Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // Implementation for G4Trap class 27 // 28 // 21.03.95 P.Kent: Modified for `tolerant' geometry 29 // 09.09.96 V.Grichine: Final modifications before to commit 30 // 08.12.97 J.Allison: Added "nominal" constructor and method SetAllParameters 31 // 28.04.05 V.Grichine: new SurfaceNormal according to J.Apostolakis proposal 32 // 18.04.17 E.Tcherniaev: complete revision, speed-up 33 // -------------------------------------------------------------------- 34 35 #include "G4Trap.hh" 36 37 #if !defined(G4GEOM_USE_UTRAP) 38 39 #include "globals.hh" 40 #include "G4GeomTools.hh" 41 42 #include "G4VoxelLimits.hh" 43 #include "G4AffineTransform.hh" 44 #include "G4BoundingEnvelope.hh" 45 46 #include "G4VPVParameterisation.hh" 47 48 #include "G4QuickRand.hh" 49 50 #include "G4VGraphicsScene.hh" 51 #include "G4Polyhedron.hh" 52 53 using namespace CLHEP; 54 55 ////////////////////////////////////////////////////////////////////////// 56 // 57 // Constructor - check and set half-widths as well as angles: 58 // final check of coplanarity 59 60 G4Trap::G4Trap( const G4String& pName, 61 G4double pDz, 62 G4double pTheta, G4double pPhi, 63 G4double pDy1, G4double pDx1, G4double pDx2, 64 G4double pAlp1, 65 G4double pDy2, G4double pDx3, G4double pDx4, 66 G4double pAlp2 ) 67 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 68 { 69 fDz = pDz; 70 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 71 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 72 73 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1); 74 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2); 75 76 CheckParameters(); 77 MakePlanes(); 78 } 79 80 ////////////////////////////////////////////////////////////////////////// 81 // 82 // Constructor - Design of trapezoid based on 8 G4ThreeVector parameters, 83 // which are its vertices. Checking of planarity with preparation of 84 // fPlanes[] and than calculation of other members 85 86 G4Trap::G4Trap( const G4String& pName, 87 const G4ThreeVector pt[8] ) 88 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 89 { 90 // Start with check of centering - the center of gravity trap line 91 // should cross the origin of frame 92 // 93 if ( pt[0].z() >= 0 94 || pt[0].z() != pt[1].z() 95 || pt[0].z() != pt[2].z() 96 || pt[0].z() != pt[3].z() 97 98 || pt[4].z() <= 0 99 || pt[4].z() != pt[5].z() 100 || pt[4].z() != pt[6].z() 101 || pt[4].z() != pt[7].z() 102 103 || std::fabs( pt[0].z() + pt[4].z() ) >= kCarTolerance 104 105 || pt[0].y() != pt[1].y() 106 || pt[2].y() != pt[3].y() 107 || pt[4].y() != pt[5].y() 108 || pt[6].y() != pt[7].y() 109 110 || std::fabs(pt[0].y()+pt[2].y()+pt[4].y()+pt[6].y()) >= kCarTolerance 111 || std::fabs(pt[0].x()+pt[1].x()+pt[4].x()+pt[5].x() + 112 pt[2].x()+pt[3].x()+pt[6].x()+pt[7].x()) >= kCarTolerance ) 113 { 114 std::ostringstream message; 115 message << "Invalid vertice coordinates for Solid: " << GetName(); 116 G4Exception("G4Trap::G4Trap()", "GeomSolids0002", 117 FatalException, message); 118 } 119 120 // Set parameters 121 // 122 fDz = (pt[7]).z(); 123 124 fDy1 = ((pt[2]).y()-(pt[1]).y())*0.5; 125 fDx1 = ((pt[1]).x()-(pt[0]).x())*0.5; 126 fDx2 = ((pt[3]).x()-(pt[2]).x())*0.5; 127 fTalpha1 = ((pt[2]).x()+(pt[3]).x()-(pt[1]).x()-(pt[0]).x())*0.25/fDy1; 128 129 fDy2 = ((pt[6]).y()-(pt[5]).y())*0.5; 130 fDx3 = ((pt[5]).x()-(pt[4]).x())*0.5; 131 fDx4 = ((pt[7]).x()-(pt[6]).x())*0.5; 132 fTalpha2 = ((pt[6]).x()+(pt[7]).x()-(pt[5]).x()-(pt[4]).x())*0.25/fDy2; 133 134 fTthetaCphi = ((pt[4]).x()+fDy2*fTalpha2+fDx3)/fDz; 135 fTthetaSphi = ((pt[4]).y()+fDy2)/fDz; 136 137 CheckParameters(); 138 MakePlanes(pt); 139 } 140 141 ////////////////////////////////////////////////////////////////////////// 142 // 143 // Constructor for Right Angular Wedge from STEP 144 145 G4Trap::G4Trap( const G4String& pName, 146 G4double pZ, 147 G4double pY, 148 G4double pX, G4double pLTX ) 149 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 150 { 151 fDz = 0.5*pZ; fTthetaCphi = 0; fTthetaSphi = 0; 152 fDy1 = 0.5*pY; fDx1 = 0.5*pX; fDx2 = 0.5*pLTX; fTalpha1 = 0.5*(pLTX - pX)/pY; 153 fDy2 = fDy1; fDx3 = fDx1; fDx4 = fDx2; fTalpha2 = fTalpha1; 154 155 CheckParameters(); 156 MakePlanes(); 157 } 158 159 ////////////////////////////////////////////////////////////////////////// 160 // 161 // Constructor for G4Trd 162 163 G4Trap::G4Trap( const G4String& pName, 164 G4double pDx1, G4double pDx2, 165 G4double pDy1, G4double pDy2, 166 G4double pDz ) 167 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance), fTrapType(0) 168 { 169 fDz = pDz; fTthetaCphi = 0; fTthetaSphi = 0; 170 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx1; fTalpha1 = 0; 171 fDy2 = pDy2; fDx3 = pDx2; fDx4 = pDx2; fTalpha2 = 0; 172 173 CheckParameters(); 174 MakePlanes(); 175 } 176 177 ////////////////////////////////////////////////////////////////////////// 178 // 179 // Constructor for G4Para 180 181 G4Trap::G4Trap( const G4String& pName, 182 G4double pDx, G4double pDy, 183 G4double pDz, 184 G4double pAlpha, 185 G4double pTheta, G4double pPhi ) 186 : G4CSGSolid(pName), halfCarTolerance(0.5*kCarTolerance) 187 { 188 fDz = pDz; 189 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 190 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 191 192 fDy1 = pDy; fDx1 = pDx; fDx2 = pDx; fTalpha1 = std::tan(pAlpha); 193 fDy2 = pDy; fDx3 = pDx; fDx4 = pDx; fTalpha2 = fTalpha1; 194 195 CheckParameters(); 196 MakePlanes(); 197 } 198 199 ////////////////////////////////////////////////////////////////////////// 200 // 201 // Nominal constructor for G4Trap whose parameters are to be set by 202 // a G4VParamaterisation later. Check and set half-widths as well as 203 // angles: final check of coplanarity 204 205 G4Trap::G4Trap( const G4String& pName ) 206 : G4CSGSolid (pName), halfCarTolerance(0.5*kCarTolerance), 207 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 208 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.), 209 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 210 { 211 MakePlanes(); 212 } 213 214 ////////////////////////////////////////////////////////////////////////// 215 // 216 // Fake default constructor - sets only member data and allocates memory 217 // for usage restricted to object persistency. 218 // 219 G4Trap::G4Trap( __void__& a ) 220 : G4CSGSolid(a), halfCarTolerance(0.5*kCarTolerance), 221 fDz(1.), fTthetaCphi(0.), fTthetaSphi(0.), 222 fDy1(1.), fDx1(1.), fDx2(1.), fTalpha1(0.), 223 fDy2(1.), fDx3(1.), fDx4(1.), fTalpha2(0.) 224 { 225 MakePlanes(); 226 } 227 228 ////////////////////////////////////////////////////////////////////////// 229 // 230 // Destructor 231 232 G4Trap::~G4Trap() = default; 233 234 ////////////////////////////////////////////////////////////////////////// 235 // 236 // Copy constructor 237 238 G4Trap::G4Trap(const G4Trap& rhs) 239 : G4CSGSolid(rhs), halfCarTolerance(rhs.halfCarTolerance), 240 fDz(rhs.fDz), fTthetaCphi(rhs.fTthetaCphi), fTthetaSphi(rhs.fTthetaSphi), 241 fDy1(rhs.fDy1), fDx1(rhs.fDx1), fDx2(rhs.fDx2), fTalpha1(rhs.fTalpha1), 242 fDy2(rhs.fDy2), fDx3(rhs.fDx3), fDx4(rhs.fDx4), fTalpha2(rhs.fTalpha2) 243 { 244 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; } 245 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.fAreas[i]; } 246 fTrapType = rhs.fTrapType; 247 } 248 249 ////////////////////////////////////////////////////////////////////////// 250 // 251 // Assignment operator 252 253 G4Trap& G4Trap::operator = (const G4Trap& rhs) 254 { 255 // Check assignment to self 256 // 257 if (this == &rhs) { return *this; } 258 259 // Copy base class data 260 // 261 G4CSGSolid::operator=(rhs); 262 263 // Copy data 264 // 265 halfCarTolerance = rhs.halfCarTolerance; 266 fDz = rhs.fDz; fTthetaCphi = rhs.fTthetaCphi; fTthetaSphi = rhs.fTthetaSphi; 267 fDy1 = rhs.fDy1; fDx1 = rhs.fDx1; fDx2 = rhs.fDx2; fTalpha1 = rhs.fTalpha1; 268 fDy2 = rhs.fDy2; fDx3 = rhs.fDx3; fDx4 = rhs.fDx4; fTalpha2 = rhs.fTalpha2; 269 for (G4int i=0; i<4; ++i) { fPlanes[i] = rhs.fPlanes[i]; } 270 for (G4int i=0; i<6; ++i) { fAreas[i] = rhs.fAreas[i]; } 271 fTrapType = rhs.fTrapType; 272 return *this; 273 } 274 275 ////////////////////////////////////////////////////////////////////////// 276 // 277 // Set all parameters, as for constructor - check and set half-widths 278 // as well as angles: final check of coplanarity 279 280 void G4Trap::SetAllParameters ( G4double pDz, 281 G4double pTheta, 282 G4double pPhi, 283 G4double pDy1, 284 G4double pDx1, 285 G4double pDx2, 286 G4double pAlp1, 287 G4double pDy2, 288 G4double pDx3, 289 G4double pDx4, 290 G4double pAlp2 ) 291 { 292 // Reset data of the base class 293 fCubicVolume = 0; 294 fSurfaceArea = 0; 295 fRebuildPolyhedron = true; 296 297 // Set parameters 298 fDz = pDz; 299 fTthetaCphi = std::tan(pTheta)*std::cos(pPhi); 300 fTthetaSphi = std::tan(pTheta)*std::sin(pPhi); 301 302 fDy1 = pDy1; fDx1 = pDx1; fDx2 = pDx2; fTalpha1 = std::tan(pAlp1); 303 fDy2 = pDy2; fDx3 = pDx3; fDx4 = pDx4; fTalpha2 = std::tan(pAlp2); 304 305 CheckParameters(); 306 MakePlanes(); 307 } 308 309 ////////////////////////////////////////////////////////////////////////// 310 // 311 // Check length parameters 312 313 void G4Trap::CheckParameters() 314 { 315 if (fDz<=0 || 316 fDy1<=0 || fDx1<=0 || fDx2<=0 || 317 fDy2<=0 || fDx3<=0 || fDx4<=0) 318 { 319 std::ostringstream message; 320 message << "Invalid Length Parameters for Solid: " << GetName() 321 << "\n X - " <<fDx1<<", "<<fDx2<<", "<<fDx3<<", "<<fDx4 322 << "\n Y - " <<fDy1<<", "<<fDy2 323 << "\n Z - " <<fDz; 324 G4Exception("G4Trap::CheckParameters()", "GeomSolids0002", 325 FatalException, message); 326 } 327 } 328 329 ////////////////////////////////////////////////////////////////////////// 330 // 331 // Compute vertices and set side planes 332 333 void G4Trap::MakePlanes() 334 { 335 G4double DzTthetaCphi = fDz*fTthetaCphi; 336 G4double DzTthetaSphi = fDz*fTthetaSphi; 337 G4double Dy1Talpha1 = fDy1*fTalpha1; 338 G4double Dy2Talpha2 = fDy2*fTalpha2; 339 340 G4ThreeVector pt[8] = 341 { 342 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1-fDx1,-DzTthetaSphi-fDy1,-fDz), 343 G4ThreeVector(-DzTthetaCphi-Dy1Talpha1+fDx1,-DzTthetaSphi-fDy1,-fDz), 344 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1-fDx2,-DzTthetaSphi+fDy1,-fDz), 345 G4ThreeVector(-DzTthetaCphi+Dy1Talpha1+fDx2,-DzTthetaSphi+fDy1,-fDz), 346 G4ThreeVector( DzTthetaCphi-Dy2Talpha2-fDx3, DzTthetaSphi-fDy2, fDz), 347 G4ThreeVector( DzTthetaCphi-Dy2Talpha2+fDx3, DzTthetaSphi-fDy2, fDz), 348 G4ThreeVector( DzTthetaCphi+Dy2Talpha2-fDx4, DzTthetaSphi+fDy2, fDz), 349 G4ThreeVector( DzTthetaCphi+Dy2Talpha2+fDx4, DzTthetaSphi+fDy2, fDz) 350 }; 351 352 MakePlanes(pt); 353 } 354 355 ////////////////////////////////////////////////////////////////////////// 356 // 357 // Set side planes, check planarity 358 359 void G4Trap::MakePlanes(const G4ThreeVector pt[8]) 360 { 361 constexpr G4int iface[4][4] = { {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3} }; 362 const static G4String side[4] = { "~-Y", "~+Y", "~-X", "~+X" }; 363 364 for (G4int i=0; i<4; ++i) 365 { 366 if (MakePlane(pt[iface[i][0]], 367 pt[iface[i][1]], 368 pt[iface[i][2]], 369 pt[iface[i][3]], 370 fPlanes[i])) continue; 371 372 // Non planar side face 373 G4ThreeVector normal(fPlanes[i].a,fPlanes[i].b,fPlanes[i].c); 374 G4double dmax = 0; 375 for (G4int k=0; k<4; ++k) 376 { 377 G4double dist = normal.dot(pt[iface[i][k]]) + fPlanes[i].d; 378 if (std::abs(dist) > std::abs(dmax)) dmax = dist; 379 } 380 std::ostringstream message; 381 message << "Side face " << side[i] << " is not planar for solid: " 382 << GetName() << "\nDiscrepancy: " << dmax/mm << " mm\n"; 383 StreamInfo(message); 384 G4Exception("G4Trap::MakePlanes()", "GeomSolids0002", 385 FatalException, message); 386 } 387 388 // Re-compute parameters 389 SetCachedValues(); 390 } 391 392 ////////////////////////////////////////////////////////////////////////// 393 // 394 // Calculate the coef's of the plane p1->p2->p3->p4->p1 395 // where the ThreeVectors 1-4 are in anti-clockwise order when viewed 396 // from infront of the plane (i.e. from normal direction). 397 // 398 // Return true if the points are coplanar, false otherwise 399 400 G4bool G4Trap::MakePlane( const G4ThreeVector& p1, 401 const G4ThreeVector& p2, 402 const G4ThreeVector& p3, 403 const G4ThreeVector& p4, 404 TrapSidePlane& plane ) 405 { 406 G4ThreeVector normal = ((p4 - p2).cross(p3 - p1)).unit(); 407 if (std::abs(normal.x()) < DBL_EPSILON) normal.setX(0); 408 if (std::abs(normal.y()) < DBL_EPSILON) normal.setY(0); 409 if (std::abs(normal.z()) < DBL_EPSILON) normal.setZ(0); 410 normal = normal.unit(); 411 412 G4ThreeVector centre = (p1 + p2 + p3 + p4)*0.25; 413 plane.a = normal.x(); 414 plane.b = normal.y(); 415 plane.c = normal.z(); 416 plane.d = -normal.dot(centre); 417 418 // compute distances and check planarity 419 G4double d1 = std::abs(normal.dot(p1) + plane.d); 420 G4double d2 = std::abs(normal.dot(p2) + plane.d); 421 G4double d3 = std::abs(normal.dot(p3) + plane.d); 422 G4double d4 = std::abs(normal.dot(p4) + plane.d); 423 G4double dmax = std::max(std::max(std::max(d1,d2),d3),d4); 424 425 return dmax <= 1000 * kCarTolerance; 426 } 427 428 ////////////////////////////////////////////////////////////////////////// 429 // 430 // Recompute parameters using planes 431 432 void G4Trap::SetCachedValues() 433 { 434 // Set indeces 435 constexpr G4int iface[6][4] = 436 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; 437 438 // Get vertices 439 G4ThreeVector pt[8]; 440 GetVertices(pt); 441 442 // Set face areas 443 for (G4int i=0; i<6; ++i) 444 { 445 fAreas[i] = G4GeomTools::QuadAreaNormal(pt[iface[i][0]], 446 pt[iface[i][1]], 447 pt[iface[i][2]], 448 pt[iface[i][3]]).mag(); 449 } 450 for (G4int i=1; i<6; ++i) { fAreas[i] += fAreas[i - 1]; } 451 452 // Define type of trapezoid 453 fTrapType = 0; 454 if (fPlanes[0].b == -1 && fPlanes[1].b == 1 && 455 std::abs(fPlanes[0].a) < DBL_EPSILON && 456 std::abs(fPlanes[0].c) < DBL_EPSILON && 457 std::abs(fPlanes[1].a) < DBL_EPSILON && 458 std::abs(fPlanes[1].c) < DBL_EPSILON) 459 { 460 fTrapType = 1; // YZ section is a rectangle ... 461 if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON && 462 std::abs(fPlanes[2].c - fPlanes[3].c) < DBL_EPSILON && 463 fPlanes[2].b == 0 && 464 fPlanes[3].b == 0) 465 { 466 fTrapType = 2; // ... and XZ section is a isosceles trapezoid 467 fPlanes[2].a = -fPlanes[3].a; 468 fPlanes[2].c = fPlanes[3].c; 469 } 470 if (std::abs(fPlanes[2].a + fPlanes[3].a) < DBL_EPSILON && 471 std::abs(fPlanes[2].b - fPlanes[3].b) < DBL_EPSILON && 472 fPlanes[2].c == 0 && 473 fPlanes[3].c == 0) 474 { 475 fTrapType = 3; // ... and XY section is a isosceles trapezoid 476 fPlanes[2].a = -fPlanes[3].a; 477 fPlanes[2].b = fPlanes[3].b; 478 } 479 } 480 } 481 482 ////////////////////////////////////////////////////////////////////////// 483 // 484 // Get volume 485 486 G4double G4Trap::GetCubicVolume() 487 { 488 if (fCubicVolume == 0) 489 { 490 G4ThreeVector pt[8]; 491 GetVertices(pt); 492 493 G4double dz = pt[4].z() - pt[0].z(); 494 G4double dy1 = pt[2].y() - pt[0].y(); 495 G4double dx1 = pt[1].x() - pt[0].x(); 496 G4double dx2 = pt[3].x() - pt[2].x(); 497 G4double dy2 = pt[6].y() - pt[4].y(); 498 G4double dx3 = pt[5].x() - pt[4].x(); 499 G4double dx4 = pt[7].x() - pt[6].x(); 500 501 fCubicVolume = ((dx1 + dx2 + dx3 + dx4)*(dy1 + dy2) + 502 (dx4 + dx3 - dx2 - dx1)*(dy2 - dy1)/3)*dz*0.125; 503 } 504 return fCubicVolume; 505 } 506 507 ////////////////////////////////////////////////////////////////////////// 508 // 509 // Get surface area 510 511 G4double G4Trap::GetSurfaceArea() 512 { 513 if (fSurfaceArea == 0) 514 { 515 G4ThreeVector pt[8]; 516 G4int iface [6][4] = 517 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; 518 519 GetVertices(pt); 520 for (const auto & i : iface) 521 { 522 fSurfaceArea += G4GeomTools::QuadAreaNormal(pt[i[0]], 523 pt[i[1]], 524 pt[i[2]], 525 pt[i[3]]).mag(); 526 } 527 } 528 return fSurfaceArea; 529 } 530 531 ////////////////////////////////////////////////////////////////////////// 532 // 533 // Dispatch to parameterisation for replication mechanism dimension 534 // computation & modification. 535 536 void G4Trap::ComputeDimensions( G4VPVParameterisation* p, 537 const G4int n, 538 const G4VPhysicalVolume* pRep ) 539 { 540 p->ComputeDimensions(*this,n,pRep); 541 } 542 543 ////////////////////////////////////////////////////////////////////////// 544 // 545 // Get bounding box 546 547 void G4Trap::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 548 { 549 G4ThreeVector pt[8]; 550 GetVertices(pt); 551 552 G4double xmin = kInfinity, xmax = -kInfinity; 553 G4double ymin = kInfinity, ymax = -kInfinity; 554 for (const auto & i : pt) 555 { 556 G4double x = i.x(); 557 if (x < xmin) xmin = x; 558 if (x > xmax) xmax = x; 559 G4double y = i.y(); 560 if (y < ymin) ymin = y; 561 if (y > ymax) ymax = y; 562 } 563 564 G4double dz = GetZHalfLength(); 565 pMin.set(xmin,ymin,-dz); 566 pMax.set(xmax,ymax, dz); 567 568 // Check correctness of the bounding box 569 // 570 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 571 { 572 std::ostringstream message; 573 message << "Bad bounding box (min >= max) for solid: " 574 << GetName() << " !" 575 << "\npMin = " << pMin 576 << "\npMax = " << pMax; 577 G4Exception("G4Trap::BoundingLimits()", "GeomMgt0001", 578 JustWarning, message); 579 DumpInfo(); 580 } 581 } 582 583 ////////////////////////////////////////////////////////////////////////// 584 // 585 // Calculate extent under transform and specified limit 586 587 G4bool G4Trap::CalculateExtent( const EAxis pAxis, 588 const G4VoxelLimits& pVoxelLimit, 589 const G4AffineTransform& pTransform, 590 G4double& pMin, G4double& pMax) const 591 { 592 G4ThreeVector bmin, bmax; 593 G4bool exist; 594 595 // Check bounding box (bbox) 596 // 597 BoundingLimits(bmin,bmax); 598 G4BoundingEnvelope bbox(bmin,bmax); 599 #ifdef G4BBOX_EXTENT 600 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 601 #endif 602 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 603 { 604 return exist = pMin < pMax; 605 } 606 607 // Set bounding envelope (benv) and calculate extent 608 // 609 G4ThreeVector pt[8]; 610 GetVertices(pt); 611 612 G4ThreeVectorList baseA(4), baseB(4); 613 baseA[0] = pt[0]; 614 baseA[1] = pt[1]; 615 baseA[2] = pt[3]; 616 baseA[3] = pt[2]; 617 618 baseB[0] = pt[4]; 619 baseB[1] = pt[5]; 620 baseB[2] = pt[7]; 621 baseB[3] = pt[6]; 622 623 std::vector<const G4ThreeVectorList *> polygons(2); 624 polygons[0] = &baseA; 625 polygons[1] = &baseB; 626 627 G4BoundingEnvelope benv(bmin,bmax,polygons); 628 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 629 return exist; 630 } 631 632 ////////////////////////////////////////////////////////////////////////// 633 // 634 // Return whether point is inside/outside/on_surface 635 636 EInside G4Trap::Inside( const G4ThreeVector& p ) const 637 { 638 switch (fTrapType) 639 { 640 case 0: // General case 641 { 642 G4double dz = std::abs(p.z())-fDz; 643 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 644 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 645 G4double dy = std::max(dz,std::max(dy1,dy2)); 646 647 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 648 + fPlanes[2].c*p.z()+fPlanes[2].d; 649 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 650 + fPlanes[3].c*p.z()+fPlanes[3].d; 651 G4double dist = std::max(dy,std::max(dx1,dx2)); 652 653 return (dist > halfCarTolerance) ? kOutside : 654 ((dist > -halfCarTolerance) ? kSurface : kInside); 655 } 656 case 1: // YZ section is a rectangle 657 { 658 G4double dz = std::abs(p.z())-fDz; 659 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 660 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 661 + fPlanes[2].c*p.z()+fPlanes[2].d; 662 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 663 + fPlanes[3].c*p.z()+fPlanes[3].d; 664 G4double dist = std::max(dy,std::max(dx1,dx2)); 665 666 return (dist > halfCarTolerance) ? kOutside : 667 ((dist > -halfCarTolerance) ? kSurface : kInside); 668 } 669 case 2: // YZ section is a rectangle and 670 { // XZ section is an isosceles trapezoid 671 G4double dz = std::abs(p.z())-fDz; 672 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 673 G4double dx = fPlanes[3].a*std::abs(p.x()) 674 + fPlanes[3].c*p.z()+fPlanes[3].d; 675 G4double dist = std::max(dy,dx); 676 677 return (dist > halfCarTolerance) ? kOutside : 678 ((dist > -halfCarTolerance) ? kSurface : kInside); 679 } 680 case 3: // YZ section is a rectangle and 681 { // XY section is an isosceles trapezoid 682 G4double dz = std::abs(p.z())-fDz; 683 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 684 G4double dx = fPlanes[3].a*std::abs(p.x()) 685 + fPlanes[3].b*p.y()+fPlanes[3].d; 686 G4double dist = std::max(dy,dx); 687 688 return (dist > halfCarTolerance) ? kOutside : 689 ((dist > -halfCarTolerance) ? kSurface : kInside); 690 } 691 } 692 return kOutside; 693 } 694 695 ////////////////////////////////////////////////////////////////////////// 696 // 697 // Determine side, and return corresponding normal 698 699 G4ThreeVector G4Trap::SurfaceNormal( const G4ThreeVector& p ) const 700 { 701 G4double nx = 0, ny = 0, nz = 0; 702 G4double dz = std::abs(p.z()) - fDz; 703 nz = std::copysign(G4double(std::abs(dz) <= halfCarTolerance), p.z()); 704 705 switch (fTrapType) 706 { 707 case 0: // General case 708 { 709 for (G4int i=0; i<2; ++i) 710 { 711 G4double dy = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 712 if (std::abs(dy) > halfCarTolerance) continue; 713 ny = fPlanes[i].b; 714 nz += fPlanes[i].c; 715 break; 716 } 717 for (G4int i=2; i<4; ++i) 718 { 719 G4double dx = fPlanes[i].a*p.x() + 720 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 721 if (std::abs(dx) > halfCarTolerance) continue; 722 nx = fPlanes[i].a; 723 ny += fPlanes[i].b; 724 nz += fPlanes[i].c; 725 break; 726 } 727 break; 728 } 729 case 1: // YZ section - rectangle 730 { 731 G4double dy = std::abs(p.y()) + fPlanes[1].d; 732 ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y()); 733 for (G4int i=2; i<4; ++i) 734 { 735 G4double dx = fPlanes[i].a*p.x() + 736 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 737 if (std::abs(dx) > halfCarTolerance) continue; 738 nx = fPlanes[i].a; 739 ny += fPlanes[i].b; 740 nz += fPlanes[i].c; 741 break; 742 } 743 break; 744 } 745 case 2: // YZ section - rectangle, XZ section - isosceles trapezoid 746 { 747 G4double dy = std::abs(p.y()) + fPlanes[1].d; 748 ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y()); 749 G4double dx = fPlanes[3].a*std::abs(p.x()) + 750 fPlanes[3].c*p.z() + fPlanes[3].d; 751 G4double k = std::abs(dx) <= halfCarTolerance; 752 nx = std::copysign(k, p.x())*fPlanes[3].a; 753 nz += k*fPlanes[3].c; 754 break; 755 } 756 case 3: // YZ section - rectangle, XY section - isosceles trapezoid 757 { 758 G4double dy = std::abs(p.y()) + fPlanes[1].d; 759 ny = std::copysign(G4double(std::abs(dy) <= halfCarTolerance), p.y()); 760 G4double dx = fPlanes[3].a*std::abs(p.x()) + 761 fPlanes[3].b*p.y() + fPlanes[3].d; 762 G4double k = std::abs(dx) <= halfCarTolerance; 763 nx = std::copysign(k, p.x())*fPlanes[3].a; 764 ny += k*fPlanes[3].b; 765 break; 766 } 767 } 768 769 // Return normal 770 // 771 G4double mag2 = nx*nx + ny*ny + nz*nz; 772 if (mag2 == 1) return { nx,ny,nz }; 773 else if (mag2 != 0) return G4ThreeVector(nx,ny,nz).unit(); // edge or corner 774 else 775 { 776 // Point is not on the surface 777 // 778 #ifdef G4CSGDEBUG 779 std::ostringstream message; 780 G4long oldprc = message.precision(16); 781 message << "Point p is not on surface (!?) of solid: " 782 << GetName() << G4endl; 783 message << "Position:\n"; 784 message << " p.x() = " << p.x()/mm << " mm\n"; 785 message << " p.y() = " << p.y()/mm << " mm\n"; 786 message << " p.z() = " << p.z()/mm << " mm"; 787 G4cout.precision(oldprc) ; 788 G4Exception("G4Trap::SurfaceNormal(p)", "GeomSolids1002", 789 JustWarning, message ); 790 DumpInfo(); 791 #endif 792 return ApproxSurfaceNormal(p); 793 } 794 } 795 796 ////////////////////////////////////////////////////////////////////////// 797 // 798 // Algorithm for SurfaceNormal() following the original specification 799 // for points not on the surface 800 801 G4ThreeVector G4Trap::ApproxSurfaceNormal( const G4ThreeVector& p ) const 802 { 803 G4double dist = -DBL_MAX; 804 G4int iside = 0; 805 for (G4int i=0; i<4; ++i) 806 { 807 G4double d = fPlanes[i].a*p.x() + 808 fPlanes[i].b*p.y() + 809 fPlanes[i].c*p.z() + fPlanes[i].d; 810 if (d > dist) { dist = d; iside = i; } 811 } 812 813 G4double distz = std::abs(p.z()) - fDz; 814 if (dist > distz) 815 return { fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c }; 816 else 817 return { 0, 0, (G4double)((p.z() < 0) ? -1 : 1) }; 818 } 819 820 ////////////////////////////////////////////////////////////////////////// 821 // 822 // Calculate distance to shape from outside 823 // - return kInfinity if no intersection 824 825 G4double G4Trap::DistanceToIn(const G4ThreeVector& p, 826 const G4ThreeVector& v ) const 827 { 828 // Z intersections 829 // 830 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() >= 0) 831 return kInfinity; 832 G4double invz = (-v.z() == 0) ? DBL_MAX : -1./v.z(); 833 G4double dz = (invz < 0) ? fDz : -fDz; 834 G4double tzmin = (p.z() + dz)*invz; 835 G4double tzmax = (p.z() - dz)*invz; 836 837 // Y intersections 838 // 839 G4double tymin = 0, tymax = DBL_MAX; 840 G4int i = 0; 841 for ( ; i<2; ++i) 842 { 843 G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z(); 844 G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 845 if (dist >= -halfCarTolerance) 846 { 847 if (cosa >= 0) return kInfinity; 848 G4double tmp = -dist/cosa; 849 if (tymin < tmp) tymin = tmp; 850 } 851 else if (cosa > 0) 852 { 853 G4double tmp = -dist/cosa; 854 if (tymax > tmp) tymax = tmp; 855 } 856 } 857 858 // Z intersections 859 // 860 G4double txmin = 0, txmax = DBL_MAX; 861 for ( ; i<4; ++i) 862 { 863 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z(); 864 G4double dist = fPlanes[i].a*p.x()+fPlanes[i].b*p.y()+fPlanes[i].c*p.z() + 865 fPlanes[i].d; 866 if (dist >= -halfCarTolerance) 867 { 868 if (cosa >= 0) return kInfinity; 869 G4double tmp = -dist/cosa; 870 if (txmin < tmp) txmin = tmp; 871 } 872 else if (cosa > 0) 873 { 874 G4double tmp = -dist/cosa; 875 if (txmax > tmp) txmax = tmp; 876 } 877 } 878 879 // Find distance 880 // 881 G4double tmin = std::max(std::max(txmin,tymin),tzmin); 882 G4double tmax = std::min(std::min(txmax,tymax),tzmax); 883 884 if (tmax <= tmin + halfCarTolerance) return kInfinity; // touch or no hit 885 return (tmin < halfCarTolerance ) ? 0. : tmin; 886 } 887 888 ////////////////////////////////////////////////////////////////////////// 889 // 890 // Calculate exact shortest distance to any boundary from outside 891 // This is the best fast estimation of the shortest distance to trap 892 // - return 0 if point is inside 893 894 G4double G4Trap::DistanceToIn( const G4ThreeVector& p ) const 895 { 896 switch (fTrapType) 897 { 898 case 0: // General case 899 { 900 G4double dz = std::abs(p.z())-fDz; 901 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 902 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 903 G4double dy = std::max(dz,std::max(dy1,dy2)); 904 905 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 906 + fPlanes[2].c*p.z()+fPlanes[2].d; 907 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 908 + fPlanes[3].c*p.z()+fPlanes[3].d; 909 G4double dist = std::max(dy,std::max(dx1,dx2)); 910 return (dist > 0) ? dist : 0.; 911 } 912 case 1: // YZ section is a rectangle 913 { 914 G4double dz = std::abs(p.z())-fDz; 915 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 916 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 917 + fPlanes[2].c*p.z()+fPlanes[2].d; 918 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 919 + fPlanes[3].c*p.z()+fPlanes[3].d; 920 G4double dist = std::max(dy,std::max(dx1,dx2)); 921 return (dist > 0) ? dist : 0.; 922 } 923 case 2: // YZ section is a rectangle and 924 { // XZ section is an isosceles trapezoid 925 G4double dz = std::abs(p.z())-fDz; 926 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 927 G4double dx = fPlanes[3].a*std::abs(p.x()) 928 + fPlanes[3].c*p.z()+fPlanes[3].d; 929 G4double dist = std::max(dy,dx); 930 return (dist > 0) ? dist : 0.; 931 } 932 case 3: // YZ section is a rectangle and 933 { // XY section is an isosceles trapezoid 934 G4double dz = std::abs(p.z())-fDz; 935 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 936 G4double dx = fPlanes[3].a*std::abs(p.x()) 937 + fPlanes[3].b*p.y()+fPlanes[3].d; 938 G4double dist = std::max(dy,dx); 939 return (dist > 0) ? dist : 0.; 940 } 941 } 942 return 0.; 943 } 944 945 ////////////////////////////////////////////////////////////////////////// 946 // 947 // Calculate distance to surface of shape from inside and 948 // find normal at exit point, if required 949 // - when leaving the surface, return 0 950 951 G4double G4Trap::DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, 952 const G4bool calcNorm, 953 G4bool* validNorm, G4ThreeVector* n) const 954 { 955 // Z intersections 956 // 957 if ((std::abs(p.z()) - fDz) >= -halfCarTolerance && p.z()*v.z() > 0) 958 { 959 if (calcNorm) 960 { 961 *validNorm = true; 962 n->set(0, 0, (p.z() < 0) ? -1 : 1); 963 } 964 return 0; 965 } 966 G4double vz = v.z(); 967 G4double tmax = (vz == 0) ? DBL_MAX : (std::copysign(fDz,vz) - p.z())/vz; 968 G4int iside = (vz < 0) ? -4 : -2; // little trick: (-4+3)=-1, (-2+3)=+1 969 970 // Y intersections 971 // 972 G4int i = 0; 973 for ( ; i<2; ++i) 974 { 975 G4double cosa = fPlanes[i].b*v.y() + fPlanes[i].c*v.z(); 976 if (cosa > 0) 977 { 978 G4double dist = fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 979 if (dist >= -halfCarTolerance) 980 { 981 if (calcNorm) 982 { 983 *validNorm = true; 984 n->set(0, fPlanes[i].b, fPlanes[i].c); 985 } 986 return 0; 987 } 988 G4double tmp = -dist/cosa; 989 if (tmax > tmp) { tmax = tmp; iside = i; } 990 } 991 } 992 993 // X intersections 994 // 995 for ( ; i<4; ++i) 996 { 997 G4double cosa = fPlanes[i].a*v.x()+fPlanes[i].b*v.y()+fPlanes[i].c*v.z(); 998 if (cosa > 0) 999 { 1000 G4double dist = fPlanes[i].a*p.x() + 1001 fPlanes[i].b*p.y() + fPlanes[i].c*p.z() + fPlanes[i].d; 1002 if (dist >= -halfCarTolerance) 1003 { 1004 if (calcNorm) 1005 { 1006 *validNorm = true; 1007 n->set(fPlanes[i].a, fPlanes[i].b, fPlanes[i].c); 1008 } 1009 return 0; 1010 } 1011 G4double tmp = -dist/cosa; 1012 if (tmax > tmp) { tmax = tmp; iside = i; } 1013 } 1014 } 1015 1016 // Set normal, if required, and return distance 1017 // 1018 if (calcNorm) 1019 { 1020 *validNorm = true; 1021 if (iside < 0) 1022 n->set(0, 0, iside + 3); // (-4+3)=-1, (-2+3)=+1 1023 else 1024 n->set(fPlanes[iside].a, fPlanes[iside].b, fPlanes[iside].c); 1025 } 1026 return tmax; 1027 } 1028 1029 ////////////////////////////////////////////////////////////////////////// 1030 // 1031 // Calculate exact shortest distance to any boundary from inside 1032 // - Returns 0 is ThreeVector outside 1033 1034 G4double G4Trap::DistanceToOut( const G4ThreeVector& p ) const 1035 { 1036 #ifdef G4CSGDEBUG 1037 if( Inside(p) == kOutside ) 1038 { 1039 std::ostringstream message; 1040 G4long oldprc = message.precision(16); 1041 message << "Point p is outside (!?) of solid: " << GetName() << G4endl; 1042 message << "Position:\n"; 1043 message << " p.x() = " << p.x()/mm << " mm\n"; 1044 message << " p.y() = " << p.y()/mm << " mm\n"; 1045 message << " p.z() = " << p.z()/mm << " mm"; 1046 G4cout.precision(oldprc); 1047 G4Exception("G4Trap::DistanceToOut(p)", "GeomSolids1002", 1048 JustWarning, message ); 1049 DumpInfo(); 1050 } 1051 #endif 1052 switch (fTrapType) 1053 { 1054 case 0: // General case 1055 { 1056 G4double dz = std::abs(p.z())-fDz; 1057 G4double dy1 = fPlanes[0].b*p.y()+fPlanes[0].c*p.z()+fPlanes[0].d; 1058 G4double dy2 = fPlanes[1].b*p.y()+fPlanes[1].c*p.z()+fPlanes[1].d; 1059 G4double dy = std::max(dz,std::max(dy1,dy2)); 1060 1061 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 1062 + fPlanes[2].c*p.z()+fPlanes[2].d; 1063 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 1064 + fPlanes[3].c*p.z()+fPlanes[3].d; 1065 G4double dist = std::max(dy,std::max(dx1,dx2)); 1066 return (dist < 0) ? -dist : 0.; 1067 } 1068 case 1: // YZ section is a rectangle 1069 { 1070 G4double dz = std::abs(p.z())-fDz; 1071 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1072 G4double dx1 = fPlanes[2].a*p.x()+fPlanes[2].b*p.y() 1073 + fPlanes[2].c*p.z()+fPlanes[2].d; 1074 G4double dx2 = fPlanes[3].a*p.x()+fPlanes[3].b*p.y() 1075 + fPlanes[3].c*p.z()+fPlanes[3].d; 1076 G4double dist = std::max(dy,std::max(dx1,dx2)); 1077 return (dist < 0) ? -dist : 0.; 1078 } 1079 case 2: // YZ section is a rectangle and 1080 { // XZ section is an isosceles trapezoid 1081 G4double dz = std::abs(p.z())-fDz; 1082 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1083 G4double dx = fPlanes[3].a*std::abs(p.x()) 1084 + fPlanes[3].c*p.z()+fPlanes[3].d; 1085 G4double dist = std::max(dy,dx); 1086 return (dist < 0) ? -dist : 0.; 1087 } 1088 case 3: // YZ section is a rectangle and 1089 { // XY section is an isosceles trapezoid 1090 G4double dz = std::abs(p.z())-fDz; 1091 G4double dy = std::max(dz,std::abs(p.y())+fPlanes[1].d); 1092 G4double dx = fPlanes[3].a*std::abs(p.x()) 1093 + fPlanes[3].b*p.y()+fPlanes[3].d; 1094 G4double dist = std::max(dy,dx); 1095 return (dist < 0) ? -dist : 0.; 1096 } 1097 } 1098 return 0.; 1099 } 1100 1101 ////////////////////////////////////////////////////////////////////////// 1102 // 1103 // GetEntityType 1104 1105 G4GeometryType G4Trap::GetEntityType() const 1106 { 1107 return {"G4Trap"}; 1108 } 1109 1110 ////////////////////////////////////////////////////////////////////////// 1111 // 1112 // IsFaceted 1113 1114 G4bool G4Trap::IsFaceted() const 1115 { 1116 return true; 1117 } 1118 1119 ////////////////////////////////////////////////////////////////////////// 1120 // 1121 // Make a clone of the object 1122 // 1123 G4VSolid* G4Trap::Clone() const 1124 { 1125 return new G4Trap(*this); 1126 } 1127 1128 ////////////////////////////////////////////////////////////////////////// 1129 // 1130 // Stream object contents to an output stream 1131 1132 std::ostream& G4Trap::StreamInfo( std::ostream& os ) const 1133 { 1134 G4double phi = GetPhi(); 1135 G4double theta = GetTheta(); 1136 G4double alpha1 = GetAlpha1(); 1137 G4double alpha2 = GetAlpha2(); 1138 1139 G4long oldprc = os.precision(16); 1140 os << "-----------------------------------------------------------\n" 1141 << " *** Dump for solid: " << GetName() << " ***\n" 1142 << " ===================================================\n" 1143 << " Solid type: G4Trap\n" 1144 << " Parameters:\n" 1145 << " half length Z: " << fDz/mm << " mm\n" 1146 << " half length Y, face -Dz: " << fDy1/mm << " mm\n" 1147 << " half length X, face -Dz, side -Dy1: " << fDx1/mm << " mm\n" 1148 << " half length X, face -Dz, side +Dy1: " << fDx2/mm << " mm\n" 1149 << " half length Y, face +Dz: " << fDy2/mm << " mm\n" 1150 << " half length X, face +Dz, side -Dy2: " << fDx3/mm << " mm\n" 1151 << " half length X, face +Dz, side +Dy2: " << fDx4/mm << " mm\n" 1152 << " theta: " << theta/degree << " degrees\n" 1153 << " phi: " << phi/degree << " degrees\n" 1154 << " alpha, face -Dz: " << alpha1/degree << " degrees\n" 1155 << " alpha, face +Dz: " << alpha2/degree << " degrees\n" 1156 << "-----------------------------------------------------------\n"; 1157 os.precision(oldprc); 1158 1159 return os; 1160 } 1161 1162 ////////////////////////////////////////////////////////////////////////// 1163 // 1164 // Compute vertices from planes 1165 1166 void G4Trap::GetVertices(G4ThreeVector pt[8]) const 1167 { 1168 for (G4int i=0; i<8; ++i) 1169 { 1170 G4int iy = (i==0 || i==1 || i==4 || i==5) ? 0 : 1; 1171 G4int ix = (i==0 || i==2 || i==4 || i==6) ? 2 : 3; 1172 G4double z = (i < 4) ? -fDz : fDz; 1173 G4double y = -(fPlanes[iy].c*z + fPlanes[iy].d)/fPlanes[iy].b; 1174 G4double x = -(fPlanes[ix].b*y + fPlanes[ix].c*z 1175 + fPlanes[ix].d)/fPlanes[ix].a; 1176 pt[i].set(x,y,z); 1177 } 1178 } 1179 1180 ////////////////////////////////////////////////////////////////////////// 1181 // 1182 // Generate random point on the surface 1183 1184 G4ThreeVector G4Trap::GetPointOnSurface() const 1185 { 1186 // Set indeces 1187 constexpr G4int iface [6][4] = 1188 { {0,1,3,2}, {0,4,5,1}, {2,3,7,6}, {0,2,6,4}, {1,5,7,3}, {4,6,7,5} }; 1189 1190 // Set vertices 1191 G4ThreeVector pt[8]; 1192 GetVertices(pt); 1193 1194 // Select face 1195 // 1196 G4double select = fAreas[5]*G4QuickRand(); 1197 G4int k = 5; 1198 k -= (G4int)(select <= fAreas[4]); 1199 k -= (G4int)(select <= fAreas[3]); 1200 k -= (G4int)(select <= fAreas[2]); 1201 k -= (G4int)(select <= fAreas[1]); 1202 k -= (G4int)(select <= fAreas[0]); 1203 1204 // Select sub-triangle 1205 // 1206 G4int i0 = iface[k][0]; 1207 G4int i1 = iface[k][1]; 1208 G4int i2 = iface[k][2]; 1209 G4int i3 = iface[k][3]; 1210 G4double s2 = G4GeomTools::TriangleAreaNormal(pt[i2],pt[i1],pt[i3]).mag(); 1211 if (select > fAreas[k] - s2) i0 = i2; 1212 1213 // Generate point 1214 // 1215 G4double u = G4QuickRand(); 1216 G4double v = G4QuickRand(); 1217 if (u + v > 1.) { u = 1. - u; v = 1. - v; } 1218 return (1.-u-v)*pt[i0] + u*pt[i1] + v*pt[i3]; 1219 } 1220 1221 ////////////////////////////////////////////////////////////////////////// 1222 // 1223 // Methods for visualisation 1224 1225 void G4Trap::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 1226 { 1227 scene.AddSolid (*this); 1228 } 1229 1230 G4Polyhedron* G4Trap::CreatePolyhedron () const 1231 { 1232 G4double phi = std::atan2(fTthetaSphi, fTthetaCphi); 1233 G4double alpha1 = std::atan(fTalpha1); 1234 G4double alpha2 = std::atan(fTalpha2); 1235 G4double theta = std::atan(std::sqrt(fTthetaCphi*fTthetaCphi 1236 +fTthetaSphi*fTthetaSphi)); 1237 1238 return new G4PolyhedronTrap(fDz, theta, phi, 1239 fDy1, fDx1, fDx2, alpha1, 1240 fDy2, fDx3, fDx4, alpha2); 1241 } 1242 1243 #endif 1244