Geant4 Cross Reference

Cross-Referencing   Geant4
Geant4/geometry/solids/CSG/src/G4Tubs.cc

Version: [ ReleaseNotes ] [ 1.0 ] [ 1.1 ] [ 2.0 ] [ 3.0 ] [ 3.1 ] [ 3.2 ] [ 4.0 ] [ 4.0.p1 ] [ 4.0.p2 ] [ 4.1 ] [ 4.1.p1 ] [ 5.0 ] [ 5.0.p1 ] [ 5.1 ] [ 5.1.p1 ] [ 5.2 ] [ 5.2.p1 ] [ 5.2.p2 ] [ 6.0 ] [ 6.0.p1 ] [ 6.1 ] [ 6.2 ] [ 6.2.p1 ] [ 6.2.p2 ] [ 7.0 ] [ 7.0.p1 ] [ 7.1 ] [ 7.1.p1 ] [ 8.0 ] [ 8.0.p1 ] [ 8.1 ] [ 8.1.p1 ] [ 8.1.p2 ] [ 8.2 ] [ 8.2.p1 ] [ 8.3 ] [ 8.3.p1 ] [ 8.3.p2 ] [ 9.0 ] [ 9.0.p1 ] [ 9.0.p2 ] [ 9.1 ] [ 9.1.p1 ] [ 9.1.p2 ] [ 9.1.p3 ] [ 9.2 ] [ 9.2.p1 ] [ 9.2.p2 ] [ 9.2.p3 ] [ 9.2.p4 ] [ 9.3 ] [ 9.3.p1 ] [ 9.3.p2 ] [ 9.4 ] [ 9.4.p1 ] [ 9.4.p2 ] [ 9.4.p3 ] [ 9.4.p4 ] [ 9.5 ] [ 9.5.p1 ] [ 9.5.p2 ] [ 9.6 ] [ 9.6.p1 ] [ 9.6.p2 ] [ 9.6.p3 ] [ 9.6.p4 ] [ 10.0 ] [ 10.0.p1 ] [ 10.0.p2 ] [ 10.0.p3 ] [ 10.0.p4 ] [ 10.1 ] [ 10.1.p1 ] [ 10.1.p2 ] [ 10.1.p3 ] [ 10.2 ] [ 10.2.p1 ] [ 10.2.p2 ] [ 10.2.p3 ] [ 10.3 ] [ 10.3.p1 ] [ 10.3.p2 ] [ 10.3.p3 ] [ 10.4 ] [ 10.4.p1 ] [ 10.4.p2 ] [ 10.4.p3 ] [ 10.5 ] [ 10.5.p1 ] [ 10.6 ] [ 10.6.p1 ] [ 10.6.p2 ] [ 10.6.p3 ] [ 10.7 ] [ 10.7.p1 ] [ 10.7.p2 ] [ 10.7.p3 ] [ 10.7.p4 ] [ 11.0 ] [ 11.0.p1 ] [ 11.0.p2 ] [ 11.0.p3, ] [ 11.0.p4 ] [ 11.1 ] [ 11.1.1 ] [ 11.1.2 ] [ 11.1.3 ] [ 11.2 ] [ 11.2.1 ] [ 11.2.2 ] [ 11.3.0 ]

  1 //
  2 // ********************************************************************
  3 // * License and Disclaimer                                           *
  4 // *                                                                  *
  5 // * The  Geant4 software  is  copyright of the Copyright Holders  of *
  6 // * the Geant4 Collaboration.  It is provided  under  the terms  and *
  7 // * conditions of the Geant4 Software License,  included in the file *
  8 // * LICENSE and available at  http://cern.ch/geant4/license .  These *
  9 // * include a list of copyright holders.                             *
 10 // *                                                                  *
 11 // * Neither the authors of this software system, nor their employing *
 12 // * institutes,nor the agencies providing financial support for this *
 13 // * work  make  any representation or  warranty, express or implied, *
 14 // * regarding  this  software system or assume any liability for its *
 15 // * use.  Please see the license in the file  LICENSE  and URL above *
 16 // * for the full disclaimer and the limitation of liability.         *
 17 // *                                                                  *
 18 // * This  code  implementation is the result of  the  scientific and *
 19 // * technical work of the GEANT4 collaboration.                      *
 20 // * By using,  copying,  modifying or  distributing the software (or *
 21 // * any work based  on the software)  you  agree  to acknowledge its *
 22 // * use  in  resulting  scientific  publications,  and indicate your *
 23 // * acceptance of all terms of the Geant4 Software license.          *
 24 // ********************************************************************
 25 //
 26 // G4Tubs implementation
 27 //
 28 // 1994-95 P.Kent: first implementation
 29 // 08.08.00 V.Grichine: more stable roots of 2-equation in DistanceToOut(p,v,..)
 30 // 07.12.00 V.Grichine: phi-section algorithm was changed in Inside(p)
 31 // 03.05.05 V.Grichine: SurfaceNormal(p) according to J.Apostolakis proposal
 32 // 24.08.16 E.Tcherniaev: reimplemented CalculateExtent().
 33 // --------------------------------------------------------------------
 34 
 35 #include "G4Tubs.hh"
 36 
 37 #if !defined(G4GEOM_USE_UTUBS)
 38 
 39 #include "G4GeomTools.hh"
 40 #include "G4VoxelLimits.hh"
 41 #include "G4AffineTransform.hh"
 42 #include "G4GeometryTolerance.hh"
 43 #include "G4BoundingEnvelope.hh"
 44 
 45 #include "G4VPVParameterisation.hh"
 46 #include "G4QuickRand.hh"
 47 
 48 #include "G4VGraphicsScene.hh"
 49 #include "G4Polyhedron.hh"
 50 
 51 using namespace CLHEP;
 52 
 53 /////////////////////////////////////////////////////////////////////////
 54 //
 55 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
 56 //             - note if pdphi>2PI then reset to 2PI
 57 
 58 G4Tubs::G4Tubs( const G4String& pName,
 59                       G4double pRMin, G4double pRMax,
 60                       G4double pDz,
 61                       G4double pSPhi, G4double pDPhi )
 62    : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRMax), fDz(pDz),
 63      fSPhi(0), fDPhi(0),
 64      fInvRmax( pRMax > 0.0 ? 1.0/pRMax : 0.0 ),
 65      fInvRmin( pRMin > 0.0 ? 1.0/pRMin : 0.0 )
 66 {
 67   kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance();
 68   kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance();
 69 
 70   halfCarTolerance=kCarTolerance*0.5;
 71   halfRadTolerance=kRadTolerance*0.5;
 72   halfAngTolerance=kAngTolerance*0.5;
 73 
 74   if (pDz<=0) // Check z-len
 75   {
 76     std::ostringstream message;
 77     message << "Negative Z half-length (" << pDz << ") in solid: " << GetName();
 78     G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message);
 79   }
 80   if ( (pRMin >= pRMax) || (pRMin < 0) ) // Check radii
 81   {
 82     std::ostringstream message;
 83     message << "Invalid values for radii in solid: " << GetName()
 84             << G4endl
 85             << "        pRMin = " << pRMin << ", pRMax = " << pRMax;
 86     G4Exception("G4Tubs::G4Tubs()", "GeomSolids0002", FatalException, message);
 87   }
 88 
 89   // Check angles
 90   //
 91   CheckPhiAngles(pSPhi, pDPhi);
 92 }
 93 
 94 ///////////////////////////////////////////////////////////////////////
 95 //
 96 // Fake default constructor - sets only member data and allocates memory
 97 //                            for usage restricted to object persistency.
 98 //
 99 G4Tubs::G4Tubs( __void__& a )
100   : G4CSGSolid(a)
101 {
102 }
103 
104 //////////////////////////////////////////////////////////////////////////
105 //
106 // Destructor
107 
108 G4Tubs::~G4Tubs() = default;
109 
110 //////////////////////////////////////////////////////////////////////////
111 //
112 // Copy constructor
113 
114 G4Tubs::G4Tubs(const G4Tubs&) = default;
115 
116 //////////////////////////////////////////////////////////////////////////
117 //
118 // Assignment operator
119 
120 G4Tubs& G4Tubs::operator = (const G4Tubs& rhs)
121 {
122    // Check assignment to self
123    //
124    if (this == &rhs)  { return *this; }
125 
126    // Copy base class data
127    //
128    G4CSGSolid::operator=(rhs);
129 
130    // Copy data
131    //
132    kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance;
133    fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = rhs.fDz;
134    fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi;
135    sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi; cosHDPhi = rhs.cosHDPhi;
136    cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT;
137    sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi;
138    sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi;
139    fPhiFullTube = rhs.fPhiFullTube;
140    fInvRmax = rhs.fInvRmax;
141    fInvRmin = rhs.fInvRmin;
142    halfCarTolerance = rhs.halfCarTolerance;
143    halfRadTolerance = rhs.halfRadTolerance;
144    halfAngTolerance = rhs.halfAngTolerance;
145 
146    return *this;
147 }
148 
149 /////////////////////////////////////////////////////////////////////////
150 //
151 // Dispatch to parameterisation for replication mechanism dimension
152 // computation & modification.
153 
154 void G4Tubs::ComputeDimensions(       G4VPVParameterisation* p,
155                                 const G4int n,
156                                 const G4VPhysicalVolume* pRep )
157 {
158   p->ComputeDimensions(*this,n,pRep) ;
159 }
160 
161 /////////////////////////////////////////////////////////////////////////
162 //
163 // Get bounding box
164 
165 void G4Tubs::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const
166 {
167   G4double rmin = GetInnerRadius();
168   G4double rmax = GetOuterRadius();
169   G4double dz   = GetZHalfLength();
170 
171   // Find bounding box
172   //
173   if (GetDeltaPhiAngle() < twopi)
174   {
175     G4TwoVector vmin,vmax;
176     G4GeomTools::DiskExtent(rmin,rmax,
177                             GetSinStartPhi(),GetCosStartPhi(),
178                             GetSinEndPhi(),GetCosEndPhi(),
179                             vmin,vmax);
180     pMin.set(vmin.x(),vmin.y(),-dz);
181     pMax.set(vmax.x(),vmax.y(), dz);
182   }
183   else
184   {
185     pMin.set(-rmax,-rmax,-dz);
186     pMax.set( rmax, rmax, dz);
187   }
188 
189   // Check correctness of the bounding box
190   //
191   if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
192   {
193     std::ostringstream message;
194     message << "Bad bounding box (min >= max) for solid: "
195             << GetName() << " !"
196             << "\npMin = " << pMin
197             << "\npMax = " << pMax;
198     G4Exception("G4Tubs::BoundingLimits()", "GeomMgt0001",
199                 JustWarning, message);
200     DumpInfo();
201   }
202 }
203 
204 /////////////////////////////////////////////////////////////////////////
205 //
206 // Calculate extent under transform and specified limit
207 
208 G4bool G4Tubs::CalculateExtent( const EAxis              pAxis,
209                                 const G4VoxelLimits&     pVoxelLimit,
210                                 const G4AffineTransform& pTransform,
211                                       G4double&          pMin,
212                                       G4double&          pMax    ) const
213 {
214   G4ThreeVector bmin, bmax;
215   G4bool exist;
216 
217   // Get bounding box
218   BoundingLimits(bmin,bmax);
219 
220   // Check bounding box
221   G4BoundingEnvelope bbox(bmin,bmax);
222 #ifdef G4BBOX_EXTENT
223   return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
224 #endif
225   if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
226   {
227     return exist = pMin < pMax;
228   }
229 
230   // Get parameters of the solid
231   G4double rmin = GetInnerRadius();
232   G4double rmax = GetOuterRadius();
233   G4double dz   = GetZHalfLength();
234   G4double dphi = GetDeltaPhiAngle();
235 
236   // Find bounding envelope and calculate extent
237   //
238   const G4int NSTEPS = 24;            // number of steps for whole circle
239   G4double astep  = twopi/NSTEPS;     // max angle for one step
240   G4int    ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
241   G4double ang    = dphi/ksteps;
242 
243   G4double sinHalf = std::sin(0.5*ang);
244   G4double cosHalf = std::cos(0.5*ang);
245   G4double sinStep = 2.*sinHalf*cosHalf;
246   G4double cosStep = 1. - 2.*sinHalf*sinHalf;
247   G4double rext    = rmax/cosHalf;
248 
249   // bounding envelope for full cylinder consists of two polygons,
250   // in other cases it is a sequence of quadrilaterals
251   if (rmin == 0 && dphi == twopi)
252   {
253     G4double sinCur = sinHalf;
254     G4double cosCur = cosHalf;
255 
256     G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS);
257     for (G4int k=0; k<NSTEPS; ++k)
258     {
259       baseA[k].set(rext*cosCur,rext*sinCur,-dz);
260       baseB[k].set(rext*cosCur,rext*sinCur, dz);
261 
262       G4double sinTmp = sinCur;
263       sinCur = sinCur*cosStep + cosCur*sinStep;
264       cosCur = cosCur*cosStep - sinTmp*sinStep;
265     }
266     std::vector<const G4ThreeVectorList *> polygons(2);
267     polygons[0] = &baseA;
268     polygons[1] = &baseB;
269     G4BoundingEnvelope benv(bmin,bmax,polygons);
270     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
271   }
272   else
273   {
274     G4double sinStart = GetSinStartPhi();
275     G4double cosStart = GetCosStartPhi();
276     G4double sinEnd   = GetSinEndPhi();
277     G4double cosEnd   = GetCosEndPhi();
278     G4double sinCur   = sinStart*cosHalf + cosStart*sinHalf;
279     G4double cosCur   = cosStart*cosHalf - sinStart*sinHalf;
280 
281     // set quadrilaterals
282     G4ThreeVectorList pols[NSTEPS+2];
283     for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4);
284     pols[0][0].set(rmin*cosStart,rmin*sinStart, dz);
285     pols[0][1].set(rmin*cosStart,rmin*sinStart,-dz);
286     pols[0][2].set(rmax*cosStart,rmax*sinStart,-dz);
287     pols[0][3].set(rmax*cosStart,rmax*sinStart, dz);
288     for (G4int k=1; k<ksteps+1; ++k)
289     {
290       pols[k][0].set(rmin*cosCur,rmin*sinCur, dz);
291       pols[k][1].set(rmin*cosCur,rmin*sinCur,-dz);
292       pols[k][2].set(rext*cosCur,rext*sinCur,-dz);
293       pols[k][3].set(rext*cosCur,rext*sinCur, dz);
294 
295       G4double sinTmp = sinCur;
296       sinCur = sinCur*cosStep + cosCur*sinStep;
297       cosCur = cosCur*cosStep - sinTmp*sinStep;
298     }
299     pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd, dz);
300     pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,-dz);
301     pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,-dz);
302     pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd, dz);
303 
304     // set envelope and calculate extent
305     std::vector<const G4ThreeVectorList *> polygons;
306     polygons.resize(ksteps+2);
307     for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k];
308     G4BoundingEnvelope benv(bmin,bmax,polygons);
309     exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
310   }
311   return exist;
312 }
313 
314 ///////////////////////////////////////////////////////////////////////////
315 //
316 // Return whether point inside/outside/on surface
317 
318 EInside G4Tubs::Inside( const G4ThreeVector& p ) const
319 {
320   G4double r2,pPhi,tolRMin,tolRMax;
321   EInside in = kOutside ;
322 
323   if (std::fabs(p.z()) <= fDz - halfCarTolerance)
324   {
325     r2 = p.x()*p.x() + p.y()*p.y() ;
326 
327     if (fRMin != 0.0) { tolRMin = fRMin + halfRadTolerance ; }
328     else       { tolRMin = 0 ; }
329 
330     tolRMax = fRMax - halfRadTolerance ;
331 
332     if ((r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax))
333     {
334       if ( fPhiFullTube )
335       {
336         in = kInside ;
337       }
338       else
339       {
340         // Try inner tolerant phi boundaries (=>inside)
341         // if not inside, try outer tolerant phi boundaries
342 
343         if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance)
344                           && (std::fabs(p.y())<=halfCarTolerance) )
345         {
346           in=kSurface;
347         }
348         else
349         {
350           pPhi = std::atan2(p.y(),p.x()) ;
351           if ( pPhi < -halfAngTolerance )  { pPhi += twopi; } // 0<=pPhi<2pi
352 
353           if ( fSPhi >= 0 )
354           {
355             if ( (std::fabs(pPhi) < halfAngTolerance)
356               && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
357             {
358               pPhi += twopi ; // 0 <= pPhi < 2pi
359             }
360             if ( (pPhi >= fSPhi + halfAngTolerance)
361               && (pPhi <= fSPhi + fDPhi - halfAngTolerance) )
362             {
363               in = kInside ;
364             }
365             else if ( (pPhi >= fSPhi - halfAngTolerance)
366                    && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
367             {
368               in = kSurface ;
369             }
370           }
371           else  // fSPhi < 0
372           {
373             if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
374               && (pPhi >= fSPhi + fDPhi  + halfAngTolerance) ) {;} //kOutside
375             else if ( (pPhi <= fSPhi + twopi + halfAngTolerance)
376                    && (pPhi >= fSPhi + fDPhi  - halfAngTolerance) )
377             {
378               in = kSurface ;
379             }
380             else
381             {
382               in = kInside ;
383             }
384           }
385         }
386       }
387     }
388     else  // Try generous boundaries
389     {
390       tolRMin = fRMin - halfRadTolerance ;
391       tolRMax = fRMax + halfRadTolerance ;
392 
393       if ( tolRMin < 0 )  { tolRMin = 0; }
394 
395       if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) )
396       {
397         if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance) )
398         {                        // Continuous in phi or on z-axis
399           in = kSurface ;
400         }
401         else // Try outer tolerant phi boundaries only
402         {
403           pPhi = std::atan2(p.y(),p.x()) ;
404 
405           if ( pPhi < -halfAngTolerance)  { pPhi += twopi; } // 0<=pPhi<2pi
406           if ( fSPhi >= 0 )
407           {
408             if ( (std::fabs(pPhi) < halfAngTolerance)
409               && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
410             {
411               pPhi += twopi ; // 0 <= pPhi < 2pi
412             }
413             if ( (pPhi >= fSPhi - halfAngTolerance)
414               && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
415             {
416               in = kSurface ;
417             }
418           }
419           else  // fSPhi < 0
420           {
421             if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
422               && (pPhi >= fSPhi + fDPhi + halfAngTolerance) ) {;} // kOutside
423             else
424             {
425               in = kSurface ;
426             }
427           }
428         }
429       }
430     }
431   }
432   else if (std::fabs(p.z()) <= fDz + halfCarTolerance)
433   {                                          // Check within tolerant r limits
434     r2      = p.x()*p.x() + p.y()*p.y() ;
435     tolRMin = fRMin - halfRadTolerance ;
436     tolRMax = fRMax + halfRadTolerance ;
437 
438     if ( tolRMin < 0 )  { tolRMin = 0; }
439 
440     if ( (r2 >= tolRMin*tolRMin) && (r2 <= tolRMax*tolRMax) )
441     {
442       if (fPhiFullTube || (r2 <=halfRadTolerance*halfRadTolerance))
443       {                        // Continuous in phi or on z-axis
444         in = kSurface ;
445       }
446       else // Try outer tolerant phi boundaries
447       {
448         pPhi = std::atan2(p.y(),p.x()) ;
449 
450         if ( pPhi < -halfAngTolerance )  { pPhi += twopi; }  // 0<=pPhi<2pi
451         if ( fSPhi >= 0 )
452         {
453           if ( (std::fabs(pPhi) < halfAngTolerance)
454             && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
455           {
456             pPhi += twopi ; // 0 <= pPhi < 2pi
457           }
458           if ( (pPhi >= fSPhi - halfAngTolerance)
459             && (pPhi <= fSPhi + fDPhi + halfAngTolerance) )
460           {
461             in = kSurface;
462           }
463         }
464         else  // fSPhi < 0
465         {
466           if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
467             && (pPhi >= fSPhi + fDPhi  + halfAngTolerance) ) {;}
468           else
469           {
470             in = kSurface ;
471           }
472         }
473       }
474     }
475   }
476   return in;
477 }
478 
479 ///////////////////////////////////////////////////////////////////////////
480 //
481 // Return unit normal of surface closest to p
482 // - note if point on z axis, ignore phi divided sides
483 // - unsafe if point close to z axis a rmin=0 - no explicit checks
484 
485 G4ThreeVector G4Tubs::SurfaceNormal( const G4ThreeVector& p ) const
486 {
487   G4int noSurfaces = 0;
488   G4double rho, pPhi;
489   G4double distZ, distRMin, distRMax;
490   G4double distSPhi = kInfinity, distEPhi = kInfinity;
491 
492   G4ThreeVector norm, sumnorm(0.,0.,0.);
493   G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0);
494   G4ThreeVector nR, nPs, nPe;
495 
496   rho = std::sqrt(p.x()*p.x() + p.y()*p.y());
497 
498   distRMin = std::fabs(rho - fRMin);
499   distRMax = std::fabs(rho - fRMax);
500   distZ    = std::fabs(std::fabs(p.z()) - fDz);
501 
502   if (!fPhiFullTube)    // Protected against (0,0,z)
503   {
504     if ( rho > halfCarTolerance )
505     {
506       pPhi = std::atan2(p.y(),p.x());
507 
508       if (pPhi  < fSPhi-halfCarTolerance)            { pPhi += twopi; }
509       else if (pPhi > fSPhi+fDPhi+halfCarTolerance)  { pPhi -= twopi; }
510 
511       distSPhi = std::fabs( pPhi - fSPhi );
512       distEPhi = std::fabs( pPhi - fSPhi - fDPhi );
513     }
514     else if ( fRMin == 0.0 )
515     {
516       distSPhi = 0.;
517       distEPhi = 0.;
518     }
519     nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 );
520     nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 );
521   }
522   if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); }
523 
524   if( distRMax <= halfCarTolerance )
525   {
526     ++noSurfaces;
527     sumnorm += nR;
528   }
529   if( (fRMin != 0.0) && (distRMin <= halfCarTolerance) )
530   {
531     ++noSurfaces;
532     sumnorm -= nR;
533   }
534   if( fDPhi < twopi )
535   {
536     if (distSPhi <= halfAngTolerance)
537     {
538       ++noSurfaces;
539       sumnorm += nPs;
540     }
541     if (distEPhi <= halfAngTolerance)
542     {
543       ++noSurfaces;
544       sumnorm += nPe;
545     }
546   }
547   if (distZ <= halfCarTolerance)
548   {
549     ++noSurfaces;
550     if ( p.z() >= 0.)  { sumnorm += nZ; }
551     else               { sumnorm -= nZ; }
552   }
553   if ( noSurfaces == 0 )
554   {
555 #ifdef G4CSGDEBUG
556     G4Exception("G4Tubs::SurfaceNormal(p)", "GeomSolids1002",
557                 JustWarning, "Point p is not on surface !?" );
558     G4long oldprc = G4cout.precision(20);
559     G4cout<< "G4Tubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); "
560           << G4endl << G4endl;
561     G4cout.precision(oldprc) ;
562 #endif
563      norm = ApproxSurfaceNormal(p);
564   }
565   else if ( noSurfaces == 1 )  { norm = sumnorm; }
566   else                         { norm = sumnorm.unit(); }
567 
568   return norm;
569 }
570 
571 /////////////////////////////////////////////////////////////////////////////
572 //
573 // Algorithm for SurfaceNormal() following the original specification
574 // for points not on the surface
575 
576 G4ThreeVector G4Tubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const
577 {
578   ENorm side ;
579   G4ThreeVector norm ;
580   G4double rho, phi ;
581   G4double distZ, distRMin, distRMax, distSPhi, distEPhi, distMin ;
582 
583   rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
584 
585   distRMin = std::fabs(rho - fRMin) ;
586   distRMax = std::fabs(rho - fRMax) ;
587   distZ    = std::fabs(std::fabs(p.z()) - fDz) ;
588 
589   if (distRMin < distRMax) // First minimum
590   {
591     if ( distZ < distRMin )
592     {
593        distMin = distZ ;
594        side    = kNZ ;
595     }
596     else
597     {
598       distMin = distRMin ;
599       side    = kNRMin   ;
600     }
601   }
602   else
603   {
604     if ( distZ < distRMax )
605     {
606       distMin = distZ ;
607       side    = kNZ   ;
608     }
609     else
610     {
611       distMin = distRMax ;
612       side    = kNRMax   ;
613     }
614   }
615   if (!fPhiFullTube  &&  (rho != 0.0) ) // Protected against (0,0,z)
616   {
617     phi = std::atan2(p.y(),p.x()) ;
618 
619     if ( phi < 0 )  { phi += twopi; }
620 
621     if ( fSPhi < 0 )
622     {
623       distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ;
624     }
625     else
626     {
627       distSPhi = std::fabs(phi - fSPhi)*rho ;
628     }
629     distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ;
630 
631     if (distSPhi < distEPhi) // Find new minimum
632     {
633       if ( distSPhi < distMin )
634       {
635         side = kNSPhi ;
636       }
637     }
638     else
639     {
640       if ( distEPhi < distMin )
641       {
642         side = kNEPhi ;
643       }
644     }
645   }
646   switch ( side )
647   {
648     case kNRMin : // Inner radius
649     {
650       norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ;
651       break ;
652     }
653     case kNRMax : // Outer radius
654     {
655       norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ;
656       break ;
657     }
658     case kNZ :    // + or - dz
659     {
660       if ( p.z() > 0 )  { norm = G4ThreeVector(0,0,1) ; }
661       else              { norm = G4ThreeVector(0,0,-1); }
662       break ;
663     }
664     case kNSPhi:
665     {
666       norm = G4ThreeVector(sinSPhi, -cosSPhi, 0) ;
667       break ;
668     }
669     case kNEPhi:
670     {
671       norm = G4ThreeVector(-sinEPhi, cosEPhi, 0) ;
672       break;
673     }
674     default:      // Should never reach this case ...
675     {
676       DumpInfo();
677       G4Exception("G4Tubs::ApproxSurfaceNormal()",
678                   "GeomSolids1002", JustWarning,
679                   "Undefined side for valid surface normal to solid.");
680       break ;
681     }
682   }
683   return norm;
684 }
685 
686 ////////////////////////////////////////////////////////////////////
687 //
688 //
689 // Calculate distance to shape from outside, along normalised vector
690 // - return kInfinity if no intersection, or intersection distance <= tolerance
691 //
692 // - Compute the intersection with the z planes
693 //        - if at valid r, phi, return
694 //
695 // -> If point is outer outer radius, compute intersection with rmax
696 //        - if at valid phi,z return
697 //
698 // -> Compute intersection with inner radius, taking largest +ve root
699 //        - if valid (in z,phi), save intersction
700 //
701 //    -> If phi segmented, compute intersections with phi half planes
702 //        - return smallest of valid phi intersections and
703 //          inner radius intersection
704 //
705 // NOTE:
706 // - 'if valid' implies tolerant checking of intersection points
707 
708 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p,
709                                const G4ThreeVector& v  ) const
710 {
711   G4double snxt = kInfinity ;      // snxt = default return value
712   G4double tolORMin2, tolIRMax2 ;  // 'generous' radii squared
713   G4double tolORMax2, tolIRMin2, tolODz, tolIDz ;
714   const G4double dRmax = 100.*fRMax;
715 
716   // Intersection point variables
717   //
718   G4double Dist, sd, xi, yi, zi, rho2, inum, iden, cosPsi, Comp ;
719   G4double t1, t2, t3, b, c, d ;     // Quadratic solver variables
720 
721   // Calculate tolerant rmin and rmax
722 
723   if (fRMin > kRadTolerance)
724   {
725     tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ;
726     tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ;
727   }
728   else
729   {
730     tolORMin2 = 0.0 ;
731     tolIRMin2 = 0.0 ;
732   }
733   tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ;
734   tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ;
735 
736   // Intersection with Z surfaces
737 
738   tolIDz = fDz - halfCarTolerance ;
739   tolODz = fDz + halfCarTolerance ;
740 
741   if (std::fabs(p.z()) >= tolIDz)
742   {
743     if ( p.z()*v.z() < 0 )    // at +Z going in -Z or visa versa
744     {
745       sd = (std::fabs(p.z()) - fDz)/std::fabs(v.z()) ;  // Z intersect distance
746 
747       if(sd < 0.0)  { sd = 0.0; }
748 
749       xi   = p.x() + sd*v.x() ;                // Intersection coords
750       yi   = p.y() + sd*v.y() ;
751       rho2 = xi*xi + yi*yi ;
752 
753       // Check validity of intersection
754 
755       if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2))
756       {
757         if (!fPhiFullTube && (rho2 != 0.0))
758         {
759           // Psi = angle made with central (average) phi of shape
760           //
761           inum   = xi*cosCPhi + yi*sinCPhi ;
762           iden   = std::sqrt(rho2) ;
763           cosPsi = inum/iden ;
764           if (cosPsi >= cosHDPhiIT)  { return sd ; }
765         }
766         else
767         {
768           return sd ;
769         }
770       }
771     }
772     else
773     {
774       if ( snxt<halfCarTolerance )  { snxt=0; }
775       return snxt ;  // On/outside extent, and heading away
776                      // -> cannot intersect
777     }
778   }
779 
780   // -> Can not intersect z surfaces
781   //
782   // Intersection with rmax (possible return) and rmin (must also check phi)
783   //
784   // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
785   //
786   // Intersects with x^2+y^2=R^2
787   //
788   // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
789   //            t1                t2                t3
790 
791   t1 = 1.0 - v.z()*v.z() ;
792   t2 = p.x()*v.x() + p.y()*v.y() ;
793   t3 = p.x()*p.x() + p.y()*p.y() ;
794 
795   if ( t1 > 0 )        // Check not || to z axis
796   {
797     b = t2/t1 ;
798     c = t3 - fRMax*fRMax ;
799     if ((t3 >= tolORMax2) && (t2<0))   // This also handles the tangent case
800     {
801       // Try outer cylinder intersection
802       //          c=(t3-fRMax*fRMax)/t1;
803 
804       c /= t1 ;
805       d = b*b - c ;
806 
807       if (d >= 0)  // If real root
808       {
809         sd = c/(-b+std::sqrt(d));
810         if (sd >= 0)  // If 'forwards'
811         {
812           if ( sd>dRmax ) // Avoid rounding errors due to precision issues on
813           {               // 64 bits systems. Split long distances and recompute
814             G4double fTerm = sd-std::fmod(sd,dRmax);
815             sd = fTerm + DistanceToIn(p+fTerm*v,v);
816           }
817           // Check z intersection
818           //
819           zi = p.z() + sd*v.z() ;
820           if (std::fabs(zi)<=tolODz)
821           {
822             // Z ok. Check phi intersection if reqd
823             //
824             if (fPhiFullTube)
825             {
826               return sd ;
827             }
828             else
829             {
830               xi     = p.x() + sd*v.x() ;
831               yi     = p.y() + sd*v.y() ;
832               cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ;
833               if (cosPsi >= cosHDPhiIT)  { return sd ; }
834             }
835           }  //  end if std::fabs(zi)
836         }    //  end if (sd>=0)
837       }      //  end if (d>=0)
838     }        //  end if (r>=fRMax)
839     else
840     {
841       // Inside outer radius :
842       // check not inside, and heading through tubs (-> 0 to in)
843 
844       if ((t3 > tolIRMin2) && (t2 < 0) && (std::fabs(p.z()) <= tolIDz))
845       {
846         // Inside both radii, delta r -ve, inside z extent
847 
848         if (!fPhiFullTube)
849         {
850           inum   = p.x()*cosCPhi + p.y()*sinCPhi ;
851           iden   = std::sqrt(t3) ;
852           cosPsi = inum/iden ;
853           if (cosPsi >= cosHDPhiIT)
854           {
855             // In the old version, the small negative tangent for the point
856             // on surface was not taken in account, and returning 0.0 ...
857             // New version: check the tangent for the point on surface and
858             // if no intersection, return kInfinity, if intersection instead
859             // return sd.
860             //
861             c = t3-fRMax*fRMax;
862             if ( c<=0.0 )
863             {
864               return 0.0;
865             }
866             else
867             {
868               c = c/t1 ;
869               d = b*b-c;
870               if ( d>=0.0 )
871               {
872                 snxt = c/(-b+std::sqrt(d)); // using safe solution
873                                             // for quadratic equation
874                 if ( snxt < halfCarTolerance ) { snxt=0; }
875                 return snxt ;
876               }
877               else
878               {
879                 return kInfinity;
880               }
881             }
882           }
883         }
884         else
885         {
886           // In the old version, the small negative tangent for the point
887           // on surface was not taken in account, and returning 0.0 ...
888           // New version: check the tangent for the point on surface and
889           // if no intersection, return kInfinity, if intersection instead
890           // return sd.
891           //
892           c = t3 - fRMax*fRMax;
893           if ( c<=0.0 )
894           {
895             return 0.0;
896           }
897           else
898           {
899             c = c/t1 ;
900             d = b*b-c;
901             if ( d>=0.0 )
902             {
903               snxt= c/(-b+std::sqrt(d)); // using safe solution
904                                          // for quadratic equation
905               if ( snxt < halfCarTolerance ) { snxt=0; }
906               return snxt ;
907             }
908             else
909             {
910               return kInfinity;
911             }
912           }
913         } // end if   (!fPhiFullTube)
914       }   // end if   (t3>tolIRMin2)
915     }     // end if   (Inside Outer Radius)
916     if ( fRMin != 0.0 )    // Try inner cylinder intersection
917     {
918       c = (t3 - fRMin*fRMin)/t1 ;
919       d = b*b - c ;
920       if ( d >= 0.0 )  // If real root
921       {
922         // Always want 2nd root - we are outside and know rmax Hit was bad
923         // - If on surface of rmin also need farthest root
924 
925         sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d));
926         if (sd >= -halfCarTolerance)  // check forwards
927         {
928           // Check z intersection
929           //
930           if(sd < 0.0)  { sd = 0.0; }
931           if ( sd>dRmax ) // Avoid rounding errors due to precision issues seen
932           {               // 64 bits systems. Split long distances and recompute
933             G4double fTerm = sd-std::fmod(sd,dRmax);
934             sd = fTerm + DistanceToIn(p+fTerm*v,v);
935           }
936           zi = p.z() + sd*v.z() ;
937           if (std::fabs(zi) <= tolODz)
938           {
939             // Z ok. Check phi
940             //
941             if ( fPhiFullTube )
942             {
943               return sd ;
944             }
945             else
946             {
947               xi     = p.x() + sd*v.x() ;
948               yi     = p.y() + sd*v.y() ;
949               cosPsi = (xi*cosCPhi + yi*sinCPhi)*fInvRmin;
950               if (cosPsi >= cosHDPhiIT)
951               {
952                 // Good inner radius isect
953                 // - but earlier phi isect still possible
954 
955                 snxt = sd ;
956               }
957             }
958           }        //    end if std::fabs(zi)
959         }          //    end if (sd>=0)
960       }            //    end if (d>=0)
961     }              //    end if (fRMin)
962   }
963 
964   // Phi segment intersection
965   //
966   // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
967   //
968   // o NOTE: Large duplication of code between sphi & ephi checks
969   //         -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
970   //            intersection check <=0 -> >=0
971   //         -> use some form of loop Construct ?
972   //
973   if ( !fPhiFullTube )
974   {
975     // First phi surface (Starting phi)
976     //
977     Comp    = v.x()*sinSPhi - v.y()*cosSPhi ;
978 
979     if ( Comp < 0 )  // Component in outwards normal dirn
980     {
981       Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
982 
983       if ( Dist < halfCarTolerance )
984       {
985         sd = Dist/Comp ;
986 
987         if (sd < snxt)
988         {
989           if ( sd < 0 )  { sd = 0.0; }
990           zi = p.z() + sd*v.z() ;
991           if ( std::fabs(zi) <= tolODz )
992           {
993             xi   = p.x() + sd*v.x() ;
994             yi   = p.y() + sd*v.y() ;
995             rho2 = xi*xi + yi*yi ;
996 
997             if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
998               || ( (rho2 >  tolORMin2) && (rho2 <  tolIRMin2)
999                 && ( v.y()*cosSPhi - v.x()*sinSPhi >  0 )
1000                 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 )     )
1001               || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1002                 && (v.y()*cosSPhi - v.x()*sinSPhi > 0)
1003                 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) )    )
1004             {
1005               // z and r intersections good
1006               // - check intersecting with correct half-plane
1007               //
1008               if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; }
1009             }
1010           }
1011         }
1012       }
1013     }
1014 
1015     // Second phi surface (Ending phi)
1016 
1017     Comp    = -(v.x()*sinEPhi - v.y()*cosEPhi) ;
1018 
1019     if (Comp < 0 )  // Component in outwards normal dirn
1020     {
1021       Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1022 
1023       if ( Dist < halfCarTolerance )
1024       {
1025         sd = Dist/Comp ;
1026 
1027         if (sd < snxt)
1028         {
1029           if ( sd < 0 )  { sd = 0; }
1030           zi = p.z() + sd*v.z() ;
1031           if ( std::fabs(zi) <= tolODz )
1032           {
1033             xi   = p.x() + sd*v.x() ;
1034             yi   = p.y() + sd*v.y() ;
1035             rho2 = xi*xi + yi*yi ;
1036             if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
1037                 || ( (rho2 > tolORMin2)  && (rho2 < tolIRMin2)
1038                   && (v.x()*sinEPhi - v.y()*cosEPhi >  0)
1039                   && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) )
1040                 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1041                   && (v.x()*sinEPhi - v.y()*cosEPhi > 0)
1042                   && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) )
1043             {
1044               // z and r intersections good
1045               // - check intersecting with correct half-plane
1046               //
1047               if ( (yi*cosCPhi-xi*sinCPhi) >= 0 ) { snxt = sd; }
1048             }                         //?? >=-halfCarTolerance
1049           }
1050         }
1051       }
1052     }         //  Comp < 0
1053   }           //  !fPhiFullTube
1054   if ( snxt<halfCarTolerance )  { snxt=0; }
1055   return snxt ;
1056 }
1057 
1058 //////////////////////////////////////////////////////////////////
1059 //
1060 // Calculate distance to shape from outside, along normalised vector
1061 // - return kInfinity if no intersection, or intersection distance <= tolerance
1062 //
1063 // - Compute the intersection with the z planes
1064 //        - if at valid r, phi, return
1065 //
1066 // -> If point is outer outer radius, compute intersection with rmax
1067 //        - if at valid phi,z return
1068 //
1069 // -> Compute intersection with inner radius, taking largest +ve root
1070 //        - if valid (in z,phi), save intersction
1071 //
1072 //    -> If phi segmented, compute intersections with phi half planes
1073 //        - return smallest of valid phi intersections and
1074 //          inner radius intersection
1075 //
1076 // NOTE:
1077 // - Precalculations for phi trigonometry are Done `just in time'
1078 // - `if valid' implies tolerant checking of intersection points
1079 //   Calculate distance (<= actual) to closest surface of shape from outside
1080 // - Calculate distance to z, radial planes
1081 // - Only to phi planes if outside phi extent
1082 // - Return 0 if point inside
1083 
1084 G4double G4Tubs::DistanceToIn( const G4ThreeVector& p ) const
1085 {
1086   G4double safe=0.0, rho, safe1, safe2, safe3 ;
1087   G4double safePhi, cosPsi ;
1088 
1089   rho   = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
1090   safe1 = fRMin - rho ;
1091   safe2 = rho - fRMax ;
1092   safe3 = std::fabs(p.z()) - fDz ;
1093 
1094   if ( safe1 > safe2 ) { safe = safe1; }
1095   else                 { safe = safe2; }
1096   if ( safe3 > safe )  { safe = safe3; }
1097 
1098   if ( (!fPhiFullTube) && ((rho) != 0.0) )
1099   {
1100     // Psi=angle from central phi to point
1101     //
1102     cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ;
1103 
1104     if ( cosPsi < cosHDPhi )
1105     {
1106       // Point lies outside phi range
1107 
1108       if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 )
1109       {
1110         safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ;
1111       }
1112       else
1113       {
1114         safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ;
1115       }
1116       if ( safePhi > safe )  { safe = safePhi; }
1117     }
1118   }
1119   if ( safe < 0 )  { safe = 0; }
1120   return safe ;
1121 }
1122 
1123 //////////////////////////////////////////////////////////////////////////////
1124 //
1125 // Calculate distance to surface of shape from `inside', allowing for tolerance
1126 // - Only Calc rmax intersection if no valid rmin intersection
1127 
1128 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p,
1129                                 const G4ThreeVector& v,
1130                                 const G4bool calcNorm,
1131                                       G4bool* validNorm,
1132                                       G4ThreeVector* n ) const
1133 {
1134   ESide side=kNull , sider=kNull, sidephi=kNull ;
1135   G4double snxt, srd=kInfinity, sphi=kInfinity, pdist ;
1136   G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ;
1137 
1138   // Vars for phi intersection:
1139 
1140   G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ;
1141 
1142   // Z plane intersection
1143 
1144   if (v.z() > 0 )
1145   {
1146     pdist = fDz - p.z() ;
1147     if ( pdist > halfCarTolerance )
1148     {
1149       snxt = pdist/v.z() ;
1150       side = kPZ ;
1151     }
1152     else
1153     {
1154       if (calcNorm)
1155       {
1156         *n         = G4ThreeVector(0,0,1) ;
1157         *validNorm = true ;
1158       }
1159       return snxt = 0 ;
1160     }
1161   }
1162   else if ( v.z() < 0 )
1163   {
1164     pdist = fDz + p.z() ;
1165 
1166     if ( pdist > halfCarTolerance )
1167     {
1168       snxt = -pdist/v.z() ;
1169       side = kMZ ;
1170     }
1171     else
1172     {
1173       if (calcNorm)
1174       {
1175         *n         = G4ThreeVector(0,0,-1) ;
1176         *validNorm = true ;
1177       }
1178       return snxt = 0.0 ;
1179     }
1180   }
1181   else
1182   {
1183     snxt = kInfinity ;    // Travel perpendicular to z axis
1184     side = kNull;
1185   }
1186 
1187   // Radial Intersections
1188   //
1189   // Find intersection with cylinders at rmax/rmin
1190   // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
1191   //
1192   // Intersects with x^2+y^2=R^2
1193   //
1194   // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
1195   //
1196   //            t1                t2                    t3
1197 
1198   t1   = 1.0 - v.z()*v.z() ;      // since v normalised
1199   t2   = p.x()*v.x() + p.y()*v.y() ;
1200   t3   = p.x()*p.x() + p.y()*p.y() ;
1201 
1202   if ( snxt > 10*(fDz+fRMax) )  { roi2 = 2*fRMax*fRMax; }
1203   else  { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; }        // radius^2 on +-fDz
1204 
1205   if ( t1 > 0 ) // Check not parallel
1206   {
1207     // Calculate srd, r exit distance
1208 
1209     if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) )
1210     {
1211       // Delta r not negative => leaving via rmax
1212 
1213       deltaR = t3 - fRMax*fRMax ;
1214 
1215       // NOTE: Should use rho-fRMax<-kRadTolerance*0.5
1216       // - avoid sqrt for efficiency
1217 
1218       if ( deltaR < -kRadTolerance*fRMax )
1219       {
1220         b     = t2/t1 ;
1221         c     = deltaR/t1 ;
1222         d2    = b*b-c;
1223         if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); }
1224         else          { srd = 0.; }
1225         sider = kRMax ;
1226       }
1227       else
1228       {
1229         // On tolerant boundary & heading outwards (or perpendicular to)
1230         // outer radial surface -> leaving immediately
1231 
1232         if ( calcNorm )
1233         {
1234           G4double invRho = FastInverseRxy( p, fInvRmax, kNormTolerance );
1235           *n         = G4ThreeVector(p.x()*invRho,p.y()*invRho,0) ;
1236           *validNorm = true ;
1237         }
1238         return snxt = 0 ; // Leaving by rmax immediately
1239       }
1240     }
1241     else if ( t2 < 0. ) // i.e.  t2 < 0; Possible rmin intersection
1242     {
1243       roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement
1244 
1245       if ( (fRMin != 0.0) && (roMin2 < fRMin*(fRMin - kRadTolerance)) )
1246       {
1247         deltaR = t3 - fRMin*fRMin ;
1248         b      = t2/t1 ;
1249         c      = deltaR/t1 ;
1250         d2     = b*b - c ;
1251 
1252         if ( d2 >= 0 )   // Leaving via rmin
1253         {
1254           // NOTE: SHould use rho-rmin>kRadTolerance*0.5
1255           // - avoid sqrt for efficiency
1256 
1257           if (deltaR > kRadTolerance*fRMin)
1258           {
1259             srd = c/(-b+std::sqrt(d2));
1260             sider = kRMin ;
1261           }
1262           else
1263           {
1264             if ( calcNorm ) {
1265                *validNorm = false;
1266             }  // Concave side
1267             return snxt = 0.0;
1268           }
1269         }
1270         else    // No rmin intersect -> must be rmax intersect
1271         {
1272           deltaR = t3 - fRMax*fRMax ;
1273           c     = deltaR/t1 ;
1274           d2    = b*b-c;
1275           if( d2 >=0. )
1276           {
1277             srd     = -b + std::sqrt(d2) ;
1278             sider  = kRMax ;
1279           }
1280           else // Case: On the border+t2<kRadTolerance
1281                //       (v is perpendicular to the surface)
1282           {
1283             if (calcNorm)
1284             {
1285               G4double invRho = FastInverseRxy( p, fInvRmax, kNormTolerance );
1286               *n = G4ThreeVector(p.x()*invRho,p.y()*invRho,0) ;
1287               *validNorm = true ;
1288             }
1289             return snxt = 0.0;
1290           }
1291         }
1292       }
1293       else if ( roi2 > fRMax*(fRMax + kRadTolerance) )
1294            // No rmin intersect -> must be rmax intersect
1295       {
1296         deltaR = t3 - fRMax*fRMax ;
1297         b      = t2/t1 ;
1298         c      = deltaR/t1;
1299         d2     = b*b-c;
1300         if( d2 >= 0 )
1301         {
1302           srd     = -b + std::sqrt(d2) ;
1303           sider  = kRMax ;
1304         }
1305         else // Case: On the border+t2<kRadTolerance
1306              //       (v is perpendicular to the surface)
1307         {
1308           if (calcNorm)
1309           {
1310             G4double invRho = FastInverseRxy( p, fInvRmax, kNormTolerance );
1311             *n = G4ThreeVector(p.x()*invRho,p.y()*invRho,0) ;
1312             *validNorm = true ;
1313           }
1314           return snxt = 0.0;
1315         }
1316       }
1317     }
1318 
1319     // Phi Intersection
1320 
1321     if ( !fPhiFullTube )
1322     {
1323       // add angle calculation with correction
1324       // of the difference in domain of atan2 and Sphi
1325       //
1326       vphi = std::atan2(v.y(),v.x()) ;
1327 
1328       if ( vphi < fSPhi - halfAngTolerance  )             { vphi += twopi; }
1329       else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; }
1330 
1331 
1332       if ( (p.x() != 0.0) || (p.y() != 0.0) )  // Check if on z axis (rho not needed later)
1333       {
1334         // pDist -ve when inside
1335 
1336         pDistS = p.x()*sinSPhi - p.y()*cosSPhi ;
1337         pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1338 
1339         // Comp -ve when in direction of outwards normal
1340 
1341         compS = -sinSPhi*v.x() + cosSPhi*v.y() ;
1342         compE =  sinEPhi*v.x() - cosEPhi*v.y() ;
1343 
1344         sidephi = kNull;
1345 
1346         if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance)
1347                               && (pDistE <= halfCarTolerance) ) )
1348          || ( (fDPhi >  pi) && ((pDistS <=  halfCarTolerance)
1349                               || (pDistE <=  halfCarTolerance) ) )  )
1350         {
1351           // Inside both phi *full* planes
1352 
1353           if ( compS < 0 )
1354           {
1355             sphi = pDistS/compS ;
1356 
1357             if (sphi >= -halfCarTolerance)
1358             {
1359               xi = p.x() + sphi*v.x() ;
1360               yi = p.y() + sphi*v.y() ;
1361 
1362               // Check intersecting with correct half-plane
1363               // (if not -> no intersect)
1364               //
1365               if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance))
1366               {
1367                 sidephi = kSPhi;
1368                 if (((fSPhi-halfAngTolerance)<=vphi)
1369                    &&((fSPhi+fDPhi+halfAngTolerance)>=vphi))
1370                 {
1371                   sphi = kInfinity;
1372                 }
1373               }
1374               else if ( yi*cosCPhi-xi*sinCPhi >=0 )
1375               {
1376                 sphi = kInfinity ;
1377               }
1378               else
1379               {
1380                 sidephi = kSPhi ;
1381                 if ( pDistS > -halfCarTolerance )
1382                 {
1383                   sphi = 0.0 ; // Leave by sphi immediately
1384                 }
1385               }
1386             }
1387             else
1388             {
1389               sphi = kInfinity ;
1390             }
1391           }
1392           else
1393           {
1394             sphi = kInfinity ;
1395           }
1396 
1397           if ( compE < 0 )
1398           {
1399             sphi2 = pDistE/compE ;
1400 
1401             // Only check further if < starting phi intersection
1402             //
1403             if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) )
1404             {
1405               xi = p.x() + sphi2*v.x() ;
1406               yi = p.y() + sphi2*v.y() ;
1407 
1408               if((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance))
1409               {
1410                 // Leaving via ending phi
1411                 //
1412                 if( (fSPhi-halfAngTolerance > vphi)
1413                      ||(fSPhi+fDPhi+halfAngTolerance < vphi) )
1414                 {
1415                   sidephi = kEPhi ;
1416                   if ( pDistE <= -halfCarTolerance )  { sphi = sphi2 ; }
1417                   else                                { sphi = 0.0 ;   }
1418                 }
1419               }
1420               else    // Check intersecting with correct half-plane
1421 
1422               if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1423               {
1424                 // Leaving via ending phi
1425                 //
1426                 sidephi = kEPhi ;
1427                 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; }
1428                 else                               { sphi = 0.0 ;   }
1429               }
1430             }
1431           }
1432         }
1433         else
1434         {
1435           sphi = kInfinity ;
1436         }
1437       }
1438       else
1439       {
1440         // On z axis + travel not || to z axis -> if phi of vector direction
1441         // within phi of shape, Step limited by rmax, else Step =0
1442 
1443         if ( (fSPhi - halfAngTolerance <= vphi)
1444            && (vphi <= fSPhi + fDPhi + halfAngTolerance ) )
1445         {
1446           sphi = kInfinity ;
1447         }
1448         else
1449         {
1450           sidephi = kSPhi ; // arbitrary
1451           sphi    = 0.0 ;
1452         }
1453       }
1454       if (sphi < snxt)  // Order intersecttions
1455       {
1456         snxt = sphi ;
1457         side = sidephi ;
1458       }
1459     }
1460     if (srd < snxt)  // Order intersections
1461     {
1462       snxt = srd ;
1463       side = sider ;
1464     }
1465   }
1466   if (calcNorm)
1467   {
1468     switch(side)
1469     {
1470       case kRMax:
1471         // Note: returned vector not normalised
1472         // (divide by fRMax for unit vector)
1473         //
1474         xi = p.x() + snxt*v.x() ;
1475         yi = p.y() + snxt*v.y() ;
1476         *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ;
1477         *validNorm = true ;
1478         break ;
1479 
1480       case kRMin:
1481         *validNorm = false ;  // Rmin is inconvex
1482         break ;
1483 
1484       case kSPhi:
1485         if ( fDPhi <= pi )
1486         {
1487           *n         = G4ThreeVector(sinSPhi,-cosSPhi,0) ;
1488           *validNorm = true ;
1489         }
1490         else
1491         {
1492           *validNorm = false ;
1493         }
1494         break ;
1495 
1496       case kEPhi:
1497         if (fDPhi <= pi)
1498         {
1499           *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ;
1500           *validNorm = true ;
1501         }
1502         else
1503         {
1504           *validNorm = false ;
1505         }
1506         break ;
1507 
1508       case kPZ:
1509         *n         = G4ThreeVector(0,0,1) ;
1510         *validNorm = true ;
1511         break ;
1512 
1513       case kMZ:
1514         *n         = G4ThreeVector(0,0,-1) ;
1515         *validNorm = true ;
1516         break ;
1517 
1518       default:
1519         G4cout << G4endl ;
1520         DumpInfo();
1521         std::ostringstream message;
1522         G4long oldprc = message.precision(16);
1523         message << "Undefined side for valid surface normal to solid."
1524                 << G4endl
1525                 << "Position:"  << G4endl << G4endl
1526                 << "p.x() = "   << p.x()/mm << " mm" << G4endl
1527                 << "p.y() = "   << p.y()/mm << " mm" << G4endl
1528                 << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl
1529                 << "Direction:" << G4endl << G4endl
1530                 << "v.x() = "   << v.x() << G4endl
1531                 << "v.y() = "   << v.y() << G4endl
1532                 << "v.z() = "   << v.z() << G4endl << G4endl
1533                 << "Proposed distance :" << G4endl << G4endl
1534                 << "snxt = "    << snxt/mm << " mm" << G4endl ;
1535         message.precision(oldprc) ;
1536         G4Exception("G4Tubs::DistanceToOut(p,v,..)", "GeomSolids1002",
1537                     JustWarning, message);
1538         break ;
1539     }
1540   }
1541   if ( snxt<halfCarTolerance )  { snxt=0 ; }
1542 
1543   return snxt ;
1544 }
1545 
1546 //////////////////////////////////////////////////////////////////////////
1547 //
1548 // Calculate distance (<=actual) to closest surface of shape from inside
1549 
1550 G4double G4Tubs::DistanceToOut( const G4ThreeVector& p ) const
1551 {
1552   G4double safe=0.0, rho, safeR1, safeR2, safeZ, safePhi ;
1553   rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
1554 
1555 #ifdef G4CSGDEBUG
1556   if( Inside(p) == kOutside )
1557   {
1558     G4long oldprc = G4cout.precision(16) ;
1559     G4cout << G4endl ;
1560     DumpInfo();
1561     G4cout << "Position:"  << G4endl << G4endl ;
1562     G4cout << "p.x() = "   << p.x()/mm << " mm" << G4endl ;
1563     G4cout << "p.y() = "   << p.y()/mm << " mm" << G4endl ;
1564     G4cout << "p.z() = "   << p.z()/mm << " mm" << G4endl << G4endl ;
1565     G4cout.precision(oldprc) ;
1566     G4Exception("G4Tubs::DistanceToOut(p)", "GeomSolids1002",
1567                 JustWarning, "Point p is outside !?");
1568   }
1569 #endif
1570 
1571   if ( fRMin != 0.0 )
1572   {
1573     safeR1 = rho   - fRMin ;
1574     safeR2 = fRMax - rho ;
1575 
1576     if ( safeR1 < safeR2 ) { safe = safeR1 ; }
1577     else                   { safe = safeR2 ; }
1578   }
1579   else
1580   {
1581     safe = fRMax - rho ;
1582   }
1583   safeZ = fDz - std::fabs(p.z()) ;
1584 
1585   if ( safeZ < safe )  { safe = safeZ ; }
1586 
1587   // Check if phi divided, Calc distances closest phi plane
1588   //
1589   if ( !fPhiFullTube )
1590   {
1591     if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 )
1592     {
1593       safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ;
1594     }
1595     else
1596     {
1597       safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ;
1598     }
1599     if (safePhi < safe)  { safe = safePhi ; }
1600   }
1601   if ( safe < 0 )  { safe = 0 ; }
1602 
1603   return safe ;
1604 }
1605 
1606 //////////////////////////////////////////////////////////////////////////
1607 //
1608 // Stream object contents to an output stream
1609 
1610 G4GeometryType G4Tubs::GetEntityType() const
1611 {
1612   return {"G4Tubs"};
1613 }
1614 
1615 //////////////////////////////////////////////////////////////////////////
1616 //
1617 // Make a clone of the object
1618 //
1619 G4VSolid* G4Tubs::Clone() const
1620 {
1621   return new G4Tubs(*this);
1622 }
1623 
1624 //////////////////////////////////////////////////////////////////////////
1625 //
1626 // Stream object contents to an output stream
1627 
1628 std::ostream& G4Tubs::StreamInfo( std::ostream& os ) const
1629 {
1630   G4long oldprc = os.precision(16);
1631   os << "-----------------------------------------------------------\n"
1632      << "    *** Dump for solid - " << GetName() << " ***\n"
1633      << "    ===================================================\n"
1634      << " Solid type: G4Tubs\n"
1635      << " Parameters: \n"
1636      << "    inner radius : " << fRMin/mm << " mm \n"
1637      << "    outer radius : " << fRMax/mm << " mm \n"
1638      << "    half length Z: " << fDz/mm << " mm \n"
1639      << "    starting phi : " << fSPhi/degree << " degrees \n"
1640      << "    delta phi    : " << fDPhi/degree << " degrees \n"
1641      << "-----------------------------------------------------------\n";
1642   os.precision(oldprc);
1643 
1644   return os;
1645 }
1646 
1647 /////////////////////////////////////////////////////////////////////////
1648 //
1649 // GetPointOnSurface
1650 
1651 G4ThreeVector G4Tubs::GetPointOnSurface() const
1652 {
1653   G4double Rmax = fRMax;
1654   G4double Rmin = fRMin;
1655   G4double hz = 2.*fDz;       // height
1656   G4double lext = fDPhi*Rmax; // length of external circular arc
1657   G4double lint = fDPhi*Rmin; // length of internal circular arc
1658 
1659   // Set array of surface areas
1660   //
1661   G4double RRmax = Rmax * Rmax;
1662   G4double RRmin = Rmin * Rmin;
1663   G4double sbase = 0.5*fDPhi*(RRmax - RRmin);
1664   G4double scut = (fDPhi == twopi) ? 0. : hz*(Rmax - Rmin);
1665   G4double ssurf[6] = { scut, scut, sbase, sbase, hz*lext, hz*lint };
1666   ssurf[1] += ssurf[0];
1667   ssurf[2] += ssurf[1];
1668   ssurf[3] += ssurf[2];
1669   ssurf[4] += ssurf[3];
1670   ssurf[5] += ssurf[4];
1671 
1672   // Select surface
1673   //
1674   G4double select = ssurf[5]*G4QuickRand();
1675   G4int k = 5;
1676   k -= (G4int)(select <= ssurf[4]);
1677   k -= (G4int)(select <= ssurf[3]);
1678   k -= (G4int)(select <= ssurf[2]);
1679   k -= (G4int)(select <= ssurf[1]);
1680   k -= (G4int)(select <= ssurf[0]);
1681 
1682   // Generate point on selected surface
1683   //
1684   switch(k)
1685   {
1686     case 0: // start phi cut
1687     {
1688       G4double r = Rmin + (Rmax - Rmin)*G4QuickRand();
1689       return { r*cosSPhi, r*sinSPhi, hz*G4QuickRand() - fDz };
1690     }
1691     case 1: // end phi cut
1692     {
1693       G4double r = Rmin + (Rmax - Rmin)*G4QuickRand();
1694       return { r*cosEPhi, r*sinEPhi, hz*G4QuickRand() - fDz };
1695     }
1696     case 2: // base at -dz
1697     {
1698       G4double r = std::sqrt(RRmin + (RRmax - RRmin)*G4QuickRand());
1699       G4double phi = fSPhi + fDPhi*G4QuickRand();
1700       return { r*std::cos(phi), r*std::sin(phi), -fDz };
1701     }
1702     case 3: // base at +dz
1703     {
1704       G4double r = std::sqrt(RRmin + (RRmax - RRmin)*G4QuickRand());
1705       G4double phi = fSPhi + fDPhi*G4QuickRand();
1706       return { r*std::cos(phi), r*std::sin(phi), fDz };
1707     }
1708     case 4: // external lateral surface
1709     {
1710       G4double phi = fSPhi + fDPhi*G4QuickRand();
1711       G4double z = hz*G4QuickRand() - fDz;
1712       G4double x = Rmax*std::cos(phi);
1713       G4double y = Rmax*std::sin(phi);
1714       return { x,y,z };
1715     }
1716     case 5: // internal lateral surface
1717     {
1718       G4double phi = fSPhi + fDPhi*G4QuickRand();
1719       G4double z = hz*G4QuickRand() - fDz;
1720       G4double x = Rmin*std::cos(phi);
1721       G4double y = Rmin*std::sin(phi);
1722       return { x,y,z };
1723     }
1724   }
1725   return {0., 0., 0.};
1726 }
1727 
1728 ///////////////////////////////////////////////////////////////////////////
1729 //
1730 // Methods for visualisation
1731 
1732 void G4Tubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
1733 {
1734   scene.AddSolid (*this) ;
1735 }
1736 
1737 G4Polyhedron* G4Tubs::CreatePolyhedron () const
1738 {
1739   return new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi) ;
1740 }
1741 
1742 #endif
1743