Geant4 Cross Reference |
1 // 2 // ******************************************************************** 3 // * License and Disclaimer * 4 // * * 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. * 10 // * * 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitation of liability. * 17 // * * 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************************************** 25 // 26 /// \file electromagnetic/TestEm10/src/DetectorALICE06.cc 27 /// \brief Implementation of the DetectorALICE06 class 28 // 29 // 30 // 31 // 32 33 #include "DetectorALICE06.hh" 34 35 #include "Materials.hh" 36 #include "SensitiveDetector.hh" 37 38 #include "G4Box.hh" 39 #include "G4FieldManager.hh" 40 #include "G4LogicalVolume.hh" 41 #include "G4Material.hh" 42 #include "G4PVPlacement.hh" 43 #include "G4Region.hh" 44 #include "G4SDManager.hh" 45 #include "G4SystemOfUnits.hh" 46 #include "G4TransportationManager.hh" 47 #include "G4UniformMagField.hh" 48 #include "G4UnitsTable.hh" 49 #include "G4ios.hh" 50 51 #include <cmath> 52 53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 54 55 DetectorALICE06::DetectorALICE06() : fRadiatorDescription(0) {} 56 57 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 58 59 DetectorALICE06::~DetectorALICE06() 60 { 61 // delete fRadiatorDescription; 62 // the description is deleted in detector construction 63 } 64 65 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 66 67 G4VPhysicalVolume* DetectorALICE06::Construct() 68 { 69 // Geometry parameters 70 // 71 72 G4cout << "DetectorALICE06 setup" << G4endl; 73 74 G4double worldSizeZ = 600. * cm; 75 G4double worldSizeR = 22. * cm; 76 77 // Radiator and detector parameters 78 79 G4double radThickness = 0.020 * mm; 80 G4double gasGap = 0.500 * mm; 81 G4double foilGasRatio = radThickness / (radThickness + gasGap); 82 G4int foilNumber = 120; 83 84 G4double absorberThickness = 37 * mm; 85 G4double absorberRadius = 100. * mm; 86 87 G4double electrodeThick = 100.0 * micrometer; 88 G4double pipeLength = 160.0 * cm; 89 G4double mylarThick = 20.0 * micrometer; 90 G4double detGap = 0.01 * mm; 91 92 G4double startZ = 100.0 * mm; 93 94 // Materials 95 // 96 97 // Change to create materials using NIST 98 G4Material* air = Materials::GetInstance()->GetMaterial("Air"); 99 G4Material* ch2 = Materials::GetInstance()->GetMaterial("CH2"); 100 G4Material* xe15CO2 = Materials::GetInstance()->GetMaterial("Xe15CO2"); 101 102 G4double foilDensity = ch2->GetDensity(); 103 G4double gasDensity = air->GetDensity(); 104 G4double totDensity = foilDensity * foilGasRatio + gasDensity * (1.0 - foilGasRatio); 105 106 G4double fractionFoil = foilDensity * foilGasRatio / totDensity; 107 G4double fractionGas = 1.0 - fractionFoil; 108 G4Material* radiatorMat = new G4Material("radiatorMat", totDensity, 2); 109 radiatorMat->AddMaterial(ch2, fractionFoil); 110 radiatorMat->AddMaterial(air, fractionGas); 111 112 // Radiator description 113 fRadiatorDescription = new RadiatorDescription; 114 fRadiatorDescription->fFoilMaterial = ch2; // CH2; // Kapton; // Mylar ; // Li ; // CH2 ; 115 fRadiatorDescription->fGasMaterial = air; // CO2; // He; // 116 fRadiatorDescription->fFoilThickness = radThickness; 117 fRadiatorDescription->fGasThickness = gasGap; 118 fRadiatorDescription->fFoilNumber = foilNumber; 119 120 G4Material* worldMaterial = air; // CO2; 121 G4Material* absorberMaterial = xe15CO2; 122 123 // Volumes 124 // 125 126 G4VSolid* solidWorld = new G4Box("World", worldSizeR, worldSizeR, worldSizeZ / 2.); 127 128 G4LogicalVolume* logicWorld = new G4LogicalVolume(solidWorld, worldMaterial, "World"); 129 130 G4VPhysicalVolume* physicsWorld = 131 new G4PVPlacement(0, G4ThreeVector(), "World", logicWorld, 0, false, 0); 132 133 // TR radiator envelope 134 135 G4double radThick = foilNumber * (radThickness + gasGap) - gasGap + detGap; 136 G4double radZ = startZ + 0.5 * radThick; 137 138 G4VSolid* solidRadiator = 139 new G4Box("Radiator", 1.1 * absorberRadius, 1.1 * absorberRadius, 0.5 * radThick); 140 141 G4LogicalVolume* logicRadiator = new G4LogicalVolume(solidRadiator, radiatorMat, "Radiator"); 142 143 new G4PVPlacement(0, G4ThreeVector(0, 0, radZ), "Radiator", logicRadiator, physicsWorld, false, 144 0); 145 146 fRadiatorDescription->fLogicalVolume = logicRadiator; 147 148 // Create region for radiator 149 150 G4Region* radRegion = new G4Region("XTRradiator"); 151 radRegion->AddRootLogicalVolume(logicRadiator); 152 153 // Drift Electrode on both sides of Radiator 154 // (not placed) 155 156 G4double zElectrode1 = radZ - radThick / 2. - electrodeThick / 2.; 157 G4double zElectrode2 = radZ + radThick / 2. + electrodeThick / 2.; 158 159 G4cout << "zElectrode1 = " << zElectrode1 / mm << " mm" << G4endl; 160 G4cout << "zElectrode2 = " << zElectrode2 / mm << " mm" << G4endl; 161 G4cout << "fElectrodeThick = " << electrodeThick / mm << " mm" << G4endl << G4endl; 162 163 // Helium Pipe 164 // (not placed) 165 166 // Distance between pipe and radiator / absorber 167 G4double pipeDist = 1. * cm; 168 G4double zPipe = zElectrode2 + electrodeThick / 2. + pipeDist / 2. + pipeLength / 2.; 169 170 G4cout << "zPipe = " << zPipe / mm << " mm" << G4endl; 171 G4cout << "pipeLength = " << pipeLength / mm << " mm" << G4endl << G4endl; 172 173 // Mylar Foil on both sides of helium pipe 174 // (not placed) 175 176 G4double zMylar1 = zPipe - pipeLength / 2. - mylarThick / 2. - 0.001 * mm; 177 G4double zMylar2 = zPipe + pipeLength / 2. + mylarThick / 2. + 0.001 * mm; 178 179 G4cout << "zMylar1 = " << zMylar1 / mm << " mm" << G4endl; 180 G4cout << "zMylar2 = " << zMylar2 / mm << " mm" << G4endl; 181 G4cout << "fMylarThick = " << mylarThick / mm << " mm" << G4endl << G4endl; 182 183 // Mylar Foil on Chamber 184 // (not placed) 185 186 G4double zMylar = zElectrode2 + electrodeThick / 2. + mylarThick / 2. + 1.0 * mm; 187 zMylar += (pipeLength + pipeDist); 188 189 G4cout << "zMylar = " << zMylar / mm << " mm" << G4endl; 190 G4cout << "mylarThick = " << mylarThick / mm << " mm" << G4endl << G4endl; 191 192 // Absorber 193 194 G4double absorberZ = zMylar + mylarThick + absorberThickness / 2.; 195 196 G4VSolid* solidAbsorber = new G4Box("Absorber", absorberRadius, 10. * mm, absorberThickness / 2.); 197 198 G4LogicalVolume* logicAbsorber = new G4LogicalVolume(solidAbsorber, absorberMaterial, "Absorber"); 199 200 new G4PVPlacement(0, G4ThreeVector(0., 0., absorberZ), "Absorber", logicAbsorber, physicsWorld, 201 false, 0); 202 203 G4Region* regGasDet = new G4Region("XTRdEdxDetector"); 204 regGasDet->AddRootLogicalVolume(logicAbsorber); 205 206 // Sensitive Detectors: Absorber 207 208 SensitiveDetector* sd = new SensitiveDetector("AbsorberSD"); 209 G4SDManager::GetSDMpointer()->AddNewDetector(sd); 210 logicAbsorber->SetSensitiveDetector(sd); 211 212 // Print geometry parameters 213 214 G4cout << "\n The WORLD is made of " << worldSizeZ / mm << "mm of " 215 << worldMaterial->GetName(); 216 G4cout << ", the transverse size (R) of the world is " << worldSizeR / mm << " mm. " << G4endl; 217 G4cout << " The ABSORBER is made of " << absorberThickness / mm << "mm of " 218 << absorberMaterial->GetName(); 219 G4cout << ", the transverse size (R) is " << absorberRadius / mm << " mm. " << G4endl; 220 G4cout << " Z position of the (middle of the) absorber " << absorberZ / mm << " mm." << G4endl; 221 222 G4cout << "radZ = " << radZ / mm << " mm" << G4endl; 223 G4cout << "startZ = " << startZ / mm << " mm" << G4endl; 224 225 G4cout << "fRadThick = " << radThick / mm << " mm" << G4endl; 226 G4cout << "fFoilNumber = " << foilNumber << G4endl; 227 G4cout << "fRadiatorMat = " << radiatorMat->GetName() << G4endl; 228 G4cout << "WorldMaterial = " << worldMaterial->GetName() << G4endl; 229 G4cout << G4endl; 230 231 return physicsWorld; 232 } 233 234 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... 235