Geant4 Cross Reference |
1 // 1 // 2 // ******************************************* 2 // ******************************************************************** 3 // * License and Disclaimer 3 // * License and Disclaimer * 4 // * 4 // * * 5 // * The Geant4 software is copyright of th 5 // * The Geant4 software is copyright of the Copyright Holders of * 6 // * the Geant4 Collaboration. It is provided 6 // * the Geant4 Collaboration. It is provided under the terms and * 7 // * conditions of the Geant4 Software License 7 // * conditions of the Geant4 Software License, included in the file * 8 // * LICENSE and available at http://cern.ch/ 8 // * LICENSE and available at http://cern.ch/geant4/license . These * 9 // * include a list of copyright holders. 9 // * include a list of copyright holders. * 10 // * 10 // * * 11 // * Neither the authors of this software syst 11 // * Neither the authors of this software system, nor their employing * 12 // * institutes,nor the agencies providing fin 12 // * institutes,nor the agencies providing financial support for this * 13 // * work make any representation or warran 13 // * work make any representation or warranty, express or implied, * 14 // * regarding this software system or assum 14 // * regarding this software system or assume any liability for its * 15 // * use. Please see the license in the file 15 // * use. Please see the license in the file LICENSE and URL above * 16 // * for the full disclaimer and the limitatio 16 // * for the full disclaimer and the limitation of liability. * 17 // * 17 // * * 18 // * This code implementation is the result 18 // * This code implementation is the result of the scientific and * 19 // * technical work of the GEANT4 collaboratio 19 // * technical work of the GEANT4 collaboration. * 20 // * By using, copying, modifying or distri 20 // * By using, copying, modifying or distributing the software (or * 21 // * any work based on the software) you ag 21 // * any work based on the software) you agree to acknowledge its * 22 // * use in resulting scientific publicati 22 // * use in resulting scientific publications, and indicate your * 23 // * acceptance of all terms of the Geant4 Sof 23 // * acceptance of all terms of the Geant4 Software license. * 24 // ******************************************* 24 // ******************************************************************** 25 // 25 // 26 // 26 // >> 27 // $Id$ 27 // 28 // 28 29 29 // Author : Gunter Folger March 2007 30 // Author : Gunter Folger March 2007 30 // Modified by Mikhail Kossov. Apr2009, E/M co 31 // Modified by Mikhail Kossov. Apr2009, E/M conservation: ResidualNucleus is added (ResNuc) 31 // Class Description 32 // Class Description 32 // Final state production model for theoretica 33 // Final state production model for theoretical models of hadron inelastic 33 // quasi elastic scattering in geant4; 34 // quasi elastic scattering in geant4; 34 // Class Description - End 35 // Class Description - End 35 // 36 // 36 // Modified: 37 // Modified: 37 // 20110805 M. Kelsey -- Follow change to G4V 38 // 20110805 M. Kelsey -- Follow change to G4V3DNucleus::GetNucleons() 38 // 20110808 M. Kelsey -- Move #includes from 39 // 20110808 M. Kelsey -- Move #includes from .hh, add many missing 39 40 40 #include "G4QuasiElasticChannel.hh" 41 #include "G4QuasiElasticChannel.hh" 41 42 42 #include "G4Fancy3DNucleus.hh" 43 #include "G4Fancy3DNucleus.hh" 43 #include "G4DynamicParticle.hh" 44 #include "G4DynamicParticle.hh" 44 #include "G4HadTmpUtil.hh" /* lrint */ 45 #include "G4HadTmpUtil.hh" /* lrint */ 45 #include "G4KineticTrack.hh" 46 #include "G4KineticTrack.hh" 46 #include "G4KineticTrackVector.hh" 47 #include "G4KineticTrackVector.hh" 47 #include "G4LorentzVector.hh" 48 #include "G4LorentzVector.hh" 48 #include "G4Neutron.hh" 49 #include "G4Neutron.hh" 49 #include "G4Nucleon.hh" 50 #include "G4Nucleon.hh" 50 #include "G4Nucleus.hh" 51 #include "G4Nucleus.hh" 51 #include "G4ParticleDefinition.hh" 52 #include "G4ParticleDefinition.hh" 52 #include "G4ParticleTable.hh" 53 #include "G4ParticleTable.hh" 53 #include "G4IonTable.hh" << 54 #include "G4QuasiElRatios.hh" 54 #include "G4QuasiElRatios.hh" 55 #include "globals.hh" 55 #include "globals.hh" 56 #include <vector> 56 #include <vector> 57 #include "G4PhysicsModelCatalog.hh" << 58 57 59 //#define debug_scatter 58 //#define debug_scatter 60 59 61 60 62 G4QuasiElasticChannel::G4QuasiElasticChannel() 61 G4QuasiElasticChannel::G4QuasiElasticChannel() 63 : G4HadronicInteraction("QuasiElastic"), << 62 : theQuasiElastic(G4QuasiElRatios::GetPointer()), 64 theQuasiElastic(new G4QuasiElRatios), << 63 the3DNucleus(new G4Fancy3DNucleus) {} 65 the3DNucleus(new G4Fancy3DNucleus), << 66 secID(-1) { << 67 secID = G4PhysicsModelCatalog::GetModelID( " << 68 } << 69 64 70 G4QuasiElasticChannel::~G4QuasiElasticChannel( 65 G4QuasiElasticChannel::~G4QuasiElasticChannel() 71 { 66 { 72 delete the3DNucleus; 67 delete the3DNucleus; 73 delete theQuasiElastic; << 74 } 68 } 75 69 76 G4double G4QuasiElasticChannel::GetFraction(G4 70 G4double G4QuasiElasticChannel::GetFraction(G4Nucleus &theNucleus, 77 const G4DynamicParticle & thePrimary) 71 const G4DynamicParticle & thePrimary) 78 { 72 { 79 #ifdef debug_scatter 73 #ifdef debug_scatter 80 G4cout << "G4QuasiElasticChannel:: P=" < 74 G4cout << "G4QuasiElasticChannel:: P=" << thePrimary.GetTotalMomentum() 81 << ", pPDG=" << thePrimary.GetDef 75 << ", pPDG=" << thePrimary.GetDefinition()->GetPDGEncoding() 82 << ", Z = " << theNucleus.GetZ_a 76 << ", Z = " << theNucleus.GetZ_asInt()) 83 << ", N = " << theNucleus.GetN_a 77 << ", N = " << theNucleus.GetN_asInt()) 84 << ", A = " << theNucleus.GetA_a 78 << ", A = " << theNucleus.GetA_asInt() << G4endl; 85 #endif 79 #endif 86 80 87 std::pair<G4double,G4double> ratios; 81 std::pair<G4double,G4double> ratios; 88 ratios=theQuasiElastic->GetRatios(thePrimary 82 ratios=theQuasiElastic->GetRatios(thePrimary.GetTotalMomentum(), 89 thePrimary 83 thePrimary.GetDefinition()->GetPDGEncoding(), 90 theNucleus 84 theNucleus.GetZ_asInt(), 91 theNucleus 85 theNucleus.GetN_asInt()); 92 #ifdef debug_scatter 86 #ifdef debug_scatter 93 G4cout << "G4QuasiElasticChannel::ratios 87 G4cout << "G4QuasiElasticChannel::ratios " << ratios.first << " x " <<ratios.second 94 << " = " << ratios.first*ratios. 88 << " = " << ratios.first*ratios.second << G4endl; 95 #endif 89 #endif 96 90 97 return ratios.first*ratios.second; 91 return ratios.first*ratios.second; 98 } 92 } 99 93 100 G4KineticTrackVector * G4QuasiElasticChannel:: 94 G4KineticTrackVector * G4QuasiElasticChannel::Scatter(G4Nucleus &theNucleus, 101 95 const G4DynamicParticle & thePrimary) 102 { 96 { 103 G4int A=theNucleus.GetA_asInt(); 97 G4int A=theNucleus.GetA_asInt(); 104 G4int Z=theNucleus.GetZ_asInt(); 98 G4int Z=theNucleus.GetZ_asInt(); 105 // build Nucleus and choose random nucleon 99 // build Nucleus and choose random nucleon to scatter with 106 the3DNucleus->Init(theNucleus.GetA_asInt(),t 100 the3DNucleus->Init(theNucleus.GetA_asInt(),theNucleus.GetZ_asInt()); 107 const std::vector<G4Nucleon>& nucleons=the3D 101 const std::vector<G4Nucleon>& nucleons=the3DNucleus->GetNucleons(); 108 G4double targetNucleusMass=the3DNucleus->Get 102 G4double targetNucleusMass=the3DNucleus->GetMass(); 109 G4LorentzVector targetNucleus4Mom(0.,0.,0.,t 103 G4LorentzVector targetNucleus4Mom(0.,0.,0.,targetNucleusMass); 110 G4int index; 104 G4int index; 111 do { 105 do { 112 index=G4lrint((A-1)*G4UniformRand()); 106 index=G4lrint((A-1)*G4UniformRand()); 113 } while (index < 0 || index >= static_cast<G << 107 } while (index < 0 || index >= static_cast<G4int>(nucleons.size())); 114 108 115 const G4ParticleDefinition * pDef= nucleons[ << 109 G4ParticleDefinition * pDef= nucleons[index].GetDefinition(); 116 110 117 G4int resA=A - 1; 111 G4int resA=A - 1; 118 G4int resZ=Z - static_cast<int>(pDef->GetPDG 112 G4int resZ=Z - static_cast<int>(pDef->GetPDGCharge()); 119 const G4ParticleDefinition* resDef; << 113 G4ParticleDefinition* resDef; 120 G4double residualNucleusMass; 114 G4double residualNucleusMass; 121 if(resZ) 115 if(resZ) 122 { 116 { 123 resDef=G4ParticleTable::GetParticleTable() << 117 resDef=G4ParticleTable::GetParticleTable()->FindIon(resZ,resA,0,resZ); 124 residualNucleusMass=resDef->GetPDGMass(); 118 residualNucleusMass=resDef->GetPDGMass(); 125 } 119 } 126 else { 120 else { 127 resDef=G4Neutron::Neutron(); 121 resDef=G4Neutron::Neutron(); 128 residualNucleusMass=resA * G4Neutron::Neut 122 residualNucleusMass=resA * G4Neutron::Neutron()->GetPDGMass(); 129 } 123 } 130 #ifdef debug_scatter 124 #ifdef debug_scatter 131 G4cout<<"G4QElChan::Scatter: neutron - pr 125 G4cout<<"G4QElChan::Scatter: neutron - proton? A ="<<A<<", Z="<<Z<<", projName=" 132 <<pDef->GetParticleName()<<G4endl; 126 <<pDef->GetParticleName()<<G4endl; 133 #endif 127 #endif 134 128 135 G4LorentzVector pNucleon=nucleons[index].Get 129 G4LorentzVector pNucleon=nucleons[index].Get4Momentum(); 136 G4double residualNucleusEnergy=std::sqrt(sqr 130 G4double residualNucleusEnergy=std::sqrt(sqr(residualNucleusMass) + 137 pNu 131 pNucleon.vect().mag2()); 138 pNucleon.setE(targetNucleusMass-residualNucl 132 pNucleon.setE(targetNucleusMass-residualNucleusEnergy); 139 G4LorentzVector residualNucleus4Mom=targetNu 133 G4LorentzVector residualNucleus4Mom=targetNucleus4Mom-pNucleon; 140 134 141 std::pair<G4LorentzVector,G4LorentzVector> r 135 std::pair<G4LorentzVector,G4LorentzVector> result; 142 136 143 result=theQuasiElastic->Scatter(pDef->GetPDG 137 result=theQuasiElastic->Scatter(pDef->GetPDGEncoding(),pNucleon, 144 thePrimary.G 138 thePrimary.GetDefinition()->GetPDGEncoding(), 145 thePrimary.G 139 thePrimary.Get4Momentum()); 146 G4LorentzVector scatteredHadron4Mom; 140 G4LorentzVector scatteredHadron4Mom; 147 if (result.first.e() > 0.) 141 if (result.first.e() > 0.) 148 scatteredHadron4Mom=result.second; 142 scatteredHadron4Mom=result.second; 149 else { //scatter failed 143 else { //scatter failed 150 //G4cout << "Warning - G4QuasiElasticChann 144 //G4cout << "Warning - G4QuasiElasticChannel::Scatter no scattering" << G4endl; 151 //return 0; //no scatter 145 //return 0; //no scatter 152 scatteredHadron4Mom=thePrimary.Get4Momentu 146 scatteredHadron4Mom=thePrimary.Get4Momentum(); 153 residualNucleus4Mom=G4LorentzVector(0.,0., 147 residualNucleus4Mom=G4LorentzVector(0.,0.,0.,targetNucleusMass); 154 resDef=G4ParticleTable::GetParticleTable() << 148 resDef=G4ParticleTable::GetParticleTable()->FindIon(Z,A,0,Z); 155 } 149 } 156 150 157 #ifdef debug_scatter 151 #ifdef debug_scatter 158 G4LorentzVector EpConservation=pNucleon+theP 152 G4LorentzVector EpConservation=pNucleon+thePrimary.Get4Momentum() 159 - result.firs 153 - result.first - result.second; 160 if ( (EpConservation.vect().mag2() > .01*M 154 if ( (EpConservation.vect().mag2() > .01*MeV*MeV ) 161 || (std::abs(EpConservation.e()) > 0.1 * 155 || (std::abs(EpConservation.e()) > 0.1 * MeV ) ) 162 { 156 { 163 G4cout << "Warning - G4QuasiElasticChannel 157 G4cout << "Warning - G4QuasiElasticChannel::Scatter E-p non conservation : " 164 << EpConservation << G4endl; 158 << EpConservation << G4endl; 165 } 159 } 166 #endif 160 #endif 167 161 168 G4KineticTrackVector * ktv = new G4KineticTr 162 G4KineticTrackVector * ktv = new G4KineticTrackVector(); 169 G4KineticTrack * sPrim=new G4KineticTrack(th 163 G4KineticTrack * sPrim=new G4KineticTrack(thePrimary.GetDefinition(), 170 0. 164 0.,G4ThreeVector(0), scatteredHadron4Mom); 171 sPrim->SetCreatorModelID( secID ); << 172 ktv->push_back(sPrim); 165 ktv->push_back(sPrim); 173 if (result.first.e() > 0.) 166 if (result.first.e() > 0.) 174 { 167 { 175 G4KineticTrack * sNuc=new G4KineticTrack(p 168 G4KineticTrack * sNuc=new G4KineticTrack(pDef, 0.,G4ThreeVector(0), result.first); 176 sNuc->SetCreatorModelID( secID ); << 177 ktv->push_back(sNuc); 169 ktv->push_back(sNuc); 178 } 170 } 179 if(resZ || resA==1) // For the only neutron 171 if(resZ || resA==1) // For the only neutron or for tnuclei with Z>0 180 { 172 { 181 G4KineticTrack * rNuc=new G4KineticTrack(r 173 G4KineticTrack * rNuc=new G4KineticTrack(resDef, 182 0.,G4ThreeVector(0) 174 0.,G4ThreeVector(0), residualNucleus4Mom); 183 rNuc->SetCreatorModelID( secID ); << 184 ktv->push_back(rNuc); 175 ktv->push_back(rNuc); 185 } 176 } 186 else // The residual nucleus consists of onl 177 else // The residual nucleus consists of only neutrons 187 { 178 { 188 residualNucleus4Mom/=resA; // Split 4- 179 residualNucleus4Mom/=resA; // Split 4-mom of A*n system equally 189 for(G4int in=0; in<resA; in++) // Loop ove 180 for(G4int in=0; in<resA; in++) // Loop over neutrons in A*n system. 190 { 181 { 191 G4KineticTrack* rNuc=new G4KineticTrack( 182 G4KineticTrack* rNuc=new G4KineticTrack(resDef, 192 0.,G4ThreeVector(0) 183 0.,G4ThreeVector(0), residualNucleus4Mom); 193 rNuc->SetCreatorModelID( secID ); << 194 ktv->push_back(rNuc); 184 ktv->push_back(rNuc); 195 } 185 } 196 } 186 } 197 #ifdef debug_scatter 187 #ifdef debug_scatter 198 G4cout<<"G4QElC::Scat: Nucleon: "<<result.fi 188 G4cout<<"G4QElC::Scat: Nucleon: "<<result.first <<" mass "<<result.first.mag() << G4endl; 199 G4cout<<"G4QElC::Scat: Project: "<<result.se 189 G4cout<<"G4QElC::Scat: Project: "<<result.second<<" mass "<<result.second.mag()<< G4endl; 200 #endif 190 #endif 201 return ktv; 191 return ktv; 202 } 192 } 203 193