Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 // G4CutTubs implementation 27 // 28 // 01.06.11 T.Nikitina - Derived from G4Tubs 29 // 30.10.16 E.Tcherniaev - reimplemented CalculateExtent(), 30 // removed CreateRotatedVetices() 31 // -------------------------------------------------------------------- 32 33 #include "G4CutTubs.hh" 34 35 #if !defined(G4GEOM_USE_UCTUBS) 36 37 #include "G4GeomTools.hh" 38 #include "G4VoxelLimits.hh" 39 #include "G4AffineTransform.hh" 40 #include "G4GeometryTolerance.hh" 41 #include "G4BoundingEnvelope.hh" 42 43 #include "G4VPVParameterisation.hh" 44 #include "G4QuickRand.hh" 45 46 #include "G4VGraphicsScene.hh" 47 #include "G4Polyhedron.hh" 48 49 #include "G4AutoLock.hh" 50 51 namespace 52 { 53 G4Mutex zminmaxMutex = G4MUTEX_INITIALIZER; 54 } 55 56 using namespace CLHEP; 57 58 ///////////////////////////////////////////////////////////////////////// 59 // 60 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI 61 // - note if pdphi>2PI then reset to 2PI 62 63 G4CutTubs::G4CutTubs( const G4String &pName, 64 G4double pRMin, G4double pRMax, 65 G4double pDz, 66 G4double pSPhi, G4double pDPhi, 67 G4ThreeVector pLowNorm,G4ThreeVector pHighNorm ) 68 : G4CSGSolid(pName), fRMin(pRMin), fRMax(pRMax), fDz(pDz), 69 fSPhi(0.), fDPhi(0.), fZMin(0.), fZMax(0.) 70 { 71 kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance(); 72 kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance(); 73 74 halfCarTolerance = kCarTolerance*0.5; 75 halfRadTolerance = kRadTolerance*0.5; 76 halfAngTolerance = kAngTolerance*0.5; 77 78 if (pDz<=0) // Check z-len 79 { 80 std::ostringstream message; 81 message << "Negative Z half-length (" << pDz << ") in solid: " << GetName(); 82 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002", FatalException, message); 83 } 84 if ( (pRMin >= pRMax) || (pRMin < 0) ) // Check radii 85 { 86 std::ostringstream message; 87 message << "Invalid values for radii in solid: " << GetName() 88 << G4endl 89 << " pRMin = " << pRMin << ", pRMax = " << pRMax; 90 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002", FatalException, message); 91 } 92 93 // Check angles 94 // 95 CheckPhiAngles(pSPhi, pDPhi); 96 97 // Check on Cutted Planes Normals 98 // If there is NO CUT, propose to use G4Tubs instead 99 // 100 if ( ( pLowNorm.x() == 0.0) && ( pLowNorm.y() == 0.0) 101 && ( pHighNorm.x() == 0.0) && (pHighNorm.y() == 0.0) ) 102 { 103 std::ostringstream message; 104 message << "Inexisting Low/High Normal to Z plane or Parallel to Z." 105 << G4endl 106 << "Normals to Z plane are " << pLowNorm << " and " 107 << pHighNorm << " in solid: " << GetName() << " \n"; 108 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids1001", 109 JustWarning, message, "Should use G4Tubs!"); 110 } 111 112 // If Normal is (0,0,0),means parallel to R, give it value of (0,0,+/-1) 113 // 114 if (pLowNorm.mag2() == 0.) { pLowNorm.setZ(-1.); } 115 if (pHighNorm.mag2()== 0.) { pHighNorm.setZ(1.); } 116 117 // Given Normals to Cut Planes have to be an unit vectors. 118 // Normalize if it is needed. 119 // 120 if (pLowNorm.mag2() != 1.) { pLowNorm = pLowNorm.unit(); } 121 if (pHighNorm.mag2()!= 1.) { pHighNorm = pHighNorm.unit(); } 122 123 // Normals to cutted planes have to point outside Solid 124 // 125 if( (pLowNorm.mag2() != 0.) && (pHighNorm.mag2()!= 0. ) ) 126 { 127 if( ( pLowNorm.z()>= 0. ) || ( pHighNorm.z() <= 0.)) 128 { 129 std::ostringstream message; 130 message << "Invalid Low or High Normal to Z plane; " 131 "has to point outside Solid." << G4endl 132 << "Invalid Norm to Z plane (" << pLowNorm << " or " 133 << pHighNorm << ") in solid: " << GetName(); 134 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002", 135 FatalException, message); 136 } 137 } 138 fLowNorm = pLowNorm; 139 fHighNorm = pHighNorm; 140 141 // Check intersection of cut planes, they MUST NOT intersect 142 // each other inside the lateral surface 143 // 144 if(IsCrossingCutPlanes()) 145 { 146 std::ostringstream message; 147 message << "Invalid normals to Z plane in solid : " << GetName() << G4endl 148 << "Cut planes are crossing inside lateral surface !!!\n" 149 << " Solid type: G4CutTubs\n" 150 << " Parameters: \n" 151 << " inner radius : " << fRMin/mm << " mm \n" 152 << " outer radius : " << fRMax/mm << " mm \n" 153 << " half length Z: " << fDz/mm << " mm \n" 154 << " starting phi : " << fSPhi/degree << " degrees \n" 155 << " delta phi : " << fDPhi/degree << " degrees \n" 156 << " low Norm : " << fLowNorm << " \n" 157 << " high Norm : " << fHighNorm; 158 G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002", 159 FatalException, message); 160 } 161 } 162 163 /////////////////////////////////////////////////////////////////////// 164 // 165 // Fake default constructor - sets only member data and allocates memory 166 // for usage restricted to object persistency. 167 // 168 G4CutTubs::G4CutTubs( __void__& a ) 169 : G4CSGSolid(a) 170 { 171 } 172 173 ////////////////////////////////////////////////////////////////////////// 174 // 175 // Destructor 176 177 G4CutTubs::~G4CutTubs() = default; 178 179 ////////////////////////////////////////////////////////////////////////// 180 // 181 // Copy constructor 182 183 G4CutTubs::G4CutTubs(const G4CutTubs&) = default; 184 185 ////////////////////////////////////////////////////////////////////////// 186 // 187 // Assignment operator 188 189 G4CutTubs& G4CutTubs::operator = (const G4CutTubs& rhs) 190 { 191 // Check assignment to self 192 // 193 if (this == &rhs) { return *this; } 194 195 // Copy base class data 196 // 197 G4CSGSolid::operator=(rhs); 198 199 // Copy data 200 // 201 kRadTolerance = rhs.kRadTolerance; kAngTolerance = rhs.kAngTolerance; 202 fRMin = rhs.fRMin; fRMax = rhs.fRMax; fDz = rhs.fDz; 203 fSPhi = rhs.fSPhi; fDPhi = rhs.fDPhi; 204 fZMin = rhs.fZMin; fZMax = rhs.fZMax; 205 sinCPhi = rhs.sinCPhi; cosCPhi = rhs.cosCPhi; 206 cosHDPhiOT = rhs.cosHDPhiOT; cosHDPhiIT = rhs.cosHDPhiIT; 207 sinSPhi = rhs.sinSPhi; cosSPhi = rhs.cosSPhi; 208 sinEPhi = rhs.sinEPhi; cosEPhi = rhs.cosEPhi; 209 fPhiFullCutTube = rhs.fPhiFullCutTube; 210 halfCarTolerance = rhs.halfCarTolerance; 211 halfRadTolerance = rhs.halfRadTolerance; 212 halfAngTolerance = rhs.halfAngTolerance; 213 fLowNorm = rhs.fLowNorm; fHighNorm = rhs.fHighNorm; 214 215 return *this; 216 } 217 218 ////////////////////////////////////////////////////////////////////////// 219 // 220 // Get volume 221 222 G4double G4CutTubs::GetCubicVolume() 223 { 224 constexpr G4int nphi = 200, nrho = 100; 225 226 if (fCubicVolume == 0.) 227 { 228 // get parameters 229 G4double rmin = GetInnerRadius(); 230 G4double rmax = GetOuterRadius(); 231 G4double dz = GetZHalfLength(); 232 G4double sphi = GetStartPhiAngle(); 233 G4double dphi = GetDeltaPhiAngle(); 234 235 // calculate volume 236 G4double volume = dz*dphi*(rmax*rmax - rmin*rmin); 237 if (dphi < twopi) // make recalculation 238 { 239 // set values for calculation of h - distance between 240 // opposite points on bases 241 G4ThreeVector nbot = GetLowNorm(); 242 G4ThreeVector ntop = GetHighNorm(); 243 G4double nx = nbot.x()/nbot.z() - ntop.x()/ntop.z(); 244 G4double ny = nbot.y()/nbot.z() - ntop.y()/ntop.z(); 245 246 // compute volume by integration 247 G4double delrho = (rmax - rmin)/nrho; 248 G4double delphi = dphi/nphi; 249 volume = 0.; 250 for (G4int irho=0; irho<nrho; ++irho) 251 { 252 G4double r1 = rmin + delrho*irho; 253 G4double r2 = rmin + delrho*(irho + 1); 254 G4double rho = 0.5*(r1 + r2); 255 G4double sector = 0.5*delphi*(r2*r2 - r1*r1); 256 for (G4int iphi=0; iphi<nphi; ++iphi) 257 { 258 G4double phi = sphi + delphi*(iphi + 0.5); 259 G4double h = nx*rho*std::cos(phi) + ny*rho*std::sin(phi) + 2.*dz; 260 volume += sector*h; 261 } 262 } 263 } 264 fCubicVolume = volume; 265 } 266 return fCubicVolume; 267 } 268 269 ////////////////////////////////////////////////////////////////////////// 270 // 271 // Get surface area 272 273 G4double G4CutTubs::GetSurfaceArea() 274 { 275 constexpr G4int nphi = 400; 276 277 if (fSurfaceArea == 0.) 278 { 279 // get parameters 280 G4double rmin = GetInnerRadius(); 281 G4double rmax = GetOuterRadius(); 282 G4double dz = GetZHalfLength(); 283 G4double sphi = GetStartPhiAngle(); 284 G4double dphi = GetDeltaPhiAngle(); 285 G4ThreeVector nbot = GetLowNorm(); 286 G4ThreeVector ntop = GetHighNorm(); 287 288 // calculate lateral surface area 289 G4double sinner = 2.*dz*dphi*rmin; 290 G4double souter = 2.*dz*dphi*rmax; 291 if (dphi < twopi) // make recalculation 292 { 293 // set values for calculation of h - distance between 294 // opposite points on bases 295 G4double nx = nbot.x()/nbot.z() - ntop.x()/ntop.z(); 296 G4double ny = nbot.y()/nbot.z() - ntop.y()/ntop.z(); 297 298 // compute lateral surface area by integration 299 G4double delphi = dphi/nphi; 300 sinner = 0.; 301 souter = 0.; 302 for (G4int iphi=0; iphi<nphi; ++iphi) 303 { 304 G4double phi = sphi + delphi*(iphi + 0.5); 305 G4double cosphi = std::cos(phi); 306 G4double sinphi = std::sin(phi); 307 sinner += rmin*(nx*cosphi + ny*sinphi) + 2.*dz; 308 souter += rmax*(nx*cosphi + ny*sinphi) + 2.*dz; 309 } 310 sinner *= delphi*rmin; 311 souter *= delphi*rmax; 312 } 313 // set surface area 314 G4double scut = (dphi == twopi) ? 0. : 2.*dz*(rmax - rmin); 315 G4double szero = 0.5*dphi*(rmax*rmax - rmin*rmin); 316 G4double slow = szero/std::abs(nbot.z()); 317 G4double shigh = szero/std::abs(ntop.z()); 318 fSurfaceArea = sinner + souter + 2.*scut + slow + shigh; 319 } 320 return fSurfaceArea; 321 } 322 323 ////////////////////////////////////////////////////////////////////////// 324 // 325 // Get bounding box 326 327 void G4CutTubs::BoundingLimits(G4ThreeVector& pMin, G4ThreeVector& pMax) const 328 { 329 G4double rmin = GetInnerRadius(); 330 G4double rmax = GetOuterRadius(); 331 G4double dz = GetZHalfLength(); 332 G4double dphi = GetDeltaPhiAngle(); 333 334 G4double sinSphi = GetSinStartPhi(); 335 G4double cosSphi = GetCosStartPhi(); 336 G4double sinEphi = GetSinEndPhi(); 337 G4double cosEphi = GetCosEndPhi(); 338 339 G4ThreeVector norm; 340 G4double mag, topx, topy, dists, diste; 341 G4bool iftop; 342 343 // Find Zmin 344 // 345 G4double zmin; 346 norm = GetLowNorm(); 347 mag = std::sqrt(norm.x()*norm.x() + norm.y()*norm.y()); 348 topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; 349 topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; 350 dists = sinSphi*topx - cosSphi*topy; 351 diste = -sinEphi*topx + cosEphi*topy; 352 if (dphi > pi) 353 { 354 iftop = true; 355 if (dists > 0 && diste > 0)iftop = false; 356 } 357 else 358 { 359 iftop = false; 360 if (dists <= 0 && diste <= 0) iftop = true; 361 } 362 if (iftop) 363 { 364 zmin = -(norm.x()*topx + norm.y()*topy)/norm.z() - dz; 365 } 366 else 367 { 368 G4double z1 = -rmin*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() - dz; 369 G4double z2 = -rmin*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() - dz; 370 G4double z3 = -rmax*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() - dz; 371 G4double z4 = -rmax*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() - dz; 372 zmin = std::min(std::min(std::min(z1,z2),z3),z4); 373 } 374 375 // Find Zmax 376 // 377 G4double zmax; 378 norm = GetHighNorm(); 379 mag = std::sqrt(norm.x()*norm.x() + norm.y()*norm.y()); 380 topx = (mag == 0) ? 0 : -rmax*norm.x()/mag; 381 topy = (mag == 0) ? 0 : -rmax*norm.y()/mag; 382 dists = sinSphi*topx - cosSphi*topy; 383 diste = -sinEphi*topx + cosEphi*topy; 384 if (dphi > pi) 385 { 386 iftop = true; 387 if (dists > 0 && diste > 0) iftop = false; 388 } 389 else 390 { 391 iftop = false; 392 if (dists <= 0 && diste <= 0) iftop = true; 393 } 394 if (iftop) 395 { 396 zmax = -(norm.x()*topx + norm.y()*topy)/norm.z() + dz; 397 } 398 else 399 { 400 G4double z1 = -rmin*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() + dz; 401 G4double z2 = -rmin*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() + dz; 402 G4double z3 = -rmax*(norm.x()*cosSphi + norm.y()*sinSphi)/norm.z() + dz; 403 G4double z4 = -rmax*(norm.x()*cosEphi + norm.y()*sinEphi)/norm.z() + dz; 404 zmax = std::max(std::max(std::max(z1,z2),z3),z4); 405 } 406 407 // Find bounding box 408 // 409 if (dphi < twopi) 410 { 411 G4TwoVector vmin,vmax; 412 G4GeomTools::DiskExtent(rmin,rmax, 413 GetSinStartPhi(),GetCosStartPhi(), 414 GetSinEndPhi(),GetCosEndPhi(), 415 vmin,vmax); 416 pMin.set(vmin.x(),vmin.y(), zmin); 417 pMax.set(vmax.x(),vmax.y(), zmax); 418 } 419 else 420 { 421 pMin.set(-rmax,-rmax, zmin); 422 pMax.set( rmax, rmax, zmax); 423 } 424 425 // Check correctness of the bounding box 426 // 427 if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z()) 428 { 429 std::ostringstream message; 430 message << "Bad bounding box (min >= max) for solid: " 431 << GetName() << " !" 432 << "\npMin = " << pMin 433 << "\npMax = " << pMax; 434 G4Exception("G4CutTubs::BoundingLimits()", "GeomMgt0001", 435 JustWarning, message); 436 DumpInfo(); 437 } 438 } 439 440 ////////////////////////////////////////////////////////////////////////// 441 // 442 // Calculate extent under transform and specified limit 443 444 G4bool G4CutTubs::CalculateExtent( const EAxis pAxis, 445 const G4VoxelLimits& pVoxelLimit, 446 const G4AffineTransform& pTransform, 447 G4double& pMin, 448 G4double& pMax ) const 449 { 450 G4ThreeVector bmin, bmax; 451 G4bool exist; 452 453 // Get bounding box 454 BoundingLimits(bmin,bmax); 455 456 // Check bounding box 457 G4BoundingEnvelope bbox(bmin,bmax); 458 #ifdef G4BBOX_EXTENT 459 return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 460 #endif 461 if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax)) 462 { 463 return exist = pMin < pMax; 464 } 465 466 // Get parameters of the solid 467 G4double rmin = GetInnerRadius(); 468 G4double rmax = GetOuterRadius(); 469 G4double dphi = GetDeltaPhiAngle(); 470 G4double zmin = bmin.z(); 471 G4double zmax = bmax.z(); 472 473 // Find bounding envelope and calculate extent 474 // 475 const G4int NSTEPS = 24; // number of steps for whole circle 476 G4double astep = twopi/NSTEPS; // max angle for one step 477 G4int ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1; 478 G4double ang = dphi/ksteps; 479 480 G4double sinHalf = std::sin(0.5*ang); 481 G4double cosHalf = std::cos(0.5*ang); 482 G4double sinStep = 2.*sinHalf*cosHalf; 483 G4double cosStep = 1. - 2.*sinHalf*sinHalf; 484 G4double rext = rmax/cosHalf; 485 486 // bounding envelope for full cylinder consists of two polygons, 487 // in other cases it is a sequence of quadrilaterals 488 if (rmin == 0 && dphi == twopi) 489 { 490 G4double sinCur = sinHalf; 491 G4double cosCur = cosHalf; 492 493 G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS); 494 for (G4int k=0; k<NSTEPS; ++k) 495 { 496 baseA[k].set(rext*cosCur,rext*sinCur,zmin); 497 baseB[k].set(rext*cosCur,rext*sinCur,zmax); 498 499 G4double sinTmp = sinCur; 500 sinCur = sinCur*cosStep + cosCur*sinStep; 501 cosCur = cosCur*cosStep - sinTmp*sinStep; 502 } 503 std::vector<const G4ThreeVectorList *> polygons(2); 504 polygons[0] = &baseA; 505 polygons[1] = &baseB; 506 G4BoundingEnvelope benv(bmin,bmax,polygons); 507 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 508 } 509 else 510 { 511 G4double sinStart = GetSinStartPhi(); 512 G4double cosStart = GetCosStartPhi(); 513 G4double sinEnd = GetSinEndPhi(); 514 G4double cosEnd = GetCosEndPhi(); 515 G4double sinCur = sinStart*cosHalf + cosStart*sinHalf; 516 G4double cosCur = cosStart*cosHalf - sinStart*sinHalf; 517 518 // set quadrilaterals 519 G4ThreeVectorList pols[NSTEPS+2]; 520 for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4); 521 pols[0][0].set(rmin*cosStart,rmin*sinStart,zmax); 522 pols[0][1].set(rmin*cosStart,rmin*sinStart,zmin); 523 pols[0][2].set(rmax*cosStart,rmax*sinStart,zmin); 524 pols[0][3].set(rmax*cosStart,rmax*sinStart,zmax); 525 for (G4int k=1; k<ksteps+1; ++k) 526 { 527 pols[k][0].set(rmin*cosCur,rmin*sinCur,zmax); 528 pols[k][1].set(rmin*cosCur,rmin*sinCur,zmin); 529 pols[k][2].set(rext*cosCur,rext*sinCur,zmin); 530 pols[k][3].set(rext*cosCur,rext*sinCur,zmax); 531 532 G4double sinTmp = sinCur; 533 sinCur = sinCur*cosStep + cosCur*sinStep; 534 cosCur = cosCur*cosStep - sinTmp*sinStep; 535 } 536 pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd,zmax); 537 pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,zmin); 538 pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,zmin); 539 pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd,zmax); 540 541 // set envelope and calculate extent 542 std::vector<const G4ThreeVectorList *> polygons; 543 polygons.resize(ksteps+2); 544 for (G4int k=0; k<ksteps+2; ++k) { polygons[k] = &pols[k]; } 545 G4BoundingEnvelope benv(bmin,bmax,polygons); 546 exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax); 547 } 548 return exist; 549 } 550 551 ////////////////////////////////////////////////////////////////////////// 552 // 553 // Return whether point inside/outside/on surface 554 555 EInside G4CutTubs::Inside( const G4ThreeVector& p ) const 556 { 557 G4ThreeVector vZ = G4ThreeVector(0,0,fDz); 558 EInside in = kInside; 559 560 // Check the lower cut plane 561 // 562 G4double zinLow =(p+vZ).dot(fLowNorm); 563 if (zinLow > halfCarTolerance) { return kOutside; } 564 565 // Check the higher cut plane 566 // 567 G4double zinHigh = (p-vZ).dot(fHighNorm); 568 if (zinHigh > halfCarTolerance) { return kOutside; } 569 570 // Check radius 571 // 572 G4double r2 = p.x()*p.x() + p.y()*p.y() ; 573 574 G4double tolRMin = fRMin - halfRadTolerance; 575 G4double tolRMax = fRMax + halfRadTolerance; 576 if ( tolRMin < 0 ) { tolRMin = 0; } 577 578 if (r2 < tolRMin*tolRMin || r2 > tolRMax*tolRMax) { return kOutside; } 579 580 // Check Phi cut 581 // 582 if(!fPhiFullCutTube) 583 { 584 if ((tolRMin == 0) && (std::fabs(p.x()) <= halfCarTolerance) 585 && (std::fabs(p.y()) <= halfCarTolerance)) 586 { 587 return kSurface; 588 } 589 590 G4double phi0 = std::atan2(p.y(),p.x()); 591 G4double phi1 = phi0 - twopi; 592 G4double phi2 = phi0 + twopi; 593 594 in = kOutside; 595 G4double sphi = fSPhi - halfAngTolerance; 596 G4double ephi = sphi + fDPhi + kAngTolerance; 597 if ((phi0 >= sphi && phi0 <= ephi) || 598 (phi1 >= sphi && phi1 <= ephi) || 599 (phi2 >= sphi && phi2 <= ephi)) in = kSurface; 600 if (in == kOutside) { return kOutside; } 601 602 sphi += kAngTolerance; 603 ephi -= kAngTolerance; 604 if ((phi0 >= sphi && phi0 <= ephi) || 605 (phi1 >= sphi && phi1 <= ephi) || 606 (phi2 >= sphi && phi2 <= ephi)) in = kInside; 607 if (in == kSurface) { return kSurface; } 608 } 609 610 // Check on the Surface for Z 611 // 612 if ((zinLow >= -halfCarTolerance) || (zinHigh >= -halfCarTolerance)) 613 { 614 return kSurface; 615 } 616 617 // Check on the Surface for R 618 // 619 if (fRMin != 0.0) { tolRMin = fRMin + halfRadTolerance; } 620 else { tolRMin = 0; } 621 tolRMax = fRMax - halfRadTolerance; 622 if (((r2 <= tolRMin*tolRMin) || (r2 >= tolRMax*tolRMax)) && 623 (r2 >= halfRadTolerance*halfRadTolerance)) 624 { 625 return kSurface; 626 } 627 628 return in; 629 } 630 631 /////////////////////////////////////////////////////////////////////////// 632 // 633 // Return unit normal of surface closest to p 634 // - note if point on z axis, ignore phi divided sides 635 // - unsafe if point close to z axis a rmin=0 - no explicit checks 636 637 G4ThreeVector G4CutTubs::SurfaceNormal( const G4ThreeVector& p ) const 638 { 639 G4int noSurfaces = 0; 640 G4double rho, pPhi; 641 G4double distZLow,distZHigh, distRMin, distRMax; 642 G4double distSPhi = kInfinity, distEPhi = kInfinity; 643 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 644 645 G4ThreeVector norm, sumnorm(0.,0.,0.); 646 G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0); 647 G4ThreeVector nR, nPs, nPe; 648 649 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()); 650 651 distRMin = std::fabs(rho - fRMin); 652 distRMax = std::fabs(rho - fRMax); 653 654 // dist to Low Cut 655 // 656 distZLow =std::fabs((p+vZ).dot(fLowNorm)); 657 658 // dist to High Cut 659 // 660 distZHigh = std::fabs((p-vZ).dot(fHighNorm)); 661 662 if (!fPhiFullCutTube) // Protected against (0,0,z) 663 { 664 if ( rho > halfCarTolerance ) 665 { 666 pPhi = std::atan2(p.y(),p.x()); 667 668 if(pPhi < fSPhi- halfCarTolerance) { pPhi += twopi; } 669 else if(pPhi > fSPhi+fDPhi+ halfCarTolerance) { pPhi -= twopi; } 670 671 distSPhi = std::fabs(pPhi - fSPhi); 672 distEPhi = std::fabs(pPhi - fSPhi - fDPhi); 673 } 674 else if( fRMin == 0.0 ) 675 { 676 distSPhi = 0.; 677 distEPhi = 0.; 678 } 679 nPs = G4ThreeVector( sinSPhi, -cosSPhi, 0 ); 680 nPe = G4ThreeVector( -sinEPhi, cosEPhi, 0 ); 681 } 682 if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); } 683 684 if( distRMax <= halfCarTolerance ) 685 { 686 ++noSurfaces; 687 sumnorm += nR; 688 } 689 if( (fRMin != 0.0) && (distRMin <= halfCarTolerance) ) 690 { 691 ++noSurfaces; 692 sumnorm -= nR; 693 } 694 if( fDPhi < twopi ) 695 { 696 if (distSPhi <= halfAngTolerance) 697 { 698 ++noSurfaces; 699 sumnorm += nPs; 700 } 701 if (distEPhi <= halfAngTolerance) 702 { 703 ++noSurfaces; 704 sumnorm += nPe; 705 } 706 } 707 if (distZLow <= halfCarTolerance) 708 { 709 ++noSurfaces; 710 sumnorm += fLowNorm; 711 } 712 if (distZHigh <= halfCarTolerance) 713 { 714 ++noSurfaces; 715 sumnorm += fHighNorm; 716 } 717 if ( noSurfaces == 0 ) 718 { 719 #ifdef G4CSGDEBUG 720 G4Exception("G4CutTubs::SurfaceNormal(p)", "GeomSolids1002", 721 JustWarning, "Point p is not on surface !?" ); 722 G4int oldprc = G4cout.precision(20); 723 G4cout<< "G4CutTubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); " 724 << G4endl << G4endl; 725 G4cout.precision(oldprc) ; 726 #endif 727 norm = ApproxSurfaceNormal(p); 728 } 729 else if ( noSurfaces == 1 ) { norm = sumnorm; } 730 else { norm = sumnorm.unit(); } 731 732 return norm; 733 } 734 735 ///////////////////////////////////////////////////////////////////////////// 736 // 737 // Algorithm for SurfaceNormal() following the original specification 738 // for points not on the surface 739 740 G4ThreeVector G4CutTubs::ApproxSurfaceNormal( const G4ThreeVector& p ) const 741 { 742 enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNZ}; 743 744 ENorm side ; 745 G4ThreeVector norm ; 746 G4double rho, phi ; 747 G4double distZLow,distZHigh,distZ; 748 G4double distRMin, distRMax, distSPhi, distEPhi, distMin ; 749 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 750 751 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 752 753 distRMin = std::fabs(rho - fRMin) ; 754 distRMax = std::fabs(rho - fRMax) ; 755 756 //dist to Low Cut 757 // 758 distZLow =std::fabs((p+vZ).dot(fLowNorm)); 759 760 //dist to High Cut 761 // 762 distZHigh = std::fabs((p-vZ).dot(fHighNorm)); 763 distZ=std::min(distZLow,distZHigh); 764 765 if (distRMin < distRMax) // First minimum 766 { 767 if ( distZ < distRMin ) 768 { 769 distMin = distZ ; 770 side = kNZ ; 771 } 772 else 773 { 774 distMin = distRMin ; 775 side = kNRMin ; 776 } 777 } 778 else 779 { 780 if ( distZ < distRMax ) 781 { 782 distMin = distZ ; 783 side = kNZ ; 784 } 785 else 786 { 787 distMin = distRMax ; 788 side = kNRMax ; 789 } 790 } 791 if (!fPhiFullCutTube && (rho != 0.0) ) // Protected against (0,0,z) 792 { 793 phi = std::atan2(p.y(),p.x()) ; 794 795 if ( phi < 0 ) { phi += twopi; } 796 797 if ( fSPhi < 0 ) 798 { 799 distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ; 800 } 801 else 802 { 803 distSPhi = std::fabs(phi - fSPhi)*rho ; 804 } 805 distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ; 806 807 if (distSPhi < distEPhi) // Find new minimum 808 { 809 if ( distSPhi < distMin ) 810 { 811 side = kNSPhi ; 812 } 813 } 814 else 815 { 816 if ( distEPhi < distMin ) 817 { 818 side = kNEPhi ; 819 } 820 } 821 } 822 switch ( side ) 823 { 824 case kNRMin : // Inner radius 825 { 826 norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ; 827 break ; 828 } 829 case kNRMax : // Outer radius 830 { 831 norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ; 832 break ; 833 } 834 case kNZ : // + or - dz 835 { 836 if ( distZHigh > distZLow ) { norm = fHighNorm ; } 837 else { norm = fLowNorm; } 838 break ; 839 } 840 case kNSPhi: 841 { 842 norm = G4ThreeVector(sinSPhi, -cosSPhi, 0) ; 843 break ; 844 } 845 case kNEPhi: 846 { 847 norm = G4ThreeVector(-sinEPhi, cosEPhi, 0) ; 848 break; 849 } 850 default: // Should never reach this case ... 851 { 852 DumpInfo(); 853 G4Exception("G4CutTubs::ApproxSurfaceNormal()", 854 "GeomSolids1002", JustWarning, 855 "Undefined side for valid surface normal to solid."); 856 break ; 857 } 858 } 859 return norm; 860 } 861 862 //////////////////////////////////////////////////////////////////// 863 // 864 // 865 // Calculate distance to shape from outside, along normalised vector 866 // - return kInfinity if no intersection, or intersection distance <= tolerance 867 // 868 // - Compute the intersection with the z planes 869 // - if at valid r, phi, return 870 // 871 // -> If point is outer outer radius, compute intersection with rmax 872 // - if at valid phi,z return 873 // 874 // -> Compute intersection with inner radius, taking largest +ve root 875 // - if valid (in z,phi), save intersction 876 // 877 // -> If phi segmented, compute intersections with phi half planes 878 // - return smallest of valid phi intersections and 879 // inner radius intersection 880 // 881 // NOTE: 882 // - 'if valid' implies tolerant checking of intersection points 883 884 G4double G4CutTubs::DistanceToIn( const G4ThreeVector& p, 885 const G4ThreeVector& v ) const 886 { 887 G4double snxt = kInfinity ; // snxt = default return value 888 G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared 889 G4double tolORMax2, tolIRMin2; 890 const G4double dRmax = 100.*fRMax; 891 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 892 893 // Intersection point variables 894 // 895 G4double Dist, sd=0, xi, yi, zi, rho2, inum, iden, cosPsi, Comp,calf ; 896 G4double t1, t2, t3, b, c, d ; // Quadratic solver variables 897 G4double distZLow,distZHigh; 898 // Calculate tolerant rmin and rmax 899 900 if (fRMin > kRadTolerance) 901 { 902 tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ; 903 tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ; 904 } 905 else 906 { 907 tolORMin2 = 0.0 ; 908 tolIRMin2 = 0.0 ; 909 } 910 tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ; 911 tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ; 912 913 // Intersection with ZCut surfaces 914 915 // dist to Low Cut 916 // 917 distZLow =(p+vZ).dot(fLowNorm); 918 919 // dist to High Cut 920 // 921 distZHigh = (p-vZ).dot(fHighNorm); 922 923 if ( distZLow >= -halfCarTolerance ) 924 { 925 calf = v.dot(fLowNorm); 926 if (calf<0) 927 { 928 sd = -distZLow/calf; 929 if(sd < 0.0) { sd = 0.0; } 930 931 xi = p.x() + sd*v.x() ; // Intersection coords 932 yi = p.y() + sd*v.y() ; 933 rho2 = xi*xi + yi*yi ; 934 935 // Check validity of intersection 936 937 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 938 { 939 if (!fPhiFullCutTube && (rho2 != 0.0)) 940 { 941 // Psi = angle made with central (average) phi of shape 942 // 943 inum = xi*cosCPhi + yi*sinCPhi ; 944 iden = std::sqrt(rho2) ; 945 cosPsi = inum/iden ; 946 if (cosPsi >= cosHDPhiIT) { return sd ; } 947 } 948 else 949 { 950 return sd ; 951 } 952 } 953 } 954 else 955 { 956 if ( sd<halfCarTolerance ) 957 { 958 if(calf>=0) { sd=kInfinity; } 959 return sd ; // On/outside extent, and heading away 960 } // -> cannot intersect 961 } 962 } 963 964 if(distZHigh >= -halfCarTolerance ) 965 { 966 calf = v.dot(fHighNorm); 967 if (calf<0) 968 { 969 sd = -distZHigh/calf; 970 971 if(sd < 0.0) { sd = 0.0; } 972 973 xi = p.x() + sd*v.x() ; // Intersection coords 974 yi = p.y() + sd*v.y() ; 975 rho2 = xi*xi + yi*yi ; 976 977 // Check validity of intersection 978 979 if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2)) 980 { 981 if (!fPhiFullCutTube && (rho2 != 0.0)) 982 { 983 // Psi = angle made with central (average) phi of shape 984 // 985 inum = xi*cosCPhi + yi*sinCPhi ; 986 iden = std::sqrt(rho2) ; 987 cosPsi = inum/iden ; 988 if (cosPsi >= cosHDPhiIT) { return sd ; } 989 } 990 else 991 { 992 return sd ; 993 } 994 } 995 } 996 else 997 { 998 if ( sd<halfCarTolerance ) 999 { 1000 if(calf>=0) { sd=kInfinity; } 1001 return sd ; // On/outside extent, and heading away 1002 } // -> cannot intersect 1003 } 1004 } 1005 1006 // -> Can not intersect z surfaces 1007 // 1008 // Intersection with rmax (possible return) and rmin (must also check phi) 1009 // 1010 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1011 // 1012 // Intersects with x^2+y^2=R^2 1013 // 1014 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1015 // t1 t2 t3 1016 1017 t1 = 1.0 - v.z()*v.z() ; 1018 t2 = p.x()*v.x() + p.y()*v.y() ; 1019 t3 = p.x()*p.x() + p.y()*p.y() ; 1020 if ( t1 > 0 ) // Check not || to z axis 1021 { 1022 b = t2/t1 ; 1023 c = t3 - fRMax*fRMax ; 1024 1025 if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case 1026 { 1027 // Try outer cylinder intersection, c=(t3-fRMax*fRMax)/t1; 1028 1029 c /= t1 ; 1030 d = b*b - c ; 1031 1032 if (d >= 0) // If real root 1033 { 1034 sd = c/(-b+std::sqrt(d)); 1035 if (sd >= 0) // If 'forwards' 1036 { 1037 if ( sd>dRmax ) // Avoid rounding errors due to precision issues on 1038 { // 64 bits systems. Split long distances and recompute 1039 G4double fTerm = sd-std::fmod(sd,dRmax); 1040 sd = fTerm + DistanceToIn(p+fTerm*v,v); 1041 } 1042 // Check z intersection 1043 // 1044 zi = p.z() + sd*v.z() ; 1045 xi = p.x() + sd*v.x() ; 1046 yi = p.y() + sd*v.y() ; 1047 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1048 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1049 { 1050 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1051 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1052 { 1053 // Z ok. Check phi intersection if reqd 1054 // 1055 if (fPhiFullCutTube) 1056 { 1057 return sd ; 1058 } 1059 else 1060 { 1061 xi = p.x() + sd*v.x() ; 1062 yi = p.y() + sd*v.y() ; 1063 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ; 1064 if (cosPsi >= cosHDPhiIT) { return sd ; } 1065 } 1066 } // end if std::fabs(zi) 1067 } 1068 } // end if (sd>=0) 1069 } // end if (d>=0) 1070 } // end if (r>=fRMax) 1071 else 1072 { 1073 // Inside outer radius : 1074 // check not inside, and heading through tubs (-> 0 to in) 1075 if ((t3 > tolIRMin2) && (t2 < 0) 1076 && (std::fabs(p.z()) <= std::fabs(GetCutZ(p))-halfCarTolerance )) 1077 { 1078 // Inside both radii, delta r -ve, inside z extent 1079 1080 if (!fPhiFullCutTube) 1081 { 1082 inum = p.x()*cosCPhi + p.y()*sinCPhi ; 1083 iden = std::sqrt(t3) ; 1084 cosPsi = inum/iden ; 1085 if (cosPsi >= cosHDPhiIT) 1086 { 1087 // In the old version, the small negative tangent for the point 1088 // on surface was not taken in account, and returning 0.0 ... 1089 // New version: check the tangent for the point on surface and 1090 // if no intersection, return kInfinity, if intersection instead 1091 // return sd. 1092 // 1093 c = t3-fRMax*fRMax; 1094 if ( c<=0.0 ) 1095 { 1096 return 0.0; 1097 } 1098 else 1099 { 1100 c = c/t1 ; 1101 d = b*b-c; 1102 if ( d>=0.0 ) 1103 { 1104 snxt = c/(-b+std::sqrt(d)); // using safe solution 1105 // for quadratic equation 1106 if ( snxt < halfCarTolerance ) { snxt=0; } 1107 return snxt ; 1108 } 1109 else 1110 { 1111 return kInfinity; 1112 } 1113 } 1114 } 1115 } 1116 else 1117 { 1118 // In the old version, the small negative tangent for the point 1119 // on surface was not taken in account, and returning 0.0 ... 1120 // New version: check the tangent for the point on surface and 1121 // if no intersection, return kInfinity, if intersection instead 1122 // return sd. 1123 // 1124 c = t3 - fRMax*fRMax; 1125 if ( c<=0.0 ) 1126 { 1127 return 0.0; 1128 } 1129 else 1130 { 1131 c = c/t1 ; 1132 d = b*b-c; 1133 if ( d>=0.0 ) 1134 { 1135 snxt= c/(-b+std::sqrt(d)); // using safe solution 1136 // for quadratic equation 1137 if ( snxt < halfCarTolerance ) { snxt=0; } 1138 return snxt ; 1139 } 1140 else 1141 { 1142 return kInfinity; 1143 } 1144 } 1145 } // end if (!fPhiFullCutTube) 1146 } // end if (t3>tolIRMin2) 1147 } // end if (Inside Outer Radius) 1148 1149 if ( fRMin != 0.0 ) // Try inner cylinder intersection 1150 { 1151 c = (t3 - fRMin*fRMin)/t1 ; 1152 d = b*b - c ; 1153 if ( d >= 0.0 ) // If real root 1154 { 1155 // Always want 2nd root - we are outside and know rmax Hit was bad 1156 // - If on surface of rmin also need farthest root 1157 1158 sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d)); 1159 if (sd >= -10*halfCarTolerance) // check forwards 1160 { 1161 // Check z intersection 1162 // 1163 if (sd < 0.0) { sd = 0.0; } 1164 if (sd>dRmax) // Avoid rounding errors due to precision issues seen 1165 { // 64 bits systems. Split long distances and recompute 1166 G4double fTerm = sd-std::fmod(sd,dRmax); 1167 sd = fTerm + DistanceToIn(p+fTerm*v,v); 1168 } 1169 zi = p.z() + sd*v.z() ; 1170 xi = p.x() + sd*v.x() ; 1171 yi = p.y() + sd*v.y() ; 1172 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1173 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1174 { 1175 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1176 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1177 { 1178 // Z ok. Check phi 1179 // 1180 if ( fPhiFullCutTube ) 1181 { 1182 return sd ; 1183 } 1184 else 1185 { 1186 cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ; 1187 if (cosPsi >= cosHDPhiIT) 1188 { 1189 // Good inner radius isect 1190 // - but earlier phi isect still possible 1191 // 1192 snxt = sd ; 1193 } 1194 } 1195 } // end if std::fabs(zi) 1196 } 1197 } // end if (sd>=0) 1198 } // end if (d>=0) 1199 } // end if (fRMin) 1200 } 1201 1202 // Phi segment intersection 1203 // 1204 // o Tolerant of points inside phi planes by up to kCarTolerance*0.5 1205 // 1206 // o NOTE: Large duplication of code between sphi & ephi checks 1207 // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane 1208 // intersection check <=0 -> >=0 1209 // -> use some form of loop Construct ? 1210 // 1211 if ( !fPhiFullCutTube ) 1212 { 1213 // First phi surface (Starting phi) 1214 // 1215 Comp = v.x()*sinSPhi - v.y()*cosSPhi ; 1216 1217 if ( Comp < 0 ) // Component in outwards normal dirn 1218 { 1219 Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ; 1220 1221 if ( Dist < halfCarTolerance ) 1222 { 1223 sd = Dist/Comp ; 1224 1225 if (sd < snxt) 1226 { 1227 if ( sd < 0 ) { sd = 0.0; } 1228 zi = p.z() + sd*v.z() ; 1229 xi = p.x() + sd*v.x() ; 1230 yi = p.y() + sd*v.y() ; 1231 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1232 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1233 { 1234 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1235 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1236 { 1237 rho2 = xi*xi + yi*yi ; 1238 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1239 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1240 && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 ) 1241 && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) ) 1242 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1243 && (v.y()*cosSPhi - v.x()*sinSPhi > 0) 1244 && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) ) 1245 { 1246 // z and r intersections good 1247 // - check intersecting with correct half-plane 1248 // 1249 if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; } 1250 } 1251 } //two Z conditions 1252 } 1253 } 1254 } 1255 } 1256 1257 // Second phi surface (Ending phi) 1258 // 1259 Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ; 1260 1261 if (Comp < 0 ) // Component in outwards normal dirn 1262 { 1263 Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ; 1264 1265 if ( Dist < halfCarTolerance ) 1266 { 1267 sd = Dist/Comp ; 1268 1269 if (sd < snxt) 1270 { 1271 if ( sd < 0 ) { sd = 0; } 1272 zi = p.z() + sd*v.z() ; 1273 xi = p.x() + sd*v.x() ; 1274 yi = p.y() + sd*v.y() ; 1275 if ((-xi*fLowNorm.x()-yi*fLowNorm.y() 1276 -(zi+fDz)*fLowNorm.z())>-halfCarTolerance) 1277 { 1278 if ((-xi*fHighNorm.x()-yi*fHighNorm.y() 1279 +(fDz-zi)*fHighNorm.z())>-halfCarTolerance) 1280 { 1281 xi = p.x() + sd*v.x() ; 1282 yi = p.y() + sd*v.y() ; 1283 rho2 = xi*xi + yi*yi ; 1284 if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) ) 1285 || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2) 1286 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1287 && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) ) 1288 || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2) 1289 && (v.x()*sinEPhi - v.y()*cosEPhi > 0) 1290 && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) ) 1291 { 1292 // z and r intersections good 1293 // - check intersecting with correct half-plane 1294 // 1295 if ( (yi*cosCPhi-xi*sinCPhi) >= -halfCarTolerance ) 1296 { 1297 snxt = sd; 1298 } 1299 } //?? >=-halfCarTolerance 1300 } 1301 } // two Z conditions 1302 } 1303 } 1304 } // Comp < 0 1305 } // !fPhiFullTube 1306 if ( snxt<halfCarTolerance ) { snxt=0; } 1307 1308 return snxt ; 1309 } 1310 1311 ////////////////////////////////////////////////////////////////// 1312 // 1313 // Calculate distance to shape from outside, along normalised vector 1314 // - return kInfinity if no intersection, or intersection distance <= tolerance 1315 // 1316 // - Compute the intersection with the z planes 1317 // - if at valid r, phi, return 1318 // 1319 // -> If point is outer outer radius, compute intersection with rmax 1320 // - if at valid phi,z return 1321 // 1322 // -> Compute intersection with inner radius, taking largest +ve root 1323 // - if valid (in z,phi), save intersction 1324 // 1325 // -> If phi segmented, compute intersections with phi half planes 1326 // - return smallest of valid phi intersections and 1327 // inner radius intersection 1328 // 1329 // NOTE: 1330 // - Precalculations for phi trigonometry are Done `just in time' 1331 // - `if valid' implies tolerant checking of intersection points 1332 // Calculate distance (<= actual) to closest surface of shape from outside 1333 // - Calculate distance to z, radial planes 1334 // - Only to phi planes if outside phi extent 1335 // - Return 0 if point inside 1336 1337 G4double G4CutTubs::DistanceToIn( const G4ThreeVector& p ) const 1338 { 1339 G4double safRMin,safRMax,safZLow,safZHigh,safePhi,safe,rho,cosPsi; 1340 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1341 1342 // Distance to R 1343 // 1344 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; 1345 1346 safRMin = fRMin- rho ; 1347 safRMax = rho - fRMax ; 1348 1349 // Distances to ZCut(Low/High) 1350 1351 // Dist to Low Cut 1352 // 1353 safZLow = (p+vZ).dot(fLowNorm); 1354 1355 // Dist to High Cut 1356 // 1357 safZHigh = (p-vZ).dot(fHighNorm); 1358 1359 safe = std::max(safZLow,safZHigh); 1360 1361 if ( safRMin > safe ) { safe = safRMin; } 1362 if ( safRMax> safe ) { safe = safRMax; } 1363 1364 // Distance to Phi 1365 // 1366 if ( (!fPhiFullCutTube) && ((rho) != 0.0) ) 1367 { 1368 // Psi=angle from central phi to point 1369 // 1370 cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ; 1371 1372 if ( cosPsi < cosHDPhi ) 1373 { 1374 // Point lies outside phi range 1375 1376 if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 ) 1377 { 1378 safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ; 1379 } 1380 else 1381 { 1382 safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ; 1383 } 1384 if ( safePhi > safe ) { safe = safePhi; } 1385 } 1386 } 1387 if ( safe < 0 ) { safe = 0; } 1388 1389 return safe ; 1390 } 1391 1392 ////////////////////////////////////////////////////////////////////////////// 1393 // 1394 // Calculate distance to surface of shape from `inside', allowing for tolerance 1395 // - Only Calc rmax intersection if no valid rmin intersection 1396 1397 G4double G4CutTubs::DistanceToOut( const G4ThreeVector& p, 1398 const G4ThreeVector& v, 1399 const G4bool calcNorm, 1400 G4bool* validNorm, 1401 G4ThreeVector* n ) const 1402 { 1403 enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kPZ,kMZ}; 1404 1405 ESide side=kNull , sider=kNull, sidephi=kNull ; 1406 G4double snxt=kInfinity, srd=kInfinity,sz=kInfinity, sphi=kInfinity ; 1407 G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ; 1408 G4double distZLow,distZHigh,calfH,calfL; 1409 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1410 1411 // Vars for phi intersection: 1412 // 1413 G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ; 1414 1415 // Z plane intersection 1416 // Distances to ZCut(Low/High) 1417 1418 // dist to Low Cut 1419 // 1420 distZLow =(p+vZ).dot(fLowNorm); 1421 1422 // dist to High Cut 1423 // 1424 distZHigh = (p-vZ).dot(fHighNorm); 1425 1426 calfH = v.dot(fHighNorm); 1427 calfL = v.dot(fLowNorm); 1428 1429 if (calfH > 0 ) 1430 { 1431 if ( distZHigh < halfCarTolerance ) 1432 { 1433 snxt = -distZHigh/calfH ; 1434 side = kPZ ; 1435 } 1436 else 1437 { 1438 if (calcNorm) 1439 { 1440 *n = G4ThreeVector(0,0,1) ; 1441 *validNorm = true ; 1442 } 1443 return snxt = 0 ; 1444 } 1445 } 1446 if ( calfL>0) 1447 { 1448 1449 if ( distZLow < halfCarTolerance ) 1450 { 1451 sz = -distZLow/calfL ; 1452 if(sz<snxt){ 1453 snxt=sz; 1454 side = kMZ ; 1455 } 1456 1457 } 1458 else 1459 { 1460 if (calcNorm) 1461 { 1462 *n = G4ThreeVector(0,0,-1) ; 1463 *validNorm = true ; 1464 } 1465 return snxt = 0.0 ; 1466 } 1467 } 1468 if((calfH<=0)&&(calfL<=0)) 1469 { 1470 snxt = kInfinity ; // Travel perpendicular to z axis 1471 side = kNull; 1472 } 1473 // Radial Intersections 1474 // 1475 // Find intersection with cylinders at rmax/rmin 1476 // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc. 1477 // 1478 // Intersects with x^2+y^2=R^2 1479 // 1480 // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0 1481 // 1482 // t1 t2 t3 1483 1484 t1 = 1.0 - v.z()*v.z() ; // since v normalised 1485 t2 = p.x()*v.x() + p.y()*v.y() ; 1486 t3 = p.x()*p.x() + p.y()*p.y() ; 1487 1488 if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; } 1489 else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz 1490 1491 if ( t1 > 0 ) // Check not parallel 1492 { 1493 // Calculate srd, r exit distance 1494 1495 if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) ) 1496 { 1497 // Delta r not negative => leaving via rmax 1498 1499 deltaR = t3 - fRMax*fRMax ; 1500 1501 // NOTE: Should use rho-fRMax<-kRadTolerance*0.5 1502 // - avoid sqrt for efficiency 1503 1504 if ( deltaR < -kRadTolerance*fRMax ) 1505 { 1506 b = t2/t1 ; 1507 c = deltaR/t1 ; 1508 d2 = b*b-c; 1509 if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); } 1510 else { srd = 0.; } 1511 sider = kRMax ; 1512 } 1513 else 1514 { 1515 // On tolerant boundary & heading outwards (or perpendicular to) 1516 // outer radial surface -> leaving immediately 1517 1518 if ( calcNorm ) 1519 { 1520 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1521 *validNorm = true ; 1522 } 1523 return snxt = 0 ; // Leaving by rmax immediately 1524 } 1525 } 1526 else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection 1527 { 1528 roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement 1529 1530 if ( (fRMin != 0.0) && (roMin2 < fRMin*(fRMin - kRadTolerance)) ) 1531 { 1532 deltaR = t3 - fRMin*fRMin ; 1533 b = t2/t1 ; 1534 c = deltaR/t1 ; 1535 d2 = b*b - c ; 1536 1537 if ( d2 >= 0 ) // Leaving via rmin 1538 { 1539 // NOTE: SHould use rho-rmin>kRadTolerance*0.5 1540 // - avoid sqrt for efficiency 1541 1542 if (deltaR > kRadTolerance*fRMin) 1543 { 1544 srd = c/(-b+std::sqrt(d2)); 1545 sider = kRMin ; 1546 } 1547 else 1548 { 1549 if ( calcNorm ) { *validNorm = false; } // Concave side 1550 return snxt = 0.0; 1551 } 1552 } 1553 else // No rmin intersect -> must be rmax intersect 1554 { 1555 deltaR = t3 - fRMax*fRMax ; 1556 c = deltaR/t1 ; 1557 d2 = b*b-c; 1558 if( d2 >=0. ) 1559 { 1560 srd = -b + std::sqrt(d2) ; 1561 sider = kRMax ; 1562 } 1563 else // Case: On the border+t2<kRadTolerance 1564 // (v is perpendicular to the surface) 1565 { 1566 if (calcNorm) 1567 { 1568 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1569 *validNorm = true ; 1570 } 1571 return snxt = 0.0; 1572 } 1573 } 1574 } 1575 else if ( roi2 > fRMax*(fRMax + kRadTolerance) ) 1576 // No rmin intersect -> must be rmax intersect 1577 { 1578 deltaR = t3 - fRMax*fRMax ; 1579 b = t2/t1 ; 1580 c = deltaR/t1; 1581 d2 = b*b-c; 1582 if( d2 >= 0 ) 1583 { 1584 srd = -b + std::sqrt(d2) ; 1585 sider = kRMax ; 1586 } 1587 else // Case: On the border+t2<kRadTolerance 1588 // (v is perpendicular to the surface) 1589 { 1590 if (calcNorm) 1591 { 1592 *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ; 1593 *validNorm = true ; 1594 } 1595 return snxt = 0.0; 1596 } 1597 } 1598 } 1599 // Phi Intersection 1600 1601 if ( !fPhiFullCutTube ) 1602 { 1603 // add angle calculation with correction 1604 // of the difference in domain of atan2 and Sphi 1605 // 1606 vphi = std::atan2(v.y(),v.x()) ; 1607 1608 if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; } 1609 else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; } 1610 1611 1612 if ( (p.x() != 0.0) || (p.y() != 0.0) ) // Check if on z axis (rho not needed later) 1613 { 1614 // pDist -ve when inside 1615 1616 pDistS = p.x()*sinSPhi - p.y()*cosSPhi ; 1617 pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ; 1618 1619 // Comp -ve when in direction of outwards normal 1620 1621 compS = -sinSPhi*v.x() + cosSPhi*v.y() ; 1622 compE = sinEPhi*v.x() - cosEPhi*v.y() ; 1623 1624 sidephi = kNull; 1625 1626 if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance) 1627 && (pDistE <= halfCarTolerance) ) ) 1628 || ( (fDPhi > pi) && ((pDistS <= halfCarTolerance) 1629 || (pDistE <= halfCarTolerance) ) ) ) 1630 { 1631 // Inside both phi *full* planes 1632 1633 if ( compS < 0 ) 1634 { 1635 sphi = pDistS/compS ; 1636 1637 if (sphi >= -halfCarTolerance) 1638 { 1639 xi = p.x() + sphi*v.x() ; 1640 yi = p.y() + sphi*v.y() ; 1641 1642 // Check intersecting with correct half-plane 1643 // (if not -> no intersect) 1644 // 1645 if( (std::fabs(xi)<=kCarTolerance) 1646 && (std::fabs(yi)<=kCarTolerance) ) 1647 { 1648 sidephi = kSPhi; 1649 if (((fSPhi-halfAngTolerance)<=vphi) 1650 &&((fSPhi+fDPhi+halfAngTolerance)>=vphi)) 1651 { 1652 sphi = kInfinity; 1653 } 1654 } 1655 else if ( yi*cosCPhi-xi*sinCPhi >=0 ) 1656 { 1657 sphi = kInfinity ; 1658 } 1659 else 1660 { 1661 sidephi = kSPhi ; 1662 if ( pDistS > -halfCarTolerance ) 1663 { 1664 sphi = 0.0 ; // Leave by sphi immediately 1665 } 1666 } 1667 } 1668 else 1669 { 1670 sphi = kInfinity ; 1671 } 1672 } 1673 else 1674 { 1675 sphi = kInfinity ; 1676 } 1677 1678 if ( compE < 0 ) 1679 { 1680 sphi2 = pDistE/compE ; 1681 1682 // Only check further if < starting phi intersection 1683 // 1684 if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) ) 1685 { 1686 xi = p.x() + sphi2*v.x() ; 1687 yi = p.y() + sphi2*v.y() ; 1688 1689 if ((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance)) 1690 { 1691 // Leaving via ending phi 1692 // 1693 if( (fSPhi-halfAngTolerance > vphi) 1694 ||(fSPhi+fDPhi+halfAngTolerance < vphi) ) 1695 { 1696 sidephi = kEPhi ; 1697 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1698 else { sphi = 0.0 ; } 1699 } 1700 } 1701 else // Check intersecting with correct half-plane 1702 1703 if ( (yi*cosCPhi-xi*sinCPhi) >= 0) 1704 { 1705 // Leaving via ending phi 1706 // 1707 sidephi = kEPhi ; 1708 if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; } 1709 else { sphi = 0.0 ; } 1710 } 1711 } 1712 } 1713 } 1714 else 1715 { 1716 sphi = kInfinity ; 1717 } 1718 } 1719 else 1720 { 1721 // On z axis + travel not || to z axis -> if phi of vector direction 1722 // within phi of shape, Step limited by rmax, else Step =0 1723 1724 if ( (fSPhi - halfAngTolerance <= vphi) 1725 && (vphi <= fSPhi + fDPhi + halfAngTolerance ) ) 1726 { 1727 sphi = kInfinity ; 1728 } 1729 else 1730 { 1731 sidephi = kSPhi ; // arbitrary 1732 sphi = 0.0 ; 1733 } 1734 } 1735 if (sphi < snxt) // Order intersecttions 1736 { 1737 snxt = sphi ; 1738 side = sidephi ; 1739 } 1740 } 1741 if (srd < snxt) // Order intersections 1742 { 1743 snxt = srd ; 1744 side = sider ; 1745 } 1746 } 1747 if (calcNorm) 1748 { 1749 switch(side) 1750 { 1751 case kRMax: 1752 // Note: returned vector not normalised 1753 // (divide by fRMax for unit vector) 1754 // 1755 xi = p.x() + snxt*v.x() ; 1756 yi = p.y() + snxt*v.y() ; 1757 *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ; 1758 *validNorm = true ; 1759 break ; 1760 1761 case kRMin: 1762 *validNorm = false ; // Rmin is inconvex 1763 break ; 1764 1765 case kSPhi: 1766 if ( fDPhi <= pi ) 1767 { 1768 *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ; 1769 *validNorm = true ; 1770 } 1771 else 1772 { 1773 *validNorm = false ; 1774 } 1775 break ; 1776 1777 case kEPhi: 1778 if (fDPhi <= pi) 1779 { 1780 *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ; 1781 *validNorm = true ; 1782 } 1783 else 1784 { 1785 *validNorm = false ; 1786 } 1787 break ; 1788 1789 case kPZ: 1790 *n = fHighNorm ; 1791 *validNorm = true ; 1792 break ; 1793 1794 case kMZ: 1795 *n = fLowNorm ; 1796 *validNorm = true ; 1797 break ; 1798 1799 default: 1800 G4cout << G4endl ; 1801 DumpInfo(); 1802 std::ostringstream message; 1803 G4long oldprc = message.precision(16); 1804 message << "Undefined side for valid surface normal to solid." 1805 << G4endl 1806 << "Position:" << G4endl << G4endl 1807 << "p.x() = " << p.x()/mm << " mm" << G4endl 1808 << "p.y() = " << p.y()/mm << " mm" << G4endl 1809 << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl 1810 << "Direction:" << G4endl << G4endl 1811 << "v.x() = " << v.x() << G4endl 1812 << "v.y() = " << v.y() << G4endl 1813 << "v.z() = " << v.z() << G4endl << G4endl 1814 << "Proposed distance :" << G4endl << G4endl 1815 << "snxt = " << snxt/mm << " mm" << G4endl ; 1816 message.precision(oldprc) ; 1817 G4Exception("G4CutTubs::DistanceToOut(p,v,..)", "GeomSolids1002", 1818 JustWarning, message); 1819 break ; 1820 } 1821 } 1822 if ( snxt<halfCarTolerance ) { snxt=0 ; } 1823 return snxt ; 1824 } 1825 1826 ////////////////////////////////////////////////////////////////////////// 1827 // 1828 // Calculate distance (<=actual) to closest surface of shape from inside 1829 1830 G4double G4CutTubs::DistanceToOut( const G4ThreeVector& p ) const 1831 { 1832 G4double safRMin,safRMax,safZLow,safZHigh,safePhi,safe,rho; 1833 G4ThreeVector vZ=G4ThreeVector(0,0,fDz); 1834 1835 rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; // Distance to R 1836 1837 safRMin = rho - fRMin ; 1838 safRMax = fRMax - rho ; 1839 1840 // Distances to ZCut(Low/High) 1841 1842 // Dist to Low Cut 1843 // 1844 safZLow = std::fabs((p+vZ).dot(fLowNorm)); 1845 1846 // Dist to High Cut 1847 // 1848 safZHigh = std::fabs((p-vZ).dot(fHighNorm)); 1849 safe = std::min(safZLow,safZHigh); 1850 1851 if ( safRMin < safe ) { safe = safRMin; } 1852 if ( safRMax< safe ) { safe = safRMax; } 1853 1854 // Check if phi divided, Calc distances closest phi plane 1855 // 1856 if ( !fPhiFullCutTube ) 1857 { 1858 if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 ) 1859 { 1860 safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ; 1861 } 1862 else 1863 { 1864 safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ; 1865 } 1866 if (safePhi < safe) { safe = safePhi ; } 1867 } 1868 if ( safe < 0 ) { safe = 0; } 1869 1870 return safe ; 1871 } 1872 1873 ////////////////////////////////////////////////////////////////////////// 1874 // 1875 // Stream object contents to an output stream 1876 1877 G4GeometryType G4CutTubs::GetEntityType() const 1878 { 1879 return {"G4CutTubs"}; 1880 } 1881 1882 ////////////////////////////////////////////////////////////////////////// 1883 // 1884 // Make a clone of the object 1885 // 1886 G4VSolid* G4CutTubs::Clone() const 1887 { 1888 return new G4CutTubs(*this); 1889 } 1890 1891 ////////////////////////////////////////////////////////////////////////// 1892 // 1893 // Stream object contents to an output stream 1894 1895 std::ostream& G4CutTubs::StreamInfo( std::ostream& os ) const 1896 { 1897 G4long oldprc = os.precision(16); 1898 os << "-----------------------------------------------------------\n" 1899 << " *** Dump for solid - " << GetName() << " ***\n" 1900 << " ===================================================\n" 1901 << " Solid type: G4CutTubs\n" 1902 << " Parameters: \n" 1903 << " inner radius : " << fRMin/mm << " mm \n" 1904 << " outer radius : " << fRMax/mm << " mm \n" 1905 << " half length Z: " << fDz/mm << " mm \n" 1906 << " starting phi : " << fSPhi/degree << " degrees \n" 1907 << " delta phi : " << fDPhi/degree << " degrees \n" 1908 << " low Norm : " << fLowNorm << " \n" 1909 << " high Norm : " <<fHighNorm << " \n" 1910 << "-----------------------------------------------------------\n"; 1911 os.precision(oldprc); 1912 1913 return os; 1914 } 1915 1916 ///////////////////////////////////////////////////////////////////////// 1917 // 1918 // GetPointOnSurface 1919 1920 G4ThreeVector G4CutTubs::GetPointOnSurface() const 1921 { 1922 // Set min and max z 1923 if (fZMin == 0. && fZMax == 0.) 1924 { 1925 G4AutoLock l(&zminmaxMutex); 1926 G4ThreeVector bmin, bmax; 1927 BoundingLimits(bmin,bmax); 1928 fZMin = bmin.z(); 1929 fZMax = bmax.z(); 1930 l.unlock(); 1931 } 1932 1933 // Set parameters 1934 G4double hmax = fZMax - fZMin; 1935 G4double sphi = fSPhi; 1936 G4double dphi = fDPhi; 1937 G4double rmin = fRMin; 1938 G4double rmax = fRMax; 1939 G4double rrmax = rmax*rmax; 1940 G4double rrmin = rmin*rmin; 1941 1942 G4ThreeVector nbot = GetLowNorm(); 1943 G4ThreeVector ntop = GetHighNorm(); 1944 1945 // Set array of surface areas 1946 G4double sbase = 0.5*dphi*(rrmax - rrmin); 1947 G4double sbot = sbase/std::abs(nbot.z()); 1948 G4double stop = sbase/std::abs(ntop.z()); 1949 G4double scut = (dphi == twopi) ? 0. : hmax*(rmax - rmin); 1950 G4double ssurf[6] = { scut, scut, sbot, stop, dphi*rmax*hmax, dphi*rmin*hmax }; 1951 ssurf[1] += ssurf[0]; 1952 ssurf[2] += ssurf[1]; 1953 ssurf[3] += ssurf[2]; 1954 ssurf[4] += ssurf[3]; 1955 ssurf[5] += ssurf[4]; 1956 1957 constexpr G4int ntry = 100000; 1958 for (G4int i=0; i<ntry; ++i) 1959 { 1960 // Select surface 1961 G4double select = ssurf[5]*G4QuickRand(); 1962 G4int k = 5; 1963 k -= (G4int)(select <= ssurf[4]); 1964 k -= (G4int)(select <= ssurf[3]); 1965 k -= (G4int)(select <= ssurf[2]); 1966 k -= (G4int)(select <= ssurf[1]); 1967 k -= (G4int)(select <= ssurf[0]); 1968 1969 // Generate point on selected surface (rejection sampling) 1970 G4ThreeVector p(0,0,0); 1971 switch(k) 1972 { 1973 case 0: // cut at start phi 1974 { 1975 G4double r = rmin + (rmax - rmin)*G4QuickRand(); 1976 p.set(r*cosSPhi, r*sinSPhi, fZMin + hmax*G4QuickRand()); 1977 break; 1978 } 1979 case 1: // cut at end phi 1980 { 1981 G4double r = rmin + (rmax - rmin)*G4QuickRand(); 1982 p.set(r*cosEPhi, r*sinEPhi, fZMin + hmax*G4QuickRand()); 1983 break; 1984 } 1985 case 2: // base at low z 1986 { 1987 G4double r = std::sqrt(rrmin + (rrmax - rrmin)*G4QuickRand()); 1988 G4double phi = sphi + dphi*G4QuickRand(); 1989 G4double x = r*std::cos(phi); 1990 G4double y = r*std::sin(phi); 1991 G4double z = -fDz - (x*nbot.x() + y*nbot.y())/nbot.z(); 1992 return {x, y, z}; 1993 } 1994 case 3: // base at high z 1995 { 1996 G4double r = std::sqrt(rrmin + (rrmax - rrmin)*G4QuickRand()); 1997 G4double phi = sphi + dphi*G4QuickRand(); 1998 G4double x = r*std::cos(phi); 1999 G4double y = r*std::sin(phi); 2000 G4double z = fDz - (x*ntop.x() + y*ntop.y())/ntop.z(); 2001 return {x, y, z}; 2002 } 2003 case 4: // external lateral surface 2004 { 2005 G4double phi = sphi + dphi*G4QuickRand(); 2006 G4double z = fZMin + hmax*G4QuickRand(); 2007 G4double x = rmax*std::cos(phi); 2008 G4double y = rmax*std::sin(phi); 2009 p.set(x, y, z); 2010 break; 2011 } 2012 case 5: // internal lateral surface 2013 { 2014 G4double phi = sphi + dphi*G4QuickRand(); 2015 G4double z = fZMin + hmax*G4QuickRand(); 2016 G4double x = rmin*std::cos(phi); 2017 G4double y = rmin*std::sin(phi); 2018 p.set(x, y, z); 2019 break; 2020 } 2021 } 2022 if ((ntop.dot(p) - fDz*ntop.z()) > 0.) continue; 2023 if ((nbot.dot(p) + fDz*nbot.z()) > 0.) continue; 2024 return p; 2025 } 2026 // Just in case, if all attempts to generate a point have failed 2027 // Normally should never happen 2028 G4double x = rmax*std::cos(sphi + 0.5*dphi); 2029 G4double y = rmax*std::sin(sphi + 0.5*dphi); 2030 G4double z = fDz - (x*ntop.x() + y*ntop.y())/ntop.z(); 2031 return {x, y, z}; 2032 } 2033 2034 /////////////////////////////////////////////////////////////////////////// 2035 // 2036 // Methods for visualisation 2037 2038 void G4CutTubs::DescribeYourselfTo ( G4VGraphicsScene& scene ) const 2039 { 2040 scene.AddSolid (*this) ; 2041 } 2042 2043 G4Polyhedron* G4CutTubs::CreatePolyhedron () const 2044 { 2045 typedef G4double G4double3[3]; 2046 typedef G4int G4int4[4]; 2047 2048 auto ph = new G4Polyhedron; 2049 G4Polyhedron *ph1 = new G4PolyhedronTubs (fRMin, fRMax, fDz, fSPhi, fDPhi); 2050 G4int nn=ph1->GetNoVertices(); 2051 G4int nf=ph1->GetNoFacets(); 2052 auto xyz = new G4double3[nn]; // number of nodes 2053 auto faces = new G4int4[nf] ; // number of faces 2054 2055 for(G4int i=0; i<nn; ++i) 2056 { 2057 xyz[i][0]=ph1->GetVertex(i+1).x(); 2058 xyz[i][1]=ph1->GetVertex(i+1).y(); 2059 G4double tmpZ=ph1->GetVertex(i+1).z(); 2060 if(tmpZ>=fDz-kCarTolerance) 2061 { 2062 xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],fDz)); 2063 } 2064 else if(tmpZ<=-fDz+kCarTolerance) 2065 { 2066 xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],-fDz)); 2067 } 2068 else 2069 { 2070 xyz[i][2]=tmpZ; 2071 } 2072 } 2073 G4int iNodes[4]; 2074 G4int* iEdge = nullptr; 2075 G4int n; 2076 for(G4int i=0; i<nf ; ++i) 2077 { 2078 ph1->GetFacet(i+1,n,iNodes,iEdge); 2079 for(G4int k=0; k<n; ++k) 2080 { 2081 faces[i][k]=iNodes[k]; 2082 } 2083 for(G4int k=n; k<4; ++k) 2084 { 2085 faces[i][k]=0; 2086 } 2087 } 2088 ph->createPolyhedron(nn,nf,xyz,faces); 2089 2090 delete [] xyz; 2091 delete [] faces; 2092 delete ph1; 2093 2094 return ph; 2095 } 2096 2097 // Auxilary Methods for Solid 2098 2099 ////////////////////////////////////////////////////////////////////////// 2100 // 2101 // Check set of points on the outer lateral surface and return true 2102 // if the cut planes are crossing inside the surface 2103 // 2104 2105 G4bool G4CutTubs::IsCrossingCutPlanes() const 2106 { 2107 constexpr G4int npoints = 30; 2108 2109 // set values for calculation of h - distance between 2110 // opposite points on bases 2111 G4ThreeVector nbot = GetLowNorm(); 2112 G4ThreeVector ntop = GetHighNorm(); 2113 if (std::abs(nbot.z()) < kCarTolerance) return true; 2114 if (std::abs(ntop.z()) < kCarTolerance) return true; 2115 G4double nx = nbot.x()/nbot.z() - ntop.x()/ntop.z(); 2116 G4double ny = nbot.y()/nbot.z() - ntop.y()/ntop.z(); 2117 2118 // check points 2119 G4double cosphi = GetCosStartPhi(); 2120 G4double sinphi = GetSinStartPhi(); 2121 G4double delphi = GetDeltaPhiAngle()/npoints; 2122 G4double cosdel = std::cos(delphi); 2123 G4double sindel = std::sin(delphi); 2124 G4double hzero = 2.*GetZHalfLength()/GetOuterRadius(); 2125 for (G4int i=0; i<npoints+1; ++i) 2126 { 2127 G4double h = nx*cosphi + ny*sinphi + hzero; 2128 if (h < 0.) return true; 2129 G4double sintmp = sinphi; 2130 sinphi = sintmp*cosdel + cosphi*sindel; 2131 cosphi = cosphi*cosdel - sintmp*sindel; 2132 } 2133 return false; 2134 } 2135 2136 /////////////////////////////////////////////////////////////////////////// 2137 // 2138 // Return real Z coordinate of point on Cutted +/- fDZ plane 2139 2140 G4double G4CutTubs::GetCutZ(const G4ThreeVector& p) const 2141 { 2142 G4double newz = p.z(); // p.z() should be either +fDz or -fDz 2143 if (p.z()<0) 2144 { 2145 if(fLowNorm.z()!=0.) 2146 { 2147 newz = -fDz-(p.x()*fLowNorm.x()+p.y()*fLowNorm.y())/fLowNorm.z(); 2148 } 2149 } 2150 else 2151 { 2152 if(fHighNorm.z()!=0.) 2153 { 2154 newz = fDz-(p.x()*fHighNorm.x()+p.y()*fHighNorm.y())/fHighNorm.z(); 2155 } 2156 } 2157 return newz; 2158 } 2159 #endif 2160