Geant4 Cross Reference |
1 // 1 2 // ******************************************* 3 // * License and Disclaimer 4 // * 5 // * The Geant4 software is copyright of th 6 // * the Geant4 Collaboration. It is provided 7 // * conditions of the Geant4 Software License 8 // * LICENSE and available at http://cern.ch/ 9 // * include a list of copyright holders. 10 // * 11 // * Neither the authors of this software syst 12 // * institutes,nor the agencies providing fin 13 // * work make any representation or warran 14 // * regarding this software system or assum 15 // * use. Please see the license in the file 16 // * for the full disclaimer and the limitatio 17 // * 18 // * This code implementation is the result 19 // * technical work of the GEANT4 collaboratio 20 // * By using, copying, modifying or distri 21 // * any work based on the software) you ag 22 // * use in resulting scientific publicati 23 // * acceptance of all terms of the Geant4 Sof 24 // ******************************************* 25 // 26 // $Id: G4NuElNucleusNcModel.cc 91806 2015-08- 27 // 28 // Geant4 Header : G4NuElNucleusNcModel 29 // 30 // Author : V.Grichine 12.2.19 31 // 32 33 #include "G4NuElNucleusNcModel.hh" 34 #include "G4NeutrinoNucleusModel.hh" 35 36 // #include "G4NuMuResQX.hh" 37 38 #include "G4SystemOfUnits.hh" 39 #include "G4ParticleTable.hh" 40 #include "G4ParticleDefinition.hh" 41 #include "G4IonTable.hh" 42 #include "Randomize.hh" 43 #include "G4RandomDirection.hh" 44 45 // #include "G4Integrator.hh" 46 #include "G4DataVector.hh" 47 #include "G4PhysicsTable.hh" 48 #include "G4KineticTrack.hh" 49 #include "G4DecayKineticTracks.hh" 50 #include "G4KineticTrackVector.hh" 51 #include "G4Fragment.hh" 52 #include "G4ReactionProductVector.hh" 53 54 55 #include "G4NeutrinoE.hh" 56 // #include "G4AntiNeutrinoMu.hh" 57 #include "G4Nucleus.hh" 58 #include "G4LorentzVector.hh" 59 60 using namespace std; 61 using namespace CLHEP; 62 63 #ifdef G4MULTITHREADED 64 G4Mutex G4NuElNucleusNcModel::numuNucleusM 65 #endif 66 67 68 G4NuElNucleusNcModel::G4NuElNucleusNcModel(con 69 : G4NeutrinoNucleusModel(name) 70 { 71 SetMinEnergy( 0.0*GeV ); 72 SetMaxEnergy( 100.*TeV ); 73 SetMinEnergy(1.e-6*eV); 74 75 theNuE = G4NeutrinoE::NeutrinoE(); 76 77 fMnumu = 0.; 78 fData = fMaster = false; 79 InitialiseModel(); 80 81 } 82 83 84 G4NuElNucleusNcModel::~G4NuElNucleusNcModel() 85 {} 86 87 88 void G4NuElNucleusNcModel::ModelDescription(st 89 { 90 91 outFile << "G4NuElNucleusNcModel is a neut 92 << "model which uses the standard 93 << "transfer parameterization. Th 94 95 } 96 97 ////////////////////////////////////////////// 98 // 99 // Read data from G4PARTICLEXSDATA (locally PA 100 101 void G4NuElNucleusNcModel::InitialiseModel() 102 { 103 G4String pName = "nu_e"; 104 105 G4int nSize(0), i(0), j(0), k(0); 106 107 if(!fData) 108 { 109 #ifdef G4MULTITHREADED 110 G4MUTEXLOCK(&numuNucleusModel); 111 if(!fData) 112 { 113 #endif 114 fMaster = true; 115 #ifdef G4MULTITHREADED 116 } 117 G4MUTEXUNLOCK(&numuNucleusModel); 118 #endif 119 } 120 121 if(fMaster) 122 { 123 const char* path = G4FindDataDir("G4PARTIC 124 std::ostringstream ost1, ost2, ost3, ost4; 125 ost1 << path << "/" << "neutrino" << "/" < 126 127 std::ifstream filein1( ost1.str().c_str() 128 129 // filein.open("$PARTICLEXSDATA/"); 130 131 filein1>>nSize; 132 133 for( k = 0; k < fNbin; ++k ) 134 { 135 for( i = 0; i <= fNbin; ++i ) 136 { 137 filein1 >> fNuMuXarrayKR[k][i]; 138 // G4cout<< fNuMuXarrayKR[k][i] << " 139 } 140 } 141 // G4cout<<G4endl<<G4endl; 142 143 ost2 << path << "/" << "neutrino" << "/" < 144 std::ifstream filein2( ost2.str().c_str() 145 146 filein2>>nSize; 147 148 for( k = 0; k < fNbin; ++k ) 149 { 150 for( i = 0; i < fNbin; ++i ) 151 { 152 filein2 >> fNuMuXdistrKR[k][i]; 153 // G4cout<< fNuMuXdistrKR[k][i] << " 154 } 155 } 156 // G4cout<<G4endl<<G4endl; 157 158 ost3 << path << "/" << "neutrino" << "/" < 159 std::ifstream filein3( ost3.str().c_str() 160 161 filein3>>nSize; 162 163 for( k = 0; k < fNbin; ++k ) 164 { 165 for( i = 0; i <= fNbin; ++i ) 166 { 167 for( j = 0; j <= fNbin; ++j ) 168 { 169 filein3 >> fNuMuQarrayKR[k][i][j]; 170 // G4cout<< fNuMuQarrayKR[k][i][j] < 171 } 172 } 173 } 174 // G4cout<<G4endl<<G4endl; 175 176 ost4 << path << "/" << "neutrino" << "/" < 177 std::ifstream filein4( ost4.str().c_str() 178 179 filein4>>nSize; 180 181 for( k = 0; k < fNbin; ++k ) 182 { 183 for( i = 0; i <= fNbin; ++i ) 184 { 185 for( j = 0; j < fNbin; ++j ) 186 { 187 filein4 >> fNuMuQdistrKR[k][i][j]; 188 // G4cout<< fNuMuQdistrKR[k][i][j] < 189 } 190 } 191 } 192 fData = true; 193 } 194 } 195 196 ////////////////////////////////////////////// 197 198 G4bool G4NuElNucleusNcModel::IsApplicable(cons 199 G4Nucleus & ) 200 { 201 G4bool result = false; 202 G4String pName = aPart.GetDefinition()->GetP 203 G4double energy = aPart.GetTotalEnergy(); 204 fMinNuEnergy = GetMinNuElEnergy(); 205 206 if( pName == "nu_e" 207 && 208 energy > fMinNuEnergy 209 { 210 result = true; 211 } 212 213 return result; 214 } 215 216 /////////////////////////////////////////// Cl 217 // 218 // 219 220 G4HadFinalState* G4NuElNucleusNcModel::ApplyYo 221 const G4HadProjectile& aTrack, G4Nucleus& 222 { 223 theParticleChange.Clear(); 224 fProton = f2p2h = fBreak = false; 225 const G4HadProjectile* aParticle = &aTrack; 226 G4double energy = aParticle->GetTotalEnergy( 227 228 G4String pName = aParticle->GetDefinition() 229 230 if( energy < fMinNuEnergy ) 231 { 232 theParticleChange.SetEnergyChange(energy); 233 theParticleChange.SetMomentumChange(aTrack 234 return &theParticleChange; 235 } 236 SampleLVkr( aTrack, targetNucleus); 237 238 if( fBreak == true || fEmu < fMnumu ) // ~5* 239 { 240 // G4cout<<"ni, "; 241 theParticleChange.SetEnergyChange(energy); 242 theParticleChange.SetMomentumChange(aTrack 243 return &theParticleChange; 244 } 245 246 // LVs of initial state 247 248 G4LorentzVector lvp1 = aParticle->Get4Moment 249 G4LorentzVector lvt1( 0., 0., 0., fM1 ); 250 G4double mPip = G4ParticleTable::GetParticle 251 252 // 1-pi by fQtransfer && nu-energy 253 G4LorentzVector lvpip1( 0., 0., 0., mPip ); 254 G4LorentzVector lvsum, lv2, lvX; 255 G4ThreeVector eP; 256 G4double cost(1.), sint(0.), phi(0.), muMom( 257 G4DynamicParticle* aLept = nullptr; // lepto 258 259 G4int Z = targetNucleus.GetZ_asInt(); 260 G4int A = targetNucleus.GetA_asInt(); 261 G4double mTarg = targetNucleus.AtomicMass(A 262 G4int pdgP(0), qB(0); 263 // G4double mSum = G4ParticleTable::GetParti 264 265 G4int iPi = GetOnePionIndex(energy); 266 G4double p1pi = GetNuMuOnePionProb( iPi, ene 267 268 if( p1pi > G4UniformRand() && fCosTheta > 0. 269 { 270 // lvsum = lvp1 + lvpip1; 271 lvsum = lvp1 + lvt1; 272 // cost = fCosThetaPi; 273 cost = fCosTheta; 274 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 275 phi = G4UniformRand()*CLHEP::twopi; 276 eP = G4ThreeVector( sint*std::cos(phi), 277 278 // muMom = sqrt(fEmuPi*fEmuPi-fMnumu*fMnum 279 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 280 281 eP *= muMom; 282 283 // lv2 = G4LorentzVector( eP, fEmuPi ); 284 lv2 = G4LorentzVector( eP, fEmu ); 285 lv2 = fLVl; 286 287 lvX = lvsum - lv2; 288 lvX = fLVh; 289 massX2 = lvX.m2(); 290 G4double massX = lvX.m(); 291 G4double massR = fLVt.m(); 292 293 // if ( massX2 <= 0. ) // vmg: very rarely 294 if ( massX2 <= fM1*fM1 ) // 9-3-20 vmg: ve 295 if ( lvX.e() <= fM1 ) // 9-3-20 vmg: ver 296 { 297 theParticleChange.SetEnergyChange(energy 298 theParticleChange.SetMomentumChange(aTra 299 return &theParticleChange; 300 } 301 fW2 = massX2; 302 303 if( pName == "nu_e" ) aLept = new 304 // else if( pName == "anti_nu_mu") aLept = 305 else 306 { 307 theParticleChange.SetEnergyChange(energy 308 theParticleChange.SetMomentumChange(aTra 309 return &theParticleChange; 310 } 311 312 pdgP = 111; 313 314 G4double eCut; // = fMpi + 0.5*(fMpi*fMpi 315 316 if( A > 1 ) 317 { 318 eCut = (fMpi + mTarg)*(fMpi + mTarg) - ( 319 eCut /= 2.*massR; 320 eCut += massX; 321 } 322 else eCut = fM1 + fMpi; 323 324 if ( lvX.e() > eCut ) // && sqrt( GetW2() 325 { 326 CoherentPion( lvX, pdgP, targetNucleus); 327 } 328 else 329 { 330 theParticleChange.SetEnergyChange(energy 331 theParticleChange.SetMomentumChange(aTra 332 return &theParticleChange; 333 } 334 theParticleChange.AddSecondary( aLept, fSe 335 336 return &theParticleChange; 337 } 338 else // lepton part in lab 339 { 340 lvsum = lvp1 + lvt1; 341 cost = fCosTheta; 342 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 343 phi = G4UniformRand()*CLHEP::twopi; 344 eP = G4ThreeVector( sint*std::cos(phi), 345 346 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 347 348 eP *= muMom; 349 350 lv2 = G4LorentzVector( eP, fEmu ); 351 352 lvX = lvsum - lv2; 353 354 massX2 = lvX.m2(); 355 356 if ( massX2 <= 0. ) // vmg: very rarely ~ 357 { 358 theParticleChange.SetEnergyChange(energy 359 theParticleChange.SetMomentumChange(aTra 360 return &theParticleChange; 361 } 362 fW2 = massX2; 363 364 aLept = new G4DynamicParticle( theNuE, lv2 365 366 theParticleChange.AddSecondary( aLept, fSe 367 } 368 369 // hadron part 370 371 fRecoil = nullptr; 372 fCascade = false; 373 fString = false; 374 375 if( A == 1 ) 376 { 377 qB = 1; 378 379 // if( G4UniformRand() > 0.1 ) // > 0.999 380 { 381 ClusterDecay( lvX, qB ); 382 } 383 return &theParticleChange; 384 } 385 G4Nucleus recoil; 386 G4double rM(0.), ratio = G4double(Z)/G4doubl 387 388 if( ratio > G4UniformRand() ) // proton is e 389 { 390 fProton = true; 391 recoil = G4Nucleus(A-1,Z-1); 392 fRecoil = &recoil; 393 rM = recoil.AtomicMass(A-1,Z-1); 394 395 fMt = G4ParticleTable::GetParticleTable()- 396 + G4ParticleTable::GetParticleTable( 397 } 398 else // excited neutron 399 { 400 fProton = false; 401 recoil = G4Nucleus(A-1,Z); 402 fRecoil = &recoil; 403 rM = recoil.AtomicMass(A-1,Z); 404 405 fMt = G4ParticleTable::GetParticleTable()- 406 + G4ParticleTable::GetParticleTable( 407 } 408 // G4int index = GetEnergyIndex(energy 409 G4int nepdg = aParticle->GetDefinition()->Ge 410 G4double qeTotRat; // = GetNuMuQeTotRat(inde 411 qeTotRat = CalculateQEratioA( Z, A, energy, 412 413 G4ThreeVector dX = (lvX.vect()).unit(); 414 G4double eX = lvX.e(); // excited nucleon 415 G4double mX = sqrt(massX2); 416 417 if( qeTotRat > G4UniformRand() || mX <= fMt 418 { 419 fString = false; 420 421 if( fProton ) 422 { 423 fPDGencoding = 2212; 424 fMr = proton_mass_c2; 425 recoil = G4Nucleus(A-1,Z-1); 426 fRecoil = &recoil; 427 rM = recoil.AtomicMass(A-1,Z-1); 428 } 429 else 430 { 431 fPDGencoding = 2112; 432 fMr = G4ParticleTable::GetParticleTabl 433 FindParticle(fPDGencoding)->GetPDGMass(); // 434 recoil = G4Nucleus(A-1,Z); 435 fRecoil = &recoil; 436 rM = recoil.AtomicMass(A-1,Z); 437 } 438 G4double eTh = fMr+0.5*(fMr*fMr-mX*mX)/rM; 439 440 if(eX <= eTh) // vmg, very rarely out of k 441 { 442 theParticleChange.SetEnergyChange(energy 443 theParticleChange.SetMomentumChange(aTra 444 return &theParticleChange; 445 } 446 FinalBarion( lvX, 0, fPDGencoding ); // p( 447 } 448 else // if ( eX < 9500000.*GeV ) // < 25.*Ge 449 { 450 if ( fProton && pName == "nu_e" ) 451 else if( !fProton && pName == "nu_e" ) 452 453 ClusterDecay( lvX, qB ); 454 } 455 return &theParticleChange; 456 } 457 458 459 ////////////////////////////////////////////// 460 ////////////////////////////////////////////// 461 ////////////////////////////////////////////// 462 463 ////////////////////////////////////////////// 464 // 465 // sample x, then Q2 466 467 void G4NuElNucleusNcModel::SampleLVkr(const G4 468 { 469 fBreak = false; 470 G4int A = targetNucleus.GetA_asInt(), iTer(0 471 G4int Z = targetNucleus.GetZ_asInt(); 472 G4double e3(0.), pMu2(0.), pX2(0.), nMom(0.) 473 G4double cost(1.), sint(0.), phi(0.), muMom( 474 G4ThreeVector eP, bst; 475 const G4HadProjectile* aParticle = &aTrack; 476 G4LorentzVector lvp1 = aParticle->Get4Moment 477 nMom = NucleonMomentum( targetNucleus ); 478 479 if( A == 1 || nMom == 0. ) // hydrogen, no F 480 { 481 fNuEnergy = aParticle->GetTotalEnergy(); 482 iTer = 0; 483 484 do 485 { 486 fXsample = SampleXkr(fNuEnergy); 487 fQtransfer = SampleQkr(fNuEnergy, fXsamp 488 fQ2 = fQtransfer*fQtransfer; 489 490 if( fXsample > 0. ) 491 { 492 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // 493 fEmu = fNuEnergy - fQ2/2./fM1/fXsample 494 } 495 else 496 { 497 fW2 = fM1*fM1; 498 fEmu = fNuEnergy; 499 } 500 e3 = fNuEnergy + fM1 - fEmu; 501 502 // if( e3 < sqrt(fW2) ) G4cout<<"energy 503 504 pMu2 = fEmu*fEmu - fMnumu*fMnumu; 505 pX2 = e3*e3 - fW2; 506 507 fCosTheta = fNuEnergy*fNuEnergy + pMu2 508 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 509 iTer++; 510 } 511 while( ( abs(fCosTheta) > 1. || fEmu < fMn 512 513 if( iTer >= iTerMax ) { fBreak = true; ret 514 515 if( abs(fCosTheta) > 1.) // vmg: due to bi 516 { 517 G4cout<<"H2: fCosTheta = "<<fCosTheta<<" 518 // fCosTheta = -1. + 2.*G4UniformRand(); 519 if(fCosTheta < -1.) fCosTheta = -1.; 520 if(fCosTheta > 1.) fCosTheta = 1.; 521 } 522 // LVs 523 524 G4LorentzVector lvt1 = G4LorentzVector( 0 525 G4LorentzVector lvsum = lvp1 + lvt1; 526 527 cost = fCosTheta; 528 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 529 phi = G4UniformRand()*CLHEP::twopi; 530 eP = G4ThreeVector( sint*std::cos(phi), 531 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 532 eP *= muMom; 533 fLVl = G4LorentzVector( eP, fEmu ); 534 535 fLVh = lvsum - fLVl; 536 fLVt = G4LorentzVector( 0., 0., 0., 0. ); 537 } 538 else // Fermi motion, Q2 in nucleon rest fra 539 { 540 G4ThreeVector nMomDir = nMom*G4RandomDirec 541 542 if( !f2p2h ) // 1p1h 543 { 544 G4Nucleus recoil(A-1,Z); 545 rM = sqrt( recoil.AtomicMass(A-1,Z)*reco 546 hM = tM - rM; 547 548 fLVt = G4LorentzVector( nMomDir, sqrt( r 549 fLVh = G4LorentzVector(-nMomDir, sqrt( h 550 } 551 else // 2p2h 552 { 553 G4Nucleus recoil(A-2,Z-1); 554 rM = recoil.AtomicMass(A-2,Z-1)+sqrt(nMo 555 hM = tM - rM; 556 557 fLVt = G4LorentzVector( nMomDir, sqrt( r 558 fLVh = G4LorentzVector(-nMomDir, sqrt( h 559 } 560 // G4cout<<hM<<", "; 561 // bst = fLVh.boostVector(); // 9-3-20 562 563 // lvp1.boost(-bst); // 9-3-20 -> nucleon 564 565 fNuEnergy = lvp1.e(); 566 iTer = 0; 567 568 do 569 { 570 fXsample = SampleXkr(fNuEnergy); 571 fQtransfer = SampleQkr(fNuEnergy, fXsamp 572 fQ2 = fQtransfer*fQtransfer; 573 574 if( fXsample > 0. ) 575 { 576 fW2 = fM1*fM1 - fQ2 + fQ2/fXsample; // 577 fEmu = fNuEnergy - fQ2/2./fM1/fXsample 578 } 579 else 580 { 581 fW2 = fM1*fM1; 582 fEmu = fNuEnergy; 583 } 584 585 // if(fEmu < 0.) G4cout<<"fEmu = "<<fEmu 586 587 e3 = fNuEnergy + fM1 - fEmu; 588 589 // if( e3 < sqrt(fW2) ) G4cout<<"energy 590 591 pMu2 = fEmu*fEmu - fMnumu*fMnumu; 592 pX2 = e3*e3 - fW2; 593 594 fCosTheta = fNuEnergy*fNuEnergy + pMu2 595 fCosTheta /= 2.*fNuEnergy*sqrt(pMu2); 596 iTer++; 597 } 598 while( ( abs(fCosTheta) > 1. || fEmu < fMn 599 600 if( iTer >= iTerMax ) { fBreak = true; ret 601 602 if( abs(fCosTheta) > 1.) // vmg: due to bi 603 { 604 G4cout<<"FM: fCosTheta = "<<fCosTheta<<" 605 // fCosTheta = -1. + 2.*G4UniformRand(); 606 if(fCosTheta < -1.) fCosTheta = -1.; 607 if(fCosTheta > 1.) fCosTheta = 1.; 608 } 609 // LVs 610 G4LorentzVector lvt1 = G4LorentzVector( 0 611 G4LorentzVector lvsum = lvp1 + lvt1; 612 613 cost = fCosTheta; 614 sint = std::sqrt( (1.0 - cost)*(1.0 + cost 615 phi = G4UniformRand()*CLHEP::twopi; 616 eP = G4ThreeVector( sint*std::cos(phi), 617 muMom = sqrt(fEmu*fEmu-fMnumu*fMnumu); 618 eP *= muMom; 619 fLVl = G4LorentzVector( eP, fEmu ); 620 fLVh = lvsum - fLVl; 621 // back to lab system 622 // fLVl.boost(bst); // 9-3-20 623 // fLVh.boost(bst); // 9-3-20 624 } 625 //G4cout<<iTer<<", "<<fBreak<<"; "; 626 } 627 628 // 629 // 630 /////////////////////////// 631