double& pMin, G4double& pMax) const
287 {
288   G4ThreeVector bmin, bmax;
289   G4bool exist;
290 
291   // Get bounding box
292   BoundingLimits(bmin,bmax);
293 
294   // Check bounding box
295   G4BoundingEnvelope bbox(bmin,bmax);
296 #ifdef G4BBOX_EXTENT
297   if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
298 #endif
299   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
300   {
301     return exist = pMin < pMax;
302   }
303 
304   // Get parameters of the solid
305   G4double rmin1 = GetInnerRadiusMinusZ();
306   G4double rmax1 = GetOuterRadiusMinusZ();
307   G4double rmin2 = GetInnerRadiusPlusZ();
308   G4double rmax2 = GetOuterRadiusPlusZ();
309   G4double dz    = GetZHalfLength();
310   G4double dphi  = GetDeltaPhiAngle();
311 
312   // Find bounding envelope and calculate extent
313   //
314   const G4int NSTEPS = 24;            // number of steps for whole circle
315   G4double astep  = twopi/NSTEPS;     // max angle for one step
316   G4int    ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
317   G4double ang    = dphi/ksteps;
318 
319   G4double sinHalf = std::sin(0.5*ang);
320   G4double cosHalf = std::cos(0.5*ang);
321   G4double sinStep = 2.*sinHalf*cosHalf;
322   G4double cosStep = 1. - 2.*sinHalf*sinHalf;
323   G4double rext1   = rmax1/cosHalf;
324   G4double rext2   = rmax2/cosHalf;
325 
326   // bounding envelope for full cone without hole consists of two polygons,
327   // in other cases it is a sequence of quadrilaterals
328   if (rmin1 == 0 && rmin2 == 0 && dphi == twopi)
329   {
330     G4double sinCur = sinHalf;
331     G4double cosCur = cosHalf;
332 
333     G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS);
334     for (G4int k=0; k<NSTEPS; ++k)
335     {
336       baseA[k].set(rext1*cosCur,rext1*sinCur,-dz);
337       baseB[k].set(rext2*cosCur,rext2*sinCur, dz);
338 
339       G4double sinTmp = sinCur;
340       sinCur = sinCur*cosStep + cosCur*sinStep;
341       cosCur = cosCur*cosStep - sinTmp*sinStep;
342     }
343     std::vector<const G4ThreeVectorList *> polygons(2);
344     polygons[0] = &baseA;
345     polygons[1] = &baseB;
346     G4BoundingEnvelope benv(bmin,bmax,polygons);
347     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
348   }
349   else
350   {
351     G4double sinStart = GetSinStartPhi();
352     G4double cosStart = GetCosStartPhi();
353     G4double sinEnd   = GetSinEndPhi();
354     G4double cosEnd   = GetCosEndPhi();
355     G4double sinCur   = sinStart*cosHalf + cosStart*sinHalf;
356     G4double cosCur   = cosStart*cosHalf - sinStart*sinHalf;
357 
358     // set quadrilaterals
359     G4ThreeVectorList pols[NSTEPS+2];
360     for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4);
361     pols[0][0].set(rmin2*cosStart,rmin2*sinStart, dz);
362     pols[0][1].set(rmin1*cosStart,rmin1*sinStart,-dz);
363     pols[0][2].set(rmax1*cosStart,rmax1*sinStart,-dz);
364     pols[0][3].set(rmax2*cosStart,rmax2*sinStart, dz);
365     for (G4int k=1; k<ksteps+1; ++k)
366     {
367       pols[k][0].set(rmin2*cosCur,rmin2*sinCur, dz);
368       pols[k][1].set(rmin1*cosCur,rmin1*sinCur,-dz);
369       pols[k][2].set(rext1*cosCur,rext1*sinCur,-dz);
370       pols[k][3].set(rext2*cosCur,rext2*sinCur, dz);
371 
372       G4double sinTmp = sinCur;
373       sinCur = sinCur*cosStep + cosCur*sinStep;
374       cosCur = cosCur*cosStep - sinTmp*sinStep;
375     }
376     pols[ksteps+1][0].set(rmin2*cosEnd,rmin2*sinEnd, dz);
377     pols[ksteps+1][1].set(rmin1*cosEnd,rmin1*sinEnd,-dz);
378     pols[ksteps+1][2].set(rmax1*cosEnd,rmax1*sinEnd,-dz);
379     pols[ksteps+1][3].set(rmax2*cosEnd,rmax2*sinEnd, dz);
380 
381     // set envelope and calculate extent
382     std::vector<const G4ThreeVectorList *> polygons;
383     polygons.resize(ksteps+2);
384     for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k];
385     G4BoundingEnvelope benv(bmin,bmax,polygons);
386     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
387   }
388   return exist;
389 }
390 
391 //////////////////////////////////////////////////////////////////////////
392 //
393 // Create polyhedron for visualization
394 
395 G4Polyhedron* G4UCons::CreatePolyhedron() const
396 {
397   return new G4PolyhedronCons(GetInnerRadiusMinusZ(),
398                               GetOuterRadiusMinusZ(),
399                               GetInnerRadiusPlusZ(),
400                               GetOuterRadiusPlusZ(),
401                               GetZHalfLength(),
402                               GetStartPhiAngle(),
403                               GetDeltaPhiAngle());
404 }
405 
406 #endif  // G4GEOM_USE_USOLIDS
407